WO2003064084A1 - Cutting insert for grooving and profiling - Google Patents
Cutting insert for grooving and profiling Download PDFInfo
- Publication number
- WO2003064084A1 WO2003064084A1 PCT/SE2003/000100 SE0300100W WO03064084A1 WO 2003064084 A1 WO2003064084 A1 WO 2003064084A1 SE 0300100 W SE0300100 W SE 0300100W WO 03064084 A1 WO03064084 A1 WO 03064084A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cutting insert
- cutting
- chip
- centre line
- ridge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/06—Profile cutting tools, i.e. forming-tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/04—Cutting-off tools
- B23B27/045—Cutting-off tools with chip-breaking arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2200/00—Details of cutting inserts
- B23B2200/32—Chip breaking or chip evacuation
- B23B2200/321—Chip breaking or chip evacuation by chip breaking projections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2200/00—Details of cutting inserts
- B23B2200/32—Chip breaking or chip evacuation
- B23B2200/323—Chip breaking or chip evacuation by chip breaking depressions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2265/00—Details of general geometric configurations
- B23B2265/34—Round
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T407/00—Cutters, for shaping
- Y10T407/23—Cutters, for shaping including tool having plural alternatively usable cutting edges
- Y10T407/235—Cutters, for shaping including tool having plural alternatively usable cutting edges with integral chip breaker, guide or deflector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T407/00—Cutters, for shaping
- Y10T407/24—Cutters, for shaping with chip breaker, guide or deflector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T407/00—Cutters, for shaping
- Y10T407/24—Cutters, for shaping with chip breaker, guide or deflector
- Y10T407/245—Cutters, for shaping with chip breaker, guide or deflector comprising concave surface in cutting face of tool
Definitions
- the present invention relates to a cutting insert for grooving and parting as well as profiling and longitudinal turning of metallic workpieces, comprising a shaft part and at least one cutting head and an end surface at the front end of the cutting insert, and a rear end surface at the rear end of the cutting insert, wherein the shaft part comprises a top side, a bottom side as well as two sides side surfaces extending between the same, said cutting head carries a cutting edge which is defined as the intersection between a chip side and a clearance side, the cutting edge has a circular shape and has in the main the same curvature up to the ends thereof, the chip side of the cutting head is provided with a first chip-forming device placed immediately inwards from the cutting edge.
- the cutting insert according to the invention is suitable for grooving and parting as well as profiling and longitudinal turning.
- a requirement that affects the design of the cutting tool is the requirement for diversification.
- a tool that may handle a number of different operations or very varying cutting conditions may replace a number of "conventional" tools that are more limited.
- a tool having the initially mentioned properties is to a large economic advantage in the machining industry because of decreased time losses for tool exchanges and savings, which are the result of a smaller number of tools.
- a cutting insert for grooving as well as the widening of grooves comprising a partly circular cutting edge and a chip side provided with a number of concave recesses which intersect each other and are placed immediately inwards from the cutting edge is, for instance, known by SE 454 248.
- SE 454 248 the ability of said cutting insert to give good chip control in a large a number of turning operations irrespective of feeding direction and over a large span of different cutting depths is very limited. This limitation is particularly large in connection with the plunging operation, which frequently starts the operations that are concerned.
- An additional cutting insert for grooving as well as the widening of grooves, which cutting insert comprises two ridges and bumps, is for instance known from EP 775 544.
- the rectangular shape of the cutting head makes it suitable for plunging and grooving but not for profiling.
- An object of the present invention is to form a cutting insert in such a way that it may carry out a large a number of turning operations irrespective of whether the cutting insert is mounted axially or radially in relation to the workpiece.
- Another object is to adapt the cutting insert for good chip control irrespective of feeding direction, cutting depth, cutting speed or the material of the workpiece.
- An additional object of the invention is to form a cutting insert, which cuts easily particularly during the plunging part of an overall cutting operation.
- Figure la shows a cutting insert and workpiece according to prior art.
- Figure lb shows a cutting insert and workpiece according to the invention.
- Figure 2 shows a cutting insert according to the invention in perspective obliquely from above.
- Figure 3 shows the same cutting insert as figure 2 straight from above.
- Figure 4 shows a side view of the cutting insert.
- Figure 5 shows an end view of the cutting insert.
- Figure 6 shows the chip surface of the cutting insert straight from above.
- Figure 7 shows a detailed enlargement of the chip surface of the cutting insert straight from above with different cross-sections marked.
- Figure 7a shows cross-section of the cutting insert according to the line A-A in figure 7.
- Figure 7b shows a cross-section of the cutting insert according to the line B-B in figure 7.
- Figure 7c shows a cross-section of the cutting insert according to the line C-C in figure 7.
- Figure 7d shows a cross-section of the cutting insert according to the line D-D in figure 7.
- Figure 8 shows a detailed enlargement of the chip surface of the cutting insert straight from above with two different, additional cross-sections marked.
- Figure 8a shows cross-sections of the cutting insert according to the line A-A in figure 8 and a typical chip produced during a plunging operation.
- Figure 8b shows cross-sections of the cutting insert according to the line F-F in figure 8 and a typical chip produced during a profiling operation.
- Figure 9 shows a detailed enlargement of the chip surface of the cutting insert straight from above with a plurality of parameters given.
- Figure la shows a workpiece (W) and a cutting insert (2 and 3) according to prior art.
- the cutting insert is most suited for profiling operations when the cutting insert moves essentially parallel to the centre line of the workpiece.
- This cutting insert is most suited to commence at the outer end of the workpiece and for machining with low cutting data.
- Figure lb shows a workpiece (W) and a cutting insert (2 and 3) according to the invention.
- the cutting insert is suited for all profiling and longitudinal turning operations, also those that involve a heavy plunging operation.
- Figures 2-5 show a cutting insert (1) for grooving and profiling operations according to the invention comprising a body having a shaft part (2) for clamping in a suitable tool holder.
- the cutting insert is produced in a suitable hard material, such as cemented carbide, ceramics or the like which furthermore may be coated.
- the body comprises two cutting heads (3), two end surfaces (4, 5), two side surfaces (8, 9), the top (6) and bottom side (7) of the shaft as well as two shoulders (13).
- the cutting insert (1) should be fastened in a holder body provided with an integrated clamping arm whereby the cutting insert is clamped in a working position by the force that the arm exerts on the cutting insert.
- the top (6) and bottom side (7) of the shaft is formed with wedge grooves (14 and 15) extended in the longitudinal direction having a concave contour in cross-section. Said concave groove along the middle of the topside of the shaft connects to inclined surfaces on both sides. Those on both sides of the central concave groove along the middle of the bottom side of the shaft, have corresponding crooked, sloping surfaces which are intended to support against corresponding crooked support surfaces in a blade holder in the way which is described in Swedish patent 511 934.
- the cutting head comprises a chip side (11).
- the intersection of the chip side with a front clearance side (10) forms a cutting edge (12), said cutting edge (12) has a circular shape and has, in the main, the same curvature up to the ends thereof, i.e. the transition to the shaft part.
- FIG. 6 shows the chip surface of the cutting head in detail.
- Said chip surface and the included elevations and depressions, which together constitute an enhanced chip breaking pattern, are placed symmetrically on each side of the centre line A of the cutting insert.
- Said geometry consists of the following components described step by step from the cutting edge inwards along line P.
- a border (16) in the main formed planely is placed inside the cutting edge (12).
- the border is limited radially inwards by a first chip-forming device that in the preferred embodiment consists of a row of recesses (17), which intersect along mini-ridges (25) that have extensions pe ⁇ endicular to the cutting edge (12).
- Each recess (17) is toroidly, alternatively spheroidly, ellipsoidly or paraboloidly concave.
- the recesses that are approximately 28 in number, aim to give the cutting insert a positive chip angle of approx. 5 to 30° as well as to plastically deform a chip so it becomes easier to break.
- the chip side (11) of the cutting head has a second device for chip breaking (24), see figure 6, said device is placed symmetrically around the centre line A of the cutting insert and consists of a drop- shaped chip-breaking depression (18), as well as a horseshoe-shaped ridge (19) which surrounds a rear part of the chip-breaking depression and as well as two bumps (20) at the ends of the ridge.
- the ridge (19) forms an arch, the radius of curvature of which is smaller than the radius of the edge (12) and which from one of the ends to the second covers 140-190°, preferably 160-180° of the circumference of a circle 360°.
- the tip of the chip-breaking depression is placed exactly inside or at the point of intersection of the cutting edge (12) and the centre line A of the cutting insert.
- the other chip surface consists of a plane surface (21) placed between the radially innermost limiting line of the recesses and the ridge (19) as well as the shoulder (13).
- the first device (23) for chip breaking which is described above consists of two identical but symmetrically mirror- inverted geometries placed on each side of the centre line A of the cutting insert. Important for the invention is that said two geometries do not meet at the front tip of the cutting insert, i.e.
- the point of intersection for the cutting edge and centre line A are terminated a certain distance on each side of the point of intersection in order to give room for the above-mentioned tip of the chip-breaking depression (18) which is a part of the second device for the chip breaker (24) to reach as far as the cutting edge.
- FIG (7a) a cross-section (A-A) along centre line A is shown.
- the bottom surface of the depression slopes downwards from the cutting edge (12) to a point corresponding to approximately a line between the two bumps (20) and then it slopes upwards until it reaches the ridge (19).
- the top of the ridge is higher than the cutting edge but lower than the topside (6) of the shaft.
- the cross-section transforms into the plane surface (21) until it terminates at the shoulder (13).
- the bottom surface on the drop-shaped chip-breaking depression (18) along the centre line A of the cutting insert forms an acute angle ⁇ with a line parallel to the bottom side (7) of the cutting insert, said angle is 5-30°, preferably 10-20°.
- a cross-section (B-B) is shown along a line parallel to centre line A and through one of the bumps (20). From the cutting edge rearwards, we initially see the border (16), one of the recesses (17), the bump (20), the ridge (19), the plane surface (21) and finally the shoulder (13).
- a cross-section (C-C) is shown along a line perpendicularly to the centre line A and through the two bumps (20). From cutting edge to the centre line A, the cross-section consists of the border (16), the mini-ridge (25) between two recesses (17), the bump (20) and finally the chip-breaking depression (18).
- a cross-section (D-D) is shown along a line angled 45° to the centre line A.
- a cross-section (A-A) is shown along the centre line A and how a typical chip (22) is formed when the cutting insert is used in a plunging operation, i.e. the cutting insert is moved forward in a direction X, parallel to or somewhat angled from the centre line A of the cutting insert. The acute angle of the cutting edge makes it easier to cut the material.
- the chips follow the bottom surface of the chip-breaking depression (18) and then they are broken or forced into a spiral by the rear surface of the chip-breaking depression and the ridge (19).
- FIG (8b) a cross-section (F-F) is shown along the centre line and how a typical chip (22) is formed when the cutting insert is moved in the direction Z. If the cutting depth is shallow, the chips may be broken against the first device for chip breaking (24) but when the cutting depth is deeper, as in this case, the chips flow over the first device for chip breaking (24) and are broken or formed by the ridge (19).
- FIG (9) a number of parameters are shown on the cutting head such as the diameter (B) of the cutting head, the distance between the ends (b) of the ridge (19), and the distance (h) between a line perpendicular to centre line (A) of the cutting insert, which passes through the front ridge ends (19) or bumps (20) and a parallel line which passes through or is at a tangent to the point where the cutting edge and centre line (A) of the cutting insert meet.
- the distance (b) is 0,4-0,7 preferably 0,45-0,6 of the diameter (B) of the cutting head (3).
- the distance (h) is 0,20-0,45 of the diameter (B) of the cutting head (3).
- the ridges (19) are terminated with the bumps (20).
- the ridges are terminated abruptly without the bumps, i.e. with steeply sloping surfaces.
- the first device for chip breaking (23) consists of a number of recesses (17) with intermediate mini-ridges (25) and that the device is divided into two groups on each side of the centre line (A) of the cutting insert.
- said device instead is built up of two ditches which replace the chain of recesses (17) and that said ditches have a steep rear wall (furthest away from the cutting edge) which controls and/or breaks the chips.
- the chip breaker may also consist of one only positive or neutrally sloping surface up to the ridge (19) or the depression (18).
- cutting insert having one cutting head and one shaft a cutting insert having three shafts and three cutting heads or a cutting insert having four shafts and four cutting heads may be feasible.
- a cutting insert having a so-called broken cutting edge in the front in an elliptic cutting head is also feasible.
- the elliptical shape for the cutting edge being perceived from above, and being possible to be used as a cutting insert having one and the same curvature, seen from the front the cutting edge becomes depressed in the front compared with the rest of the cutting edge.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Milling Processes (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Light Guides In General And Applications Therefor (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020047011658A KR100771032B1 (ko) | 2002-01-31 | 2003-01-21 | 홈 가공 및 윤곽 가공용 절삭 인서트 |
| JP2003563756A JP4263617B2 (ja) | 2002-01-31 | 2003-01-21 | 溝削り及び倣い削りのための切削インサート |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE0200310-1 | 2002-01-31 | ||
| SE0200310A SE525729C2 (sv) | 2002-01-31 | 2002-01-31 | Skär för spårstickning och profilering |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2003064084A1 true WO2003064084A1 (en) | 2003-08-07 |
Family
ID=20286851
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/SE2003/000100 Ceased WO2003064084A1 (en) | 2002-01-31 | 2003-01-21 | Cutting insert for grooving and profiling |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US6692199B2 (enExample) |
| EP (1) | EP1332815B1 (enExample) |
| JP (1) | JP4263617B2 (enExample) |
| KR (1) | KR100771032B1 (enExample) |
| CN (1) | CN100491030C (enExample) |
| AT (1) | ATE281262T1 (enExample) |
| DE (1) | DE60300117T2 (enExample) |
| SE (1) | SE525729C2 (enExample) |
| WO (1) | WO2003064084A1 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2327494B1 (de) | 2009-11-27 | 2015-10-21 | Schaeffler Technologies AG & Co. KG | Schneidwerkzeug und Verfahren zur Herstellung eines Schneidwerkzeugs |
| CN108856754A (zh) * | 2018-09-03 | 2018-11-23 | 中山市园丰精密刃具有限公司 | 一种弧槽成型刀 |
Families Citing this family (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6796752B2 (en) | 2002-06-19 | 2004-09-28 | Manchester Tool Company | Cutting insert |
| CA2503813C (en) | 2002-10-18 | 2008-12-23 | Manchester Tool Company | Tool holder and metal cutting insert with chip breaking surfaces |
| DE10344961A1 (de) * | 2003-09-27 | 2005-04-28 | Kennametal Inc | Schneidkörper, insbesondere zum Stech- und Längsdrehen |
| IL159188A (en) * | 2003-12-04 | 2008-08-07 | Uzi Gati | Cutting placement for diligent operations |
| AT501655B1 (de) * | 2005-03-24 | 2007-10-15 | Boehlerit Gmbh & Co Kg | Wendeschneidplatte zum drehschälen |
| IL170837A (en) * | 2005-09-13 | 2009-11-18 | Robi Nudelman | Cutting insert |
| JP4867376B2 (ja) * | 2006-02-08 | 2012-02-01 | 三菱マテリアル株式会社 | 切削工具 |
| JP4824767B2 (ja) * | 2006-10-31 | 2011-11-30 | 京セラ株式会社 | 切削インサート |
| WO2008117822A1 (ja) * | 2007-03-27 | 2008-10-02 | Kyocera Corporation | 切削インサートおよび切削工具、並びにそれを用いた被削材の切削方法 |
| EP1980348B1 (en) * | 2007-03-30 | 2012-03-07 | Mitsubishi Materials Corporation | Cutting insert |
| US20080240874A1 (en) * | 2007-03-30 | 2008-10-02 | Mitsubishi Materials Corporation | Cutting insert |
| US7458753B1 (en) | 2007-06-25 | 2008-12-02 | Kennametal Inc. | Round cutting insert with chip control feature |
| JP5262528B2 (ja) * | 2008-09-30 | 2013-08-14 | 三菱マテリアル株式会社 | 切削インサート |
| US8388274B2 (en) * | 2010-01-06 | 2013-03-05 | Kennametal Inc. | Round cutting insert with asymmetric chipbreaker feature |
| JP5639656B2 (ja) * | 2010-09-29 | 2014-12-10 | 京セラ株式会社 | 切削インサートおよび切削工具、並びにそれらを用いた切削加工物の製造方法 |
| US9278393B2 (en) | 2010-11-04 | 2016-03-08 | Kyocera Corporation | Cutting insert, cutting tool, and method of manufacturing machined product using the same |
| US10213850B2 (en) * | 2013-04-25 | 2019-02-26 | Kennametal Inc. | Cutting insert, a cutting insert holder, a system including the cutting insert and cutting insert holder, and a method of manufacturing thereof |
| AT13995U1 (de) * | 2013-05-27 | 2015-02-15 | Ceratizit Austria Gmbh | Schneideinsatz aus Hartmetall oder Cermet für die Drehbearbeitung |
| US10029311B2 (en) * | 2013-10-29 | 2018-07-24 | Kyocera Corporation | Cutting insert, cutting tool, and method of manufacturing machined product using them |
| CN104708033A (zh) * | 2013-12-12 | 2015-06-17 | 铜陵市永生机电制造有限责任公司 | 简便式圆槽车刀 |
| US9421622B2 (en) * | 2014-01-14 | 2016-08-23 | Iscar, Ltd. | Indexable central drill insert and cutting tool therefor |
| DE102014207507B4 (de) | 2014-04-17 | 2021-12-16 | Kennametal Inc. | Zerspanungswerkzeug sowie Verfahren zum Herstellen eines Zerspanungswerkzeugs |
| DE102014207510B4 (de) | 2014-04-17 | 2021-12-16 | Kennametal Inc. | Zerspanungswerkzeug sowie Verfahren zum Herstellen eines Zerspanungswerkzeugs |
| US9643282B2 (en) | 2014-10-17 | 2017-05-09 | Kennametal Inc. | Micro end mill and method of manufacturing same |
| DE102014116660A1 (de) * | 2014-11-14 | 2016-05-19 | Kennametal Inc. | Schneideinsatz |
| JP6798663B2 (ja) * | 2016-04-27 | 2020-12-09 | 住友電工ハードメタル株式会社 | 切削インサート |
| EP3421159B1 (en) * | 2017-06-27 | 2025-12-10 | Walter Ag | Double ended cutting insert for parting |
| US10384268B1 (en) * | 2018-02-05 | 2019-08-20 | Iscar, Ltd. | Grooving insert having rearwardly pointing arrowhead-shaped chip former |
| TWI773866B (zh) * | 2018-02-28 | 2022-08-11 | 以色列商艾斯卡公司 | 具有含間隔開的向上凸起刃帶部之刃帶的切削嵌件、及設有該切削嵌件的非旋轉式切削刀具 |
| CN115958215A (zh) * | 2022-12-21 | 2023-04-14 | 厦门金鹭特种合金有限公司 | 切削刀片及切削刀具 |
| EP4570402A1 (de) * | 2023-12-11 | 2025-06-18 | CERATIZIT Austria Gesellschaft m.b.H. | Abstechwerkzeug |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4844668A (en) * | 1986-08-18 | 1989-07-04 | Sandvik Ab | Turning insert |
| EP0467872A1 (en) * | 1990-07-19 | 1992-01-22 | Sandvik Aktiebolag | Metal cutting insert with rounded cutting edge |
| EP0552714A1 (en) * | 1992-01-20 | 1993-07-28 | Iscar Ltd. | A metal cutting tip |
| EP0775544A1 (en) * | 1995-11-23 | 1997-05-28 | Sandvik Aktiebolag | Cutting insert for grooving and for the widening of grooves |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4028782A (en) * | 1974-08-05 | 1977-06-14 | Teledyne Mid-America Corporation | Cutting insert and tool holder assembly therefor |
| GB8903075D0 (en) * | 1989-02-10 | 1989-03-30 | Iscar Hartmetall | A cutting insert |
| SE508121C2 (sv) * | 1992-04-30 | 1998-08-31 | Sandvik Ab | Skär för svarvnings- och spårstickningsverktyg |
| ATE208658T1 (de) * | 1993-07-28 | 2001-11-15 | Pe Corp Ny | Vorrichtung und verfahren zur nukleinsäurevervielfältigung |
| US5511911A (en) * | 1994-07-05 | 1996-04-30 | Valenite Inc. | Cutting insert |
| SE511934C2 (sv) | 1997-09-24 | 1999-12-20 | Sandvik Ab | Verktyg för spånavskiljande bearbetning |
| US6200072B1 (en) * | 1997-10-17 | 2001-03-13 | Seco Tools Ab | Face-milling method and apparatus |
| SE508665C2 (sv) * | 1997-12-22 | 1998-10-26 | Sandvik Ab | Skär för spårstickning |
| CA2338668C (en) | 2000-02-29 | 2005-02-15 | Canon Kabushiki Kaisha | Polluted soil remediation apparatus, polluted soil remediation method, pollutant degrading apparatus and pollutant degrading method |
| SE522209C2 (sv) * | 2000-03-02 | 2004-01-20 | Sandvik Ab | Verktyg för spånavskiljande bearbetning med vinklat skärhuvud |
-
2002
- 2002-01-31 SE SE0200310A patent/SE525729C2/sv not_active IP Right Cessation
-
2003
- 2003-01-21 EP EP03445009A patent/EP1332815B1/en not_active Expired - Lifetime
- 2003-01-21 CN CNB038021404A patent/CN100491030C/zh not_active Expired - Fee Related
- 2003-01-21 KR KR1020047011658A patent/KR100771032B1/ko not_active Expired - Fee Related
- 2003-01-21 AT AT03445009T patent/ATE281262T1/de not_active IP Right Cessation
- 2003-01-21 WO PCT/SE2003/000100 patent/WO2003064084A1/en not_active Ceased
- 2003-01-21 JP JP2003563756A patent/JP4263617B2/ja not_active Expired - Fee Related
- 2003-01-21 DE DE60300117T patent/DE60300117T2/de not_active Expired - Lifetime
- 2003-01-30 US US10/353,934 patent/US6692199B2/en not_active Expired - Lifetime
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4844668A (en) * | 1986-08-18 | 1989-07-04 | Sandvik Ab | Turning insert |
| EP0467872A1 (en) * | 1990-07-19 | 1992-01-22 | Sandvik Aktiebolag | Metal cutting insert with rounded cutting edge |
| EP0552714A1 (en) * | 1992-01-20 | 1993-07-28 | Iscar Ltd. | A metal cutting tip |
| EP0775544A1 (en) * | 1995-11-23 | 1997-05-28 | Sandvik Aktiebolag | Cutting insert for grooving and for the widening of grooves |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2327494B1 (de) | 2009-11-27 | 2015-10-21 | Schaeffler Technologies AG & Co. KG | Schneidwerkzeug und Verfahren zur Herstellung eines Schneidwerkzeugs |
| EP2327494B2 (de) † | 2009-11-27 | 2021-07-21 | Schaeffler Technologies AG & Co. KG | Schneidwerkzeug und Verfahren zur Herstellung eines Schneidwerkzeugs |
| CN108856754A (zh) * | 2018-09-03 | 2018-11-23 | 中山市园丰精密刃具有限公司 | 一种弧槽成型刀 |
Also Published As
| Publication number | Publication date |
|---|---|
| DE60300117D1 (de) | 2004-12-09 |
| CN1615195A (zh) | 2005-05-11 |
| EP1332815B1 (en) | 2004-11-03 |
| JP2005515905A (ja) | 2005-06-02 |
| US20030170081A1 (en) | 2003-09-11 |
| CN100491030C (zh) | 2009-05-27 |
| SE0200310D0 (sv) | 2002-01-31 |
| JP4263617B2 (ja) | 2009-05-13 |
| EP1332815A2 (en) | 2003-08-06 |
| SE0200310L (sv) | 2003-08-01 |
| KR100771032B1 (ko) | 2007-10-29 |
| KR20040077891A (ko) | 2004-09-07 |
| EP1332815A3 (en) | 2003-08-13 |
| ATE281262T1 (de) | 2004-11-15 |
| US6692199B2 (en) | 2004-02-17 |
| SE525729C2 (sv) | 2005-04-12 |
| DE60300117T2 (de) | 2005-03-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1332815B1 (en) | Cutting insert for grooving and profiling | |
| US6050752A (en) | Cutting insert | |
| US6164879A (en) | Drilling tool for drilling in solid metal | |
| JP3535616B2 (ja) | 切削用インサート | |
| JP3371733B2 (ja) | スローアウェイチップ | |
| US5207748A (en) | High productivity insert | |
| KR102150132B1 (ko) | 양면형 인덱서블 선삭 인서트 | |
| CN100434233C (zh) | 切削刀片 | |
| US5915889A (en) | Cutting tip developed as a polygon with a chip breaker | |
| JP2007185766A (ja) | 旋削インサート及び旋削工具 | |
| JP2002524272A (ja) | 溝切り作業用切削インサート | |
| EP0906165B1 (en) | Cutting insert for grooving operations | |
| CN114829046A (zh) | 切削刀片和配备有该切削刀片的切削工具 | |
| JP2545472Y2 (ja) | スローアウェイチップ | |
| JP2004114269A (ja) | スローアウェイエンドミル及びそれに用いるスローアウェイチップ | |
| KR100654942B1 (ko) | 트위스트 드릴 | |
| MXPA01009427A (en) | Cutting insert |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 20038021404 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020047011658 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003563756 Country of ref document: JP |