WO2003062923A1 - Masque photolithographique, son procede de production et procede de formation de motif au moyen dudit masque - Google Patents

Masque photolithographique, son procede de production et procede de formation de motif au moyen dudit masque Download PDF

Info

Publication number
WO2003062923A1
WO2003062923A1 PCT/JP2002/013466 JP0213466W WO03062923A1 WO 2003062923 A1 WO2003062923 A1 WO 2003062923A1 JP 0213466 W JP0213466 W JP 0213466W WO 03062923 A1 WO03062923 A1 WO 03062923A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pattern
phase shifter
mask
semi
Prior art date
Application number
PCT/JP2002/013466
Other languages
English (en)
French (fr)
Inventor
Akio Misaka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2003562723A priority Critical patent/JP3984593B2/ja
Priority to EP02788862A priority patent/EP1408373A4/en
Priority to US10/474,336 priority patent/US7060398B2/en
Priority to KR1020047000662A priority patent/KR100568403B1/ko
Publication of WO2003062923A1 publication Critical patent/WO2003062923A1/ja
Priority to US11/402,065 priority patent/US7378198B2/en
Priority to US11/401,857 priority patent/US7501213B2/en
Priority to US11/402,064 priority patent/US7449285B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/29Rim PSM or outrigger PSM; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/30Alternating PSM, e.g. Levenson-Shibuya PSM; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes

Definitions

  • the present invention relates to a photomask, a method for producing the same, and a method for forming a pattern using the photomask.
  • the present invention relates to a photomask for forming a fine pattern used for manufacturing a semiconductor integrated circuit device, a method for forming the same, and a pattern forming method using the photomask.
  • the line pattern is a part of the resist film that is not exposed to the exposure light, that is, a resist part (resist pattern) remaining after the development.
  • the space pattern is a portion of the resist film that is exposed to exposure light, that is, an opening (resist removal pattern) where the resist is removed by development.
  • the contact pattern is a portion of the resist film that is removed in a hole shape by development, and can be considered as a particularly minute space pattern.
  • FIG. 28 (a) shows an example of a layout of a desired pattern (resist pattern) to be formed.
  • the pattern 800 has a partial pattern 800a having a predetermined dimension or less.
  • FIGS. 28 (b) and 28 (c) show plan views of two conventional photomasks used to form the pattern shown in FIG. 28 (a).
  • a complete light-shielding film 812 (the transmittance of exposure light is almost 0%) is formed on the transparent substrate 811.
  • a first opening 813 serving as a light-transmitting portion and a second opening 814 serving as a phase shifter are formed in the complete light-shielding film 812 by a light-shielding pattern for forming the partial pattern 800a. 8 1 2a is provided.
  • the second opening 814 serving as the phase shifter transmits the exposure light such that a phase difference of 180 degrees is generated with respect to the first opening 813 serving as the light transmitting unit.
  • a combination of the first photomask 810 and the light-shielding pattern 812a is provided in the second photomask 820, on the transparent substrate 821.
  • a light-shielding pattern 822 for forming a desired pattern 800 is formed in the second photomask 820, on the transparent substrate 821.
  • the pattern formation method using the two photomasks shown in FIGS. 28 (b) and 28 (c) is as follows. First, using a first photomask 810, exposure is performed on a substrate on which a resist film made of a positive resist has been applied. After that, the second photomask 820 is aligned so that a pattern 800 shown in FIG. 28A is formed, and then exposure is performed using the second photomask 820. So Then, by developing the resist film, a resist pattern as shown in FIG. 28 (a) can be formed. At this time, an extra pattern (a pattern other than the pattern 800) that remains only by exposure using only the first photomask 8100 is exposed to light using the second photomask 8100. Can be removed. As a result, a minute width partial pattern 800a that cannot be formed by exposure using only the second photomask 82 can be formed.
  • the light-transmitting portion and the phase shifter are arranged with a pattern (ie, a light-shielding pattern) made of a complete light-shielding film having a predetermined dimension or less interposed therebetween, the light-transmitting portion (opening) and the phase shifter Since the light that has passed through and diffracted to the back side of the light-shielding pattern cancels each other, the light-shielding properties of the light-shielding pattern can be improved, so that a line pattern having a predetermined dimension or less can be formed.
  • a pattern ie, a light-shielding pattern
  • a method using a halftone phase shift mask As a conventional method for forming a minute contact pattern, a method using a halftone phase shift mask has been proposed.
  • a light-transmitting portion an opening in the phase shifter
  • a phase shifter that has a low transmittance (about 3 to 6%) with respect to the exposure light and transmits the light at 180 degrees opposite to the light that passes through the opening is provided as a light shielding portion.
  • FIG. 29 (a) is a plan view of a photomask in which an opening corresponding to a contact pattern is provided in a chromium film serving as a complete light shielding portion provided on the mask surface. Indicates the amplitude intensity of the light transmitted through the photomask shown in FIG. 29 (a) and transferred to the position corresponding to the line segment AA ′ on the material to be exposed.
  • FIG. 29 (c) is a plan view of a photomask in which a phase shifter provided on the mask surface is provided with a chromium film corresponding to the contact pattern as a complete light shielding portion. 29 (d) shows the amplitude intensity of the light transmitted through the photomask shown in FIG.
  • FIG. 29 (e) is a plan view of a photomask (that is, a halftone phase shift mask) in which a contact pattern and an opening corresponding to a contact pattern are provided in a phase shifter serving as a light shielding portion provided on the mask surface.
  • FIGS. 29 (f) and 29 (g) show the amplitude intensity and light intensity of the light transmitted through the photomask shown in FIG. 29 (e) and transferred to the position corresponding to line segment AA 'on the exposed material, respectively. The light intensity is shown.
  • the amplitude intensity of the light transmitted through the phase shift mask is the sum of the amplitude intensities of the light transmitted through the photomasks shown in Fig. 29 (a) and Fig. 29 (c). That is, in the halftone phase shift mask shown in FIG. 29 (e), the phase shifter serving as a light-shielding portion not only transmits a part of the exposure light but also transmits the exposure light through the aperture. It is formed so as to give a phase difference of 180 degrees with respect to the light passing through. Therefore, as shown in FIG. 29 (b) and FIG.
  • the light transmitted through the phase shifter has an amplitude intensity distribution having a phase opposite to that of the light transmitted through the aperture, and
  • a phase boundary where the amplitude intensity becomes 0 due to the phase change occurs as shown in Fig. 29 (f).
  • the phase edge At the edge of the opening that is the phase boundary (hereinafter, referred to as the phase edge), the light intensity represented by the square of the amplitude intensity is also 0, and a strong dark portion is formed. It is formed. Therefore, in the image of the light transmitted through the halftone phase shift mask shown in FIG. 29 (e), a very strong contrast is realized around the opening, so that a minute contact pattern can be formed.
  • FIGS. 30 (a) to 30 (c) are diagrams showing the shape of an exposure light source conventionally used.
  • the oblique incidence exposure light source is It means a light source as shown in FIG. 30 (b) or FIG. 30 (c) from which a light component vertically incident on a portion corresponding to the center of the light source in the disc is removed.
  • Typical oblique incident exposure light sources include an annular exposure light source shown in FIG. 30 (b) and a quadrupole exposure light source shown in FIG. 30 (c).
  • quadrupole exposure light sources are generally more effective at enhancing contrast or expanding the depth of focus (DOF) than annular exposure light sources.
  • the pattern forming method as in the first conventional example has the following problems.
  • the light-transmitting part and the phase shifter must have a predetermined size. Must be adjacent at the following intervals:
  • the light-transmitting portion and the phase shifter are arranged on the photomask without interposing the light-shielding pattern therebetween, a light-shielded image corresponding to the boundary between the light-transmitting portion and the phase shifter will be formed. Therefore, a pattern of an arbitrary shape cannot be formed only by the first photomask as shown in FIG.
  • the desired pattern (resist pattern) to be formed has a complicated pattern shape (for example, a T-shape having a predetermined dimension or less)
  • the entire light-shielding pattern is converted into a light-transmitting portion and a phase shifter having phases opposite to each other. Therefore, for example, the light-shielding property of a T-shaped light-shielding pattern cannot be improved. Therefore, the pattern rate that can utilize the effect of the phase shifter is limited.
  • the optimum illumination condition for the isolated space pattern (including the isolated contact pattern) and the optimal space condition for the dense space pattern (including the dense contact pattern) or the isolated line pattern are used.
  • the optimal lighting conditions There is a reciprocal relationship with the optimal lighting conditions. For this reason, it is difficult to form an isolated space pattern and an isolated line pattern or a dense space pattern at the same time and with an optimum finish under the same illumination conditions. Disclosure of the invention
  • the present invention provides a photomask capable of forming a fine pattern under the same exposure conditions without depending on the shape or density of the pattern, a method of forming the same, and a method of forming a pattern using the photomask.
  • the purpose is to:
  • a photomask according to the present invention has a mask pattern having a light-shielding property on an exposure light on a light-transmitting substrate having a light-transmitting property; Assuming a photomask provided with a light-transmitting portion on which no mask pattern is formed, the mask pattern has a semi-light-shielding portion that transmits exposure light in the same phase with the light-transmitting portion as a reference, and a photomask with a light-transmitting portion as a reference. And a phase shifter for transmitting the exposure light in the opposite phase, wherein the semi-shielding portion has a transmittance for partially transmitting the exposure light, and the phase shifter transmits the exposure light. The light is provided at a position where a part of the light transmitted through the light-transmitting portion and the semi-light-shielding portion can be canceled.
  • the mask pattern is composed of the semi-light-shielding portion and the phase shifter, and the light transmitted through the phase shifter can cancel out a part of the light transmitted through the light-transmitting portion and the semi-light-shielding portion.
  • a phase shifter is provided so as to be able to operate. For this reason, the contrast of the light intensity distribution in the light-shielded image corresponding to the mask pattern can be emphasized, so that the contrast does not depend on the pattern shape or the density.
  • a fine pattern can be formed under one exposure condition.
  • the transmittance of the semi-light-shielding portion to exposure light is preferably 15 ⁇ 1 or less.
  • the transmissivity of the semi-light-shielding portion to the exposure light is 6% or more and 15 ⁇ 1 ⁇ 2 or less, the DOF (depth of focus) or contrast is improved, and the resist film is prevented from being thinned during pattern formation or resist is reduced.
  • the optimization of the sensitivity can be achieved at the same time.
  • the semi-light-shielding portion applies the exposure light on the basis of the light-transmitting portion to (-30 + 360 Xn) degrees or more and (30 + 360 Xn) degrees or less (where ⁇ is an integer).
  • the phase shifter shifts the exposure light with respect to the light-transmitting portion by more than (150 + 360 ⁇ ⁇ ) degrees and less than (210 + 360 X ⁇ ) degrees (however, ( ⁇ is an integer).
  • phase difference of not less than (-1 30 + 360 X n) degrees and not more than (30 + 360 ⁇ ⁇ ) degrees (where ⁇ is an integer) is regarded as in-phase, and (150 + 360 n)
  • a phase difference of not less than ⁇ ) degrees and not more than (2 10 + 360 X ⁇ ) degrees (where ⁇ is an integer) is regarded as the opposite phase.
  • the phase shifter is disposed in a portion of (0.8 ⁇ ) X ⁇ or less from the boundary with the light transmitting portion in the mask pattern (where ⁇ is the wavelength of the exposure light).
  • ⁇ ⁇ and ⁇ are the number of apertures and the reduction magnification of the reduction projection optical system of the exposure machine, respectively. .
  • the width of the phase shifter is (0. 3 ⁇ ⁇ ) ⁇ (where ⁇ is the wavelength of the exposure light, and ⁇ ⁇ and ⁇ are the numerical aperture and reduction magnification of the reduction projection optical system of the exposure machine, respectively). This improves the focus margin in pattern formation.
  • the width of the phase shifter is preferably equal to or more than (0. ⁇ ⁇ ⁇ ) X ⁇ ⁇ ⁇ which can provide an optical action as the phase shifter.
  • the mask pattern is provided so as to surround the light-transmitting portion, and the phase shifter is sandwiched between the semi-light-shielding portion and the light-transmitting portion near the light-transmitting portion in the mask pattern. Is preferably provided.
  • the contrast of the light intensity distribution in the peripheral portion of the image of the light transmitted through the light transmitting portion can be emphasized.
  • the mask pattern is provided so as to surround the light transmitting part, and the phase shifter is provided near the light transmitting part in the mask pattern so as to be surrounded by the semi-light shielding part. Is preferred.
  • the contrast of the light intensity distribution in the peripheral portion of the image of the light transmitted through the light transmitting portion can be emphasized, and the light intensity distribution is less affected by a mask dimensional error.
  • the mask pattern is surrounded by a light transmitting part, and the phase shifter is surrounded by a semi-light shielding part.
  • the width of the mask pattern is not more than (0.8 X ⁇ / ⁇ A) ((where ⁇ is the wavelength of the exposure light, and ⁇ ⁇ and ⁇ are the reduction projection optical system of the exposure machine, respectively). Numerical aperture and reduction ratio), the above-mentioned effects can be surely obtained.
  • the width of the phase shifter is (0.4 ⁇ ) ⁇ or less, the exposure margin in pattern formation is further improved. Further, in this case, when the width of the phase shifter is not less than (0.1 ⁇ ) ⁇ and not more than (0.4X ⁇ / ⁇ A) X ⁇ , the exposure margin and the DOF are simultaneously improved. .
  • the mask pattern is surrounded by the light transmitting portion. It is a line-shaped pattern, and the phase shifter is preferably provided so as to be sandwiched by the semi-light-shielding portion at the center in the line width direction of the mask pattern. In this case, the line corresponding to the mask pattern is formed. The contrast of the light intensity distribution at the center of the light-shielded image can be enhanced.
  • the width of the mask pattern is not more than (0.8 ⁇ ⁇ ) ⁇ (where ⁇ is the wavelength of the exposure light, and ⁇ ⁇ and ⁇ are the numerical aperture of the reduction projection optical system of the exposure machine and The above-mentioned effect can be surely obtained.
  • the exposure margin in pattern formation is further improved. Further, in this case, if the width of the phase shifter is not less than (0.1 ⁇ ) ⁇ and not more than (0.4 ⁇ ) ⁇ , the exposure margin and the DOF are simultaneously improved.
  • the mask pattern is a line-shaped pattern surrounded by a light transmitting portion, and the phase shifters are provided at least at both ends in the line width direction of the mask pattern so as to sandwich the semi-light-shielding portion. It is preferable that
  • the mask pattern is a line-shaped pattern surrounded by a light-transmitting portion, and the phase shifter has semi-light-shielding portions at both ends and a center in the line width direction of the mask pattern. It is preferable to be provided so as to sandwich it.
  • the width of the mask pattern is not more than ( ⁇ ⁇ ) ⁇ ((where ⁇ is the wavelength of the exposure light, and ⁇ A and M are the numerical aperture and the reduction magnification of the reduction projection optical system of the exposure machine, respectively), and the above-mentioned effects can be surely obtained. Further, in this case, when the width of the phase shifter is not more than (0.3 ⁇ ⁇ / ⁇ A) ⁇ , the focus margin in pattern formation is further improved.
  • the mask pattern is a line-shaped pattern surrounded by a light-transmitting portion, and the phase shifter is disposed at both ends in the line width direction of the mask pattern so as to be surrounded by the semi-light-shielding portion.
  • the phase shifter is disposed at both ends in the line width direction of the mask pattern so as to be surrounded by the semi-light-shielding portion.
  • it is provided.
  • the mask pattern is a line-shaped pattern surrounded by a light-transmitting portion, and the phase shifter is surrounded by a semi-light-shielding portion at both ends and the center in the line width direction of the mask pattern.
  • the phase shifter is surrounded by a semi-light-shielding portion at both ends and the center in the line width direction of the mask pattern.
  • the light transmitting portion has a first light transmitting portion and a second light transmitting portion
  • the mask pattern surrounds the first light transmitting portion and the second light transmitting portion.
  • the phase shifter is provided at a central portion between the first light transmitting portion and the second light transmitting portion, and the semi-light shielding portions are provided on both sides of the phase shifter. Is preferred. In this way, the contrast of the light intensity distribution at the center of the light-shielded image corresponding to the portion between the pair of light-transmitting portions in the mask pattern can be emphasized.
  • the distance between the first light-transmitting portion and the second light-transmitting portion is (0.8 ⁇ ⁇ ⁇ ⁇ ) ⁇ ⁇
  • is the wavelength of the exposure light
  • ⁇ and ⁇ are the numerical aperture and the reduction magnification of the reduction projection optical system of the exposure machine, respectively.
  • the width of the phase shifter is (0.4 ⁇ ) ⁇ or less, the exposure margin in forming the pattern is improved.
  • the width of the phase shifter is not less than (0.4. ⁇ ) ⁇ and not more than (0.4 ⁇ ) ⁇ , the exposure margin and the DOF are simultaneously improved.
  • the pattern forming method according to the present invention presupposes the pattern forming method using the photomask of the present invention, and forms a resist film on a substrate, and irradiates the resist film with exposure light through the photomask. And a step of developing the resist film irradiated with the exposure light to form a resist pattern.
  • the pattern forming method of the present invention effects similar to those of the photomask of the present invention can be obtained.
  • the contrast between the mask pattern and the portion corresponding to the light transmitting portion is improved.
  • the focus characteristics of the light intensity distribution are improved. Therefore, the exposure margin and the focus margin in pattern formation are improved.
  • the first method of creating mask data according to the present invention is based on the method of creating mask data of a photomask of the present invention, and determines the shape of a mask pattern based on a pattern to be formed using a photomask, and performs semi-shielding.
  • a first step of setting the transmittance of the part a second step of extracting an area between the light-transmitting parts that is smaller than or equal to a predetermined dimension in the mask pattern after the first step, and a second step And a third step of inserting a phase shifter near the light-transmitting portion in the extracted region and the mask pattern.
  • the contrast of the light intensity distribution at the periphery of the image of the light transmitted through the light-transmitting portion can be enhanced, and the side at the center of the light-shielded image can be enhanced.
  • a photomask that can prevent generation of lobes can be realized.
  • the method further includes, after the third step, a step of inserting a semi-shielding portion having a predetermined dimension or less between the phase shifter and the light transmitting portion.
  • the exposure light is transmitted in an opposite phase to a region of the mask pattern that is smaller than or equal to a predetermined dimension and is sandwiched between the light-transmitting portions with respect to the light-transmitting portion. It is preferable to include a step of inserting another phase shifter.
  • the other phase shifter shifts the exposure light with respect to the translucent portion at a temperature of (150 + 360Xn) degrees or more and (210 + 360Xn) degrees or less (however, (n is an integer).
  • the method further comprises a step of inserting another phase shifter into a peripheral portion parallel to the line direction in the above.
  • a corner is extracted from the mask pattern, and the phase shifter is moved to an area within a predetermined dimension from the extracted bending point of the corner in the mask pattern.
  • the dimension of the semi-light-shielding part is fixed with the phase shifter dimension fixed so that the pattern to be formed using the photomask has a desired dimension.
  • a photomask having a small variation in pattern (resist pattern) dimension with respect to a change in mask dimension that is, a photomask capable of forming a pattern having a desired dimension. realizable.
  • the second method of creating mask data according to the present invention is based on the method of creating mask data of a photomask of the present invention, and determines the shape of a mask pattern based on a pattern to be formed using a photomask, and performs semi-shading.
  • a first step of setting the transmittance of the portion a step of extracting an area where the width of the mask pattern is equal to or smaller than a predetermined dimension after the first step, and a step of extracting the area after the second step.
  • the light intensity distributions at the central portion of the light-shielded image corresponding to the narrow portion of the mask pattern and the contour portion of the light-shielded image corresponding to the wide portion of the mask pattern A photomask that can emphasize the contrast of the image can be realized.
  • the method further includes, after the third step, a step of inserting a semi-light-shielding portion having a predetermined dimension or less between the phase shifter and the light-transmitting portion.
  • the mask pattern it is preferable to include a step of inserting another phase shifter that transmits the exposure light in the opposite phase with respect to the light transmitting portion, in a region where the width of the beam exceeds a predetermined dimension.
  • the other phase shifter sets the exposure light on the basis of the light-transmitting portion to be equal to or more than (150 + 360xn) degrees and equal to or less than (210 + 360xn) degrees (where ⁇ May be transmitted through a phase difference of (an integer).
  • the method further comprises a step of inserting another phase shifter into a peripheral portion parallel to the line direction in the above.
  • the phase shifter is shifted to an area within a predetermined dimension from a bending point of the extracted corner in the mask pattern.
  • the dimension of the semi-light-shielding portion is fixed with the phase shifter dimension fixed so that the pattern to be formed using the photomask has a desired dimension. It is preferable to provide a process for correcting the difference.
  • FIG. 1 is a plan view of a photomask using the contour enhancement method according to the first embodiment of the present invention.
  • FIGS. 2A to 2G are diagrams for explaining the principle of the contour enhancement method of the present invention.
  • FIGS. 3A to 3F are diagrams for explaining the size limit of the phase shifter in the contour enhancement method of the present invention.
  • 4 (a) to 4 (d) are diagrams for explaining the size limit of the phase shifter in the contour enhancement method of the present invention.
  • 5 (a) to 5 (f) are diagrams for explaining the change in contrast of light intensity distribution when an isolated pattern is formed by exposing the contour emphasis mask of the present invention from various light source positions. It is.
  • FIGS. 6 (a) to 6 (f) are diagrams for explaining changes in the contrast of the light intensity distribution when a dense pattern is formed by exposing the contour enhancement mask of the present invention from various light source positions. It is.
  • FIGS. 7A to 7E are diagrams for explaining the DOF improvement effect of the contour emphasis mask of the present invention.
  • FIGS. 8A to 8F are diagrams for explaining the dependence of the contrast and the DOF on the transmittance of the semi-light-shielding portion in the contour emphasizing mask of the present invention.
  • FIGS. 9A to 9F show the light-shielding mask pattern including the semi-light-shielding portion and the phase shifter in the contour emphasizing mask of the present invention in which the opening corresponding to the contact pattern is provided. It is a figure showing a parition.
  • FIG. 10 is a plan view of the contour emphasizing mask of the present invention in which openings corresponding to the contact patterns are closely arranged based on the mask pattern of the contour emphasizing mask of the present invention shown in FIG. 9B. It is.
  • FIGS. 11A and 11B are diagrams for explaining the dependence of the DOF on the size of the opening in the contour enhancement mask of the present invention.
  • FIG. 12 is a plan view of a photomask using the center line enhancement method according to the second embodiment of the present invention.
  • FIGS. 13 (a) to 13 (c) are diagrams for explaining the principle of the center line enhancement method of the present invention.
  • FIGS. 14A and 14B are diagrams showing a variation of the shape of the phase shifter in the image enhancement mask of the present invention.
  • FIGS. 15 (a) to 15 (c) show exposure from various incident directions of exposure light using a plurality of image enhancement masks of the present invention, each having a different size of an opening serving as a phase shifter.
  • FIG. 9 is a diagram showing a result of calculating DOF characteristics in a case by simulation.
  • FIG. 17 is a flowchart of a mask data creation method according to the third embodiment of the present invention.
  • FIGS. 18 (a) to 18 (d) are views showing respective steps in the case of forming a mask pattern for forming a space pattern using the mask data creating method according to the third embodiment of the present invention.
  • FIGS. 19 (a) to 19 (d) are views showing respective steps in the case of forming a mask pattern for forming a space pattern using the mask data creation method according to the third embodiment of the present invention.
  • FIGS. 20 (a) to (d) are diagrams showing each step of forming a mask pattern for forming a line pattern by using the mask data creating method according to the third embodiment of the present invention.
  • FIGS. 21 (a) to 21 (c) are views showing respective steps in the case of forming a mask pattern for forming a line pattern using the mask data creation method according to the third embodiment of the present invention.
  • FIG. 22 is a diagram showing a method of inserting a phase shifter according to the line width of a mask pattern in the mask data creation method according to the third embodiment of the present invention.
  • FIG. 23 is a plan view of a photomask according to the fourth embodiment of the present invention.
  • FIGS. 24A to 24F are cross-sectional views taken along line AA ′ in FIG.
  • FIGS. 25A to 25D are cross-sectional views showing each step of the pattern forming method according to the fifth embodiment of the present invention.
  • FIGS. 26 (a) to 26 (e) are diagrams for explaining a deformation compensation method for a line end in the mask data creation method according to the sixth embodiment of the present invention.
  • FIGS. 27 (a) to 27 (f) are diagrams for explaining a deformation compensation method for a corner portion in the mask data creation method according to the sixth embodiment of the present invention.
  • FIG. 28 (a) is a diagram showing an example of a layout of a desired pattern to be formed in the conventional pattern forming method
  • FIGS. 28 (b) and 28 (c) are each a diagram of FIG. 28 (a).
  • FIG. 4 is a plan view of two conventional photomasks used to form the pattern shown in FIG.
  • FIGS. 29A to 29G are diagrams for explaining the principle of a pattern forming method using a conventional halftone phase shift mask.
  • Fig. 30 (a) shows the shape of a normal exposure light source
  • Fig. 30 (b) shows the shape of an annular exposure light source
  • Fig. 30 (c) shows the shape of a quadrupole exposure light source.
  • FIG. 1 shows a photomask (hereinafter, referred to as an outline emphasis mask) using the outline emphasis method according to the first embodiment of the present invention. Specifically, a light-transmitting portion corresponding to an isolated contact pattern has It is a top view of the provided contour emphasis mask.
  • the contour emphasizing mask 1 includes a transmissive substrate 2 having transparency to exposure light, and a transmittance formed on a main surface of the transmissive substrate 2 and partially transmitting the exposure light.
  • a light-transmitting portion (opening) 4 formed on the main surface of the transmissive substrate 2 so as to be surrounded by the semi-light-shielding portion 3 and corresponding to the isolated contact pattern; and a transmissive substrate.
  • a ring-shaped phase shifter 5 formed so as to surround the light-transmitting portion 4 between the semi-light-shielding portion 3 and the light-transmitting portion 4 on the main surface of 2.
  • a semi-shielding portion 3 that transmits exposure light in the same phase with respect to the light transmitting portion 4 and a phase shifter 5 that transmits exposure light in the opposite phase with respect to the light transmitting portion 4.
  • a mask pattern having a characteristic is configured.
  • phase difference of not less than (-1 30 + 360 X n) degrees and not more than (30 + 360 X n) degrees (where n is an integer) is regarded as the same phase, and (150 + 360 X n) A phase difference of more than n) degrees and less than (210 + 360 ⁇ ⁇ ) degrees (where n is an integer) is regarded as the opposite phase.
  • the transmittance of the semi-light-shielding portion 3 to exposure light is 15% or less, preferably 6% or more and 15% or less.
  • the material of the semi-light-shielding portion 3 include metals such as Cr (chromium), Ta (tantalum), Zr (zirconium), and Mo (molybdenum), or thin films (alloys of these metals). A thickness of 50 nm or less) can be used.
  • Specific examples of the above-mentioned alloy include a Ta—Cr alloy, a Zr—Si alloy, and a Mo—Si alloy.
  • the transmittance of the phase shifter 5 to the exposure light is higher than the transmittance of the semi-shielding portion 3 and equal to or less than the transmittance of the light transmitting portion 4.
  • the “outline emphasis method” for improving the resolution of an isolated space pattern used in the present embodiment will be described by taking as an example a case where a contact pattern is formed by a positive resist process.
  • the “contour enhancement method” is a principle that is exactly the same regardless of the shape of a small space pattern in a positive resist process.
  • the “edge enhancement method” can be applied in the same manner even when a negative resist process is used, by replacing the minute space pattern (resist removal pattern) in the positive resist process with a minute pattern (resist pattern). .
  • FIGS. 2A to 2G are diagrams for explaining the principle for enhancing a light transfer image in a contact pattern forming region.
  • FIG. 2 (a) shows a photomask in which an opening corresponding to a contact pattern is provided in a semi-light-shielding portion formed on the surface of a transparent substrate and having a transmittance for transmitting a part of exposure light. It is a top view.
  • FIG. 2 (b) shows the amplitude intensity of light transmitted through the photomask shown in FIG. 2 (a) and transferred to a position corresponding to the line AA 'on the material to be exposed.
  • FIG. 2 (c) shows a filter in which a ring-shaped phase shifter is provided in the complete light shielding portion formed on the main surface of the transparent substrate so as to correspond to the peripheral region of the opening shown in FIG. 2 (a). It is a top view of a mask.
  • Fig. 2 (d) shows the amplitude intensity of the light transmitted through the photomask shown in Fig. 2 (c) and transferred to the position corresponding to the line segment AA 'on the exposed material. .
  • the amplitude intensity of the light shown in Fig. 2 (d) is opposite to the amplitude intensity of the light shown in Fig. 2 (b) because the light has passed through the phase shifter. .
  • FIG. 2E shows an example of the contour emphasis mask according to the present embodiment.
  • An opening corresponding to the same contact pattern as the photomask shown in FIG. 2 (a) is provided in the semi-light-shielding portion formed on the surface, and a ring-shaped phase similar to the photomask shown in FIG. 2 (c) is provided.
  • FIG. 4 is a plan view of a photomask in which a shifter is provided in a peripheral region of an opening.
  • FIGS. 2 (f) and 2 (g) show the amplitude intensity and light intensity of the light transmitted through the photomask shown in FIG. 2 (e) and transferred to the position corresponding to line segment AA 'on the material to be exposed. Indicates light intensity (square of light intensity).
  • the structure of the photomask shown in Fig. 2 (e) is a structure in which the semi-shielding portion of Fig. 2 (a) and the phase shifter of Fig. 2 (c) are superposed on a transparent substrate.
  • the amplitude intensity of the light transmitted through the photomask shown in FIG. 2 (e) is as shown in FIGS. 2 (a) and 2 (b).
  • the distribution is such that the amplitude intensities of the light transmitted through the photomask shown in each of (c) are superimposed.
  • the light transmitted through the phase shifter arranged around the opening is the light transmitted through the opening and the semi-shielded portion. Can be partially canceled. Therefore, in the photomask shown in FIG. 2 (e), if the intensity of the light passing through the phase shifter is adjusted so that the light in the contour surrounding the opening is canceled out, as shown in FIG. 2 (g). It is possible to form a light intensity distribution in which the light intensity corresponding to the vicinity of the opening is reduced to a value close to zero.
  • phase shifter along the contour of the opening of the mask formed using a semi-light-shielding part having a transmittance that allows a part of the exposure light to pass,
  • a very strong dark portion corresponding to the contour of the opening can be formed. This makes it possible to form a light intensity distribution in which contrast is emphasized between the light intensity of the opening and the light intensity of the contour.
  • a method of performing image enhancement based on such a principle is referred to as “contour enhancement method”, and a photomask that realizes this principle is referred to as “contour enhancement mask”.
  • the contour enhancement method which is the basic principle of the present invention
  • the principle of the conventional halftone phase shift mask will be described.
  • the most important point in the principle of the contour emphasis method is that a part of the light transmitted through the semi-shielding part and the opening is canceled by the light transmitted through the phase shifter, thereby forming a dark part in the light intensity distribution. It is a point. That is, the phase shifter behaves like an opaque pattern. Therefore, as can be seen in Fig. 2 (f), a dark portion is also formed in the amplitude intensity of the light transmitted through the contour enhancement mask due to the intensity change on the same phase side. Only in this state, the contrast can be improved by oblique incidence exposure.
  • FIG. 3 (a) shows a semi-light-shielding portion formed on the main surface of the transparent substrate and having a transmittance for transmitting part of the exposure light, an opening corresponding to the contact pattern, and a region surrounding the opening.
  • FIG. 3 is a plan view of an outline emphasis mask provided with a phase shifter having a small width.
  • the calculation results of the intensity distribution are shown in Fig. 3 (c).
  • the light corresponding to the line segment AA 'when the contour enhancement mask shown in Fig. 3 (a) is exposed using annular illumination is shown.
  • the calculation result of intensity distribution is shown.
  • FIG. 3 (d) shows an opening corresponding to the contact pattern in the semi-light-shielding portion formed on the main surface of the transparent substrate and having a transmittance for transmitting a part of the exposure light, and the opening corresponding to the contact pattern.
  • FIG. 4 is a plan view of a contour emphasizing mask provided with a large-width phase shifter located in a region surrounding the mask.
  • the calculation results of the intensity distribution are shown in Fig. 3 (f) .
  • the light corresponding to the line segment AA 'when the contour enhancement mask shown in Fig. 3 (d) is exposed using annular illumination is shown.
  • the calculation result of intensity distribution is shown.
  • the width of the phase shifter in the contour emphasizing mask shown in FIG. 3D is set so large that the principle of the contour emphasizing method does not hold.
  • the dimensions of the openings shown in FIGS. 3 (a) and 3 (d) are both 220 nm square, and the width of the phase shifter shown in FIG. 3 (a) is 60 nm.
  • the width of the phase shifter shown in d) is 150 nm.
  • the light intensity is expressed as a relative light intensity when the light intensity of the exposure light is set to 1, unless otherwise specified.
  • the dark part due to the opacity effect of the phase shifter depends on the type of light source.
  • the contrast in the light intensity distribution is higher with the annular illumination.
  • the phase shifter in order to realize the contour enhancement method, not only the phase shifter is arranged around the opening surrounded by the semi-light-shielding part in the mask structure, but also the light transmitted through the phase shifter is limited. Must have been. According to the principle of the mechanism, the latter has an intensity higher than that of the light transmitted through the phase shifter that cancels the light transmitted through the semi-light-shielding portion and the opening, and is constant in the amplitude intensity distribution. Means that an intensity distribution of the opposite phase equal to or larger than the magnitude is not formed.
  • a photomask phase shifter mask
  • T and line width L line width L
  • the mask pattern on the material to be exposed is exposed.
  • the light intensity generated at the position corresponding to the center is defined as I h (L, T).
  • FIG. 4 (b) in the exposure using a photomask (light-shielding mask) provided with a complete light-shielding film instead of the phase shifter of the phase shifter-mask, the mask pattern on the material to be exposed is exposed.
  • the light intensity generated at the position corresponding to the center is defined as I c (L). Also, as shown in FIG.
  • a normal light transmitting portion (opening) is provided instead of the phase shifter of the phase shifter mask, and a complete light shielding film is provided instead of the light transmitting portion of the phase shifter and one mask.
  • a photomask transmission mask
  • the light intensity generated at a position corresponding to the center of the mask pattern on the material to be exposed is defined as I o (L).
  • Fig. 4 (d) shows the results when the transmittance T of the phase shifter and the line width L of the mask pattern are varied in the exposure using the phase shifter mask shown in Fig. 4 (a).
  • the results of the simulation of the light intensity I h (and T) are shown as light intensity contours with the transmittance ⁇ and the line width L on the vertical and horizontal axes, respectively.
  • T Ic (L) ZIo (L).
  • the width L at which light passing through the phase shifter having a transmittance of 1 is balanced with light passing through the outside of the phase shifter is 0.3 x; i (light source The wavelength) was about ZNA (numerical aperture) (about 100 nm in the case of Fig. 4 (d)), which was empirically obtained from various simulation results. Furthermore, as can be seen from Fig. 4 (d), in order to prevent light from excessively passing through a phase shifter having a transmittance of 6 ⁇ 1 ⁇ 2 or more, the phase of the transmittance 1 (100%) The width L must be twice or less than that of the shifter. That is, in order to prevent light from being excessively transmitted through a phase shifter having a transmittance of 6% or more, the upper limit of the width L of the phase shifter must be 0.6 X S NA or less.
  • the light transmitted outside the phase shifter in the contour emphasis mask only needs to consider substantially one side of the phase shifter instead of both sides.
  • the upper limit of the width L of the phase shifter can be considered to be half of the upper limit based on the above considerations. Therefore, in the contour enhancement mask
  • the upper limit of the width of the phase shifter is 0.3 ⁇ ⁇ 0 or less when the transmittance of the phase shifter is 60/0 or more. However, this is not a sufficient condition, the transmittance of the phase shifter is higher than 60/0, should be smaller than the upper limit of the width L of the phase shifter 0. 3 ⁇ ⁇ .
  • the width L of the phase shifter is preferably not less than 0.1 X ⁇ ⁇ ⁇ ⁇ at which an optical action as the phase shifter can be obtained.
  • various mask dimensions such as the width of the phase shifter are expressed in terms of dimensions on a material to be exposed, unless otherwise specified. It can be easily obtained by multiplying by the reduction magnification M of the reduction projection optical system of the exposure machine.
  • FIG. 5A is a plan view of an example of the outline emphasis mask.
  • the transmittance of the semi-light-shielding portion is 7.5%
  • the transmittance of the phase shifter and the opening is 100%.
  • the dimension of the opening (on the wafer to be exposed) is 200 nm square
  • the phase shifter is 50 nm.
  • Fig. 5 (c) shows the line in Fig. 5 (a) when the contour enhancement mask shown in Fig. 5 (a) is exposed from point light sources at various light source positions standardized by numerical aperture NA.
  • the light intensity distribution corresponding to the component AA ' is calculated by optical simulation, and the light intensity I o at the position corresponding to the center of the opening in the calculation result (for example, the light intensity distribution as shown in FIG. 5 (b)).
  • the result of plotting the light intensity Io for each light source position is shown.
  • the simulation results by optical calculation are shown with a light source wavelength ⁇ of 193 nm (ArF light source) and a numerical aperture NA of 0.6.
  • the light intensity Io at the center of the opening increases as the point light source at the outer light source position (the light source position far from the origin in FIG. 5 (c)) is exposed.
  • the contrast increases as the exposure is performed with a light source having a strong oblique incidence component.
  • Figs. 5 (d), 5 (e) and 5 (f) show the case where the point light source is located at each of the sample points PI, P2 and P3 shown in Fig. 5 (c).
  • the light intensity distribution corresponding to the line segment AA 'in) is plotted.
  • the higher the position of the point light source becomes that is, the higher the position of the oblique incident light source becomes, the higher the contrast becomes.
  • An image has been formed.
  • the contour enhancement mask enhances the contrast of the light intensity distribution by oblique incidence exposure in the formation of minute isolated space patterns such as contact patterns, which could not be realized with the conventional halftone phase mask. It makes it possible.
  • FIG. 6A is a plan view of an example of an outline emphasis mask provided with a plurality of openings.
  • the transmittance of the semi-light-shielding portion is 7.5%
  • the transmittance of the phase shifter and the opening is 100 ⁇ 1 ⁇ 2.
  • a phase shifter provided around one opening is adjacent to one opening. It is combined with a phase shifter provided around the other opening.
  • the dimensions of each opening (on the wafer to be exposed) are 200 nm square, and the repetition period of each opening (on the wafer to be exposed) is 270 nm. Therefore, the width of the phase shifter (converted on the wafer to be exposed) is 70 nm.
  • Fig. 6 (c) shows the numerical aperture NA of the contour enhancement mask shown in Fig. 6 (a).
  • the light intensity distribution corresponding to the line segment AA ′ in FIG. 6 (a) in the case of performing exposure from point light sources at various light source positions is calculated by an optical simulation, and the calculation result (for example, FIG.
  • the light intensity Io at a position corresponding to the center of one opening in the light intensity distribution as shown in b) is read, and the light intensity Io is plotted for each light source position. .
  • the distribution of the light intensity Io at the center of the aperture for each light source position does not change concentrically, but depends on the repetition period of the aperture. On the other hand, there is basically a region with the highest contrast at the outer light source position.
  • the light source is called a quadrupole exposure light source as shown in Fig. 30 (c). The best contrast is obtained by the incident light.
  • FIGS. 6 (d), 6 (e) and 6 (f) show the case where the point light source is located at each of the sample points P1, P2 and P3 shown in FIG. 6 (c). The light intensity distribution corresponding to the line segment AA 'in a) is plotted.
  • the contour enhancement mask has the highest image in each light intensity distribution when forming a dense contact pattern, as in the case of forming an isolated contact pattern. Contrast can be achieved at the outer light source position. Therefore, it can be seen that by performing the oblique incidence exposure on the contour emphasizing mask, the isolated contact pattern and the dense contact pattern can be formed simultaneously while enhancing the contrast in the light intensity distribution.
  • the depth of focus increases in the light intensity distribution formed by the contour enhancement mask.
  • a semi-light-shielding part was used. Therefore, both the effect of increasing the DOF and the effect of increasing the DOF with the assistance of the phase shifter dramatically increase the DOF.
  • FIG. 7 (a) shows an opening (width W) corresponding to the contact pattern and a phase shifter (width d) located in a region surrounding the opening in the semi-light-shielding portion formed on the main surface of the transparent substrate.
  • FIG. 4 is a plan view of an outline emphasis mask provided with.
  • Fig. 7 (b) is a plan view of a chromium mask in which an opening (width W) corresponding to a contact pattern is provided in a chromium film formed on the main surface of the transparent substrate and serving as a complete light-shielding portion. is there.
  • FIG. 7C is a plan view of a halftone mask in which an opening (width W) corresponding to a contact pattern is provided in a semi-light-shielding portion formed on the main surface of the transparent substrate.
  • FIG. 7D shows a halftone phase shift mask in which an opening (width W) corresponding to a contact pattern is provided in a phase shifter serving as a light shielding portion formed on the main surface of the transparent substrate.
  • the dimensions of the masks such as the width W and the width d are the same as those of the contact patterns formed by exposure in the best focus state using the respective masks shown in FIGS. 7 (a) to 7 (d). It is assumed that the exposure is adjusted to be the same (specifically, 0.12 jUm).
  • FIG. 7 ( ⁇ ) shows the DOF characteristic in the exposure using each mask shown in FIGS. 7 (a) to 7 (d).
  • a quadrupole exposure which is an oblique incidence exposure
  • the focus position in the best focus state is set as a reference.
  • the DOF characteristic of the half I ⁇ 1 mask is improved as compared with the DOF characteristic of the chrome mask
  • the DOF characteristic of the contour enhancement mask is compared with the DOF characteristic of the half I ⁇ 1 mask. DOF characteristics are further improved.
  • the DOF characteristic of the halftone phase shift mask is worse than that of the chrome mask.
  • the DOF characteristics of the contour enhancement mask are further improved over the DOF characteristics of any of the conventional chrome mask, halftone mask, and half I-one phase shift mask.
  • FIG. 8B shows a light intensity distribution formed when the exposure is performed.
  • Fig. 8 (b) the values for various margins defined when trying to form a hole pattern with a width of 100 nm are also shown in the figure.
  • the critical intensity I th is the light intensity to which the resist film is exposed, and various magazines are defined for this value.
  • IpZIth is a value proportional to the sensitivity of exposing the resist film, and the higher the value, the more preferable.
  • Ib is the background intensity of light transmitted through the semi-light-shielding portion, the higher IthZIb means that the resist film does not decrease during pattern formation, and this value The higher the value, the better.
  • IthZIb be 2 or more.
  • FIG. 8 (c) shows the result of calculating the dependence of DOF on the transmittance of the semi-light-shielding portion during pattern formation.
  • the DOF is defined as the width of the focus position where the change in dimension of the pattern finish is within 10%.
  • the higher the transmittance of the semi-light-shielding portion the better for improving the DOF.
  • Fig. 8 (d) shows the peak with respect to the transmittance of the semi-light-shielding part during pattern formation. The results calculated for the peak value I p are shown. As shown in FIG. 8D, it is preferable that the transmittance of the semi-light-shielding portion is higher for improving the peak value Ip, that is, the contrast.
  • the transmittance of the semi-light-shielding portion is preferably as high as possible. Specifically, as shown in FIGS. 8 (c) and (d), the transmittance is from 0% to 6%. It is larger improvement rate margin while up to a degree, the transmittance can be understood that it is preferable to use a semi-shielding light of 60/0 above.
  • FIG. 8 (e) shows the result of calculation of IthZIb with respect to the transmittance of the semi-light-shielding portion during pattern formation.
  • IthZIb decreases as the transmittance of the semi-shielding portion increases, and the transmittance of the semi-shielding portion becomes too high for improvement of IthZIb. Is not preferred. Specifically, when the transmittance of the semi-light-shielding portion is about 15%, I thZI b becomes smaller than 2.
  • FIG. 8 (f) shows the result of calculating I pZ I th with respect to the transmittance of the semi-light-shielding portion during pattern formation. As shown in FIG. 8 (f), I pZ I th has a peak where the transmittance of the semi-light-shielding portion is about 15%.
  • the DOF or contrast improves as the transmittance of the semi-light-shielding portion increases, and the effect becomes more significant when the transmittance of the semi-light-shielding portion exceeds 6%.
  • the maximum value of the transmittance of the semi-light-shielding portion is preferably set to about 15 ⁇ 1 ⁇ 2 from the viewpoint of preventing the resist film from being reduced during pattern formation, optimizing the resist sensitivity, and the like. Therefore, it can be said that the optimum value of the transmittance of the semi-light-shielding portion in the contour enhancement mask is 6% or more and 15% or less.
  • FIGS. 9A to 9F show variations of a light-shielding mask pattern constituted by a semi-light-shielding portion and a phase shifter in a contour enhancement mask provided with an opening corresponding to a contact pattern. It is a top view.
  • the contour enhancement mask 1a shown in FIG. 9A has the same configuration as the contour enhancement mask shown in FIG. That is, a transmissive substrate 2a having transparency to exposure light, A semi-light-shielding portion 3a formed on the transmissive substrate 2a; an opening 4a provided to open the semi-light-shielding portion 3a and corresponding to the isolated contact pattern; a semi-light-shielding portion 3a and the opening And a ring-shaped phase shifter 5a formed so as to surround the opening 4a.
  • the contour enhancement mask 1b shown in FIG. 9 (b) includes a transmissive substrate 2b having transparency to exposure light, a semi-light-shielding portion 3b formed on the transmissive substrate 2b, and a semi-light-shielding portion.
  • An opening 4b provided with an opening 3b and corresponding to the isolated contact pattern, and a rectangular phase shifter having the same length as each side of the opening 4b.
  • a phase shifter 5b formed to be in contact with each side of 4b.
  • the contour enhancement mask 1b has almost the same characteristics as the contour enhancement mask 1a in forming an isolated pattern.
  • FIG. 10 is a plan view of a contour emphasizing mask in which openings corresponding to contact patterns are finely arranged based on the mask pattern of the contour emphasizing mask 1b shown in FIG. 9B.
  • the coupling between the phase shifters in contact with each opening occurs only in two directions or less, so that the light of the opposite phase that passes through the phase shifter at the coupling between the phase shifters is excessive. Can be prevented.
  • the contour enhancement mask 1c shown in FIG. 9 (c) includes a transmissive substrate 2c having transparency to exposure light, a semi-light-shielding portion 3c formed on the transmissive substrate 2c, and a semi-light-shielding portion.
  • a phase shifter 5c formed to be in contact with each side of the opening 4c in this state.
  • the width (size) of the opening 4c is fixed and the length of a part of each phase shifter of the phase shifter 5c is changed so that a resist pattern formed after exposure is formed. Can be adjusted. For example, as the length of a part of each phase shifter of the phase shifter 5c is reduced, the size of the resist pattern is increased.
  • the lower limit that the length of a part of each phase shifter of the phase shifter 5c can be changed to maintain the effect of contour enhancement is limited to about half of the wavelength of the light source (exposure light), while the mask dimension is changed. Adjusting the length of a part of the phase shifter is a very excellent method for adjusting the pattern dimension, since the pattern dimension changes only about half of the amount.
  • An outline emphasis mask 1 d shown in FIG. 9 (d) includes a transmissive substrate 2 d having transparency to exposure light, a semi-shielding portion 3 d formed on the transmissive substrate 2 d, and a semi-shielding portion.
  • An opening 4d provided with an opening 3d and corresponding to the isolated contact pattern, and a position within the semi-light-shielding portion 3d by a predetermined dimension from the boundary between the semi-light-shielding portion 3d and the opening 4d.
  • a ring-shaped phase shifter 5d is a ring-shaped phase shifter 5d.
  • the phase shifter 5 d is formed by opening the semi-light-shielding portion 3 d in a ring shape, and a ring-shaped semi-light-shielding portion 3 d is interposed between the phase shifter 5 d and the opening 4 d. are doing.
  • the contour emphasis mask 1 e shown in FIG. 9 (e) is composed of a transmissive substrate 2 ⁇ having transparency to the exposure light, and a transmittance formed on the transmissive substrate 2 e and transmitting a part of the exposure light.
  • Each of the phase shifters 5 e has a rectangular shape longer than the length of each side of the opening 4 e, and has a part of four phase shifters whose corners contact each other on a diagonal line of the opening 4 e.
  • a ring-shaped semi-light-shielding portion 3e is interposed between the phase shifter 5e and the opening 4e.
  • the size and arrangement of the phase shifter 5e are fixed, and only the width (size) of the opening 4e is changed, so that the dimension of the resist pattern formed after exposure is increased. Adjustments can be made. For example, as the width of the opening 4e increases, the size of the resist pattern also increases.
  • a mask error enhancement factor (MEEF) a mask dimension. (The ratio of the pattern dimension change amount to the change amount) can be reduced to about half.
  • An outline emphasis mask 1 f shown in FIG. 9 (f) includes a transmissive substrate 2 f having transparency to exposure light, a semi-light-shielding portion 3 f formed on the transmissive substrate 2 f, and a semi-light-shielding portion.
  • An opening 4 f provided with an opening 3 f and corresponding to the isolated contact pattern, and a position at a predetermined distance from the boundary between the semi-light-shielding portion 3 f and the opening 4 f and on the side of the semi-light-shielding portion 3 f.
  • a phase shifter 5 f formed at the end.
  • the phase shifter 5f has a rectangular shape having the same length as each side of the opening 4f, and includes a part of four phase shifters opposed to each side of the opening 4f.
  • the length of a part of each phase shifter of the phase shifter 5f may be longer or shorter than the length of each side of the opening 4f.
  • the size of the resist pattern can be adjusted in the same manner as the contour emphasis mask 1c shown in FIG. 9 (c).
  • the width of the semi-light-shielding portion between the opening and the phase shifter is a dimension capable of exerting the light interference effect by the phase shifter. In other words, it is desirable that it is not more than one tenth of AZNA (where is the wavelength of the exposure light, and NA is the numerical aperture).
  • AZNA where is the wavelength of the exposure light
  • NA is the numerical aperture.
  • a square is used as the shape of the opening, but a polygon such as an octagon or a circle may be used.
  • the shape of the phase shifter is not limited to a continuous ring shape or a plurality of rectangles. For example, a part of multiple square phase shifters To form a phase shifter.
  • FIG. 11 (a) is a plan view showing the structure of the contour emphasizing mask used in the simulation for finding the relationship between the size of the opening (opening width) and DOF.
  • FIG. 4 is a diagram showing a simulation result of the dependence of the DOF on the opening width.
  • the contour emphasizing mask shown in FIG. 11A includes a semi-light-shielding portion covering the main surface of the transparent substrate, an opening having a width W, and a ring having a width d positioned on the outer periphery of the opening.
  • Fig. 11 (b) shows a simulation of the DOF characteristics when d is fixed at 50 nm and W is changed in the range of 170 to 280 nm in the contour enhancement mask shown in Fig. 11 (a). The results are shown.
  • the exposure conditions in the simulation are as follows: ⁇ is 193 nm, Eight is 0.6, and the light source used is an annular exposure light source.
  • the contour enhancement mask has a special DOF characteristic improvement effect due to the interference effect of the phase shifter reaching the center of the opening.
  • the width W of the opening that ensures the effect, that is, the interference effect of the phase shifter is reduced.
  • the width W of the strongly generated opening is 0.8 X ⁇ A or less.
  • a space pattern is formed using an outline emphasis mask in which a light-shielding mask pattern surrounds an opening (light-transmitting portion).
  • a line pattern is formed using an outline emphasizing mask in which a light-shielding mask pattern is surrounded by an opening (light-transmitting portion)
  • the peripheral region of a line-shaped semi-light-shielding portion may be formed.
  • the same effect can be obtained by arranging the phase shifter in a region near the light transmitting portion in the mask pattern.
  • FIG. 12 shows a photomask (hereinafter, referred to as an image enhancement mask) using the center line enhancement method according to the second embodiment of the present invention, specifically, image enhancement for forming an isolated line pattern. It is a top view of a mask.
  • the image emphasizing mask 6 includes a transmissive substrate 7 that is transmissive to exposure light, and a transmissive substrate 7 formed on the transmissive substrate 7 and transmitting a part of the exposure light.
  • a semi-light-shielding portion 8 having an excessive ratio and corresponding to an isolated line pattern, and a phase shifter 9 provided in an opening inside the semi-light-shielding portion 8 are provided.
  • a semi-shielding portion 8 that transmits the exposure light in the same phase with respect to the light transmitting portion 7 and a phase shifter 9 that transmits the exposure light in the opposite phase with the light transmitting portion 7 as the reference.
  • a mask pattern having a light shielding property is formed.
  • the transmittance of the semi-light-shielding portion 8 to exposure light is 15% or less, preferably 6% or more and 15% or less.
  • a material of such a semi-light-shielding portion 8 for example, a thin film (thickness of 50 nm or less) made of a metal such as Cr, Ta, Zr, or Mo or an alloy of these metals can be used.
  • a metal such as Cr, Ta, Zr, or Mo or an alloy of these metals
  • Specific examples of the above-mentioned alloys include Ta—C alloys, Zr—Si alloys, and Mo—Si alloys.
  • ZrSio, Cr-AI-0, TaSio or MoSio may be used.
  • the transmittance of the phase shifter 9 to the exposure light is higher than the transmittance of the semi-light-shielding portion 8 and equal to or less than the transmittance of the light-transmitting portion (portion where the mask pattern is not formed on the transparent substrate 7).
  • the “center line emphasis method” for improving the resolution of an isolated line pattern will be described by taking, as an example, a case where a minute line pattern is formed by a positive resist process.
  • the basic principle is to form a dark portion in the light intensity distribution by the opaque action of the phase shifter to improve the contrast.
  • FIGS. 13 (a) to 13 (c) show an image-enhanced mask in which a phase shifter (transmittance T s) of width S is provided inside a semi-shielding portion (transmittance T c) that constitutes a linear mask pattern of width L.
  • T s phase shifter
  • T c semi-shielding portion
  • FIG. 13 (b) is a plan view of a mask provided with a semi-light-shielding pattern composed of a semi-light-shielding portion (transmittance Tc) having a width L and a position corresponding to a line segment AA 'transmitted through the mask. This is shown together with the light intensity of the light to be transferred.
  • the light intensity corresponding to the center of the semi-shielding pattern is defined as I c (L).
  • the semi-light-shielding portions shown in FIGS. 13 (a) and 13 (b) transmit light of the same phase with respect to the light-transmitting portion.
  • FIG. 13 (c) is a plan view of a mask in which a phase shift pattern having a phase shifter (transmittance T s) having a width S is provided in a complete light shielding portion covering the mask surface, and a line passing through the mask.
  • T s phase shifter
  • the light intensity of the light transferred to the position corresponding to the minute AA ' is shown together.
  • the light intensity corresponding to the center of the phase shift pattern is defined as I o (S).
  • the image enhancement mask shown in FIG. 13 (a) is obtained by superposing the mask structures shown in FIGS. 13 (b) and 13 (c). For this reason, I e (L, S) can be minimized in the relationship between L and S such that I c (L) and I o (S) are balanced, whereby the image shown in Fig. 13 (a)
  • the contrast can be enhanced by the enhancement mask. That is, by providing a phase shifter inside the semi-light-shielding portion forming the line-shaped mask pattern, the contrast of the light intensity distribution, specifically, the contrast at the center of the mask pattern is enhanced by the principle of the centerline enhancement method. Can be.
  • FIGS. 14A and 14B are plan views showing other shapes of the phase shifter in the image enhancement mask. Specifically, FIGS. 14 (a) and 14 (b) show a phase shifter provided in a semi-light-shielding portion constituting a line-shaped mask pattern, and FIG. 14 (a) shows the phase shifter.
  • the phase shifter shown is composed of two rectangular patterns, and the phase shifter shown in Fig. 14 (b) has five It consists of a square pattern.
  • the shape of the phase shifter of the image emphasizing mask can be set to an arbitrary shape such as a rectangle, square, circle, or polygon as long as it can fit within the semi-light-shielding portion.
  • a fine aperture behaves exactly the same optically, regardless of the shape of the aperture, as long as the intensity of the light passing therethrough is the same.
  • Figs. 15 (a) to 15 (c) show the results.
  • Fig. 15 (a) shows that the exposure light incident direction is the light source coordinate (the X-axis and the X-axis correspond to the width and length directions of the linear mask pattern, respectively).
  • Fig. 15 (b) shows the exposure light incident direction obliquely from the X-axis direction or Y-axis direction of the light source coordinates.
  • an image enhancement mask having an opening width (hereinafter, referred to as an optimum opening width) adjusted so as to maximize the light shielding property in each exposure light incident direction is referred to as an image enhancement mask.
  • An image enhancement mask having an opening width smaller than the optimum opening width and an image enhancement mask having an opening width larger than the optimum opening width were used.
  • the DOF characteristics when using a photomask (complete light-shielding mask) provided with a complete light-shielding pattern having the same external shape instead of the mask pattern of the image enhancement mask were also simulated. I tried to calculate. still, When the exposure energy is set so that the dimension of the pattern (resist pattern) formed in correspondence with each mask pattern at the time of the best focus is 0.12 m, the DOF characteristic is defocused. The evaluation is based on how the dimensions change. In FIGS. 15A to 15C, L indicates the mask pattern width, S indicates the opening width, and the focus position (horizontal axis) 0 corresponds to the best focus position.
  • the DOF characteristics deteriorate as the opening width of the image enhancement mask increases.
  • LZS 0.12 / 0 m
  • the DOF characteristic depends on the opening width of the image enhancement mask.
  • FIG. 16 (a) is a plan view of a photomask provided with a semi-light-shielding pattern having a width L composed of a semi-light-shielding portion, and a light beam transmitted through the mask and transferred to a position corresponding to line segment AA '. It is shown together with the light intensity.
  • the phase shift inside such a semi-shade pattern When an image enhancement mask is created by providing a lid, the width of the phase shifter that can achieve the maximum contrast decreases as the width L of the semi-light-shielding pattern increases. However, as shown in Fig.
  • the light intensity corresponding to the center of the semi-light-shielded / turn does not become 0, and the residual light intensity is always Exists. Therefore, when a semi-light-shielding portion is used as a light-shielding portion constituting a mask pattern in an image enhancement mask, as shown in FIG. 16 (b), the width of the phase shifter decreases as the width of the semi-light-shielding portion increases. However, no matter how large the width L of the semi-light-shielding portion becomes, it is necessary to provide a phase shifter that is balanced with the residual light intensity described above.
  • FIG. 17 shows a mask data creation method according to the third embodiment using the contour enhancement method and the center line enhancement method, specifically, based on a desired pattern to be formed using photo masking.
  • FIG. 3 shows a flow chart of a mask data creation method for creating a mask pattern.
  • FIGS. 18 (a) to (d) and FIGS. 19 (a) to (d) show the case where a mask pattern for forming a space pattern is formed using the mask data creation method shown in FIG. 17. It is a figure showing a process.
  • FIGS. 20 (a) to (d) and FIGS. 21 (a) to (c) show cases where a mask pattern for forming a line pattern is formed using the mask data generation method shown in FIG. It is a figure showing each process.
  • step S11 it is desired to form using a photomask. Enter the pattern.
  • FIG. 18 (a) and FIG. 20 (a) each show an example of a desired pattern.
  • the desired pattern shown in FIG. 18 (a) is a resist removal pattern (opening in the resist pattern), and the desired pattern shown in FIG. 20 (a) is a resist pattern.
  • step S12 the shape of the mask pattern is determined based on the desired pattern, and the transmittance Tc of the semi-light-shielding portion used for the mask pattern is set.
  • a desired pattern is resized to enlarge or reduce the pattern.
  • FIGS. 18 (b) and 20 (b) show examples of mask patterns created based on desired patterns after resizing, respectively.
  • the mask pattern shown in FIG. 18 (b) is composed of a semi-light-shielding portion surrounding an opening (light-transmitting portion) corresponding to a desired pattern.
  • the mask pattern shown in FIG. 20B includes a semi-light-shielding portion surrounded by a light-transmitting portion.
  • step S13 a region of the mask pattern sandwiched between the openings with a predetermined dimension D1 or less, in other words, an area with a width of the mask pattern not greater than the predetermined dimension D1 is extracted.
  • D 1 is about 0.8 ⁇ ⁇ ( ⁇ is the light source wavelength, and ⁇ ⁇ is the numerical aperture).
  • FIGS. 18 (c) and 20 (c) show the regions sandwiched between the openings with a predetermined dimension D1 or less in the mask patterns shown in FIGS. 18 (b) and 20 (b), respectively. I have.
  • step S14 a phase shifter is inserted into the region extracted in step S13 so that the center line enhancement method is established.
  • Fig. 18 (d) and Fig. 20 (d) show the appropriate widths in the extracted area shown in Fig. 18 (c) and Fig. 20 (c), respectively, so that the centerline enhancement method can be established. This shows that the phase shifter has been inserted.
  • a phase shifter is inserted into the mask pattern so that the edge enhancement method is established.
  • Fig. 19 (a) is shown in Fig. 18 (d). This shows a state in which a phase shifter is inserted so that the outline emphasis method is established in the mask pattern.
  • a phase shifter having a predetermined size is inserted in a region in contact with each side of the opening (square) in the mask pattern.
  • FIG. 21 (a) shows a state where the phase shifter is inserted into the mask pattern shown in FIG.
  • phase shifter is inserted around the periphery of a region where the width of the mask pattern exceeds a predetermined dimension D1.
  • a phase shifter arrangement of the type shown in FIG. 9 (a) is performed, but the phase shifter arrangement is not limited to this.
  • a mask pattern enabling fine pattern formation can be created using the center line enhancement method and the contour enhancement method. Therefore, normal mask data creation such as proximity effect correction for adjusting the dimension of the pattern formed in correspondence with the mask pattern by exposure, and conversion of the mask dimension based on the value of the reduction magnification of the reduction exposure system are performed. After processing, the mask pattern is completed. However, if MEEF is large in pattern dimension adjustment, a mask pattern having a large pattern dimension adjustment error is caused by the influence of the mask grid (the minimum width in which the mask dimension can be adjusted). Therefore, in the third embodiment, in order to further improve the mask pattern, the pattern dimension can be adjusted with a low ME EF after performing the proximity effect correction, and the pattern dimension caused by the mask grid can be adjusted. An additional step of reducing errors is performed.
  • step S16 the MEEF reduction method is applied to the mask pattern to which the center line enhancement method and the outline enhancement method have been applied.
  • the outline emphasis method there are a method of changing the position or the size of the phase shifter 1 and a method of changing the size of the semi-light-shielding portion to adjust the pattern size.
  • the phase shifter which is a region that transmits light of the opposite phase with respect to the light transmitting portion, has a very strong light shielding property, even if a semi-light shielding portion is further added around the phase shifter, the light passes through the photomask. The light intensity distribution is less affected.
  • FIGS. 19 (b) and 21 (b) show the semi-light-shielding portions for CD adjustment with respect to the mask patterns shown in FIGS. 19 (a) and 21 (a), respectively. Is shown.
  • the opening for forming the space pattern is always surrounded by the semi-light-shielding portion in step S16. Further, as shown in FIG.
  • the phase shifter in the mask pattern for forming the line pattern is always surrounded by the semi-light-shielding portion in step S16.
  • the semi-light-shielding portion provided as a CD adjustment area around the phase shifter is desirably of a size that does not affect the light-shielding property of the phase shifter.
  • the mask pattern created by the processes from step S11 to step S16 is a mask pattern capable of forming a fine pattern. Also, when creating the mask pattern, when applying the proximity effect correction, if the pattern dimension is adjusted by changing the dimensions of the aperture or the semi-shielding area surrounding the phase shifter, the pattern dimension can be adjusted with a low ME EF. realizable. That is, it is possible to realize an excellent mask pattern creating method with a small pattern dimension adjustment error caused by the influence of the grid of the mask pattern.
  • the light intensity transferred when exposing a mask pattern using a semi-light-shielding portion (that is, a light-transmitting light-shielding pattern), It does not simply decrease, but decreases while vibrating.
  • the vibration in the light intensity distribution has a peak, that is, a side lobe at ⁇ ⁇ ⁇ A or less from the end of the mask pattern. Therefore, in the third embodiment, a process for further expanding the exposure margin is performed so that a portion corresponding to the semi-light-shielding portion in the resist film is not exposed to light due to overexposure in actual pattern formation exposure. Perform additional.
  • step S17 a side lobe reduction phase shifter is inserted into a mask pattern to which the center line enhancement method, the outline enhancement method, and the MEEF reduction method have been applied.
  • side lobes that occur independently around the isolated opening pattern or side lobes that occur inside the mask pattern have almost no problem.
  • the openings are adjacent to each other at a distance of about ⁇ A to 2 ⁇ ⁇ A, a region where the peaks of the two side lobes overlap occurs.
  • the resist film may be exposed.
  • the peaks of the two side lobes from both sides of the portion overlap, so that when the over-exposure is performed, the resist film is exposed by the light intensity of the portion.
  • the distance between the phase shifters is 0.8 X ⁇ ⁇ ⁇ A or more.
  • a phase shifter for canceling light corresponding to the residual light intensity by the semi-light-shielding portion can be arranged at an arbitrary position.
  • a phase shifter that is balanced with the residual light intensity by the semi-light-shielding portion is arranged in a region where the distance between the openings is not more than 2 ⁇ ⁇ A. All the light intensity in the region where the peaks of the drobes overlap can be canceled.
  • the phase shifter in which the width of the mask pattern exceeds 0.8 X ZNA is balanced with the residual light intensity by the semi-light-shielding part. Can be placed Thus, all the light intensities in the region where the sidelobe peaks overlap can be cancelled.
  • step S17 it is possible to enlarge the overexposure margin when performing exposure using the mask pattern created in steps S11 to S16.
  • Fig. 19 (c) shows the phase shifter for sidelobe reduction inserted in the area between the openings at a distance of 2 X ⁇ ⁇ ⁇ A or less in the mask pattern shown in Fig. 19 (b). This shows the situation.
  • FIG. 21 (c) shows the side lobe reduction in the portion of the mask pattern shown in FIG. 21 (b) where the width exceeds 0.8 X ⁇ ⁇ ⁇ A (after applying the contour emphasis method). This shows that the phase shifter has been inserted.
  • step S18 the mask pattern created by the steps from step S11 to step S17 is output.
  • a fine pattern can be formed with high accuracy, and a mask pattern with an excellent exposure margin at the time of pattern formation can be formed.
  • all of the light-shielding portions constituting the mask pattern are semi-light-shielding portions, but the phase shifter inserted for the center line enhancement method and the aperture to which the contour enhancement method is applied are used.
  • FIG. 19 (d) shows a state in which a region sufficiently distant from the phase shifter and the opening in the mask pattern shown in FIG. 19 (c) is set as a complete light shielding portion.
  • a mask pattern is formed using a semi-light-shielding portion that transmits light that is weak enough not to expose the resist film.
  • a phase shifter that can enhance the contrast of light intensity can be inserted.
  • the phase shifters to be inserted must be separated from each other by a predetermined size or more.
  • the center line emphasis method and the contour emphasis method can be applied to the formation of a resist pattern having an arbitrary opening shape.
  • a mask pattern capable of forming a fine pattern can be realized, and a mask pattern whose pattern size can be adjusted with low MEEF when applying proximity effect correction can be realized. Furthermore, since a phase shifter can be inserted at an arbitrary position in the mask pattern, generation of side lobes can be suppressed, thereby enabling formation of a mask pattern having a high exposure margin in pattern formation.
  • a phase shifter in a mask pattern having a semi-light-shielding portion and a phase shifter, a phase shifter is arranged in accordance with the center line emphasizing method in a portion having a predetermined width or less, and in a portion exceeding a predetermined width. Places a phase shifter according to the contour enhancement method. Therefore, an image having a very strong contrast can be formed at the time of exposure using a mask pattern having an arbitrary shape. Therefore, a fine resist pattern can be formed by exposing the resist-coated substrate using a photomask provided with such a mask pattern. Further, by exposing this photomask using oblique incidence illumination, it becomes possible to form a micropattern in which pattern size variation is less likely to occur in response to focus variation.
  • FIG. 22 collectively shows a phase shifter insertion method for realizing the center line emphasis method or the outline emphasis method according to the line width of the mask pattern.
  • the center line enhancement method is applied to a mask pattern exceeding a predetermined line width, while the contour enhancement method is applied to a mask pattern having a predetermined line width or less. become.
  • the predetermined line width is selected based on 0.8 XIZNA.
  • the force may be set to a value smaller than that.
  • the centerline emphasis method the larger the mask pattern line width, the thinner the phase shifter inserted inside the mask pattern, and the thinner the mask pattern line width, the smaller the mask pattern.
  • the phase shifter inserted inside the sensor becomes thicker.
  • the method for obtaining the optimum dimension of the line width of the phase shifter is as described above.
  • a mask pattern may be composed of only the phase shifter.
  • a phase shifter is inserted at the periphery of a mask pattern exceeding a predetermined line width.
  • the line width of the phase shifter does not depend on the line width of the mask pattern and is constant, if the light passing through the phase shifter does not become excessive, Good. That is, whether to apply the center line emphasis method or the outline emphasis method can be uniquely determined based on the line width of the mask pattern.
  • a side lobe reducing phase shifter may be inserted at the center of the mask pattern.
  • the outline enhancement method and the center line enhancement method are simultaneously applied to the same mask pattern.
  • whether or not the side lobe reducing phase shifter is inserted at the center of the mask pattern is arbitrarily determined.
  • the insertion of the side lobe reducing phase shifter is omitted.
  • FIG. 23 shows a photomask according to the fourth embodiment, specifically, the center line of the present invention.
  • a line pattern forming mask portion for realizing the emphasis method and a contact pattern forming mask portion for realizing the contour emphasizing method of the present invention (a light transmitting portion (opening portion is surrounded by a mask pattern).
  • FIG. 4 is a plan view of a photomask having: 24 (a) to 24 (f) are cross-sectional views taken along the line AA 'in FIG. That is, there are basically six types of photomask realization methods having a planar configuration as shown in FIG. 23, as shown in FIGS. 24 (a) to (f). However, the cross-sectional configuration shown in FIGS.
  • FIGS. 24 (a) to (f) is a basic type, and a photomask having a cross-sectional configuration combining these is also feasible.
  • a method of forming the basic type photomask shown in FIGS. 24 (a) to (f) will be described.
  • a first phase shifter film 1 for transmitting exposure light in the opposite phase with respect to the light transmitting portion is formed on the mask pattern forming region of the transparent substrate 10. 1 is formed.
  • a second phase shifter film 12 that transmits exposure light in the opposite phase with respect to the first phase shifter film 11 is formed on the semi-light-shielding portion forming region in the first phase shifter film 11. ing.
  • a semi-light-shielding portion having a laminated structure of the second phase shifter film 12 and the first phase shifter film 11 is formed, and a single-layer structure of the first phase shifter film 11 is formed.
  • a phase shifter is formed.
  • the semi-light-shielding portion having a laminated structure of the second phase shifter film 12 and the first phase shifter film 11 transmits exposure light in the same phase with respect to the light-transmitting portion.
  • the phase shifter and the half are processed by processing the laminated film of the phase shifter film that inverts the phase of the transmitted light with reference to the light transmitted through the light transmitting portion.
  • a desired mask pattern composed of the light-shielding portion is realized.
  • a semi-light-shielding portion having a transmittance for transmitting a part of the exposure light is realized by the laminated film of the phase shifter film.
  • the transmissive substrate 20 has, on the semi-light-shielding portion forming region, a transmittance that allows a portion of the exposure light to pass therethrough, and makes the exposure light in-phase with respect to the translucent portion.
  • a semi-light-shielding film 21 that transmits light through is formed. That is, semi-shade
  • a semi-light-shielding portion made of the film 21 is formed.
  • a phase shifter that transmits the exposure light in the opposite phase with respect to the light-transmitting portion is formed by digging down the phase shifter forming region in the transparent substrate 20 by a predetermined thickness. That is, in the type shown in FIG.
  • the semi-light-shielding film 21 that hardly causes a phase difference compared with the light-transmitting portion and the dug portion of the transparent substrate 20 are combined to provide the semi-light-shielding.
  • a desired mask pattern composed of a section and a phase shifter is realized.
  • a phase shifter film 31 for transmitting exposure light in the opposite phase with respect to the phase shifter is formed on the semi-light-shielding portion forming area in the transparent substrate 30. I have. Further, a light-transmitting portion forming region in the light-transmitting substrate 30 is dug down by a predetermined thickness, thereby forming a light-transmitting portion that transmits exposure light in the opposite phase with respect to the phase shifter.
  • the part previously defined as the translucent part is replaced with a phase shifter with high transmittance, and the part defined as the phase shifter is replaced with the translucent part.
  • a photomask has been realized in which a part defined as a semi-light-shielding part is replaced with a phase shifter having a transmittance for transmitting a part of the exposure light.
  • the relationship between the relative phase differences between the components of the photomask shown in FIG. 24 (c) is as shown in FIGS. 24 (a), 24 (b) and 24 (d) to (f). Is the same as the other types of photomasks shown in each.
  • the transmissive substrate 40 has a transmittance above the semi-light-shielding portion forming region on the transmissive substrate 40, having a transmittance for partially transmitting the exposure light, and in-phase the exposure light with respect to the translucent portion.
  • a light-shielding film 41 which is made thinner is formed. That is, a semi-light-shielding portion made of the light-shielding film 41 is formed.
  • a phase shifter for transmitting the exposure light in the opposite phase on the basis of the light transmitting portion is formed by digging the phase shifter forming region in the transparent substrate 40 by a predetermined thickness.
  • the light-shielding film 41 having a high efficiency can be formed.
  • the light transmitted through the light-shielding film 41 has a small phase change because the light-shielding film 41 is thinned. If the phase of the light transmitted through the semi-light-shielding portion has a phase difference with respect to the light transmitted through the light-transmitting portion, the focus position may be slightly shifted in the image of the light formed by the mask pattern using the semi-light-shielding portion. Shifts. However, if the phase difference is up to about 30 degrees, the influence on the shift of the focal position is almost nil.
  • a semi-light-shielding portion that weakly transmits light having substantially the same phase with respect to the light-transmitting portion can be realized. That is, the type shown in FIG. 24 (d) has the same effect as the type shown in FIG. 24 (b).
  • a thinner light-shielding film can be used as a semi-light-shielding film that produces almost no phase difference compared to the light-transmitting part.
  • a desired mask pattern composed of the following can be easily realized.
  • the exposure light has a transmittance that allows a part of the exposure light to pass through and is in phase with the light-transmitting portion as a reference, above the mask pattern formation region on the transparent substrate 50.
  • a semi-light-shielding film 51 that transmits light through is formed.
  • a phase shifter that transmits exposure light in the opposite phase with respect to the translucent portion is formed by digging down a phase shifter forming region in the semi-light shielding film 51 by a predetermined thickness.
  • a semi-light-shielding portion composed of a non-drilled portion of the semi-light-shielding film 51 is formed, and a phase shifter composed of a dug portion of the semi-light-shielding film 51 is formed. That is, in the type shown in FIG. 24 (e), a phase shifter for inverting the phase of the light transmitted with reference to the light transmitted through the light-transmitting portion is created by using the recessed portion of the semi-shielding film 51. As a result, a desired mask pattern composed of the phase shifter and the semi-light-shielding portion is realized.
  • the exposure light has a transmittance that allows a part of the exposure light to pass through and is in phase with the light transmission part as a reference, above the mask pattern formation area on the transmissive substrate 60.
  • a semi-light-shielding film 61 is formed to transmit light.
  • a phase shifter film 62 for transmitting the exposure light in the opposite phase with respect to the light transmitting portion is formed.
  • a semi-light-shielding portion having a single-layer structure of the semi-light-shielding film 61 is formed, and a phase shifter having a laminated structure of the semi-light-shielding film 61 and the phase shifter film 62 is formed. That is, in the type shown in FIG. 24 (f), a desired mask pattern composed of a phase shifter and a semi-light-shielding portion is realized by laminating the phase shifter film 62 on the semi-light-shielding film 61. Is done.
  • a pattern forming method according to the fifth embodiment of the present invention specifically, a pattern forming method using the photomask according to any of the first to fourth embodiments (hereinafter, the photomask of the present invention) Will be described with reference to the drawings.
  • a micropattern can be formed by performing exposure using the photomask of the present invention, that is, a photomask formed so that the outline emphasis method or the center line emphasis method is satisfied. For example, when exposing a photomask as shown in FIG.
  • High contrast images can be formed by obliquely exposing the mask part (image enhancement mask) that realizes the center line enhancement method as well as the mask part that implements the outline enhancement method (contour enhancement mask). In addition, this makes it possible to form a pattern in which the pattern dimension is not easily changed by the focus change.
  • FIGS. 25 (a) to 25 (d) are cross-sectional views showing each step of the pattern forming method using the photomask of the present invention.
  • a film to be processed 101 such as a metal film or an insulating film is formed on a substrate 100
  • the film to be processed is formed as shown in FIG. 25 (b).
  • a positive resist film 102 is formed on the processed film 101.
  • a photomask of the present invention for example, a photomask of the type shown in FIG. 24 (a) (however, in FIG. Is exposed to exposure light 103, and the resist film 102 is exposed to the transmitted light 104 transmitted through the photomask.
  • a semi-shielding light having a laminated structure of the first phase shifter film 11 and the second phase shifter film 12 is provided on the transparent substrate 10 of the photomask used in the step shown in FIG. 25 (c).
  • the entire resist film 102 is exposed with weak energy.
  • the exposure energy sufficient to dissolve the resist in the developing step is applied to the latent image corresponding to the opening of the photomask in the resist film 102. Only part 1 0 2 a
  • a resist pattern 105 is formed by developing the resist film 102 and removing the latent image portion 102a.
  • the exposure step shown in FIG. 25 (c) since the contrast of the light intensity distribution between the opening and the region surrounding the opening is high, the distance between the latent image portion 102a and the region surrounding the same is high. Since the energy distribution changes rapidly, a resist pattern 105 having a sharp shape is formed.
  • a photomask of the present invention having a mask pattern composed of a semi-light-shielding portion and a phase shifter is used for pattern formation.
  • a phase shifter is arranged in the vicinity of the light-transmitting portion of the photomask according to the contour emphasizing method.
  • a phase shifter is arranged in the region sandwiched by the center line emphasizing method.
  • the fifth embodiment has been described by taking as an example a case in which exposure using a photomask that satisfies the contour enhancement method is performed in a positive resist process, it goes without saying that the present invention is not limited to this. Absent. That is, exposure using a photomask that satisfies the center line enhancement method or a photomask that satisfies the outline enhancement method and the center line enhancement method may be performed in a positive resist process.
  • exposure using a photomask that satisfies at least one of the contour enhancement method and the center line enhancement method may be performed in a negative resist process.
  • the mask is formed by developing the positive resist film irradiated with the exposure light and removing other portions other than the portion corresponding to the mask pattern in the positive resist film.
  • a resist pattern having a pattern shape can be formed.
  • the negative resist film irradiated with the exposure light is developed to remove a portion of the negative resist film corresponding to the mask pattern, thereby forming an opening in the mask pattern shape.
  • a resist pattern having a portion can be formed.
  • any of the mask data generation methods described below is applied to the phase enhancement by the center line enhancement method of the present invention or the contour enhancement method of the present invention.
  • a predetermined shape portion whose pattern shape is likely to be deformed at the time of pattern transfer is extracted from the mask pattern into which the shifter has been inserted, and the phase shifter is inserted, deformed, or erased so that the shape portion has a desired shape. is there.
  • a desired pattern can be obtained.
  • a pattern having a shape can be formed.
  • a shape portion where the pattern shape is easily deformed at the time of pattern transfer for example, there is an end portion of a line pattern thinner than a predetermined dimension as shown in FIG. 26 (a).
  • the end of the mask pattern corresponding to such a line pattern has a poor light-shielding effect, so that the length of the line is reduced during pattern formation. This is a phenomenon called line end retreat.
  • deformation can be compensated by simply extending the length of the mask pattern.
  • Another method for stabilizing the line length against exposure fluctuations and focus fluctuations during pattern formation is to increase the line end width of the mask pattern.
  • the light-shielding effect can be improved by inserting a larger phase shifter into a portion of the mask pattern where the light-shielding effect is reduced. That is, in the mask pattern, a higher light-shielding property can be realized by using a thicker phase shifter at the line end where the light-shielding effect is deteriorated than at the line center. Therefore, as shown in FIG. 26 (a), the line end may be transformed into a hammerhead pattern composed of a phase shifter.
  • the contour emphasis method can be applied to the line edge as shown in Fig. 26 (b).
  • a mask pattern for forming a line pattern is located on a peripheral portion parallel to the line direction in a region within a predetermined distance from both ends thereof. Place a phase shifter. In this way, when the line pattern exists in isolation, the characteristics at the line end are almost the same as those of the hammerhead pattern.
  • each line end in a mask pattern for forming each line pattern is deformed.
  • Fig. 26 (d) when the end of one line pattern is close to another line pattern that is thin enough to apply the centerline enhancement method, one line pattern is formed.
  • the method of deforming the line end in one mask pattern is the same as that shown in FIG. 26 (b).
  • a phase shifter arranged within a predetermined dimension from one mask pattern side end in the vicinity of one mask pattern is used as a semi-shielding portion. change. At this time, only the portion near the one mask pattern in the phase shifter inserted on the center line of the other mask pattern may be moved to the opposite end of the one mask pattern. The case shown in FIG.
  • FIG. 26 (d) is an example in which a predetermined portion of the phase shifter is changed to a semi-shielding portion. In this case, as a result, the width of the phase shifter is reduced.
  • the deformation compensation method shown in FIG. 26 (d) of the present invention the value of MEEF at the same target pattern size is greatly reduced.
  • Fig. 26 (e) when the edge of one line pattern is close to another line pattern that is thick enough to apply the contour enhancement method, one line pattern is formed.
  • the deformation method of the line end in one mask pattern is the same as that in FIG. 26 (b).
  • the phase shifter arranged near the one mask pattern is changed to a semi-shielding portion.
  • the phase shifter arranged in the vicinity of one mask pattern may be moved more inside.
  • the case shown in Fig. 26 (e) is an example in which a predetermined portion of the phase shifter is moved further inside in another mask pattern. The effect of this case is that the predetermined portion of the phase shifter is moved to the semi-shielding portion. It is substantially the same as the case when it is changed.
  • the deformation compensation method shown in FIG. 26 (e) of the present invention the value of MEEF at the same target pattern size is greatly reduced.
  • the MEEF is greatly reduced, so that the mask preparation is performed. Since a margin for a dimensional error at the time can be reduced, a finer pattern can be formed.
  • a center line emphasis method as shown in FIG.
  • the deformation compensation method in this case is to cover the area within a predetermined dimension from the bending point of the L-shaped corner in the mask pattern (where the contour of the mask pattern is bent).
  • a semi-light-shielding part is placed instead of the phase shifter for centerline enhancement.
  • the size of the phase shifter for center line enhancement of the region may be reduced.
  • a phase shifter for corner enhancement may be arranged on the outer peripheral portion of the L-shaped corner in the mask pattern.
  • the phase shifter for corner enhancement looks the same as the phase shifter for edge enhancement, For this purpose, the phase shifter for contour enhancement is placed slightly outside the position where it is originally placed.
  • the phase shifter for contour enhancement is placed slightly outside the position where it is originally placed.
  • the bending point inside the L-shaped corner at the periphery of the mask pattern A semi-light-shielding part is arranged in an area within a predetermined size in place of the phase shifter for contour enhancement. At this time, the size of the phase shifter for contour enhancement of the area may be reduced.
  • a phase shifter for corner enhancement described above is arranged in a region within a predetermined dimension from a bending point outside the L-shaped corner at the periphery of the mask pattern in place of the phase shifter for contour enhancement. You may.
  • the deformation compensation method shown in Fig. 27 (a) and (b) eliminates the emphasis pattern (phase shifter) inside the corner where the light-shielding effect is strong in the mask pattern and enhances the outside of the corner where the light-shielding effect is weak in the mask pattern. It transforms the pattern.
  • FIGS. 27 (a) and 27 (b) By the deformation compensation method of the present embodiment shown in FIGS. 27 (a) and 27 (b), a shape close to the intended pattern shape can be obtained. The reason for this is that the phase shifter is removed from the corner portion of the mask pattern where the light shielding property is excessive, so that the light shielding balance is improved.
  • a T-shaped corner composed of a line thin enough to apply the centerline enhancement method There is a pattern.
  • the deformation compensation method uses semi-shielding instead of the phase shifter for center line enhancement in the area within a predetermined dimension from the bending point of the T-shaped corner in the mask pattern. Place the part. At this time, the size of the phase shifter for center line enhancement of the region may be reduced.
  • a phase shifter for contour enhancement may be arranged on the side of the peripheral edge of the mask pattern opposite to the branch of the T-shaped corner.
  • a predetermined point is determined from the bending point of the T-shaped corner at the peripheral edge of the mask pattern.
  • a semi-light-shielding part will be placed in the area within the size in place of the phase shifter for contour enhancement. This and In this case, the size of the phase shifter for enhancing the contour of the area may be reduced. Further, a phase shifter for corner enhancement may be arranged on the side of the periphery of the mask pattern opposite to the branch of the T-shaped corner, instead of the phase shifter for contour enhancement.
  • the deformation compensation method shown in Fig. 27 (c) and (d) eliminates the emphasis pattern inside the corner where the light-shielding effect is strong in the mask pattern and deforms the enhancement pattern outside the corner where the light-shielding effect in the mask pattern is weak. Is what you do.
  • the deformation compensation method of the present embodiment shown in FIGS. 27 (c) and 27 (d) a shape close to the target pattern shape can be obtained. The reason for this is that the phase shifter is removed from the corners of the mask pattern where the light blocking effect is excessive, so that the light blocking ratio is improved.
  • the deformation compensation method in this case is as follows: a half of the cross-shaped corner in the mask pattern is replaced with a phase shifter for centerline emphasis within an area within a predetermined dimension from one bending point. A light shielding part is arranged. At this time, the size of the phase shifter for center line enhancement of the region may be reduced.
  • Fig. 27 (e) the deformation compensation method in this case is as follows: a half of the cross-shaped corner in the mask pattern is replaced with a phase shifter for centerline emphasis within an area within a predetermined dimension from one bending point. A light shielding part is arranged. At this time, the size of the phase shifter for center line enhancement of the region may be reduced.
  • the predetermined point is determined from the bending point of the cross-shaped corner at the periphery of the mask pattern.
  • a semi-light-shielding part will be placed in the area within the dimensions of, instead of the phase shifter for contour enhancement. At this time, the size of the phase shifter for enhancing the contour of the area may be reduced.
  • the deformation compensation method shown in FIGS. 27 ( ⁇ ) and (f) is for erasing the emphasized pattern inside the corner where the light shielding effect is strong in the mask pattern.
  • a shape close to the target pattern shape can be obtained. The reason is that the phase shifter has been removed from the corners of the mask pattern where the light-shielding properties are excessive, so that the light-shielding balance is improved. For it will be better.
  • a phase shifter is disposed according to the centerline emphasis method in a portion having a predetermined width or less.
  • a phase shifter is arranged in a portion exceeding a predetermined width according to the contour emphasis method.
  • the semi-light-shielding portion is used to reduce the light-shielding effect even in a portion where the light-shielding effect is too strong in the normal complete light-shielding pattern, such as inside a corner portion of the mask pattern. Can be reduced.
  • the phase shifter for enhancing the light-shielding effect is simply inserted into the portion of the mask pattern where the light-shielding effect becomes excessive according to the center line enhancement method or the outline enhancement method, an unnecessary light-shielding effect is obtained. Can be prevented. Therefore, by using this effect to limit the insertion of the phase shifter, it becomes easy to create a pattern of an arbitrary shape as desired.
  • the sixth embodiment has been described by taking as an example a case in which exposure using a photomask that satisfies the contour emphasis method or the center line emphasis method is performed in a positive type resist process, it goes without saying that the present invention is not limited to this. It is not limited to. That is, exposure using a photomask that satisfies at least one of the contour enhancement method and the center line enhancement method may be performed in a positive resist process. Alternatively, exposure using a photomask that satisfies at least one of the contour enhancement method and the center line enhancement method may be performed in a negative resist process.
  • the positive resist pro In the case of using a mask, the resist pattern having the mask pattern shape is developed by developing the positive resist film irradiated with the exposure light and removing other portions of the positive resist film other than the portion corresponding to the mask pattern. Can be formed.
  • the negative resist film irradiated with the exposure light is developed to remove a portion corresponding to the mask pattern in the negative resist film, so that the mask pattern shape can be reduced.
  • a resist pattern having an opening can be formed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

明細 フォ卜マスク、 その作成方法及びそのフォトマスクを用いたパターン形成方法 技術分野
本発明は、 半導体集積回路装置の製造に用いられる微細パターン形成用のフォ トマスク、 その作成方法及びそのフォトマスクを用いたパターン形成方法に関す る。 背景技術
近年、 半導体を用いて実現する大規模集積回路装置 (以下、 L S I と称する) の高集積化のために、 回路パターンの微細化がますます必要となってきている。 その結果、 回路を構成する配線パターンの細線化、 又は絶縁層を介して多層化さ れた配線同士をつなぐコンタク トホールパターン (以下、 コンタクトパターンと 称する) の微細化が非常に重要となってきた。
以下、 従来の光露光システムによる配線パターンの細線化及びコンタクトパタ ーンの微細化について、 ポジ型レジストプロセスを用いて説明する。 ここで、 ラ インパターンとは、 レジスト膜における露光光によって感光されない部分、 つま リ現像後に残存するレジスト部分 (レジストパターン) である。 また、 スペース パターンとは、 レジスト膜における露光光によって感光される部分、 つまり現像 によりレジストが除去されてなる開口部分 (レジス卜除去パターン) である。 ま た、 コンタク トパターンとは、 レジスト膜における現像によりホール状に除去さ れる部分であり、 スペースパターンのうち特に微小なものと考えればよい。 尚、 ポジ型レジス卜プロセスに代えてネガ型レジストプロセスを用いる場合、 前述の ラインパターン及びスペースパターンのそれぞれの定義を入れ替えればよい。
〈第 1の従来例〉 従来の細線パターンの形成方法として、 マスクパターンによって生じる光強度 分布のコントラストを位相シフターによって強調して微細幅のラインパターンを 形成する方法が提案されている (例えば、 H. Y. L i uほか、 P r o c. S P I E 、 V o l . 3334、 P. 2 ( 1 998) ) 。
以下、 位相シフターを用いた従来のラインパターンの形成方法について、 図面 を参照しながら説明する。
図 28 (a ) は、 形成対象となる所望のパターン (レジストパターン) のレイ アウトの一例を示している。 図 28 (a) に示すように、 パターン 800は、 所 定寸法以下の部分パターン 800 aを有している。
図 28 ( b) 及び図 28 ( c) は、 図 28 (a ) に示すパターンを形成するた めに用いられる、 従来の 2枚のフォトマスクの平面図を示している。 図 28 ( b ) に示すように、 第 1のフォ卜マスク 8 1 0においては、 透過性基板 8 1 1上に 完全遮光膜 8 1 2 (露光光の透過率がほぼ 0%) が形成されている。 また、 完全 遮光膜 8 1 2に、 透光部となる第 1の開口部 8 1 3及び位相シフタ一となる第 2 の開口部 8 1 4が、 部分パターン 800 aを形成するための遮光パターン 8 1 2 aを挟んで設けられている。 この位相シフタ一となる第 2の開口部 8 1 4は、 透 光部となる第 1の開口部 8 1 3を基準として 1 80度の位相差が生じるように露 光光を透過させる。 また、 図 28 ( c) に示すように、 第 2のフォトマスク 82 0においては、 透過性基板 82 1上に、 第 1のフォトマスク 8 1 0の遮光パター ン 8 1 2 aとの組み合わせによって、 所望のパターン 800 (図 28 ( a ) 参照 ) を形成するための遮光パターン 822が形成されている。
図 28 ( b) 及び図 28 ( c) に示す 2枚のフォトマスクを用いたパターン形 成方法は次の通りである。 まず、 第 1のフォトマスク 8 1 0を用いて、 ポジ型レ ジストよりなるレジスト膜が塗布された基板に対して露光を行なう。 その後、 図 28 (a ) に示すパターン 800が形成されるように第 2のフォトマスク 820 の位置合わせを行なった後、 第 2のフォトマスク 820を用いて露光を行う。 そ の後、 レジスト膜を現像することによって、 図 2 8 ( a ) に示すようなレジスト パターンを形成することができる。 このとき、 第 1のフォトマスク 8 1 0のみを 用いた露光だけでは残存してしまう余分なパターン (パターン 8 0 0以外の他の パターン) を、 第 2のフォトマスク 8 2 0を用いた露光により除去することがで きる。 その結果、 第 2のフォトマスク 8 2 0のみを用いた露光によっては形成す ることができない微小幅の部分パターン 8 O O aを形成することができる。
この方法において、 透光部と位相シフタ一とが、 所定寸法以下の完全遮光膜よ りなるパターン (つまり遮光パターン) を挟んで配置されている場合、 透光部 ( 開口部) 及び位相シフターのそれぞれを透過して遮光パターンの裏側に回折した 光が互いに打ち消し合うので、 遮光パターンの遮光性を向上させることができる ので、 所定寸法以下のラインパターンを形成することができる。
〈第 2の従来例〉
従来の微小コンタク卜パターンの形成方法として、 ハーフトーン位相シフトマ スクを用いた方法が提案されている。 このハーフ I ^一ン位相シフ卜マスクにおい ては、 コンタクトパターンと対応する透光部 (位相シフタ一中の開口部) が設け られている。 また、 遮光部として、 露光光に対して低透過率 (3〜6 %程度) を 有し且つ開口部を透過する光を基準として 1 8 0度の反対位相で光を透過させる 位相シフターが設けられている。
以下、 ハーフ I ^一ン位相シフトマスクによるパターン形成方法の原理について 図 2 9 ( a ) 〜 (g ) を参照しながら説明する。
図 2 9 ( a ) は、 マスク表面に設けられた完全遮光部となるクロム膜にコンタ ク 卜パターンと対応する開口部が設けられてなるフォトマスクの平面図であり、 図 2 9 ( b ) は、 図 2 9 ( a ) に示すフォトマスクを透過して被露光材料上にお ける線分 A A ' と対応する位置に転写される光の振幅強度を示している。 図 2 9 ( c ) は、 マスク表面に設けられた位相シフターにコンタク トパターンと対応す るクロム膜が完全遮光部として設けられてなるフォトマスクの平面図であり、 図 2 9 (d) は、 図 29 ( c) に示すフォトマスクを透過して被露光材料上におけ る線分 AA' と対応する位置に転写される光の振幅強度を示している。 図 29 ( e) は、 マスク表面に設けられた遮光部となる位相シフタ一にコンタク トパター ンと対応する開口部が設けられてなるフォトマスク (つまりハーフトーン位相シ フトマスク) の平面図であり、 図 29 ( f ) 及び図 29 (g) はそれぞれ、 図 2 9 (e) に示すフォトマスクを透過して被露光材料上における線分 A A' と対応 する位置に転写される光の振幅強度及び光強度を示している。
図 2 9 ( b ) 、 図 29 ( d ) 及び図 29 ( f ) に示すように、 図 29 ( e ) に 示すハーフ! ^一ン位相シフトマスクを透過した光の振幅強度は、 図 29 (a) 及 び図 2 9 ( c) のそれぞれに示すフォトマスクを透過した光の振幅強度の和にな つている。 すなわち、 図 29 ( e) に示すハーフトーン位相シフトマスクにおい ては、 遮光部となる位相シフタ一は、 露光光の一部を透過させるだけではなく、 該位相シフターを透過する光に、 開口部を通過する光を基準として 1 80度の位 相差を与えるように形成されている。 このため、 図 29 ( b) 及び図 2 9 (d) に示すように、 位相シフターを透過する光は、 開口部を透過する光に対して反対 位相の振幅強度分布を有するので、 図 29 (b) に示す振幅強度分布と図 29 ( d) に示す振幅強度分布とを合成すると、 図 29 ( f ) に示すように、 位相変化 により振幅強度が 0となる位相境界が発生する。 その結果、 図 29 (g) に示す ように、 位相境界となる開口部の端 (以下、 位相端と称する) では、 振幅強度の 2乗で表される光強度も 0となって強い暗部が形成される。 従って、 図 29 ( e ) に示すハーフトーン位相シフトマスクを透過した光の像においては、 開口部周 辺で非常に強いコントラス卜が実現されるので、 微小コンタクトパターンを形成 することができる。
ここで、 本明細書において露光に使用する露光光源について説明する。 図 30 ( a) ~ (c) は、 従来から用いられている露光光源の形状を示す図である。 図
30 ( a) に示すような通常露光光源に対して、 斜入射露光光源とは、 フォトマ スクにおける光源中心と対応する部分に垂直に入射する光成分が取リ除かれた、 図 3 0 ( b ) 又は図 3 0 ( c ) に示すような光源のことを意味する。 代表的な斜 入射露光光源としては、 図 3 0 ( b ) に示す輪帯露光光源、 及び図 3 0 ( c ) に 示す四重極露光光源がある。 目的のパターンに若干依存するが、 一般に、 輪帯露 光光源よリも四重極露光光源の方がコントラス卜の強調又は焦点深度 (D O F ) の拡大において効果的である。
しかしながら、 第 1の従来例のようなパターン形成方法においては、 下記のよ うな課題があった。
( 1 ) 透光部と位相シフターとの間に遮光パターンを挟むことによって、 遮光パ ターンと対応する遮光像のコントラストを向上させるためには、 透光部と位相シ フタ一とが所定の寸法以下の間隔で隣り合っていなければならない。 一方、 フォ トマスク上で透光部と位相シフタ一とが遮光パターンを間に挟まずに配置された 場合には、 透光部と位相シフターとの境界に対応した遮光像が形成されてしまう 。 そのため、 図 2 8 ( b ) に示すような第 1のフォトマスクのみによって任意の 形状のパターンを形成することができないので、 通常の L S Iのパターンレイァ ゥト等の様に複雑な形状を有するパターンを作成するためには、 図 2 8 ( b ) に 示すような第 1のフォトマスクに加えて、 図 2 8 ( c ) に示すような第 2のフォ トマスクを用いた露光が必須となる。 その結果、 マスク費用が増大すると共に、 リソグラフィにおける工程数の増加に起因してスループッ卜が低下したり又は製 造コス卜が増大する。
( 2 ) 形成対象となる所望のパターン (レジストパターン) が複雑なパターン形 状 (例えば所定寸法以下の T字状) の場合、 遮光パターンの全体を、 互いに反対 位相となる透光部と位相シフターとの間だけに設けることができないので、 例え ば T字状の遮光パターンの遮光性を向上させることができない。 従って、 位相シ フタ一の効果を利用できるパターンレイァゥトは制限される。
また、 第 2の従来例のようなパターン形成方法においては、 下記のような課題 があった。
( 3 ) ハーフ I ^一ン位相シフトマスクによっては、 孤立配置された孤立コンタク トパターンの形成と蜜に配置された密集コンタク トパターンの形成とを同一露光 源を用いた露光により同時に且つ満足できる仕上がりで行なうことが困難である 。 同様に、 孤立配置された孤立ラインパターンの形成と蜜に配置された密集ライ ンパターンの形成とを同一露光源を用いた露光によリ同時に且つ満足できる仕上 がりで行なうことも困難である。 すなわち、 孤立コンタクトパターンを形成する 場合、 マスクに対して垂直に入射する垂直入射成分だけの照明を行なうための干 渉度 0 . 5以下程度の小さな光源 (図 3 0 ( a ) 参照) を用いて垂直入射露光を 行なうことによって、 コントラス卜の向上及び高い焦点深度を実現することがで きる。 しかしながら、 垂直入射露光により密集コンタク トパターンを形成しょう とすると、 コントラス卜及び焦点深度が著しく悪化する。 一方、 密集コンタク ト パターンを形成する場合、 マスクに対して斜めに入射する斜入射成分だけの照明 を行なうための光源、 例えば垂直入射成分 (光源中心からの照明成分) を取り除 いた輪帯照明を行なうための光源 (図 3 0 ( b ) 参照) を用いて斜入射露光を行 なうことによって、 コントラス卜の向上及び高い焦点深度を実現することができ る。 しかしながら、 斜入射露光により孤立コンタク トパターンを形成しようとす ると、 コントラスト及び焦点深度が著しく悪化する。
( 4 ) ハーフ I ^一ン位相シフトマスクによっては、 孤立スペースパターンの形成 と孤立ラインパターンの形成とを同時に且つ満足できる仕上がりで行なうことが 困難である。 すなわち、 孤立スペースパターンを形成する場合、 垂直入射露光を 行なうことによって、 コントラス卜の向上及び高い焦点深度を実現することがで きる。 しかしながら、 垂直入射露光により孤立ラインパターンを形成しようとす ると、 コントラスト及び焦点深度が著しく悪化する。 一方、 孤立ラインパターン を形成する場合、 斜入射露光を行なうことによって、 コントラストの向上及び高 い焦点深度を実現することができる。 しかしながら、 斜入射露光により孤立スぺ ースパターンを形成しょうとすると、 コントラス卜及び焦点深度が著しく悪化す る。 このように、 ハーフトーン位相シフトマスクを用いた場合、 孤立スペースパ ターン (孤立コンタク トパターンも含む) に対する最適照明条件と、 密集スぺー スパターン (密集コンタク トパターンも含む) 又は孤立ラインパターンに対する 最適照明条件とは相反関係にある。 このため、 同一照明条件によって、 孤立スぺ ースパターンの形成と、 孤立ラインパターンの形成又は密集スペースパターンの 形成とを同時に且つ最適な仕上がりで行なうことが困難である。 発明の開示
前記に鑑み、 本発明は、 パターンの形状又は密集度合いに依存することなく、 同一の露光条件で微細パターンを形成できるフォトマスク、 その作成方法及びそ のフォトマスクを用いたパターン形成方法を提供することを目的とする。
前記の目的を達成するために、 本発明に係るフォトマスクは、 露光光に対して 透光性を有する透過性基板上に、 露光光に対して遮光性を有するマスクパターン と、 透過性基板におけるマスクパターンが形成されていない透光部とが設けられ たフォトマスクを前提とし、 マスクパターンは、 透光部を基準として露光光を同 位相で透過させる半遮光部と、 透光部を基準として露光光を反対位相で透過させ る位相シフターとから構成されており、 半遮光部は、 露光光を部分的に透過させ る透過率を有し、 位相シフタ一は、 該位相シフタ一を透過した光によって、 透光 部及び半遮光部を透過した光の一部分を打ち消すことができる位置に設けられて いる。
本発明のフォ卜マスクによると、 マスクパターンが半遮光部と位相シフタ一と から構成されており、 位相シフターを透過した光によって透光部及び半遮光部を 透過した光の一部分を打ち消すことができるように位相シフタ一が配置されてい る。 このため、 マスクパターンと対応する遮光像における光強度分布のコントラ ストを強調できるので、 パターンの形状又は密集度合いに依存することなく、 同 一の露光条件で微細パターンを形成することができる。
本発明のフォトマスクにおいて、 露光光に対する半遮光部の透過率は 1 5<½以 下であることが好ましい。
このようにすると、 パターン形成時におけるレジス卜膜の膜減り防止又はレジ スト感度の最適化を達成できる。 特に、 露光光に対する半遮光部の透過率が 6% 以上で且つ 1 5<½以下であると、 DO F (焦点深度) 又はコントラストの向上と 、 パターン形成時におけるレジスト膜の膜減り防止又はレジス卜感度の最適化と を両立させることができる。
本発明のフォトマスクにおいて、 半遮光部は、 透光部を基準として露光光を、 (-30 + 360 X n) 度以上で且つ (30 + 3 60 X n) 度以下 (但し ηは整 数) の位相差で透過させると共に、 位相シフタ一は、 透光部を基準として露光光 を、 ( 1 50 + 3 6 0 Χ Π ) 度以上で且つ (21 0 + 360 X η ) 度以下 (但し ηは整数) の位相差で透過させてもよい。 すなわち、 本明細書においては、 (一 30 + 360 X n) 度以上で且つ (30 + 360 Χ η) 度以下 (但し ηは整数) の位相差は同位相とみなし、 ( 1 50 + 360 Χ η) 度以上で且つ (2 1 0 + 3 60 X η) 度以下 (但し ηは整数) の位相差は反対位相とみなす。
本発明のフォトマスクにおいて、 位相シフタ一は、 マスクパターンにおける透 光部との境界から (0. 8 Χ λΖΝΑ) X Μ以下の部分に配置されている (但し 、 λは露光光の波長であり、 Ν Α及び Μはそれぞれ露光機の縮小投影光学系の開 口数及び縮小倍率である) ことが好ましい。 。
このようにすると、 パターン形成における露光マージンが向上する。
本発明のフォ卜マスクにおいて、 マスクパターンが透光部を囲むように設けら れおり、 且つ位相シフターがマスクパターンにおける透光部の近傍に設けられて いる場合、 位相シフターの幅は (0. 3 Χ λΖΝΑ) ΧΜ以下である (但し、 λ は露光光の波長であり、 Ν Α及び Μはそれぞれ露光機の縮小投影光学系の開口数 及び縮小倍率である) ことが好ましい。 このようにすると、 パターン形成におけるフォーカスマージンが向上する。 但 し、 位相シフターの幅は、 位相シフターとしての光学的な作用が得られる (0. ΐ χ λΖΝΑ) X Μ以上であることが好ましい。
本発明のフォ卜マスクにおいて、 マスクパターンは透光部を囲むように設けら れおり、 位相シフタ一は、 マスクパターンにおける透光部の近傍に、 半遮光部と 透光部とによって挟まれるように設けられていることが好ましい。
このようにすると、 透光部を透過した光の像の周辺部における光強度分布のコ ントラス卜を強調できる。
本発明のフォトマスクにおいて、 マスクパターンは透光部を囲むように設けら れおり、 位相シフタ一は、 マスクパターンにおける透光部の近傍に、 半遮光部に よって囲まれるように設けられていることが好ましい。
このようにすると、 透光部を透過した光の像の周辺部における光強度分布のコ ントラストを強調できると共に、 マスク寸法誤差によって光強度分布が影響を受 けにく くなる。
本発明のフォトマスクにおいて、 マスクパターンは透光部によって囲まれてお リ、 位相シフタ一は半遮光部によって囲まれていることが好ましい。
このようにすると、 マスクパターンと対応する遮光像の中心部における光強度 分布のコントラストを強調できる。 また、 この場合、 マスクパターンの幅が (0 . 8 X λ/Ν A) ΧΜ以下である (但し、 λは露光光の波長であり、 Ν Α及び Μ はそれぞれ露光機の縮小投影光学系の開口数及び縮小倍率である) と、 前述の効 果が確実に得られる。 また、 この場合、 位相シフターの幅が (0. 4 Χ ΑΖΝΑ ) ΧΜ以下であると、 パターン形成における露光マ一ジンがよリー層向上する。 さらに、 この場合、 位相シフタ一の幅が (0. 1 Χ λΖΝ Α) Χ Μ以上で且つ ( 0. 4 X λ/Ν A) X Μ以下であると、 露光マージン及び D O Fが同時に向上す る。
本発明のフォトマスクにおいて、 マスクパターンは、 透光部によって囲まれた ライン状パターンであり、 位相シフタ一は、 マスクパターンのライン幅方向にお ける中央部に、 半遮光部によって挟まれるように設けられていることが好ましい このようにすると、 マスクパターンと対応するライン状の遮光像の中心部にお ける光強度分布のコントラストを強調できる。 また、 この場合、 マスクパターン の幅が (0. 8 Χ λΖΝΑ) ΧΜ以下である (但し、 λは露光光の波長であり、 Ν Α及び Μはそれぞれ露光機の縮小投影光学系の開口数及び縮小倍率である) と 、 前述の効果が確実に得られる。 また、 この場合、 位相シフターの幅が (0. 4 X λ/Ν A) ΧΜ以下であると、 パターン形成における露光マージンがよリー層 向上する。 さらに、 この場合、 位相シフターの幅が (0. 1 Χ λΖΝΑ) ΧΜ以 上で且つ (0. 4 Χ λΖΝΑ) ΧΜ以下であると、 露光マージン及び D O Fが同 時に向上する。
本発明のフォトマスクにおいて、 マスクパターンは、 透光部によって囲まれた ライン状パターンであり、 位相シフタ一は、 少なくともマスクパターンのライン 幅方向における両端部にそれぞれ、 半遮光部を挟むように設けられていることが 好ましい。
このようにすると、 マスクパターンと対応する遮光像の輪郭部における光強度 分布のコントラストを強調できる。
本発明のフォトマスクにおいて、 マスクパターンは、 透光部によって囲まれた ライン状パターンであり、 位相シフタ一は、 マスクパターンのライン幅方向にお ける両端部及び中央部にそれぞれ、 半遮光部を挟むように設けられていることが 好ましい。
このようにすると、 マスクパターンと対応する遮光像の輪郭部における光強度 分布のコントラストを強調できる。 また、 半遮光部の利用に起因して、 遮光像の 中心部にサイ ドローブが発生することを防止できる。 また、 この場合、 マスクパ ターンの幅が (λΖΝ Α) Χ Μ以下である (但し、 λは露光光の波長であり、 Ν A及び Mはそれぞれ露光機の縮小投影光学系の開口数及び縮小倍率である) と、 前述の効果が確実に得られる。 さらに、 この場合、 位相シフターの幅が (0 . 3 X λ / Ν A ) Χ Μ以下であると、 パターン形成におけるフォーカスマージンがよ リー層向上する。
本発明のフォトマスクにおいて、 マスクパターンは、 透光部によって囲まれた ライン状パターンであり、 位相シフタ一は、 マスクパターンのライン幅方向の両 端部にそれぞれ、 半遮光部によって囲まれるように設けられていることが好まし い。
このようにすると、 マスクパターンと対応する遮光像の輪郭部における光強度 分布のコントラス卜を強調できると共に、 マスク寸法誤差によって光強度分布が 影響を受けにくくなる。
本発明のフォトマスクにおいて、 マスクパターンは、 透光部によって囲まれた ライン状パターンであり、 位相シフタ一は、 マスクパターンのライン幅方向の両 端部及び中央部にそれぞれ、 半遮光部によって囲まれるように設けられているこ とが好ましい。
このようにすると、 マスクパターンと対応する遮光像の輪郭部における光強度 分布のコントラス卜を強調できると共に、 マスク寸法誤差によって光強度分布が 影響を受けにくくなる。 また、 半遮光部の利用に起因して、 遮光像の中心部にサ ィ ドローブが発生することを防止できる。
本発明のフォトマスクにおいて、 透光部は、 第 1の透光部と第 2の透光部とを 有し、 マスクパターンは、 第 1の透光部及び第 2の透光部を囲むように設けられ ており、 位相シフタ一は、 第 1の透光部と第 2の透光部との間の中央部に設けら れており、 半遮光部は、 位相シフターの両側に設けられていることが好ましい。 このようにすると、 マスクパターンにおける一対の透光部に挟まれた部分と対 応ずる遮光像の中心部における光強度分布のコントラス卜を強調できる。 また、 この場合、 第 1の透光部と第 2の透光部との間隔が (0 . 8 χ λ Ζ Ν Α ) Χ Μ以 下である (但し、 λは露光光の波長であり、 Ν Α及び Μはそれぞれ露光機の縮小 投影光学系の開口数及び縮小倍率である) と、 前述の効果が確実に得られる。 ま た、 この場合、 位相シフターの幅が (0. 4 χ λΖΝΑ) ΧΜ以下であると、 ノ ターン形成における露光マージンが向上する。 さらに、 この場合、 位相シフター の幅が (0. ΐ Χ λΖΝΑ) ΧΜ以上で且つ (0. 4 Χ λΖΝΑ) ΧΜ以下であ ると、 露光マージン及び DO Fが同時に向上する。
本発明に係るパターン形成方法は、 本発明のフォトマスクを用いたパターン形 成方法を前提とし、 基板上にレジスト膜を形成する工程と、 レジス卜膜にフォト マスクを介して露光光を照射する工程と、 露光光を照射されたレジスト膜を現像 して、 レジストパターンを形成する工程とを備えている。
本発明のパターン形成方法によると、 本発明のフォトマスクと同様の効果が得 られる。 また、 本発明のパターン形成方法において、 露光光を照射する工程で斜 入射照明法を用いることが好ましい。 このようにすると、 フォトマスクを透過し た光の光強度分布において、 マスクパターン及び透光部のそれぞれと対応する部 分の間でのコントラストが向上する。 また、 光強度分布のフォーカス特性も向上 する。 従って、 パターン形成における露光マージン及びフォーカスマージンが向 上する。
本発明に係る第 1のマスクデータ作成方法は、 本発明のフォトマスクのマスク データ作成方法を前提とし、 フォトマスクを用いて形成しょうとするパターンに 基づいてマスクパターンの形状を決定すると共に半遮光部の透過率を設定する第 1の工程と、 第 1の工程よりも後に、 マスクパターンにおける所定の寸法以下で 透光部に挟まれた領域を抽出する第 2の工程と、 第 2の工程よりも後に、 抽出さ れた領域及びマスクパターンにおける透光部の近傍に位相シフターを挿入する第 3の工程とを備えている。
第 1のマスクデータ作成方法によると、 透光部を透過した光の像の周辺部にお ける光強度分布のコントラストを強調でき、 且つ遮光像の中心部におけるサイ ド ローブの発生を防止できるフォ卜マスクを実現できる。
第 1のマスクデータ作成方法において、 第 3の工程よりも後に、 位相シフター と透光部との間に所定の寸法以下の半遮光部を挿入する工程を備えていることが 好ましい。
このようにすると、 マスク寸法誤差によって光強度分布が影響を受けにくいフ ォトマスクを実現できる。
第 1のマスクデータ作成方法において、 第 3の工程よりも後に、 マスクパター ンにおける所定の寸法以下で透光部に挟まれた領域に、 透光部を基準として露光 光を反対位相で透過させる他の位相シフターを挿入する工程を備えていることが 好ましい。
このようにすると、 サイ ドローブの発生を防止できるフォ卜マスクを実現でき る。 このとき、 他の位相シフタ一は、 透光部を基準として露光光を、 ( 1 5 0 + 3 6 0 X n ) 度以上で且つ (2 1 0 + 3 6 0 X n ) 度以下 (但し nは整数) の位 相差で透過させてもよい。
第 1のマスクデータ作成方法において、 第 3の工程よりも後に、 マスクパター ンの中から、 所定の寸法以下の幅を有するライン状のパターン端部を抽出して、 該抽出されたパターン端部におけるライン方向と平行な周縁部に他の位相シフタ 一を挿入する工程を備えていることが好ましい。
このようにすると、 ラインパターン端部の後退を防止できるフォトマスクを実 現できる。 また、 ラインパターンが他のパターンと近接する場合には、 パターン 間のプリッジを防止できるフォ卜マスクを実現できる。
第 1のマスクデータ作成方法において、 第 3の工程よりも後に、 マスクパター ンの中からコーナーを抽出して、 マスクパターンにおける抽出されたコーナ一の 屈曲点から所定の寸法以内の領域に位相シフターが配置されている場合には、 該 位相シフターを半遮光部と置換するか又は該位相シフタ一の寸法を縮小する工程 を備えていることが好ましい。 このようにすると、 所望の形状を持つパターンコーナー部を形成できるフォト マスクを実現できる。
第 1のマスクデータ作成方法において、 第 3の工程よりも後に、 フォトマスク を用いて形成しょうとするパターンが所望の寸法を有するように、 位相シフター の寸法を固定した状態で半遮光部の寸法を補正する工程を備えていることが好ま このようにすると、 マスク寸法の変更に対するパターン (レジストパターン) 寸法の変動量が小さいフォ卜マスク、 つまり所望の寸法を持つパターンを形成で きるフォトマスクを実現できる。
本発明に係る第 2のマスクデータ作成方法は、 本発明のフォトマスクのマスク データ作成方法を前提とし、 フォトマスクを用いて形成しょうとするパターンに 基づいてマスクパターンの形状を決定すると共に半遮光部の透過率を設定する第 1の工程と、 第 1の工程よりも後に、 マスクパターンにおける幅が所定の寸法以 下である領域を抽出する工程と、 第 2の工程よりも後に、 抽出された領域、 及び マスクパターンにおける幅が所定の寸法を越える領域の周縁部に位相シフターを 挿入する第 3の工程とを備えている。
第 2のマスクデータ作成方法によると、 マスクパターンにおける幅の小さい部 分と対応する遮光像の中心部、 及びマスクパターンにおける幅の大きい部分と対 応する遮光像の輪郭部のそれぞれにおける光強度分布のコン卜ラストを強調でき るフォトマスクを実現できる。
第 2のマスクデータ作成方法において、 第 3の工程よりも後に、 位相シフター と透光部との間に所定の寸法以下の半遮光部を挿入する工程を備えていることが 好ましい。
このようにすると、 マスク寸法誤差によって光強度分布が影響を受けにくいフ ォ卜マスクを実現できる。
第 2のマスクデータ作成方法において、 第 3の工程よりも後に、 マスクパター ンにおける幅が所定の寸法を越える領域に、 透光部を基準として露光光を反対位 相で透過させる他の位相シフターを挿入する工程を備えていることが好ましい。 このようにすると、 サイ ドローブの発生を防止できるフォトマスクを実現でき る。 このとき、 他の位相シフタ一は、 透光部を基準として露光光を、 (1 5 0 + 3 6 0 X n ) 度以上で且つ (2 1 0 + 3 6 0 x n ) 度以下 (但し ηは整数) の位 相差で透過させてもよい。
第 2のマスクデータ作成方法において、 第 3の工程よりも後に、 マスクパター ンの中から、 所定の寸法以下の幅を有するライン状のパターン端部を抽出して、 該抽出されたパターン端部におけるライン方向と平行な周縁部に他の位相シフタ 一を挿入する工程を備えていることが好ましい。
このようにすると、 ラインパターン端部の後退を防止できるフォトマスクを実 現できる。 また、 ラインパターンが他のパターンと近接する場合には、 パターン 間のプリッジを防止できるフォトマスクを実現できる。
第 2のマスクデータ作成方法において、 第 3の工程よりも後に、 マスクパター ンの中からコーナ一を抽出して、 マスクパターンにおける抽出されたコーナーの 屈曲点から所定の寸法以内の領域に位相シフターが配置されている場合には、 該 位相シフターを半遮光部と置換するか又は該位相シフターの寸法を縮小する工程 を備えていることが好ましい。
このようにすると、 所望の形状を持つパターンコーナー部を形成できるフォ卜 マスクを実現できる。
第 2のマスクデータ作成方法において、 第 3の工程よりも後に、 フォトマスク を用いて形成しょうとするパターンが所望の寸法を有するように、 位相シフター の寸法を固定した状態で半遮光部の寸法を補正する工程を備えていることが好ま しい。
このようにすると、 マスク寸法の変更に対するパターン (レジストパターン) 寸法の変動量が小さいフォトマスク、 つまり所望の寸法を持つパターンを形成で きるフォトマスクを実現できる。 図面の簡単な説明
図 1は本発明の第 1の実施形態に係る輪郭強調法を用いたフォ卜マスクの平面 図である。
図 2 ( a) ~ (g) は本発明の輪郭強調法の原理を説明するための図である。 図 3 (a) 〜 ( f ) は本発明の輪郭強調法における位相シフターの寸法限界を 説明するための図である。
図 4 (a) 〜 (d) は本発明の輪郭強調法における位相シフターの寸法限界を 説明するための図である。
図 5 (a) ~ ( f ) は本発明の輪郭強調マスクに対して様々な光源位置から露 光を行なって孤立パターンを形成する場合における光強度分布のコントラス卜の 変化を説明するための図である。
図 6 (a) 〜 ( f ) は本発明の輪郭強調マスクに対して様々な光源位置から露 光を行なって密集パターンを形成する場合における光強度分布のコントラス卜の 変化を説明するための図である。
図 7 (a) 〜 (e) は本発明の輪郭強調マスクによる DO F改善効果を説明す るための図である。
図 8 (a) ~ ( f ) は本発明の輪郭強調マスクにおける半遮光部の透過率に対 するコントラスト及び DO Fの依存性を説明するための図である。
図 9 (a) ~ ( f ) は、 コンタク トパターンと対応する開口部が設けられた、 本発明の輪郭強調マスクにおける、 半遮光部と位相シフターとから構成される遮 光性のマスクパターンのパリエーシヨンを示す図である。
図 1 0は、 図 9 (b) に示す本発明の輪郭強調マスクのマスクパターンを基本 構造として、 コンタク トパターンと対応する開口部が蜜に配置された、 本発明の 輪郭強調マスクの平面図である。 図 1 1 (a) 及び (b) は、 本発明の輪郭強調マスクにおける開口部の寸法に 対する DO Fの依存性を説明するための図である。
図 1 2は本発明の第 2の実施形態に係る中心線強調法を用いたフォ卜マスクの 平面図のである。
図 1 3 (a) 〜 (c) は本発明の中心線強調法の原理を説明するための図であ る。
図 1 4 (a) 及び (b) は、 本発明のイメージ強調マスクにおける位相シフタ —の形状のバリエーシヨンを示す図である。
図 1 5 (a) 〜 (c) は、 位相シフタ一となる開口部の寸法がそれぞれ異なる 、 複数の本発明のイメージ強調マスクを用いて、 色々な露光光入射方向からの露 光を行なった場合における DO F特性をシミュレーションによって計算した結果 を示す図である。
図 1 6 (a) 及び (b) は、 本発明のイメージ強調マスクにおいてマスクバタ ーンを構成する遮光部として半遮光部を用いることの利点を説明するための図で あ 0
図 1 7は、 本発明の第 3の実施形態に係るマスクデータ作成方法のフロー図で あ 。
図 1 8 (a ) 〜 (d) は本発明の第 3の実施形態に係るマスクデータ作成方法 を用いてスペースパターン形成用のマスクパターンを形成する場合の各工程を示 す図である。
図 1 9 (a) 〜 (d) は本発明の第 3の実施形態に係るマスクデータ作成方法 を用いてスペースパターン形成用のマスクパターンを形成する場合の各工程を示 す図である。
図 20 (a ) 〜 (d) は本発明の第 3の実施形態に係るマスクデータ作成方法 を用いてラインパターン形成用のマスクパターンを形成する場合の各工程を示す 図である。 図 2 1 (a) 〜 (c) は本発明の第 3の実施形態に係るマスクデータ作成方法 を用いてラインパターン形成用のマスクパターンを形成する場合の各工程を示す 図である。
図 22は本発明の第 3の実施形態に係るマスクデータ作成方法におけるマスク パターンの線幅に応じた位相シフターの挿入方法を示す図である。
図 23は本発明の第 4の実施形態に係るフォ卜マスクの平面図である。
図 24 (a) 〜 ( f ) はそれぞれ図 2 3における A A' 線の断面図である。 図 25 (a ) 〜 (d) は本発明の第 5の実施形態に係るパターン形成方法の各 工程を示す断面図である。
図 26 (a ) ~ (e) はそれぞれ本発明の第 6の実施形態に係るマスクデータ 作成方法におけるライン端部に対する変形補償方法を説明するための図である。 図 27 (a) 〜 ( f ) はそれぞれ本発明の第 6の実施形態に係るマスクデータ 作成方法におけるコーナー部に対する変形補償方法を説明するための図である。 図 28 (a) は従来のパターン形成方法において形成対象となる所望のパター ンのレイアウトの一例を示す図であり、 図 28 (b) 及び図 28 (c) はそれぞ れ図 28 (a) に示すパターンを形成するために用いられる、 従来の 2枚のフォ 卜マスクの平面図である。
図 29 ( a) ~ (g) は従来のハーフトーン位相シフトマスクによるパターン 形成方法の原理を説明するための図である。
図 30 (a) は通常の露光光源の形状を示す図であり、 図 30 (b) は輪帯露 光光源の形状を示す図であり、 図 30 ( c) は四重極露光光源の形状を示す図で ある。 発明を実施するための最良の形態
第 1の実施形態
まず、 本発明を実現する上で本願発明者が考案した、 フォトマスクによる解像 度向上方法、 具体的には、 孤立スペースパターンの解像度を向上させるための Γ 輪郭強調法」 を用いたフォトマスクについて説明する。
図 1は、 本発明の第 1の実施形態に係る輪郭強調法を用いたフォトマスク (以 下、 輪郭強調マスクと称する) 、 具体的には、 孤立コンタク 卜パターンと対応す る透光部が設けられた輪郭強調マスクの平面図である。
図 1に示すように、 輪郭強調マスク 1は、 露光光に対して透過性を有する透過 性基板 2と、 透過性基板 2の主面に形成され且つ露光光を部分的に透過させる透 過率を持つ半遮光部 3と、 透過性基板 2の主面に半遮光部 3に囲まれるように形 成され且つ孤立コンタク トパターンと対応する透光部 (開口部) 4と、 透過性基 板 2の主面における半遮光部 3と透光部 4との間に透光部 4を取り囲むように形 成されたリング状の位相シフター 5とを備えている。 輪郭強調マスク 1において は、 透光部 4を基準として露光光を同位相で透過させる半遮光部 3と、 透光部 4 を基準として露光光を反対位相で透過させる位相シフター 5とによって、 遮光性 を有するマスクパターンが構成されている。
尚、 本明細書においては、 (一 30 + 360 X n) 度以上で且つ (30 + 36 0 X n) 度以下 (但し nは整数) の位相差は同位相とみなし、 ( 1 50 + 360 n ) 度以上で且つ (21 0 + 3 6 0 Χ Π ) 度以下 (但し nは整数) の位相差は 反対位相とみなす。
また、 露光光に対する半遮光部 3の透過率は 1 5%以下であり、 好ましくは 6 %以上で且つ 1 5«½以下である。 このような半遮光部 3の材料としては、 例えば 、 C r (クロム) 、 T a (タンタル) 、 Z r (ジルコニユウム) 若しくは M o ( モリブデン) 等の金属又はこれらの金属の合金からなる薄膜 (厚さ 50 nm以下 ) を用いることができる。 前述の合金としては、 具体的には、 T a— C r合金、 Z r -S i合金又は Mo— S i合金等がある。 さらに、 半遮光部 3の厚さを大き < したい場合には、 Z r S i O、 C r一 A I — 0、 T a S i O又は M o S i O等 の酸化物を含有する材料を用いてもよい。 また、 露光光に対する位相シフター 5の透過率は、 半遮光部 3の透過率よりも 高く且つ透光部 4の透過率と同等以下である。
〈輪郭強調法の原理〉
次に、 本実施形態で用いた、 孤立スペースパターンの解像度を向上させるため の 「輪郭強調法」 について、 ポジ型レジストプロセスによりコンタクトパターン を形成する場合を例として説明する。 ここで、 「輪郭強調法」 は、 ポジ型レジス 卜プロセスにおける微小スペースパターンであれば、 その形状に関わらず全く同 様に成り立つ原理である。 また、 「輪郭強調法」 は、 ネガ型レジストプロセスを 用いる場合も、 ポジ型レジストプロセスにおける微小スペースパターン (レジス ト除去パターン) を微小パターン (レジストパターン) と置き換えて考えれば全 く同様に適用できる。
図 2 (a) 〜 (g) は、 コンタク トパターン形成領域における光の転写像を強 調するための原理を説明する図である。
図 2 ( a) は、 透過性基板表面に形成され且つ露光光の一部を透過させる透過 率を持つ半遮光部に、 コンタク トパターンと対応する開口部が設けられてなるフ ォ卜マスクの平面図である。 また、 図 2 (b) は、 図 2 (a ) に示すフォトマス クを透過して被露光材料上における線分 A A' と対応する位置に転写される光の 振幅強度を示している。
図 2 ( c) は、 透過性基板主面に形成された完全遮光部に、 図 2 (a ) に示す 開口部の周辺領域と対応するようにリング状の位相シフターが設けられてなるフ ォ卜マスクの平面図である。 また、 図 2 (d).は、 図 2 ( c ) に示すフォ卜マス クを透過して被露光材料上における線分 A A' と対応する位置に転写される光の 振幅強度を示している。 ここで、 図 2 (d) に示す光の振幅強度は、 該光が位相 シフターを透過したものであるため、 図 2 ( b) に示す光の振幅強度に対して反 対位相の関係にある。
図 2 ( e) は、 本実施形態に係る輪郭強調マスクの一例であり、 透過性基板主 面に形成された半遮光部に、 図 2 (a ) に示すフォトマスクと同様のコンタク ト パターンと対応する開口部が設けられ且つ図 2 ( c) に示すフォトマスクと同様 のリング状の位相シフターが開口部の周辺領域に設けられてなるフォ卜マスクの 平面図である。 また、 図 2 ( f ) 及び図 2 (g) は、 図 2 (e) に示すフォトマ スクを透過して被露光材料上における線分 A A' と対応する位置に転写される光 の振幅強度及び光強度 (光の振幅強度の 2乗) を示している。
以下、 図 2 ( e) に示す輪郭強調マスクを透過した光の転写像が強調される原 理について説明する。 図 2 ( e) に示すフォトマスクの構造は、 図 2 (a) の半 遮光部と図 2 ( c) の位相シフターとを透過性基板上で重ね合わせた構造になつ ている。 また、 図 2 ( b) 、 図 2 (d) 及び図 2 ( f ) に示すように、 図 2 ( e ) に示すフォトマスクを透過した光の振幅強度は、 図 2 (a) 及び図 2 ( c) の それぞれに示すフォ卜マスクを透過した光の振幅強度を重ね合わせたような分布 になっている。 ここで、 図 2 ( f ) から分かるように、 図 2 (e) に示すフォト マスクにおいて、 開口部の周辺に配置された位相シフターを透過した光は、 開口 部及び半遮光部を透過した光の一部を打ち消すことができる。 従って、 図 2 (e ) に示すフォトマスクにおいて、 位相シフターを透過する光の強度を、 開口部を 囲む輪郭部の光が打ち消されるように調整すれば、 図 2 (g) に示すように、 開 口部周辺と対応する光強度がほぼ 0に近い値まで減少した光強度分布の形成が可 能となる。
また、 図 2 ( e) に示すフォトマスクにおいて、 位相シフターを透過する光は 、 開口部周辺の光を強く打ち消す一方、 開口部中央付近の光を弱く打ち消す。 そ の結果、 図 2 (g) に示すように、 図 2 ( e) に示すフォトマスクを透過した光 における、 開口部からその周辺部に向けて変化する光強度分布のプロファイルの 傾きが増大するという効果も得られる。 従って、 図 2 ( e) に示すフォトマスク を透過した光の強度分布は、 シャープなプロファイルを有するようになるので、 コントラス卜の高い光強度の像が形成される。 以上が本発明における光強度の像 (イメージ) を強調する原理である。 すなわ ち、 露光光の一部を透過させる透過率を有する半遮光部を用いて形成されたマス クの開口部の輪郭部に沿って位相シフターを配置することにより、 図 2 ( a ) に 示すフォ卜マスクによって形成される光強度の像の中に、 開口部の輪郭部と対応 する非常に強い暗部を形成することが可能となる。 これによつて、 開口部の光強 度とその輪郭部の光強度との間でコントラス卜が強調された光強度分布を形成で きる。 本明細書においては、 このような原理によってイメージ強調を行なう方法 を 「輪郭強調法」 と称すると共に、 この原理を実現するフォトマスクを 「輪郭強 調マスク」 と称する。
ここで、 本発明の基本原理となる輪郭強調法と、 従来のハーフトーン位相シフ トマスクによる原理との違いについて説明する。 輪郭強調法の原理において最も 重要なことは、 半遮光部及び開口部を透過する光の一部が位相シフターを透過す る光によって打ち消され、 それによつて光強度分布内に暗部を形成している点で ある。 すなわち、 位相シフターがあたかも不透明パターンのごとき振る舞いをす るという点である。 そのため、 図 2 ( f ) に見られるように、 輪郭強調マスクを 透過した光の振幅強度においても、 同じ位相側での強度変化によって暗部が形成 されている。 そして、 この状態のときのみ斜入射露光によってコントラストを向 上させることが可能になる。
一方、 コンタク 卜パターンと対応する開口部を有する従来のハーフトーン位相 シフトマスクを露光したときの光強度分布においても、 図 2 9 ( g ) に示すよう に、 開口部の周辺に強い暗部が形成される。 しかし、 従来のハーフ I ^一ン位相シ フトマスクを露光したときの光の振幅強度を表す図 2 9 ( f ) と、 輪郭強調マス クを露光したときの光の振幅強度を表す図 2 ( f ) とを比べると、 次のような違 いが明らかに存在する。 すなわち、 図 2 9 ( f ) に示すように、 ハーフ! ^一ン位 相シフトマスクを露光した場合の振幅強度分布においては位相境界が存在してい ると共に、 図 2 9 ( g ) に示すように、 該位相境界つまり位相端によって光強度 分布の暗部が生じてイメージ強調が実現されている。 但し、 位相端による暗部が 形成されてコントラス卜の強調効果を得るためには、 フォトマスクに対して垂直 に入射する光の成分が必要となる。 言い換えると、 斜入射露光によっては位相境 界が発生しても位相端による暗部は形成されず、 その結果、 コントラス ト強調効 果は得られない。 これが、 ハーフトーン位相シフトマスクに対して斜入射露光を 行なってもコントラスト強調効果が生じない理由である。 従って、 ハーフトーン 位相シフトマスクに対しては、 干渉度の低い小さな光源を用いて露光を行なわな ければならない。 それに対して、 図 2 ( f ) に示すように、 輪郭強調マスクを露 光した場合の振幅強度分布においては位相境界が生じないため、 斜入射露光の成 分によっても微小な孤立スペースパターンの形成に必要な光の転写像を高いコン トラス卜で形成できる。
〈輪郭強調マスクにおける位相シフタ一幅の最適化〉
次に、 輪郭強調法において、 斜入射露光成分によって高いコントラストが得ら れることを詳細に示す前に、 図 2 ( e ) に示すような輪郭強調マスクの構造であ つても、 位相シフターの幅が過剰に大きくなると、 輪郭強調法の効果が得られな <なることを説明しておく。
図 3 ( a ) は、 透過性基板主面に形成され且つ露光光の一部を透過させる透過 率を持つ半遮光部に、 コンタクトパターンと対応する開口部と、 該開口部を囲む 領域に位置する小さい幅の位相シフタ一とが設けられてなる輪郭強調マスクの平 面図である。 また、 図 3 ( b ) は、 図 3 ( a ) に示す輪郭強調マスクに対して干 渉度 σ = 0 . 4の小さな光源を用いて露光を行なった場合における線分 A A ' と 対応する光強度分布の計算結果を示しており、 図 3 ( c ) は、 図 3 ( a ) に示す 輪郭強調マスクに対して輪帯照明を用いて露光を行なった場合における線分 A A ' と対応する光強度分布の計算結果を示している。
また、 図 3 ( d ) は、 透過性基板主面に形成され且つ露光光の一部を透過させ る透過率を持つ半遮光部に、 コンタク トパターンと対応する開口部と、 該開口部 を囲む領域に位置する大きい幅の位相シフタ一とが設けられてなる輪郭強調マス クの平面図である。 また、 図 3 ( e) は、 図 3 (d) に示す輪郭強調マスクに対 して干渉度 σ=0. 4の小さな光源を用いて露光を行なった場合における線分 A A' と対応する光強度分布の計算結果を示しており、 図 3 ( f ) は、 図 3 (d) に示す輪郭強調マスクに対して輪帯照明を用いて露光を行なった場合における線 分 AA' と対応する光強度分布の計算結果を示している。
ここで、 図 3 (d) に示す輪郭強調マスクにおける位相シフタ一の幅は、 輪郭 強調法の原理が成り立たないほど過剰に大きく設定されているものとする。 具体 的には、 図 3 (a) 及び図 3 ( d) に示す開口部の寸法は共に 220 nm四方で あり、 図 3 ( a ) に示す位相シフターの幅は 60 nmであり、 図 3 (d) に示す 位相シフターの幅は 1 50 nmである。 また、 輪帯照明としては、 図 30 ( b) に示すような輪帯露光光源、 具体的には、 外径 σ=0. 75、 内径び=0. 5の 2Ζ3輪帯と呼ばれるものを用いた。 また、 露光条件としては、 光源波長 λ = 1 93 nm (A r 「光源) 、 開口数 NA = 0. 6を用いた。 さらに、 位相シフター の透過率は 60/6である。 尚、 以下の説明においては、 特に断らない限り、 光強度 を、 露光光の光強度を 1 としたときの相対光強度で表す。
図 3 ( b) 及び (c) に示すように、 輪郭強調法の原理が成り立つ図 3 (a ) に示す輪郭強調マスクを用いた場合、 位相シフターの不透明化作用による暗部は 光源の種類によらず現れていると共に光強度分布におけるコントラストは輪帯照 明によってよリ高い値が得られている。
一方、 位相シフターが過剰に大きい図 3 (d) に示す輪郭強調マスクを用いた 場合、 位相シフタ一を透過する光が強くなりすぎるため、 振幅強度分布において 反対位相の強度分布が形成されてしまう。 このような状況では、 ハーフトーン位 相シフトマスクと同様の原理が作用する。 その結果、 図 3 ( e) 及び ( f ) に示 すように、 小さな光源による露光を行なったときの光強度分布においては位相端 による暗部が形成されてコントラスト強調効果が現れる一方、 斜入射露光を行な つたときの光強度分布においては位相端による暗部が形成されないために非常に コントラス卜の悪い像が形成される。
すなわち、 輪郭強調法を実現するためには、 マスク構造において、 半遮光部に 囲まれた開口部の周辺に位相シフタ一が配置されているだけではなく、 その位相 シフター内を透過する光が制限されている必要がある。 後者の方は、 原理的なメ 力ニズムによれば、 位相シフターを透過する光が、 半遮光部及び開口部を透過す る光を打ち消す以上の強度を有し、 且つその振幅強度分布において一定の大きさ 以上の反対位相の強度分布が形成されないことを意味する。
実際に位相シフターを透過する光を制限するために、 位相シフタ一の透過率に 応じてその幅に条件 (具体的には上限) を設ける方法を用いることができる。 以 下、 この条件について、 位相シフターを透過する光によって位相シフター周辺か らの光を打ち消すための条件を考察した結果 (図 4 ( a ) 〜 ( d ) 参照) を用い て説明する。
図 4 ( a ) に示すように、 透過性基板上に透過率 T、 線幅 Lの位相シフターが 設けられたフォトマスク (位相シフターマスク) を用いた露光において、 被露光 材料上におけるマスクパターンの中心と対応する位置に生じる光強度を I h ( L 、 T ) とする。 また、 図 4 ( b ) に示すように、 位相シフタ一マスクの位相シフ ターに代えて完全遮光膜が設けられたフォトマスク (遮光マスク) を用いた露光 において、 被露光材料上におけるマスクパターンの中心と対応する位置に生じる 光強度を I c ( L ) とする。 また、 図 4 ( c ) に示すように、 位相シフターマス クの位相シフターに代えて通常の透光部 (開口部) が設けられ、 且つ位相シフタ 一マスクの透光部に代えて完全遮光膜よりなる遮光部が設けられたフォ卜マスク (透過マスク) を用いた露光において、 被露光材料上におけるマスクパターンの 中心と対応する位置に生じる光強度を I o ( L ) とする。
図 4 ( d ) は、 図 4 ( a ) に示す位相シフターマスクを用いた露光において位 相シフタ一の透過率 T及びマスクパターンの線幅 Lを色々変化させた場合におけ る光強度 I h (し、 T) のシミュレーション結果を、 透過率 Τ及び線幅 Lをそれ ぞれ縦軸及び横軸に取って光強度の等高線で表した様子を示している。 ここで、 T= I c (L) Z I o (L) の関係を表すグラフを重ね書きしている。 また、 シ ミュレーシヨン条件は、 露光光の波長え =0. 1 93 im (A r F光源) 、 露光 機の投影光学系の開口数 N A = 0. 6、 露光光源の干渉度 σ = 0. 8 (通常光源 ) である。
図 4 (d) に示すように、 光強度 I h (し、 T) が最小となる条件は T= I c (L) Z I o (L) の関係で表すことができる。 これは、 物理的には、 位相シフ ター内を透過する光の光強度を表す Τ X I o (L) と、 位相シフタ一外を透過す る光の光強度 I c (L) とが釣り合う関係を表している。 従って、 位相シフタ一 内を透過する光が過剰となって振幅強度分布において反対位相の振幅強度が現れ る位相シフタ一の幅 Lは、 T x I o (L) が I c (L) よりも大きくなる幅しと いうことになる。
また、 光源種類によって多少の違いはあるが、 透過率 1の位相シフタ一内を透 過する光が、 位相シフタ一外を透過する光と釣り合うときの幅 Lは 0. 3 x ;i ( 光源波長) ZNA (開口数) 程度 (図 4 (d) の場合で 1 00 nm程度) である ことが、 種々のシミュレーション結果から経験的に得られた。 さらに、 図 4 (d ) から分かるように、 6<½以上の透過率を有する位相シフター内を光が過剰に透 過することを防止するためには、 透過率 1 (1 00%) の位相シフターの場合と 比べて幅 Lを 2倍以下にする必要がある。 すなわち、 6%以上の透過率を有する 位相シフター内を光が過剰に透過することを防止するためには、 位相シフターの 幅 Lの上限は 0. 6 Xス N A以下でなければならない。
以上の考察を輪郭強調マスクに当てはめると、 輪郭強調マスクにおいては位相 シフタ一外を透過する光としては、 実質的に位相シフターの両側ではなく片側の みを考慮すればよいので、 輪郭強調マスクにおける位相シフターの幅 Lの上限は 上記の考察による上限の半分と考えればよい。 従って、 輪郭強調マスクにおける 位相シフターの幅しの上限は、 位相シフターの透過率が 60/0以上の場合で 0· 3 χ λΖΝΑ以下である。 ただし、 これは十分条件ではなく、 位相シフターの透過 率が 60/0よりも高くなると、 位相シフターの幅 Lの上限を 0. 3 χ λΖΝΑより も小さくする必要がある。 但し、 位相シフターの幅 Lは、 位相シフターとしての 光学的な作用が得られる 0. 1 X λΖΝ Α以上であることが好ましい。
尚、 本明細書においては、 特に断らない限り、 位相シフタ一幅等の種々のマス ク寸法を被露光材料上での寸法に換算して表すこととするが、 マスク実寸法は、 換算寸法に、 露光機の縮小投影光学系の縮小倍率 Mを乗ずることにより簡単に求 めることができる。
〈輪郭強調マスクと斜入射露光との組み合わせによるコントラスト〉 次に、 輪郭強調マスクにおいて斜入射露光によってイメージ強調が実現される ことを、 輪郭強調マスクに対して様々な光源位置から露光を行なった場合におけ る光強度分布のコントラス卜の変化に基づいて詳細に説明する。
図 5 (a) は輪郭強調マスクの一例の平面図である。 ここで、 半遮光部の透過 率は 7. 5%であり、 位相シフタ一及び開口部の透過率は 1 00%である。 また 、 開口部の寸法 (被露光ウェハ上換算) は 200 nm四方であり、 位相シフター の は 50 n mである。
図 5 (c) は、 図 5 (a) に示す輪郭強調マスクに対して、 開口数 N Aで規格 化された様々な光源位置の点光源から露光を行なった場合における図 5 (a) の 線分 AA' と対応する光強度分布を光学シミュレーションにより計算して、 該計 算結果 (例えば図 5 (b) に示されるような光強度分布) における開口部中央に 相当する位置の光強度 I oを読み取り、 該光強度 I oを各光源位置に対してプロ ッ卜した結果を示している。 ここでは、 光源波長 λが 1 93 nm (A r F光源) 、 開口数 NAが 0. 6として光学計算によるシミュレーションを行なった結果を 示している。 尚、 以下の説明では特に断らない限り、 光学シミュレーションにお いて、 波長 λ = 1 9 3 π Γη (A r F光源) 、 開口数 NA = 0. 6の条件で計算を 行なうものとする。
図 5 (c) に示すように、 開口部中央の光強度 I oは外側の光源位置 (図 5 ( c) の原点から遠い光源位置) の点光源で露光される程大きくなる。 すなわち、 斜入射成分の強い光源で露光される程、 コントラス卜が強くなることが分かる。 図面を参照しながら具体的に説明する。 図 5 (d) 、 図 5 ( e) 及び図 5 ( f ) は、 図 5 (c) に示すサンプル点 P I、 P 2及び P 3のそれぞれに点光源が位置 する場合における、 図 5 ( a) の線分 A A' と対応する光強度分布をプロットし たものである。 図 5 (d) 、 図 5 ( Θ ) 及び図 5 ( f ) に示すように、 点光源の 位置が外側になるに従って、 言い換えると、 大きい斜入射光源位置になるに従つ て、 高いコントラストの像が形成されている。
以上の結果から分かるように、 輪郭強調マスクは、 従来のハーフトーン位相マ スクでは実現できなかった、 コンタク 卜パターン等の微小な孤立スペースパター ンの形成における斜入射露光による光強度分布のコントラスト強調を可能とする ものである。
次に、 密集コンタク 卜パターンと対応する複数の開口部が設けられた輪郭強調 マスクに対して様々な光源位置から露光を行なった場合における、 光強度分布の コントラス卜の光源位置に対する依存性について説明する。
図 6 (a) は、 複数の開口部が設けられた輪郭強調マスクの一例の平面図であ る。 ここで、 半遮光部の透過率は 7. 5%であり、 位相シフター及び開口部の透 過率は 1 00<½である。 図 6 (a) に示すように、 開口部が位相シフターを挟ん で密に配置された輪郭強調マスクでは、 一の開口部の周辺に設けられた位相シフ ターが、 一の開口部と隣り合う他の開口部の周辺に設けられた位相シフターと結 合される。 尚、 各開口部の寸法 (被露光ウェハ上換算) は 200 nm四方であり 、 各開口部の繰り返し周期 (被露光ウェハ上換算) は 270 nmである。 従って 、 位相シフターの幅 (被露光ウェハ上換算) は 70 n mである。
図 6 ( c) は、 図 6 (a) に示す輪郭強調マスクに対して、 開口数 N Aで規格 化された様々な光源位置の点光源から露光を行なった場合における図 6 (a) の 線分 AA' と対応する光強度分布を光学シミュレーションにより計算して、 該計 算結果 (例えば図 6 (b) に示されるような光強度分布) における一の開口部中 央に相当する位置の光強度 I oを読み取り、 該光強度 I oを各光源位置に対して プロッ卜した結果を示している。
図 6 (c) に示すように、 各光源位置に対する開口部中央の光強度 I oの分布 は同心円状に変化するのではなく、 開口部の繰り返し周期に依存して光強度 I o の分布形状が変化する一方、 基本的に外側の光源位置に最もコントラス卜の高い 領域が存在する。 図 6 (c) に示す光強度 I oの分布の場合、 図 30 ( c) に示 すような四重極露光光源と呼ばれる、 マスクパターンの配置方向に対して 45度 方向の斜めの位置から入射する光によって最高のコントラス卜が得られる。 図 6 (d) 、 図 6 (e) 及び図 6 ( f ) は、 図 6 (c) に示すサンプル点 P 1、 P 2 及び P 3のそれぞれに点光源が位置する場合における、 図 6 (a) の線分 A A' と対応する光強度分布をプロットしたものである。 図 6 (d) 、 図 6 ( Θ) 及び 図 6 ( f ) に示すように、 点光源の位置が外側になるに従って、 言い換えると、 大きい斜入射光源位置になるに従って、 高いコントラス卜の像が形成されている 以上の結果から分かるように、 輪郭強調マスクにおいては、 密集コンタク 卜パ ターンを形成する場合にも孤立コンタク トパターンを形成する場合と同様に、 各 光強度分布の像において最も高いコントラストを実現できるのは外側の光源位置 である。 従って、 輪郭強調マスクに対して斜入射露光を行なうことによって、 孤 立コンタク 卜パターンと密集コンタク 卜パターンとを同時に、 光強度分布におけ るコントラストを強調しながら形成できることが分かる。
〈輪郭強調マスクにおける焦点深度〉
次に、 輪郭強調マスクによって形成される光強度分布において焦点深度 (DO F) が増加することを説明する。 輪郭強調マスクにおいては、 半遮光部を用いた ことによる DO Fの増加効果、 及び、 位相シフターの補助による DO Fの増加効 果の両方が合わさって飛躍的に D O Fが増加する。
以下、 本発明の輪郭強調マスクを用いてコンタク トパターンを形成した場合に おけるパターンの仕上がり寸法 (CD : Critical Dimension) のデフォーカス依 存性つまり DO F特性をシミュレーションした結果について、 従来のクロムマス ク、 ハーフ I ^一ンマスク及びハーフトーン位相シフトマスクのそれぞれを用いた 場合と比較して説明する。
図 7 (a) は、 透過性基板主面に形成された半遮光部に、 コンタクトパターン と対応する開口部 (幅 W) と、 該開口部を囲む領域に位置する位相シフター (幅 d) とが設けられてなる輪郭強調マスクの平面図である。 また、 図 7 (b) は、 透過性基板主面に形成された完全遮光部となるクロム膜に、 コンタク トパターン と対応する開口部 (幅 W) が設けられてなるクロムマスクの平面図である。 また 、 図 7 (c) は、 透過性基板主面に形成された半遮光部に、 コンタクトパターン と対応する開口部 (幅 W) が設けられてなるハーフトーンマスクの平面図である 。 さらに、 図 7 (d) は、 透過性基板主面に形成された遮光部となる位相シフタ 一に、 コンタク トパターンと対応する開口部 (幅 W) が設けられてなるハーフト —ン位相シフトマスクの平面図である。 尚、 幅 W及び幅 d等のマスク寸法は、 図 7 (a) 〜図 7 (d) に示す各マスクを用いたベストフォーカス状態の露光によ つて形成される各コンタクトパターンの寸法が、 同じ露光量において同一 (具体 的には 0. 1 2 jUm) になるように調整されているものとする。
図 7 ( θ) は、 図 7 (a) 〜図 7 (d) に示す各マスクを用いた露光における DO F特性を示している。 尚、 光学シミュレーションにおいては斜入射露光であ る四重極露光を用いている。 また、 ベストフォーカス状態のフォーカス位置を基 準の としている。 図 7 ( Θ) に示すように、 クロムマスクの DO F特性と 比べてハーフ I ^一ンマスクの DO F特性は向上しており、 ハーフ I ^一ンマスクの DO F特性と比べて輪郭強調マスクの DO F特性はさらに向上している。 また、 ハーフトーン位相シフ卜マスクの DO F特性はクロムマスクの DO F特性よリも 悪い。
以上の結果から分かるように、 輪郭強調マスクの DO F特性は、 従来のクロム マスク、 ハーフトーンマスク及びハーフ I ^一ン位相シフ卜マスクのいずれの DO F特性よりもさらに向上している。
〈輪郭強調マスクにおける半遮光部の透過率依存性〉
ここまで、 輪郭強調マスクによってコントラスト及び DO Fが向上することを 説明してきたが、 次に、 輪郭強調マスクにおける半遮光部の透過率に対するコン トラスト及び DO Fの依存性について説明する。 具体的には、 図 8 (a) に示す 輪郭強調マスクを用いたパターン形成における、 各種マージンをシミュレーショ ンした結果 (図 8 (b) 〜図 8 ( f ) ) に基づいて説明を行なう。 図 8 (b) は 、 露光を行なったときに形成される光強度分布を示している。 図 8 (b) におい ては、 幅 1 00 nmのホールパターンを形成しようとした場合に定義される各種 のマージンに関する値も図中に示している。 具体的には、 臨界強度 I t hはレジ ス卜膜が感光する光強度であり、 この値に対して各種のマ一ジンが定義される。 例えば I pを光強度分布のピーク値とすると、 I pZ I t hはレジス卜膜を感光 させる感度に比例する値となり、 この値が高いほど好ましい。 また、 I bを半遮 光部を透過する光のバックグラウンド強度とすると、 I t hZ I bが高い程、 パ ターン形成時にレジス卜膜の膜減り等が発生しないことを意味し、 この値が高い ほど好ましい。 一般に I t hZ I bの値は 2以上あることが望まれている。 以上 のことを踏まえて各マージンについて説明する。
図 8 (c) は、 パターン形成時における半遮光部の透過率に対する DO Fの依 存性について計算した結果を示している。 ここで、 DO Fは、 パターンの仕上が リ寸法の変化が 1 0%以内に収まるフォーカス位置の幅として定義してある。 図 8 (c) に示すように、 DO Fの向上には半遮光部の透過率は高いほど好ましい 。 また、 図 8 (d) は、 パターン形成時における半遮光部の透過率に対するピー ク値 I pについて計算した結果を示している。 図 8 (d) に示すように、 ピーク 値 I pつまりコントラストの向上にも半遮光部の透過率は高いほど好ましい。 以 上の結果から、 輪郭強調マスクにおいては、 半遮光部の透過率は高い程好ましく 、 具体的には、 図 8 ( c) 及び (d) に示すように、 透過率が 0%から 6%程度 まで上がる間にマージンの向上率が大きくなっており、 透過率が 60/0以上の半遮 光部を用いることが好ましいことが理解できる。
図 8 (e) は、 パターン形成時における半遮光部の透過率に対する I t hZ I bについて計算した結果を示している。 図 8 (e) に示すように、 I t hZ I b は半遮光部の透過率が高くなるほど低くなつておリ、 I t hZ I bの向上には半 遮光部の透過率が高くなりすぎると好ましくない。 具体的には、 半遮光部の透過 率が 1 5%程度で I t hZ I bは 2よりも小さくなつてしまう。 また、 図 8 ( f ) は、 パターン形成時における半遮光部の透過率に対する I pZ I t hについて 計算した結果を示している。 図 8 ( f ) に示すように、 半遮光部の透過率が 1 5 %程度のところに I pZ I t hはピークを持っている。
以上に説明したように、 輪郭強調マスクにおいては、 DO F又はコントラスト は半遮光部の透過率を高くするほど向上し、 その効果は半遮光部の透過率が 6 % を越えるとより顕著になる。 一方、 パターン形成時におけるレジスト膜の膜減り 防止、 又はレジスト感度の最適化等の観点からは、 半遮光部の透過率の最大値は 1 5<½程度にしておくことが好ましい。 従って、 輪郭強調マスクにおける半遮光 部の透過率の最適値は 6%以上で且つ 1 5%以下であると言える。
〈輪郭強調マスクのバリエーション〉
図 9 (a) 〜 ( f ) は、 コンタク トパターンと対応する開口部が設けられた輪 郭強調マスクにおける、 半遮光部と位相シフタ一とによって構成される遮光性の マスクパターンのバリエーションを示す平面図である。
図 9 (a) に示す輪郭強調マスク 1 aは、 図 1に示す輪郭強調マスクと同じ構 成を有している。 すなわち、 露光光に対して透過性を有する透過性基板 2 aと、 透過性基板 2 a上に形成された半遮光部 3 aと、 半遮光部 3 aを開口して設けら れ且つ孤立コンタクトパターンと対応する開口部 4 aと、 半遮光部 3 aと開口部 4 aとの間に開口部 4 aを取り囲むように形成されたリング状の位相シフター 5 aとを備えている。
図 9 ( b ) に示す輪郭強調マスク 1 bは、 露光光に対して透過性を有する透過 性基板 2 bと、 透過性基板 2 b上に形成された半遮光部 3 bと、 半遮光部 3 bを 開口して設けられ且つ孤立コンタク 卜パターンと対応する開口部 4 bと、 開口部 4 bの各辺と同一長さを有する矩形状の 4つの位相シフタ一部からなリ且つ開口 部 4 bの各辺に接するように形成された位相シフタ一 5 bとを備えている。 この 輪郭強調マスク 1 bは、 孤立パターン形成において輪郭強調マスク 1 aとほとん ど同じ特性を有している。 ところで、 この輪郭強調マスク 1 bのマスクパターン (半遮光部 3 bと位相シフター 5 bとから構成される) を基本構造として、 コン タクトパターンと対応する開口部を蜜に配置した場合には、 さらに有効な効果が 得られる。 図 1 0は、 図 9 ( b ) に示す輪郭強調マスク 1 bのマスクパターンを 基本構造として、 コンタク 卜パターンと対応する開口部が蜜に配置された輪郭強 調マスクの平面図である。 図 1 0に示す輪郭強調マスクにおいては、 各開口部と 接する位相シフター同士の結合は 2方向以下でしか生じないので、 位相シフタ一 同士の結合部で位相シフターを透過する反対位相の光が過剰になる事態を防止で きる。 これにより、 輪郭強調マスクの開口部と対応する場所以外の他の場所に、 光強度のピーク (つまりサイ ドローブ) が生じることを防止できる。 すなわち、 対角部分を除く開口部の周囲が位相シフターによって囲まれた輪郭強調マスク ( 図 9 ( b ) 又は図 1 0に示す輪郭強調マスク) を用いた場合、 開口部が孤立状態 であっても密集状態であっても輪郭強調法の原理が成リ立つ。
図 9 ( c ) に示す輪郭強調マスク 1 cは、 露光光に対して透過性を有する透過 性基板 2 cと、 透過性基板 2 c上に形成された半遮光部 3 cと、 半遮光部 3 cを 開口して設けられ且つ孤立コンタク トパターンと対応する開口部 4 cと、 開口部 4 cの各辺の長さよりも短い長さを有する矩形状の 4つの位相シフタ一部からな リ且つ開口部 4 cの各辺の中央と各位相シフタ一部の中央とが位置合わせされた 状態で開口部 4 cの各辺に接するように形成された位相シフター 5 cとを備えて いる。 この輪郭強調マスク 1 cにおいては、 開口部 4 cの幅 (大きさ) を固定し て位相シフター 5 cの各位相シフタ一部の長さを変更することによって、 露光後 に形成されるレジストパターンの寸法調整を行なうことができる。 例えば、 位相 シフター 5 cの各位相シフタ一部の長さを短くするほど、 レジストパターンの寸 法は大きくなる。 ここで、 輪郭強調の作用を保っために位相シフター 5 cの各位 相シフタ一部の長さを変更できる下限は、 光源 (露光光) 波長の半分程度までに 限定される一方、 マスク寸法の変更量の半分程度しかパターン寸法が変化しない ので、 位相シフタ一部の長さを調整することは、 パターン寸法調整方法として非 常に優れた方法となる。
図 9 ( d ) に示す輪郭強調マスク 1 dは、 露光光に対して透過性を有する透過 性基板 2 dと、 透過性基板 2 d上に形成された半遮光部 3 dと、 半遮光部 3 dを 開口して設けられ且つ孤立コンタク 卜パターンと対応する開口部 4 dと、 半遮光 部 3 dと開口部 4 dとの境界から所定の寸法だけ半遮光部 3 d側に入った位置に 形成されたリング状の位相シフター5 dとを備えている。 この位相シフター 5 d は、 半遮光部 3 dをリング状に開口することによって形成されており、 位相シフ ター 5 dと開口部 4 dとの間にはリング状の半遮光部 3 dが介在している。 図 9 ( e ) に示す輪郭強調マスク 1 eは、 露光光に対して透過性を有する透過 性基板 2 βと、 透過性基板 2 e上に形成され且つ露光光の一部を透過させる透過 率を持つ半遮光部 3 eと、 半遮光部 3 eを開口して設けられ且つ孤立コンタク ト パターンと対応する開口部 4 eと、 半遮光部 3 eと開口部 4 eとの境界から所定 の寸法だけ半遮光部 3 e側に入った位置に形成された位相シフター 5 eとを備え ている。 位相シフタ一 5 eは、 開口部 4 eの各辺の長さよりも長い矩形状をそれ ぞれ有し且つ開口部 4 eの対角線上で互いの角部が接する 4つの位相シフタ一部 からなる。 ここで、 位相シフタ一 5 eと開口部 4 eとの間には、 リング状の半遮 光部 3 eが介在している。 輪郭強調マスク 1 eにおいては、 位相シフター 5 eの 大きさ及び配置を固定して開口部 4 eの幅 (大きさ) のみを変更することによつ て、 露光後に形成されるレジストパターンの寸法調整を行なうことができる。 例 えば、 開口部 4 eの幅を大きくするに従ってレジス卜パターンの寸法も大きくな る。 この開口部の幅のみを変更するパターン寸法調整方法によれば、 開口部及び 位相シフターの両方を同時にスケーリングしてパターン寸法の調整を行なう方法 と比べて、 M E E F (Mask Er ror Enhancement Factor : マスク寸法変化量に対 するパターン寸法変化量の比) を半分程度まで低減することができる。
図 9 ( f ) に示す輪郭強調マスク 1 f は、 露光光に対して透過性を有する透過 性基板 2 f と、 透過性基板 2 f 上に形成された半遮光部 3 f と、 半遮光部 3 f を 開口して設けられ且つ孤立コンタク トパターンと対応する開口部 4 f と、 半遮光 部 3 f と開口部 4 f との境界から所定の寸法だけ半遮光部 3 f 側に入った位置に 形成された位相シフター 5 f とを備えている。 位相シフター 5 f は、 開口部 4 f の各辺の長さと同一長さの矩形状をそれぞれ有し且つ開口部 4 f の各辺と対向す る 4つの位相シフタ一部からなる。 ここで、 位相シフター 5 f の各位相シフタ一 部の長さは、 開口部 4 f の各辺の長さよりも長くても短くても良い。 輪郭強調マ スク 1 f によれば、 図 9 ( c ) に示す輪郭強調マスク 1 cと同様にレジストバタ ーンの寸法調整を行なうことができる。
尚、 図 9 ( d ) 〜 ( f ) に示す輪郭強調マスクにおいて、 開口部と位相シフタ 一との間の半遮光部の幅は、 位相シフタ一による光の干渉効果を及ぼすことがで きる寸法、 つまり A Z N A ( は露光光の波長、 N Aは開口数) の 1 0分の 1以 下であることが望ましい。 また、 図 9 ( a ) - ( f ) に示す輪郭強調マスクにお いて、 開口部の形状として正方形を用いたが、 例えば 8角形のような多角形又は 円形等であってもよい。 また、 位相シフターの形状も、 連続したリング形状又は 複数個の長方形に限られない。 例えば、 複数個の正方形の位相シフタ一部を並べ ることによって位相シフターを形成してもよい。
次に、 輪郭強調マスクにおける開口部と位相シフターとの位置関係に対する、 DO F向上特性の依存性について説明する。 図 1 1 (a ) は、 開口部の寸法 (開 口幅) と DO Fとの関係を求めるためのシミュレーションに用いた輪郭強調マス クの構造を示す平面図であり、 図 1 1 (b) は、 開口幅に対する DO Fの依存性 のシミュレーション結果を示す図である。 具体的には、 図 1 1 ( a) に示す輪郭 強調マスクは、 透過性基板主面を覆う半遮光部に、 幅 Wの開口部と、 該開口部の 外周上に位置する幅 dのリング状の位相シフタ一とが設けられた構造として一般 化して定義されたものである。 また、 図 1 1 (b) は、 図 1 1 (a) に示す輪郭 強調マスクにおいて dを 50 n mに固定し且つ Wを 1 70〜 280 n mの範囲で 変化させたときの DO F特性をシミュレーションした結果を示している。 ここで 、 シミュレーションにおける露光条件は、 λが 1 93 nm、 八が0. 6、 使用 光源が輪帯露光光源である。
図 1 1 ( b) に示すように、 開口部の幅 Wが 0. 8 X λΖΝ A以下の値である 場合、 位相シフターよる干渉効果が得られるので、 DO Fが良好な値となる。 特 に、 開口部の幅 Wが 0. 6 X λΖΝ A以下の値である場合、 DO Fの向上効果が 顕著に現れる。 従って、 開口部と半遮光部との境界に位相シフターが設けられた 位置関係が、 DO F特性向上のために最も優れた位置関係 (正確には輪郭強調マ スクにおける開口部と位相シフターとの位置関係) となる。 すなわち、 輪郭強調 マスクにおいては位相シフタ一の干渉作用が開口部中心に及ぶことによる特別な D O F特性向上効果があり、 該効果が確実に得られる開口部の幅 W、 つまり位相 シフターの干渉作用が強く生じる開口部の幅 Wは 0. 8 X λΖΝ A以下である。 以上のように、 図 9 ( a ) 〜 ( f ) に示すマスクパターン形状のうち、 DO F 特性の最適化の観点からは、 半遮光部と開口部との境界に位相シフターが設けら れた、 図 9 (a) ~ ( c) に示すマスクパターン形状が好ましい。 一方、 ME E Fを抑制しながらパターン寸法調整を実現する上では、 位相シフターが開口部と の境界から所定の寸法だけ半遮光部側に入った位置に配置された、 図 9 ( d ) 〜 ( f ) に示すマスクパターン形状が好ましい。
尚、 本実施形態では、 コンタク トパターンとなるスペースパターンを形成する 場合を対象として説明してきたが、 これに代えて、 コンタク トパターン以外の他 のスペースパターンを形成する場合にも同様の効果を得ることができる。
また、 本実施形態では、 遮光性のマスクパターンが開口部 (透光部) を囲んで いる輪郭強調マスクを用いてスペースパターンを形成する場合を対象として説明 してきた。 しかし、 これに代えて、 遮光性のマスクパターンが開口部 (透光部) によって囲まれている輪郭強調マスクを用いてラインパターンを形成する場合に も、 例えばライン状の半遮光部の周辺領域つまリマスクパターンにおける透光部 の近傍領域に位相シフターを配置することによって、 同様の効果を得ることがで きる。 この場合も、 D O F特性の最適化の観点からは、 半遮光部と透光部との境 界に位相シフタ一が設けられたマスクパターン形状を採用することが好ましい。 一方、 M E E Fを抑制しながらパターン寸法調整を実現する上では、 位相シフタ 一が開口部との境界から所定の寸法だけ半遮光側に配置されたマスクパターン形 状を採用することが好ましい。 第 2の実施形態
次に、 本発明を実現する上で本願発明者が考案した、 フォトマスクによる解像 度向上方法、 具体的には、 孤立ラインパターンの解像度を向上させるための 「中 心線強調法」 を用いたフォトマスクについて説明する。
図 1 2は、 本発明の第 2の実施形態に係る中心線強調法を用いたフォトマスク (以下、 イメージ強調マスクと称する) 、 具体的には、 孤立ラインパターンを形 成するためのイメージ強調マスクの平面図である。
図 1 2に示すように、 イメージ強調マスク 6は、 露光光に対して透過性を有す る透過性基板 7と、 透過性基板 7上に形成され、 露光光の一部分を透過させる透 過率を持ち且つ孤立ラインパターンと対応する半遮光部 8と、 半遮光部 8の内部 の開口部に設けられた位相シフター 9とを備えている。 イメージ強調マスク 6に おいては、 透光部 7を基準として露光光を同位相で透過させる半遮光部 8と、 透 光部 7を基準として露光光を反対位相で透過させる位相シフター 9とによって、 遮光性を有するマスクパターンが構成されている。
また、 露光光に対する半遮光部 8の透過率は 1 5%以下であり、 好ましくは 6 %以上で且つ 1 5%以下である。 このような半遮光部 8の材料としては、 例えば 、 C r、 T a、 Z r若しくは Mo等の金属又はこれらの金属の合金からなる薄膜 (厚さ 50 nm以下) を用いることができる。 前述の合金としては、 具体的には 、 T a— C「合金、 Z r— S i合金又は Mo— S i合金等がある。 さらに、 半遮 光部 8の厚さを大きく したい場合には、 Z r S i O、 C r—A I — 0、 T a S i O又は Mo S i O等の酸化物を含有する材料を用いてもよい。
また、 露光光に対する位相シフター 9の透過率は、 半遮光部 8の透過率よりも 高く且つ透光部 (透過性基板 7におけるマスクパターンが形成されていない部分 ) の透過率と同等以下である。
〈中心線強調法の原理〉
次に、 孤立ラインパターンの解像度を向上させるための 「中心線強調法」 につ いて、 ポジ型レジストプロセスにより微少なラインパターンを形成する場合を例 として説明する。 「中心線強調法」 においても、 「輪郭強調法」 と同様に、 基本 的な原理は、 位相シフターの不透明作用により光強度分布における暗部を形成し てコントラストを向上させることである。
まず、 ライン状のマスクパターンを構成する半遮光部の内部に位相シフターを 設けることによる効果について図 1 3 (a) ~ (c) を参照しながら説明する。 図 1 3 (a) は、 幅 Lのライン状のマスクパターンを構成する半遮光部 (透過 率 T c) の内部に幅 Sの位相シフター (透過率 T s) が設けられたイメージ強調 マスクの平面図と、 該イメージ強調マスクを透過して線分 A A' と対応する位置 に転写される光の光強度とを合わせて示している。 ここで、 マスクパターン中心 と対応する光強度を I β ( L, S) と表す。 図 1 3 ( b ) は、 幅 Lの半遮光部 ( 透過率 T c ) よりなる半遮光パターンが設けられたマスクの平面図と、 該マスク を透過して線分 A A' と対応する位置に転写される光の光強度と合わせてを示し ている。 ここで、 半遮光パターン中心と対応する光強度を I c ( L) とする。 尚 、 図 1 3 ( a ) 及び (b ) に示す半遮光部は、 透光部を基準として同位相の光を 透過させるものとする。 図 1 3 ( c ) は、 マスク表面を覆う完全遮光部に幅 Sの 位相シフタ一 (透過率 T s ) よりなる位相シフトパターンが設けられたマスクの 平面図と、 該マスクを透過して線分 A A' と対応する位置に転写される光の光強 度とを合わせて示している。 ここで、 位相シフトパターン中心と対応する光強度 を I o (S) とする。
図 1 3 ( a ) に示すイメージ強調マスクは、 図 1 3 ( b ) 及び (c ) のそれぞ れに示すマスク構造を重ねあわせたものである。 このため、 I c ( L) と I o ( S) とが釣り合うような Lと Sとの関係において I e ( L, S ) を最小化でき、 それによつて図 1 3 ( a ) に示すイメージ強調マスクによるコントラス卜の強調 を実現できる。 すなわち、 ライン状のマスクパターンを構成する半遮光部の内 部に位相シフターを設けることによって、 光強度分布のコントラスト、 具体的に はマスクパターン中心におけるコントラストを中心線強調法の原理によって強調 することができる。
ところで、 前述の光強度 I o (S ) を発生させるためのイメージ強調マスクの 位相シフター (半遮光部に設けられた開口領域) の形状は、 半遮光部の形状と対 応させる必要はない。 図 1 4 ( a ) 及び図 1 4 ( b ) は、 イメージ強調マスクに おける位相シフターの他の形状を示す平面図である。 具体的には、 図 1 4 ( a ) 及び図 1 4 ( b ) は、 ライン状のマスクパターンを構成する半遮光部内に設けら れた位相シフターを示しており、 図 1 4 ( a ) に示す位相シフタ一は、 2本の長 方形パターンから構成されており、 図 1 4 ( b ) に示す位相シフタ一は、 5個の 正方形パターンから構成されている。 図 1 4 ( a ) 及び図 1 4 ( b ) に示す位相 シフタ一が設けられたイメージ強調マスクによっても、 図 1 2に示すイメージ強 調マスクと同様な効果を得ることができる。 従って、 イメージ強調マスクの位相 シフターの形状を、 半遮光部内に収まる範囲内で、 長方形、 正方形、 円又は多角 形等の任意の形状に設定することができる。 その理由は、 微細な開口部は、 そこ を透過する光の強度が同じであれば、 開口部の形状によらず全く同じ光学的振る 舞いをするからである。
〈イメージ強調マスクにおける D O F特性〉
本願発明者は、 イメージ強調マスクと斜入射露光との組み合わせの有効性を明 確にするために、 位相シフターとなる開口部の寸法がそれぞれ異なる複数のィメ ージ強調マスクを用いて、 色々な露光光入射方向からの露光を行なった場合にお ける D O F (フォーカス深度) 特性をシミュレーションによって計算してみた。 図 1 5 ( a ) 〜 (c ) はその結果を示しており、 図 1 5 ( a ) は露光光入射方向 が光源座標 (ライン状のマスクパターンの幅方向及び長さ方向にそれぞれ X軸及 び y軸を取った座標) の中心方向からの垂直入射である場合のシミュレーション 結果を示し、 図 1 5 ( b ) は露光光入射方向が光源座標の X軸方向又は Y軸方向 からの斜入射である場合のシミュレーション結果を示し、 図 1 5 ( c ) は露光光 の入射方向が光源座標の 4 5度方向 (X軸方向又は Y軸方向と 4 5度の角度をな す方向) からの斜入射である場合のシミュレーション結果を示す。 ここで、 ィメ ージ強調マスクとして、 各露光光入射方向に対して遮光性が最大になるように調 整された開口部幅 (以下、 最適開口部幅と称する) を有するイメージ強調マスク と、 最適開口部幅よりも小さい開口部幅を有するイメージ強調マスクと、 最適開 口部幅よりも大きい開口部幅を有するイメージ強調マスクとを用いた。 また、 比 較のために、 イメージ強調マスクのマスクパターンに代えて同一の外形形状を有 する完全遮光パターンが設けられたフォトマスク (完全遮光マスク) を用いた場 合における D O F特性についてもシミュレーションによって計算してみた。 尚、 DO F特性は、 べス卜フォーカス時に各マスクパターンと対応して形成されるパ ターン (レジストパターン) の寸法が 0. 1 2 mとなるように露光エネルギー を設定したときに、 デフォーカスによってパターン寸法がどのように変化するか を基準にして評価されている。 また、 図 1 5 (a) 〜 (c) において、 Lはマス クパターン幅、 Sは開口部幅を示しており、 フォーカス位置 (横軸) 0がべスト フォーカス位置と対応している。
図 1 5 (a ) に示すように、 露光光入射方向が光源座標の中心方向からの入射 方向である場合、 イメージ強調マスクの開口部幅を大きくするに従って DO F特 性は劣化しており、 完全遮光マスクを用いたとき (L = 0. 1 2〃m、 S = 0 μ m) (以下、 LZS = 0. 1 2/0 mと略す) の DO F特性が最も優れている 。 一方、 図 1 5 (b) に示すように、 露光光入射方向が光源座標の X軸方向又は Y軸方向からの斜入射である場合、 DO F特性はイメージ強調マスクの開口部幅 に依存しておらず、 ィメージ強調マスクを用いた場合も完全遮光マスクを用いた 場合 (LZS = 0. 1 3/0 ί m) も同じ DO F特性である。 しかし、 図 1 5 ( c) に示すように、 露光光入射方向が光源座標の 45度方向からの斜入射である 場合、 イメージ強調マスクの開口部幅を大きくするに従って DO F特性が向上し ており、 完全遮光マスクを用いたとき (LZS = 0. 1 5Z0〃m) の DO F特 性が最低である。 すなわち、 45度方向からの斜入射露光においてマスクパター ン回折光とマスクパターン透過光との干渉により生じる光強度分布のデフォー力 ス特性を向上させるためには、 必要最低限の実効的な遮光性を実現できる範囲で マスクパターン透過光 (つまり位相シフターの配置領域) を可能な限り増大させ れぱよいことが分かる。
次に、 イメージ強調マスクにおける位相シフターの配置位置について説明する 。 図 1 6 (a ) は、 半遮光部よりなる幅 Lの半遮光パターンが設けられたフォト マスクの平面図と、 該マスクを透過して線分 AA' と対応する位置に転写される 光の光強度とを合わせて示している。 このような半遮光パターンの内部に位相シ フタ一を設けてイメージ強調マスクを作成する場合、 半遮光パターンの幅 Lが大 きくなるに従って、 最大コントラス卜を実現できる位相シフターの幅は小さくな る。 しかしながら、 図 1 6 ( a ) に示すように、 半遮光パターンはどんなに広い 幅を有している場合でも、 半遮光/ ターンの中心と対応する光強度が 0にはなら ず、 必ず残留光強度が存在する。 従って、 イメージ強調マスクにおいてマスクパ ターンを構成する遮光部として半遮光部を用いる場合には、 図 1 6 ( b ) に示す ように、 半遮光部の幅しが大きくなるに従って位相シフターの幅は小さくなるが 、 半遮光部の幅 Lがどんなに大きくなつても、 前述の残留光強度と釣り合う位相 シフターを必ず設ける必要が出てくる。 従って、 マスク上で形成可能な位相シフ タ一の最小寸法をこの残留光強度に合わせておくことによって、 ィメージ強調マ スクの実現に必要な位相シフタ一は全て形成可能となる。 但し、 この残留光強度 が実際の露光においてレジス卜膜を感光させない量となるように、 半遮光部の透 過率を定めておく必要がある。 第 3の実施形態
以下、 本発明の第 3の実施形態に係るフォ卜マスク及びそのマスクデータ作成 方法について図面を参照しながら説明する。
図 1 7は、 輪郭強調法及び中心線強調法を利用した、 第 3の実施形態に係るマ スクデータ作成方法、 具体的には、 フォトマスケを用いて形成しょうとする所望 のパターンに基づいてマスクパターンの作成を行なうマスクデータ作成方法のフ ロー図を示している。 また、 図 1 8 ( a ) 〜 (d ) 及び図 1 9 ( a ) 〜 (d ) は 、 図 1 7に示すマスクデータ作成方法を用いてスペースパターン形成用のマスク パターンを形成する場合の各工程を示す図である。 また、 図 2 0 ( a ) 〜 (d ) 及び図 2 1 ( a ) ~ ( c ) は、 図 1 7に示すマスクデータ作成方法を用いてライ ンパターン形成用のマスクパターンを形成する場合の各工程を示す図である。 まず、 ステップ S 1 1において、 フォトマスクを用いて形成しょうとする所望 のパターンを入力する。 図 1 8 (a) 及び図 20 (a) はそれぞれ、 所望のバタ ーンの一例を示している。 図 1 8 (a) に示す所望のパターンは、 レジスト除去 パターン (レジストパターン中の開口部) であり、 図 20 (a) に示す所望のパ ターンはレジストパターンである。
次に、 ステップ S 1 2において、 所望のパターンに基づいてマスクパターンの 形状を決定すると共にマスクパターンに用いる半遮光部の透過率 T cを設定する 。 このとき、 露光条件をオーバー露光にするか又はアンダー露光にするかに応じ て、 所望のパターンに対して該パターンを拡大したり又は縮小したりするリサイ ズを行なう。 図 1 8 (b) 及び図 20 (b) はそれぞれ、 リサイズ後の所望のパ ターンに基づき作成されたマスクパターンの一例を示している。 図 1 8 (b) に 示すマスクパターンは、 所望のパターンと対応する開口部 (透光部) を囲む半遮 光部から構成されている。 図 20 (b) に示すマスクパターンは、 透光部によつ て囲まれた半遮光部から構成されている。
次に、 ステップ S 1 3において、 マスクパターンにおける所定の寸法 D 1以下 で開口部に挟まれた領域、 言い換えると、 マスクパターンにおける幅が所定の寸 法 D 1以下である領域を抽出する。 ここで、 D 1 としては 0. 8 χ λΖΝΑ程度 が望ましい (λは光源波長、 Ν Αは開口数) 。 図 1 8 (c) 及び図 20 (c) は 、 図 1 8 (b) 及び図 20 ( b) のそれぞれに示すマスクパターンにおいて所定 の寸法 D 1以下で開口部に挟まれた領域を示している。
次に、 ステップ S 1 4において、 ステップ S 1 3で抽出された領域内に中心線 強調法が成り立つように位相シフターを挿入する。 図 1 8 (d) 及び図 20 (d ) は、 図 1 8 (c) 及び図 20 (c) のそれぞれに示す、 抽出された領域内に、 中心線強調法が成り立つように適正な幅の位相シフターが挿入された様子を示し ている。
次に、 ステップ S 1 5において、 マスクパターン内に輪郭強調法が成り立つよ うに位相シフターを挿入する。 具体的には、 図 1 9 (a) は、 図 1 8 (d) に示 すマスクパターン内に輪郭強調法が成り立つように位相シフターが挿入された様 子を示している。 図 1 9 (a) に示すように、 マスクパターンにおける開口部 ( 方形状) の各辺と接する領域に所定寸法の位相シフターが挿入されている。 尚、 図 1 9 (a) に示すマスクパターンにおいては、 図 9 (b) に示すタイプの位相 シフタ一配置を行なつているが、 位相シフタ一配置はこれに限られるものではな い。 また、 図 2 1 (a) は、 図 20 (d) に示すマスクパターン内に輪郭強調法 が成り立つように位相シフターが挿入された様子を示している。 図 21 (a) に 示すように、 マスクパターンにおける幅が所定の寸法 D 1を超える領域の周縁部 に位相シフタ一が挿入されている。 尚、 図 2 1 (a) においては、 図 9 (a) に 示すタイプの位相シフター配置を行なっているが、 位相シフター配置はこれに限 られるものではない。
以上のステップ S 1 1からステップ S 1 5までの工程によって、 中心線強調法 及び輪郭強調法を用いて、 微細パターン形成を可能ならしめるマスクパターンの 作成を行なえた。 そこで、 さらに、 露光によりマスクパターンと対応して形成さ れるパターンの寸法調整のための近接効果補正、 及び、 縮小露光系の縮小倍率の 値に基づくマスク寸法の換算等の、 通常のマスクデータ作成処理を行なえばマス クパターンが完成する。 しかしながら、 パターン寸法調整において ME E Fが大 きいと、 マスクグリッド (マスク寸法の調整が可能な最小幅) の影響によってパ ターン寸法調整誤差の大きいマスクパターンとなってしまう。 そこで、 第 3の実 施形態においては、 さらなるマスクパターンの改良のために、 近接効果補正の実 施の上で低い ME E Fでパターン寸法の調整を可能とし、 且つマスクグリッドに 起因するパターン寸法調整誤差を低減する工程を追加的に実施する。
すなわち、 ステップ S 1 6において、 中心線強調法及び輪郭強調法が適用され たマスクパターンに対して ME E F低減手法を適用する。 前述の輪郭強調法の原 理において説明したように、 パターン寸法の調整のためには位相シフタ一の位置 又は寸法を変更する方法と、 半遮光部の寸法を変更する方法とがある。 一般に、 透光部を基準として反対位相の光を透過する領域となる位相シフタ一は、 非常に 強い遮光性を有するので、 位相シフターの周辺にさらに半遮光部を付加しても、 フォトマスクを透過した光の強度分布は影響を受けにくい。 そのため、 半遮光部 の寸法を変更する方法は、 MEE Fが低くなるという点で、 位相シフターの位置 又は寸法を変更する方法よりも優れている。 そこで、 パターン寸法を調整するた めの CD (パターン寸法) 調整領域として、 開口部と位相シフターとの境界に半 遮光部を挿入する。 図 1 9 (b) 及び図 21 (b) はそれぞれ、 図 1 9 (a) 及 び図 2 1 (a) にそれぞれ示すマスクパターンに対して CD調整用の半遮光部が 設定された様子を示している。 図 1 9 (b) に示すように、 スペースパターン形 成用の開口部は、 ステップ S 1 6によって必ず半遮光部により囲まれることにな る。 また、 図 21 (b) に示すように、 ラインパターン形成用のマスクパターン 内の位相シフタ一は、 ステップ S 1 6によって必ず半遮光部により囲まれること になる。 尚、 位相シフターの周辺に CD調整領域として設けられる半遮光部は、 位相シフターの遮光性に影響を与えない大きさであることが望ましいので、 第 3 の実施形態においては、 CD調整領域の幅を 0. 1 X λΖΝ A以下に設定した。 すなわち、 CD調整領域の幅は、 位相シフターによる光の干渉効果が及ぶ寸法で ある λΖΝ Aの 1 0分の 1以下であることが望ましい。
ステップ S 1 1からステップ S 1 6までの工程によって作成されたマスクパタ ーンは、 微細パターン形成可能なマスクパターンである。 また、 このマスクパタ ーンの作成において、 近接効果補正を適用する際に、 パターン寸法調整を、 開口 部又は位相シフターを囲む半遮光部の寸法変更によって行なえば、 低い ME E F でパターン寸法の調整を実現できる。 すなわち、 マスクパターンのグリッドの影 響に起因するパターン寸法調整誤差の低い優れたマスクパターン作成方法を実現 できる。
ところで、 一般に、 半遮光部 (つまり透過性の遮光パターン) を用いたマスク パターンを露光したときに転写される光強度は、 マスクパターンの内部にいくに つれて単純に減少するのではなく、 振動しながら減少していく。 この光強度分布 における振動は、 マスクパターンの端から λ Ζ Ν A以下のところでピークつまり サイ ドローブを有するものとなる。 そこで、 第 3の実施形態では、 実際のパター ン形成時の露光においてオーバー露光によって、 レジスト膜における半遮光部と 対応する部分が感光しないように、 さらなる露光マージンの拡大を実現するため の工程を追加的に実施する。
すなわち、 ステップ S 1 7において、 中心線強調法、 輪郭強調法及び M E E F 低減手法が適用されたマスクパターンにサイ ドローブ低減用位相シフターを挿入 する。 ここで、 孤立の開口パターンの周辺に単独で発生するサイ ドローブ、 又は マスクパターンの内側に発生するサイドローブは殆ど問題にならない。 しかし、 開口部同士が λ Ζ Ν A〜2 x λ Ζ Ν A程度の距離で隣り合う場合、 2つのサイ ド ローブのピークが重なり合う領域が生じるので、 オーバー露光を行なうと、 該領 域の光強度によってレジスト膜が感光してしまう可能性がある。 また、 マスクパ ターンにおける幅が 2 X λ Z N A以下の部分においては該部分の両側からの 2つ のサイ ドローブのピークが重なり合うので、 オーバー露光を行なうと、 その部分 の光強度によってレジスト膜が感光してしまう可能性がある。 しかし、 前述の輪 郭強調法の原理のところでも述べたように、 半遮光部を用いているマスクパター ン内においては、 位相シフター同士の間隔が 0 . 8 X λ Ζ Ν A以上であれば、 言 い換えると、 マスクパターンの幅が 0 . 8 X λ Ζ Ν A以上であれば、 半遮光部に よる残留光強度に相当する光を打ち消すための位相シフターを任意の位置に配置 できる。 第 3の実施形態においては、 この原理を利用して、 開口部間の間隔が 2 X λ Ζ Ν A以下の領域に、 半遮光部による残留光強度と釣り合う位相シフターを 配置することによって、 サイ ドローブのピークが重なり合う領域における光強度 を全て打ち消すことができる。 同様に、 マスクパターンにおける幅が 0 . 8 Xス Z N Aを超えている部分 (但し輪郭強調法に基いて位相シフターを配置した後に おいても) に、 半遮光部による残留光強度と釣り合う位相シフターを配置するこ とによって、 サイ ドローブのピークが重なり合う領域における光強度を全て打ち 消すことができる。 すなわち、 ステップ S 1 7により、 ステップ S 1 1〜S 1 6 によって作成されたマスクパターンを用いて露光を行なうときのオーバー露光マ —ジンを拡大できる。 図 1 9 ( c ) は、 図 1 9 ( b ) に示すマスクパターンにお ける 2 X λ Ζ Ν A以下の間隔で開口部に挟まれた領域に、 サイ ドローブ低減用位 相シフタ一が挿入された様子を示している。 また、 図 2 1 ( c ) は、 図 2 1 ( b ) に示すマスクパターンにおける幅が 0 . 8 X λ Ζ Ν Aを超えている部分 (輪郭 強調法の適用後) に、 サイ ドローブ低減用位相シフターが挿入された様子を示し ている。
最後に、 ステップ S 1 8において、 ステップ S 1 1からステップ S 1 7までの 工程によって作成されたマスクパターンを出力する。 以上のステップ S 1 1から ステップ S 1 8までの工程によって、 微細パターンを高精度に形成でき、 且つパ ターン形成時の露光マージンが優れたマスクパターンの作成を行なうことができ る。 尚、 ここまで、 マスクパターンを構成する遮光部の全てが半遮光部であるこ とを前提としてきたが、 中心線強調法のために挿入された位相シフター、 及び、 輪郭強調法が適用された開口部のそれぞれから十分な距離 (つまり光の干渉影響 を無視できる距離である 2 X λ Ζ Ν Αよりも大きな距離) 離れた領域は、 完全遮 光部としてもよいことは言うまでもない。 図 1 9 ( d ) は、 図 1 9 ( c ) に示す マスクパターンにおける位相シフタ一及び開口部から十分離れた領域が、 完全遮 光部として設定された様子を示している。
以上に説明したように、 第 3の実施形態によると、 レジスト膜を感光させない 程度に弱い光を透過させる半遮光部を用いてマスクパターンを形成することによ リ、 マスクパターンの任意の位置における光強度のコントラストを強調できる位 相シフタ一の挿入が可能となった。 但し、 挿入される位相シフター同士を所定の 寸法以上離しておく必要がある。 これにより、 任意の開口形状を有するレジスト パターンの形成に中心線強調法及び輪郭強調法の適用が可能となる。 言い換える と、 マスクパターンと対応する遮光像における光強度分布のコントラス卜をパタ ーンの疎密に関わらず斜入射露光によって強く強調できるため、 孤立スペースパ ターンと孤立ラインパターン又は密集パターンとを同時に形成できる。
また、 第 3の実施形態によると、 微細パターンの形成が可能なマスクパターン を実現できると共に、 近接効果補正を適用する際に低い M E E Fでパターン寸法 の調整が可能なマスクパターンをも実現できる。 さらに、 マスクパターンの任意 の位置に位相シフターを挿入できるので、 サイドローブの発生を抑制でき、 それ により、 パターン形成時の露光マージンが高いマスクパターンの形成も可能とな る。
また、 第 3の実施形態によると、 半遮光部と位相シフターとを有するマスクパ ターンにおいて、 所定の幅以下の部分には中心線強調法に従って位相シフターを 配置すると共に、 所定の幅を越える部分には輪郭強調法に従って位相シフターを 配置する。 このため、 任意の形状のマスクパターンによって露光時に非常にコン トラストの強い像を形成できる。 よって、 このようなマスクパターンが設けられ たフォトマスクを用いて、 レジス卜が塗布された基板に対して露光を行なうこと によって、 微細なレジストパターンの形成が可能となる。 また、 このフォトマス クに対して斜入射照明を用いて露光を行なうことによって、 フォーカス変動に対 してパターン寸法の変動が生じにくい微小パターン形成が可能となる。
図 2 2は、 マスクパターンの線幅に応じて中心線強調法又は輪郭強調法を実現 するための位相シフターの挿入方法をまとめて示している。 図 2 2に示すように 、 所定の線幅を越えるマスクパターンに対しては中心線強調法が適用される一方 、 所定の線幅以下のマスクパターンに対しては輪郭強調法が適用されることにな る。 ここで、 所定の線幅としては 0. 8 X I Z N Aを基準に選ぶことが好ましい 力 それ以下の値に設定してもかまわない。 また、 図 2 2に示すように、 中心線 強調法においては、 マスクパターン線幅が太いほどマスクパターン内部に挿入さ れる位相シフターが細くなリ、 マスクパターン線幅が細くなるほどマスクパター ン内部に挿入される位相シフタ一は太くなる。 この位相シフタ一の線幅の最適寸 法を求める方法については前述の通りである。 尚、 中心線強調法が適用される場 合、 位相シフタ一のみでマスクパターンが構成されることもある。
一方、 図 2 2に示すように、 輪郭強調法においては、 所定の線幅を越えるマス クパターンの周縁部に位相シフターが挿入されることになる。 このときの位相シ フタ一の線幅は、 位相シフター内を透過する光が過剰状態にならないのであれば 、 マスクパターンの線幅に依存することなく全てのマスクパターンにおいて一定 の値となってもよい。 すなわち、 中心線強調法を適用するべきか、 又は輪郭強調 法を適用するべきかは、 マスクパターンの線幅に基づいて一意的に決定できる。 ところで、 半遮光部を使用していることに起因して、 所定の寸法のマスクバタ ーンにおいてはサイドローブ現象が顕著に発生する。 しかし、 そのような条件に あるマスクパターンに対しては、 前述のように、 半遮光部による残存光強度と釣 リ合う位相シフターを任意に挿入できるマスクパターンとなるため、 図 2 2に示 すように、 例えばマスクパターンの中心にサイドローブ低減用位相シフターを揷 入すればよい。 この場合、 マスクパターンにおける位相シフターの配置だけを見 ると、 同じマスクパターンに対して輪郭強調法と中心線強調法とが同時に適用さ れた状態となる。 また、 サイ ドローブ現象が最大になる寸法よりも十分に大きい 寸法のマスクパターンにおいては、 マスクパターン中心にサイドローブ低減用位 相シフタ一を挿入するか否かは任意に決められる。 尚、 図 2 2に示す例では、 マ スクパターンの寸法が十分に大きい場合、 サイドローブ低減用位相シフターの揷 入を省略するものとして扱っている。 第 4の実施形態
以下、 本発明の第 4の実施形態に係るフォトマスク及びその作成方法について 図面を参照しながら説明する。
図 2 3は、 第 4の実施形態に係るフォトマスク、 具体的には、 本発明の中心線 強調法を実現するためのラインパターン形成用マスク部分と、 本発明の輪郭強調 法を実現するためのコンタク トパターン形成用マスク部分 (マスクパターンによ つて透光部 (開口部) が囲まれている) とを有するフォトマスクの平面図である 。 また、 図 2 4 ( a ) 〜 ( f ) はそれぞれ、 図 2 3における A A ' 線の断面図を 示している。 すなわち、 図 2 3に示すような平面構成を有するフォトマスクの実 現方法としては、 基本的に、 図 2 4 ( a ) 〜 ( f ) に示す 6つのタイプがある。 但し、 図 2 4 ( a ) 〜 ( f ) に示す断面構成は基本タイプであって、 これらを組 み合わせた断面構成を有するフォトマスクも実現可能である。 以下、 図 2 4 ( a ) ~ ( f ) に示す基本タイプのフォトマスクの作成方法について説明する。 図 2 4 ( a ) に示すタイプにおいては、 透過性基板 1 0におけるマスクパター ン形成領域の上に、 透光部を基準として露光光を反対位相で透過させる第 1の位 相シフタ一膜 1 1が形成されている。 また、 第 1の位相シフター膜 1 1における 半遮光部形成領域の上に、 第 1の位相シフター膜 1 1を基準として露光光を反対 位相で透過させる第 2の位相シフター膜 1 2が形成されている。 これによつて、 第 2の位相シフター膜 1 2と第 1の位相シフター膜 1 1 との積層構造よりなる半 遮光部が形成されると共に、 第 1の位相シフター膜 1 1の単層構造よりなる位相 シフターが形成される。 この第 2の位相シフター膜 1 2と第 1の位相シフター膜 1 1 との積層構造よりなる半遮光部は、 透光部を基準として露光光を同位相で透 過させる。 つまり、 図 2 4 ( a ) に示すタイプにおいては、 透光部を透過する光 を基準として、 透過する光の位相をそれぞれ反転させる位相シフター膜の積層膜 を加工することによって、 位相シフターと半遮光部とから構成される所望のマス クパターンが実現されている。 また、 位相シフター膜の積層膜によって、 露光光 の一部分を透過させる透過率を有する半遮光部が実現されている。
図 2 4 ( b ) に示すタイプにおいては、 透過性基板 2 0における半遮光部形成 領域の上に、 露光光の一部分を透過させる透過率を持ち且つ透光部を基準として 露光光を同位相で透過させる半遮光膜 2 1が形成されている。 すなわち、 半遮光 膜 2 1よりなる半遮光部が形成されている。 また、 透過性基板 2 0における位相 シフター形成領域を所定の厚さだけ掘り下げることによリ、 透光部を基準として 露光光を反対位相で透過させる位相シフターが形成されている。 すなわち、 図 2 4 ( b ) に示すタイプにおいては、 透光部と比べてほとんど位相差を生じない半 遮光膜 2 1 と、 透過性基板 2 0の掘り込み部分とを組み合わせることによって、 半遮光部と位相シフターとから構成される所望のマスクパターンが実現されてい る。
図 2 4 ( c ) に示すタイプにおいては、 透過性基板 3 0における半遮光部形成 領域の上に、 位相シフターを基準として露光光を反対位相で透過させる位相シフ ター膜 3 1が形成されている。 また、 透過性基板 3 0における透光部形成領域が 所定の厚さだけ掘り下げられ、 それにより、 位相シフターを基準として露光光を 反対位相で透過させる透光部が形成されている。 すなわち、 図 2 4 ( c ) に示す タイプにおいては、 これまで透光部と定義してきた部分が透過率の高い位相シフ ターと置き換えられ、 位相シフターと定義してきた部分が透光部と置き換えられ 、 半遮光部と定義してきた部分が、 露光光の一部分を透過させる透過率を有する 位相シフターと置き換えられたフォトマスクが実現されている。 このとき、 図 2 4 ( c ) に示すフォトマスクの各構成要素間の相対位相差の関係は、 図 2 4 ( a ) 、 図 2 4 ( b ) 及び図 2 4 ( d ) 〜 ( f ) のそれぞれに示す他のタイプのフォ トマスクと同じである。
図 2 4 ( d ) に示すタイプにおいては、 透過性基板 4 0における半遮光部形成 領域の上に、 露光光の一部分を透過させる透過率を持ち且つ透光部を基準として 露光光を同位相で透過させる薄膜化された遮光膜 4 1が形成されている。 すなわ ち、 遮光膜 4 1よりなる半遮光部が形成されている。 また、 透過性基板 4 0にお ける位相シフター形成領域を所定の厚さだけ掘り下げることにより、 透光部を基 準として露光光を反対位相で透過させる位相シフターが形成されている。 ここで 、 通常の金属膜を薄膜化することによつても、 露光光の一部分を透過させる透過 率を有する遮光膜 4 1 を形成できる。 遮光膜 4 1を透過する光は、 遮光膜 4 1が 薄膜化されているため、 位相変化は僅かである。 尚、 半遮光部を透過する光の位 相が、 透光部を透過する光に対して位相差を有すると、 半遮光部を用いたマスク パターンによって形成される光の像において僅かに焦点位置がずれる。 しかし、 この位相差が 3 0度程度までであれば、 焦点位置のずれに対する影響は皆無に等 しい。 よって、 遮光膜 4 1 として、 薄膜化した金属膜等を用いることにより、 透 光部を基準としてほぼ同じ位相の光を弱く透過させる半遮光部を実現できる。 す なわち、 図 2 4 ( d ) に示すタイプにおいては、 図 2 4 ( b ) に示すタイプと同 様の効果が得られる。 また、 透光部を比べてほとんど位相差を生じない半遮光膜 として、 薄膜化された遮光膜を代用できるので、 位相制御用の透過性厚膜を使用 することなく、 位相シフターと半遮光部とから構成される所望のマスクパターン を簡単に実現できる。
図 2 4 ( e ) に示すタイプにおいては、 透過性基板 5 0におけるマスクパター ン形成領域の上に、 露光光の一部分を透過させる透過率を持ち且つ透光部を基準 として露光光を同位相で透過させる半遮光膜 5 1が形成されている。 また、 半遮 光膜 5 1における位相シフター形成領域を所定の厚さだけ掘り下げることによリ 、 透光部を基準として露光光を反対位相で透過させる位相シフターが形成されて いる。 言い換えると、 半遮光膜 5 1の非掘り下げ部分よりなる半遮光部が形成さ れていると共に半遮光膜 5 1の掘り下げ部分よりなる位相シフターが形成されて いる。 すなわち、 図 2 4 ( e ) に示すタイプにおいては、 透光部を透過する光を 基準として透過する光の位相を反転させる位相シフターを、 半遮光膜 5 1の掘り 下げ部分を用いて作成することにより、 位相シフターと半遮光部とから構成され る所望のマスクパターンが実現される。
図 2 4 ( f ) に示すタイプにおいては、 透過性基板 6 0におけるマスクパター ン形成領域の上に、 露光光の一部分を透過させる透過率を持ち且つ透光部を基準 として露光光を同位相で透過させる半遮光膜 6 1が形成されている。 また、 半遮 光膜 6 1における位相シフター形成領域の上に、 透光部を基準として露光光を反 対位相で透過させる位相シフター膜 6 2が形成されている。 これによつて、 半遮 光膜 6 1の単層構造よりなる半遮光部が形成されると共に、 半遮光膜 6 1 と位相 シフター膜 6 2との積層構造よりなる位相シフターが形成される。 すなわち、 図 2 4 ( f ) に示すタイプにおいては、 半遮光膜 6 1の上に位相シフター膜 6 2を 積層することによって、 位相シフターと半遮光部とから構成される所望のマスク パターンが実現される。 第 5の実施形態
以下、 本発明の第 5の実施形態に係るパターン形成方法、 具体的には第 1〜第 4の実施形態のいずれかに係るフォトマスク (以下、 本発明のフォトマスク) を 用いたパターン形成方法について図面を参照しながら説明する。 前述のように、 本発明のフォトマスク、 つまり輪郭強調法又は中心線強調法が成り立つように作 成されたフォトマスクを用いて露光を行なうことにより、 微小パターンの形成が 可能となる。 また、 例えば、 図 2 3に示すようなフォトマスクに対して露光を行 なってウェハ上にパターンの縮小転写を行なう場合、 輪郭強調法の原理及び中心 線強調法の原理で説明したように、 輪郭強調法を実現するマスク部分 (輪郭強調 マスク) についても中心線強調法を実現するマスク部分 (イメージ強調マスク) についても斜入射露光を行なうことによって、 コントラス卜の高い像を形成でき る。 また、 これによつて、 フォーカス変動に対してパターン寸法が変動しにくい パターン形成を実現できる。
図 2 5 ( a ) 〜 (d ) は、 本発明のフォトマスクを用いたパターン形成方法の 各工程を示す断面図である。
まず、 図 2 5 ( a ) に示すように、 基板 1 0 0上に、 金属膜又は絶縁膜等の被 加工膜 1 0 1を形成した後、 図 2 5 ( b ) に示すように、 被加工膜 1 0 1の上に 、 ポジ型のレジスト膜 1 0 2を形成する。 次に、 図 2 5 ( c ) に示すように、 本発明のフォトマスク、 例えば、 図 2 4 ( a ) に示すタイプのフォトマスク (但し図 2 5 ( c ) ではコンタクトパターン形 成用マスク部分のみを図示している) に対して露光光 1 0 3を照射し、 該フォト マスクを透過した透過光 1 0 4によってレジスト膜 1 0 2を露光する。 尚、 図 2 5 ( c ) に示す工程で用いるフォトマスクの透過性基板 1 0上には、 第 1の位相 シフター膜 1 1 と第 2の位相シフター膜 1 2との積層構造よりなる半遮光部と、 第 1の位相シフタ一膜 1 1の単層構造よりなる位相シフターとからなるマスクパ ターンが設けられている。 このマスクパターンは、 所望のパターン (レジスト除 去パターン) と対応する開口部 (透光部) を囲んでいる。 すなわち、 図 2 5 ( c ) に示す露光工程では、 この輪郭強調法を実現するフォトマスクを介して、 斜入 射露光光源を用いてレジスト膜 1 0 2に対して露光を行なう。 このとき、 低い透 過率を有する半遮光部がマスクパターンに用いられているため、 レジスト膜 1 0 2の全体が弱いエネルギーで露光される。 しかし、 図 2 5 ( c ) に示すように、 現像工程でレジス卜が溶解するに足りる露光エネルギーが照射されるのは、 レジ スト膜 1 0 2におけるフォ卜マスクの開口部と対応する潜像部分 1 0 2 aのみで あ
次に、 図 2 5 ( d ) に示すように、 レジスト膜 1 0 2に対して現像を行なって 潜像部分 1 0 2 aを除去することにより、 レジストパターン 1 0 5を形成する。 このとき、 図 2 5 ( c ) に示す露光工程において、 開口部とそれを囲む領域との 間の光強度分布のコントラストが高いため、 潜像部分 1 0 2 aとそれを囲む領域 との間のエネルギー分布も急激に変化するので、 シャープな形状を有するレジス トパターン 1 0 5が形成される。
以上に説明したように、 第 5の実施形態によると、 パターン形成に、 半遮光部 と位相シフタ一とから構成されるマスクパターンを有する本発明のフォトマスク を用いる。 ここで、 該フォトマスクの透光部の近傍には輪郭強調法に従って位相 シフターが配置されており、 マスクパターンにおける所定の寸法以下で透光部に 挾まれた領域には中心線強調法に従って位相シフタ一が配置されている。 このた め、 透光部の周辺部又はマスクパターンの微小幅部分における光強度分布のコン 卜ラストをパターンの疎密に関わらず斜入射露光によって強く強調できる。 よつ て、 本発明のフォトマスクを用いて、 レジストが塗布された基板に対して露光を 行なうことにより、 微細なレジストパターンの形成が可能となる。 また、 このフ ォ卜マスクに対して斜入射照明を用いて露光を行なうことによって、 フォーカス 変動に対してパターン寸法の変動が生じにくい微小パターン形成が可能となる。 尚、 第 5の実施形態において、 輪郭強調法が成り立つフォトマスクを用いた露 光をポジ型レジストプロセスにおいて実施する場合を例として説明を行なったが 、 言うまでもなく本発明はこれに限られるものではない。 すなわち、 中心線強調 法が成リ立つフォトマスク、 若しくは輪郭強調法と中心線強調法とが成リ立つフ ォ卜マスクを用いた露光をポジ型レジストプロセスにおいて実施してもよい。 或 いは、 輪郭強調法及び中心線強調法の少なくとも一方が成り立つフォトマスクを 用いた露光をネガ型レジストプロセスにおいて実施してもよい。 ここで、 ポジ型 レジストプロセスを用いる場合、 露光光を照射されたポジ型レジスト膜を現像し て、 ポジ型レジス卜膜におけるマスクパターンと対応する部分以外の他の部分を 除去することにより、 マスクパターン形状のレジストパターンを形成できる。 ま た、 ネガ型レジス卜プロセスを用いる場合、 露光光を照射されたネガ型レジス卜 膜を現像して、 ネガ型レジスト膜におけるマスクパターンと対応する部分を除去 することにより、 マスクパターン形状の開口部を有するレジストパターンを形成 できる。 第 6の実施形態
以下、 本発明の第 6の実施形態に係るフォ卜マスク及びそのマスクデータ作成 方法について図面を参照しながら説明する。 尚、 以下に説明するマスクデータ作 成方法はいずれも、 本発明の中心線強調法又は本発明の輪郭強調法によって位相 シフターが挿入されたマスクパターンから、 パターン転写時にパターン形状が変 形しやすい所定の形状部分を抽出し、 該形状部分が所望の形状となるように位相 シフターの挿入、 変形又は消去を行なうものである。 すなわち、 本実施形態のマ スクデータ作成方法を、 例えば第 3の実施形態に係るマスクデータ作成方法と組 み合わせて実施することにより、 パターン線幅又はパターン間隔の微細化に加え て、 所望の形状を有するパターンの形成が可能となる。
具体的には、 パターン転写時にパターン形状が変形しやすい形状部分として、 例えば図 2 6 ( a ) に示すような、 所定寸法よりも細いラインパターンの端部が ある。 通常、 このようなラインパターンと対応するマスクパターンの端部は遮光 効果が悪いので、 パターン形成時にはラインの長さが減少する。 これは、 ライン 端部の後退と呼ばれる現象である。 このようなライン端部が後退する現象に対し て、 単純にマスクパターンの長さを伸ばして変形補償することもできる。 また、 パターン形成時にライン長を露光量変動やフォーカス変動に対して安定させる別 の方法として、 マスクパターンのライン端幅を太くする方法がある。 これは通常 の完全遮光膜よりなるマスクパターンを用いた方法でも行われている方法であつ て、 ライン端を太くした形状はハンマーへッドパターンと呼ばれている。 本発明 の中心線強調法によれば、 マスクパターンにおける遮光効果が減少する部分にさ らに大きな位相シフターを挿入することによって遮光効果を向上させることがで きる。 すなわち、 マスクパターンにおいて、 ライン中央よりも遮光効果が劣化す るライン端で、 より太い位相シフタ一を用いることによって高い遮光性を実現で きる。 よって、 図 2 6 ( a ) に示すように、 ライン端を位相シフタ一よりなるハ ンマーへッドパターンに変形してもよい。
図 2 6 ( a ) に示す変形補償方法に代えて、 さらに汎用性の高い変形補償方法 として、 図 2 6 ( b ) に示すように、 ライン端に対して輪郭強調法を応用するこ ともできる。 具体的には、 ラインパターンを形成するためのマスクパターンに対 して、 その両端から所定の距離以内の領域におけるライン方向と平行な周辺部に 位相シフターを配置する。 このようにすると、 ラインパターンが孤立して存在す る場合には、 ライン端部の特性がハンマーへッドパターンの特性とほぼ同じもの となる。
ところで、 図 2 6 ( b ) に示す方法によれば、 ラインパターンの端が他のパタ ーンと近接して存在する場合、 両パターン間のスペース形成において特に M E E Fの低減に格別の効果があり、 それによりパターンプリッジ等の致命的なパター ン変形を防ぐために非常に優れた効果が得られる。 以下、 ラインパターンの端部 が他のパターンと近接する場合における変形補償方法について説明する。
まず、 図 2 6 ( c ) に示すように、 ラインパターンの端同士が近接する場合、 各ラインパターンを形成するためのマスクパターンにおける各ライン端の変形を 行なう。 このような場合にはライン端同士がプリッジしないように且つライン端 間のスペースが最小になるようにパターン形成を行なう必要がある。 本発明の図 2 6 ( c ) に示す変形補償方法を用いることによって、 同じ目標パターン寸法に おける M E E Fの値が大幅に低減されている。
次に、 図 2 6 ( d ) に示すように、 一のラインパターンの端と、 中心線強調法 が適用されるくらい細い他のラインパターンとが近接する場合、 一のラインバタ ーンを形成するための一のマスクパターンにおけるライン端の変形方法は図 2 6 ( b ) と同様である。 一方、 他のラインパターンを形成するための他のマスクパ ターンに対しては、 一のマスクパターンの近傍部分における一のマスクパターン 側の端から所定寸法以内に配置された位相シフターを半遮光部に変更する。 この とき、 他のマスクパターンの中心線上に挿入された位相シフターにおける一のマ スクパターンの近傍部分のみを、 一のマスクパターンの反対側の端に移動させて もよい。 図 2 6 ( d ) に示す場合は、 位相シフターの所定部分を半遮光部に変更 した例である。 この場合、 結果的には位相シフターの幅を縮小したようになる。 本発明の図 2 6 ( d ) に示す変形補償方法を用いることによって、 同じ目標パタ ーン寸法における M E E Fの値が大幅に低減される。 次に、 図 2 6 ( e ) に示すように、 一のラインパターンの端と、 輪郭強調法が 適用されるくらい太い他のラインパターンとが近接する場合、 一のラインパター ンを形成するための一のマスクパターンにおけるライン端の変形方法は図 2 6 ( b ) と同様である。 一方、 他のラインパターンを形成するための他のマスクバタ ーンに対しては、 一のマスクパターンの近傍部分に配置された位相シフタ一を半 遮光部に変更する。 このとき、 他のマスクパターンにおいて、 一のマスクパター ンの近傍部分に配置された位相シフターをより内側に移動させてもよい。 図 2 6 ( e ) に示す場合は、 他のマスクパターンにおいて位相シフターの所定部分をよ リ内側に移動させた例であるが、 この場合の効果は、 位相シフターの所定部分を 半遮光部に変更した場合と実質的に同じである。 本発明の図 2 6 ( e ) に示す変 形補償方法を用いることによって、 同じ目標パターン寸法における M E E Fの値 が大幅に低減される。
以上のように、 図 2 6 ( a ) 〜 (e ) に示す本実施形態の変形補償方法が適用 されたマスクパターンを用いてパターン形成を行なうと、 M E E Fが大幅に低減 されるため、 マスク作成時の寸法誤差に対するマージンを小さくできるので、 よ リ微細なパターンの形成が可能となる。
尚、 パターン転写時にパターン形状が変形しやすい形状部分としては、 前述の ようなラインパターンの端部の他にも、 例えば図 2 7 ( a ) に示すような、 中心 線強調法が適用されるくらい細いラインから構成された L型コーナーパターンが ある。 この場合の変形補償方法としては、 図 2 7 ( a ) に示すように、 マスクパ ターンにおける L型コーナーの屈曲点 (マスクパターンの輪郭線が折れ曲がって いる箇所) から所定の寸法以内の領域に、 中心線強調用の位相シフターに代えて 半遮光部を配置する。 このとき、 該領域の中心線強調用の位相シフタ一の寸法を 縮小してもよい。 また、 マスクパターンにおける L型コーナーの外側の周縁部に 、 コーナー強調用の位相シフターを配置してもよい。 尚、 コーナー強調用の位相 シフタ一は輪郭強調用の位相シフタ一と同じように見えるが、 コーナー強調のた めに、 輪郭強調用の位相シフターが本来配置される位置よりも若干外側に配置さ れるものである。 一方、 図 2 7 ( b ) に示すような、 輪郭強調法が適用されるく らい太いラインから構成されたし型コーナーパターンの場合、 マスクパターンの 周縁部における L型コーナーの内側の屈曲点から所定の寸法以内の領域に輪郭強 調用の位相シフターに代えて半遮光部を配置する。 このとき、 該領域の輪郭強調 用の位相シフターの寸法を縮小してもよい。 また、 マスクパターンの周縁部にお ける L型コーナーの外側の屈曲点から所定の寸法以内の領域に、 輪郭強調用の位 相シフタ一に代えて前述のコーナー強調用の位相シフタ一を配置してもよい。 図 2 7 ( a ) 及び (b ) に示す変形補償方法は、 マスクパターンにおける遮光 効果が強いコーナー内側の強調パターン (位相シフター) を消去すると共に、 マ スクパターンにおける遮光効果の弱いコーナー外側の強調パターンを変形するも のである。 図 2 7 ( a ) 及び図 2 7 ( b ) に示す本実施形態の変形補償方法によ つて、 目的とするパターン形状に近い形状が得られる。 その理由は、 マスクバタ ーンにおける遮光性が過剰となるコーナー部から位相シフターが除去されている ために、 遮光パランスが改善されるからである。
また、 パターン転写時にパターン形状が変形しやすい形状部分の他の例として 、 例えば図 2 7 ( c ) に示すような、 中心線強調法が適用されるくらい細いライ ンから構成された T型コーナーパターンがある。 この場合の変形補償方法として は、 図 2 7 ( c ) に示すように、 マスクパターンにおける T型コーナーの屈曲点 から所定の寸法以内の領域に、 中心線強調用の位相シフターに代えて半遮光部を 配置する。 このとき、 該領域の中心線強調用の位相シフターの寸法を縮小しても よい。 また、 マスクパターンの周縁部における T型コーナーの分岐の反対側に輪 郭強調用の位相シフターを配置してもよい。 一方、 図 2 7 ( d ) に示すような、 輪郭強調法が適用されるく らい太いラインから構成された T型コーナーパターン の場合、 マスクパターンの周縁部における T型コーナーの屈曲点から所定の寸法 以内の領域に、 輪郭強調用の位相シフターに代えて半遮光部を配置する。 このと き、 該領域の輪郭強調用の位相シフターの寸法を縮小してもよい。 また、 マスク パターンの周縁部における T型コーナーの分岐の反対側に、 輪郭強調用の位相シ フタ一に代えてコーナー強調用の位相シフターを配置してもよい。
図 2 7 ( c ) 及び (d ) に示す変形補償方法は、 マスクパターンにおける遮光 効果が強いコーナー内側の強調パターンを消去すると共に、 マスクパターンにお ける遮光効果の弱いコーナー外側の強調パターンを変形するものである。 図 2 7 ( c ) 及び図 2 7 ( d ) に示す本実施形態の変形補償方法によって、 目的とする パターン形状に近い形状が得られる。 その理由は、 マスクパターンにおける遮光 性が過剰となるコーナー部から位相シフターが除去されているために、 遮光パラ ンスが改善されるからである。
さらに、 パターン転写時にパターン形状が変形しやすい形状部分の他の例とし て、 例えば図 2 7 ( e ) に示すような、 中心線強調法が適用されるくらい細いラ インから構成されたクロス型コーナーパターンがある。 この場合の変形補償方法 としては、 図 2 7 ( e ) に示すように、 マスクパターンにおけるクロス型コーナ 一の屈曲点から所定の寸法以内の領域に、 中心線強調用の位相シフターに代えて 半遮光部を配置する。 このとき、 該領域の中心線強調用の位相シフターの寸法を 縮小してもよい。 一方、 図 2 7 ( f ) に示すような、 輪郭強調法が適用されるく らい太いラインから構成されたクロス型コーナーパターンの場合、 マスクパター ンの周縁部におけるクロス型コーナーの屈曲点から所定の寸法以内の領域に、 輪 郭強調用の位相シフターに代えて半遮光部を配置する。 このとき、 該領域の輪郭 強調用の位相シフターの寸法を縮小してもよい。
図 2 7 ( θ ) 及び ( f ) に示す変形補償方法は、 マスクパターンにおける遮光 効果が強いコーナー内側の強調パターンを消去するものである。 図 2 7 ( e ) 及 び図 2 7 ( f ) に示す本実施形態の変形補償方法によって、 目的とするパターン 形状に近い形状が得られる。 その理由は、 マスクパターンにおける遮光性が過剰 となるコーナー部から位相シフターが除去されているために、 遮光バランスが改 善されるからである。
以上に説明したように、 第 6の実施形態によると、 半遮光部と位相シフターと を有するマスクパターンにおいて、 所定の幅以下の部分には中心線強調法に従つ て位相シフタ一を配置すると共に、 所定の幅を越える部分には輪郭強調法に従つ て位相シフターを配置する。 このため、 任意の形状のマスクパターンによって露 光時に非常にコントラス卜の強い像を形成できる。 よって、 このようなマスクパ ターンが設けられたフォトマスクを用いて、 レジス卜が塗布された基板に対して 露光を行なうことによって、 微細なレジス卜パターンの形成が可能となる。 また 、 このフォトマスクに対して斜入射照明を用いて露光を行なうことによって、 フ オーカス変動に対してパターン寸法の変動が生じにくい微小パターン形成が可能 となる。
また、 第 6の実施形態によると、 マスクパターンにおけるコーナー部分の内側 等のように、 通常の完全遮光パターンでは遮光効果が強くなリすぎる部分におい ても、 半遮光部を用いることにより遮光効果を低減できる。 すなわち、 マスクパ ターンにおける遮光効果が過剰となる部分に、 単純に中心線強調法又は輪郭強調 法に従つて遮光効果強調用の位相シフタ一を挿入してしまうことをしなければ、 不要な遮光効果の発生を防止できる。 従って、 この効果を利用して、 位相シフタ 一の挿入を制限することによリ、 任意形状のパターンを目的の形状通りに作成す ることが容易になる。
尚、 第 6の実施形態において、 輪郭強調法又は中心線強調法が成り立つフォト マスクを用いた露光をポジ型レジス卜プロセスにおいて実施する場合を例として 説明を行なったが、 言うまでもなく本発明はこれに限られるものではない。 すな わち、 輪郭強調法及び中心線強調法の少なくとも一方が成り立つフォトマスクを 用いた露光をポジ型レジストプロセスにおいて実施してもよい。 或いは、 輪郭強 調法及び中心線強調法の少なくとも一方が成り立つフォ卜マスクを用いた露光を ネガ型レジストプロセスにおいて実施してもよい。 ここで、 ポジ型レジストプロ セスを用いる場合、 露光光を照射されたポジ型レジスト膜を現像して、 ポジ型レ ジスト膜におけるマスクパターンと対応する部分以外の他の部分を除去すること により、 マスクパターン形状のレジストパターンを形成できる。 また、 ネガ型レ ジス卜プロセスを用いる場合、 露光光を照射されたネガ型レジスト膜を現像して 、 ネガ型レジスト膜におけるマスクパターンと対応する部分を除去することによ リ、 マスクパターン形状の開口部を有するレジストパターンを形成できる。

Claims

言青求の範囲
1. 露光光に対して透光性を有する透過性基板上に、 前記露光光に対して遮光性 を有するマスクパターンと、 前記透過性基板における前記マスクパターンが形成 されていない透光部とが設けられたフォトマスクであって、
前記マスクパターンは、
前記透光部を基準として前記露光光を同位相で透過させる半遮光部と、 前記透光部を基準として前記露光光を反対位相で透過させる位相シフターとか ら構成されており、
前記半遮光部は、 前記露光光を部分的に透過させる透過率を有し、
前記位相シフタ一は、 該位相シフタ一を透過した光によって、 前記透光部及び 前記半遮光部を透過した光の一部分を打ち消すことができる位置に設けられてい ることを特徴とするフォトマスク。
2. 請求項 1において、
前記露光光に対する前記半遮光部の透過率は 1 5 %以下であることを特徴とす るフォ卜マスク。
3. 請求項 1において、
前記露光光に対する前記半遮光部の透過率は 6%以上で且つ 1 5%以下である ことを特徴とするフォトマスク。
4. 請求項 1において、
前記半遮光部は、 前記透光部を基準として前記露光光を、 (一 30 + 360 X n) 度以上で且つ (30 + 360 Χ η) 度以下 (但し nは整数) の位相差で透過 させると共に、 前記位相シフタ一は、 前記透光部を基準として前記露光光を、 ( 1 50 + 360 X n) 度以上で且つ (2 1 0 + 360 Χ η) 度以下 (但し nは整 数) の位相差で透過させることを特徴とするフォトマスク。
5. 請求項 1において、
前記位相シフタ一は、 前記マスクパターンにおける前記透光部との境界から ( 0. 8 X λ/Ν A) X Μ以下の部分に配置されていることを特徴とするフォトマ スク (但し、 λは前記露光光の波長であり、 Ν Α及び Μはそれぞれ露光機の縮小 投影光学系の開口数及び縮小倍率である) 。
6. 請求項 1において、
前記位相シフターの幅は (0. 3 χ λΖΝΑ) ΧΜ以下であることを特徴とす るフォトマスク (但し、 λは前記露光光の波長であり、 ΝΑ及び Μはそれぞれ露 光機の縮小投影光学系の開口数及び縮小倍率である) 。
7. 請求項 1において、
前記マスクパターンは前記透光部を囲むように設けられおり、
前記位相シフタ一は、 前記マスクパターンにおける前記透光部の近傍に、 前記 半遮光部と前記透光部とによって挟まれるように設けられていることを特徴とす るフォ卜マスク。
8. 請求項 1において、
前記マスクパターンは前記透光部を囲むように設けられおリ、
前記位相シフタ一は、 前記マスクパターンにおける前記透光部の近傍に、 前記 半遮光部によって囲まれるように設けられていることを特徴とするフォ卜マスク
9. 請求項 1において、
前記マスクパターンは前記透光部によって囲まれており、
前記位相シフタ一は前記半遮光部によって囲まれていることを特徴とするフォ 卜マスク。
1 0. 請求項 9において、
前記マスクパターンの幅は (0. 8 X / /NA) XM以下であることを特徴と するフォトマスク (但し、 λは前記露光光の波長であり、 ΝΑ及び Μはそれぞれ 露光機の縮小投影光学系の開口数及び縮小倍率である) 。
1 1. 請求項 1 0において、
前記位相シフタ一の幅は (0. 4 χ λΖΝΑ) X Μ以下であることを特徴とす るフォ卜マスク。
1 2. 請求項 1において、
前記マスクパターンは、 前記透光部によって囲まれたライン状パターンであり 前記位相シフタ一は、 前記マスクパターンのライン幅方向における中央部に、 前記半遮光部によって挟まれるように設けられていることを特徴とするフォトマ スク。
1 3. 請求項 1 2において、
前記マスクパターンの幅は (0. 8 x iZNA) XM以下であることを特徴と するフォトマスク (但し、 λは前記露光光の波長であり、 ΝΑ及び Μはそれぞれ 露光機の縮小投影光学系の開口数及び縮小倍率である) 。
1 4. 請求項 1 3において、
前記位相シフターの幅は (0. 4 χ λ/ΝΑ) ΧΜ以下であることを特徴とす るフォ卜マスク。
1 5. 請求項 1において、
前記マスクパターンは、 前記透光部によって囲まれたライン状パターンであり 前記位相シフタ一は、 少なくとも前記マスクパターンのライン幅方向における 両端部にそれぞれ、 前記半遮光部を挟むように設けられていることを特徴とする フォ卜マスク。
1 6. 請求項 1において、
前記マスクパターンは、 前記透光部によって囲まれたライン状パターンであり 前記位相シフタ一は、 前記マスクパターンのライン幅方向における両端部及び 中央部にそれぞれ、 前記半遮光部を挟むように設けられていることを特徴とする フォ卜マスク。
1 7. 請求項 1 6において、
前記マスクパターンの幅は (ス ΝΑ) ΧΜ以下であることを特徴とするフォ 卜マスク (但し、 λは前記露光光の波長であり、 Ν Α及び Μはそれぞれ露光機の 縮小投影光学系の開口数及び縮小倍率である) 。
1 8. 請求項 1 7において、
前記位相シフターの幅は (0. 3 χ λΖΝΑ) ΧΜ以下であることを特徴とす るフォ卜マスク。
1 9 . 請求項 1において、
前記マスクパターンは、 前記透光部によって囲まれたライン状パターンであり 前記位相シフタ一は、 前記マスクパターンのライン幅方向の両端部にそれぞれ 、 前記半遮光部によって囲まれるように設けられていることを特徴とするフォト マスク。
2 0 . 請求項 1において、
前記マスクパターンは、 前記透光部によって囲まれたライン状パターンであり 前記位相シフタ一は、 前記マスクパターンのライン幅方向の両端部及び中央部 にそれぞれ、 前記半遮光部によって囲まれるように設けられていることを特徴と するフォ卜マスク。
2 1 . 請求項 1において、
前記透光部は、 第 1の透光部と第 2の透光部とを有し、
前記マスクパターンは、 前記第 1の透光部及び前記第 2の透光部を囲むように 設けられており、
前記位相シフタ一は、 前記第 1の透光部と前記第 2の透光部との間の中央部に 設けられており、
前記半遮光部は、 前記位相シフターの両側に設けられていることを特徴とする フォ卜マスク。
2 2 . 請求項 2 1において、
前記第 1の透光部と前記第 2の透光部との間隔は (0 . 8 Χ λ Ζ Ν Α ) Χ Μ以 下であることを特徴とするフォトマスク (但し、 λは前記露光光の波長であり、 Ν Α及び Μはそれぞれ露光機の縮小投影光学系の開口数及び縮小倍率である) 。
2 3 . 請求項 2 2において、
前記位相シフターの幅は (0 . 4 χ λ Ζ Ν Α ) Χ Μ以下であることを特徴とす るフォ卜マスク。
2 4 . 請求項 1に記載のフォ卜マスクを用いたパターン形成方法であって、 基板上にレジスト膜を形成する工程と、
前記レジスト膜に前記フォトマスクを介して前記露光光を照射する工程と、 前記露光光を照射された前記レジスト膜を現像して、 レジストパターンを形成 する工程とを備えていることを特徴とするパターン形成方法。
2 5 . 請求項 2 4において、
前記露光光を照射する工程で斜入射照明法を用いることを特徴とするパターン 形成方法。
2 6 . 請求項 1に記載のフォトマスクのマスクデータ作成方法であって、 前記フォトマスクを用いて形成しょうとするパターンに基づいて前記マスクパ ターンの形状を決定すると共に前記半遮光部の透過率を設定する第 1の工程と、 前記第 1の工程よりも後に、 前記マスクパターンにおける所定の寸法以下で前 記透光部に挟まれた領域を抽出する第 2の工程と、
前記第 2の工程よりも後に、 前記抽出された領域及び前記マスクパターンにお ける前記透光部の近傍に前記位相シフターを挿入する第 3の工程とを備えている ことを特徴とするマスクデータ作成方法。
2 7 . 請求項 2 6において、
前記第 3の工程よりも後に、
前記位相シフターと前記透光部との間に所定の寸法以下の前記半遮光部を挿入 する工程を備えていることを特徴とするマスクデータ作成方法。
2 8 . 請求項 2 6において、
前記第 3の工程よりも後に、
前記マスクパターンにおける所定の寸法以下で前記透光部に挟まれた領域に、 前記透光部を基準として前記露光光を反対位相で透過させる他の位相シフタ一を 挿入する工程を備えていることを特徴とするマスクデータ作成方法。
2 9 . 請求項 2 8において、
前記他の位相シフタ一は、 前記透光部を基準として前記露光光を、 ( 1 5 0 +
3 6 0 X n ) 度以上で且つ (2 1 0 + 3 6 0 X n ) 度以下 (但し nは整数) の位 相差で透過させることを特徴とするマスクデータ作成方法。
3 0 . 請求項 2 6において、
前記第 3の工程よりも後に、
前記マスクパターンの中から、 所定の寸法以下の幅を有するライン状のパター ン端部を抽出して、 該抽出されたパターン端部におけるライン方向と平行な周縁 部に他の位相シフターを挿入する工程を備えていることを特徴とするマスクデー タ作成方法。
3 1 . 請求項 2 6において、
前記第 3の工程よりも後に、
前記マスクパターンの中からコーナーを抽出して、 前記マスクパターンにおけ る前記抽出されたコーナーの屈曲点から所定の寸法以内の領域に前記位相シフタ 一が配置されている場合には、 該位相シフターを前記半遮光部と置換するか又は 該位相シフターの寸法を縮小する工程を備えていることを特徴とするマスクデー タ作成方法。
3 2 . 請求項 2 6において、
前記第 3の工程よりも後に、
前記フォトマスクを用いて形成しょうとする前記パターンが所望の寸法を有す るように、 前記位相シフターの寸法を固定した状態で前記半遮光部の寸法を補正 する工程を備えていることを特徴とするマスクデータ作成方法。
3 3 . 請求項 1に記載のフォトマスクのマスクデータ作成方法であって、 前記フォトマスクを用いて形成しょうとするパターンに基づいて前記マスクパ ターンの形状を決定すると共に前記半遮光部の透過率を設定する第 1の工程と、 前記第 1の工程よリも後に、 前記マスクパターンにおける幅が所定の寸法以下 である領域を抽出する工程と、
前記第 2の工程よりも後に、 前記抽出された領域、 及び前記マスクパターンに おける幅が前記所定の寸法を越える領域の周縁部に前記位相シフターを挿入する 第 3の工程とを備えていることを特徴とするマスクデータ作成方法。
3 4 . 請求項 3 3において、
前記第 3の工程よりも後に、
前記位相シフターと前記透光部との間に所定の寸法以下の前記半遮光部を挿入 する工程を備えていることを特徴とするマスクデータ作成方法。
3 5 . 請求項 3 3において、 前記第 3の工程よりも後に、
前記マスクパターンにおける幅が所定の寸法を越える領域に、 前記透光部を基 準として前記露光光を反対位相で透過させる他の位相シフターを挿入する工程を 備えていることを特徴とするマスクデータ作成方法。
3 6 . 請求項 3 5において、
前記他の位相シフタ一は、 前記透光部を基準として前記露光光を、 ( 1 5 0 + 3 6 0 X n ) 度以上で且つ (2 1 0 + 3 6 0 X n ) 度以下 (但し nは整数) の位 相差で透過させることを特徴とするマスクデータ作成方法。
3 7 . 請求項 3 3において、
前記第 3の工程よりも後に、
前記マスクパターンの中から、 所定の寸法以下の幅を有するライン状のパター ン端部を抽出して、 該抽出されたパターン端部におけるライン方向と平行な周縁 部に他の位相シフタ一を挿入する工程を備えていることを特徴とするマスクデー タ作成方法。
3 8 . 請求項 3 3において、
前記第 3の工程よりも後に、
前記マスクパターンの中からコーナーを抽出して、 前記マスクパターンにおけ る前記抽出されたコーナーの屈曲点から所定の寸法以内の領域に前記位相シフタ 一が配置されている場合には、 該位相シフターを前記半遮光部と置換するか又は 該位相シフターの寸法を縮小する工程を備えていることを特徴とするマスクデー タ作成方法。
3 9 . 請求項 3 3において、 前記第 3の工程よりも後に、
前記フォ卜マスクを用いて形成しょうとする前記パターンが所望の寸法を有す るように、 前記位相シフターの寸法を固定した状態で前記半遮光部の寸法を補正 する工程を備えていることを特徴とするマスクデータ作成方法。
PCT/JP2002/013466 2001-12-26 2002-12-24 Masque photolithographique, son procede de production et procede de formation de motif au moyen dudit masque WO2003062923A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003562723A JP3984593B2 (ja) 2001-12-26 2002-12-24 フォトマスク
EP02788862A EP1408373A4 (en) 2001-12-26 2002-12-24 PHOTOLITHOGRAPHIC MASK, METHOD FOR PRODUCING THE SAME, AND PATTERN FORMATION METHOD USING THE MASK
US10/474,336 US7060398B2 (en) 2001-12-26 2002-12-24 Photomask, method for producing the same, and method for forming pattern using the photomask
KR1020047000662A KR100568403B1 (ko) 2001-12-26 2002-12-24 포토마스크 및 마스크 데이터 작성방법
US11/402,065 US7378198B2 (en) 2001-12-26 2006-04-12 Photomask
US11/401,857 US7501213B2 (en) 2001-12-26 2006-04-12 Method for forming generating mask data
US11/402,064 US7449285B2 (en) 2001-12-26 2006-04-12 Method for forming pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-393289 2001-12-26
JP2001393289 2001-12-26

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US10474336 A-371-Of-International 2002-12-24
US11/402,065 Division US7378198B2 (en) 2001-12-26 2006-04-12 Photomask
US11/402,064 Division US7449285B2 (en) 2001-12-26 2006-04-12 Method for forming pattern
US11/401,857 Division US7501213B2 (en) 2001-12-26 2006-04-12 Method for forming generating mask data

Publications (1)

Publication Number Publication Date
WO2003062923A1 true WO2003062923A1 (fr) 2003-07-31

Family

ID=27600321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013466 WO2003062923A1 (fr) 2001-12-26 2002-12-24 Masque photolithographique, son procede de production et procede de formation de motif au moyen dudit masque

Country Status (7)

Country Link
US (4) US7060398B2 (ja)
EP (1) EP1408373A4 (ja)
JP (1) JP3984593B2 (ja)
KR (4) KR100568403B1 (ja)
CN (1) CN100373258C (ja)
TW (1) TW576946B (ja)
WO (1) WO2003062923A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359991A1 (de) * 2003-09-30 2005-05-12 Infineon Technologies Ag Phasenschiebermaske
JP2005275138A (ja) * 2004-03-25 2005-10-06 Renesas Technology Corp 位相シフトマスクおよび、これを用いたパターン露光方法
WO2007102338A1 (ja) * 2006-03-09 2007-09-13 Matsushita Electric Industrial Co., Ltd. フォトマスク、その作成方法及びそのフォトマスクを用いたパターン形成方法
WO2007102337A1 (ja) * 2006-03-06 2007-09-13 Matsushita Electric Industrial Co., Ltd. フォトマスク、その作成方法、そのフォトマスクを用いたパターン形成方法及びマスクデータ作成方法
US7332250B2 (en) 2003-06-24 2008-02-19 Matsushita Electric Industrial Co., Ltd. Photomask
US7378198B2 (en) 2001-12-26 2008-05-27 Matsushita Electric Industrial Co., Ltd. Photomask
US7524620B2 (en) 2003-02-17 2009-04-28 Panasonic Corporation Pattern formation method
JP2009104195A (ja) * 2003-10-23 2009-05-14 Panasonic Corp マスクデータ作成方法
JP2019012280A (ja) * 2018-09-19 2019-01-24 Hoya株式会社 フォトマスク、フォトマスクの製造方法、フォトマスクブランク及び表示装置の製造方法
TWI745873B (zh) * 2019-02-27 2021-11-11 日商Hoya股份有限公司 光罩、光罩之製造方法、及顯示裝置之製造方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG144749A1 (en) * 2002-03-25 2008-08-28 Asml Masktools Bv Method and apparatus for decomposing semiconductor device patterns into phase and chrome regions for chromeless phase lithography
JP4383752B2 (ja) * 2003-02-19 2009-12-16 パナソニック株式会社 マスクパタン生成方法およびマスクパタン生成装置
TWI225574B (en) * 2003-05-01 2004-12-21 Nanya Technology Corp Photomask structure and method of reducing lens aberration and pattern displacement
TWI246138B (en) * 2003-09-08 2005-12-21 Realtek Semiconductor Corp Method for checking via density in IC layout
US7361434B2 (en) * 2003-09-30 2008-04-22 Infineon Technologies Ag Phase shift mask
US7712064B2 (en) * 2005-05-20 2010-05-04 Cadence Design Systems, Inc. Manufacturing aware design of integrated circuit layouts
US7395516B2 (en) 2005-05-20 2008-07-01 Cadence Design Systems, Inc. Manufacturing aware design and design aware manufacturing
KR100675301B1 (ko) * 2006-01-17 2007-01-29 삼성전자주식회사 전자빔을 이용한 패턴 형성 방법들 및 전자빔 묘화에사용되는 셀 마스크들
JP4791198B2 (ja) * 2006-02-03 2011-10-12 パナソニック株式会社 フォトマスク、そのフォトマスクを用いたパターン形成方法及びマスクデータ作成方法
JP2009025553A (ja) * 2007-07-19 2009-02-05 Canon Inc 位相シフトマスク
US7838178B2 (en) * 2007-08-13 2010-11-23 Micron Technology, Inc. Masks for microlithography and methods of making and using such masks
JP2009053575A (ja) * 2007-08-29 2009-03-12 Panasonic Corp フォトマスク及びそれを用いたパターン形成方法
JP2009058877A (ja) * 2007-09-03 2009-03-19 Panasonic Corp フォトマスク及びそれを用いたパターン形成方法
TWI418952B (zh) 2010-03-15 2013-12-11 Au Optronics Corp 曝光機台、圖案化薄膜的形成方法、圖案化光阻層的形成方法、主動元件陣列基板以及圖案化薄膜
JP5566935B2 (ja) * 2011-03-25 2014-08-06 株式会社東芝 発光装置
JP2013041155A (ja) * 2011-08-17 2013-02-28 Toshiba Corp パターン生成装置、パターン生成プログラムおよび半導体装置の製造方法
CN103035568B (zh) * 2012-12-21 2014-12-31 北京京东方光电科技有限公司 一种tft阵列基板及制作方法、显示装置
TW201435480A (zh) * 2013-03-07 2014-09-16 Powerchip Technology Corp 雙調顯影用光罩
KR20150028109A (ko) * 2013-09-05 2015-03-13 삼성디스플레이 주식회사 노광용 마스크, 이의 제조방법 및 이를 이용한 표시패널의 제조방법
KR20150104660A (ko) * 2014-03-05 2015-09-16 삼성디스플레이 주식회사 표시장치 및 그 제조방법
CN104166303B (zh) * 2014-08-06 2018-01-09 京东方科技集团股份有限公司 一种掩膜板和曝光方法
CN104407496A (zh) 2014-10-28 2015-03-11 京东方科技集团股份有限公司 一种掩模板
CN105974728A (zh) * 2016-06-29 2016-09-28 武汉华星光电技术有限公司 光罩及彩膜基板的制作方法
JP7080070B2 (ja) * 2017-03-24 2022-06-03 Hoya株式会社 フォトマスク、及び表示装置の製造方法
CN107589631B (zh) * 2017-10-16 2020-12-01 京东方科技集团股份有限公司 掩模板及其制造方法、显示面板、触控板
CN108363270B (zh) * 2018-02-11 2023-05-26 京东方科技集团股份有限公司 一种相移掩模板、阵列基板、其制备方法及显示装置
CN108388077A (zh) * 2018-03-26 2018-08-10 京东方科技集团股份有限公司 一种掩膜版及其制备方法、阵列基板的制备方法
CN110068951A (zh) * 2019-01-15 2019-07-30 东旭(昆山)显示材料有限公司 画素光罩、用于生产显示器的方法及显示器
US11023770B2 (en) * 2019-09-23 2021-06-01 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and methods for obtaining templates for tessellated images
JP7383490B2 (ja) * 2020-01-07 2023-11-20 株式会社エスケーエレクトロニクス フォトマスク
CN114153125B (zh) * 2020-09-08 2024-03-26 中芯国际集成电路制造(上海)有限公司 掩膜及有效减小极紫外掩膜黑边界效应的方法
CN112965335B (zh) * 2021-02-25 2024-08-16 合肥维信诺科技有限公司 一种掩膜版及光学临近修正的方法
US20230098230A1 (en) * 2021-09-28 2023-03-30 Himax Technologies Limited Object detection system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315845A (ja) * 1989-06-14 1991-01-24 Hitachi Ltd マスク及びマスク作製方法
US5302477A (en) * 1992-08-21 1994-04-12 Intel Corporation Inverted phase-shifted reticle
JPH09269590A (ja) * 1996-03-29 1997-10-14 Nec Corp フォトマスク及びフォトマスクの製造方法
JPH1048806A (ja) * 1996-08-01 1998-02-20 Nec Corp フォトマスク及びその製造方法、フォトマスクブランクス
JP2000019710A (ja) * 1998-07-07 2000-01-21 Hitachi Ltd 半導体集積回路装置の製造方法
US6326107B1 (en) * 1999-03-19 2001-12-04 Sharp Kabushiki Kaisha Phase shift mask and process for manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281500A (en) 1991-09-04 1994-01-25 Micron Technology, Inc. Method of preventing null formation in phase shifted photomasks
JP2864915B2 (ja) * 1992-12-07 1999-03-08 株式会社日立製作所 半導体装置の製造方法
US6593033B1 (en) * 1998-09-22 2003-07-15 Texas Instruments Incorporated Attenuated rim phase shift mask
US6328107B1 (en) 1999-09-17 2001-12-11 Exxonmobil Upstream Research Company Method for installing a well casing into a subsea well being drilled with a dual density drilling system
JP3708875B2 (ja) * 1999-11-08 2005-10-19 松下電器産業株式会社 フォトマスク及びその作成方法
JP2002351046A (ja) * 2001-05-24 2002-12-04 Nec Corp 位相シフトマスクおよびその設計方法
US6803155B2 (en) * 2001-07-31 2004-10-12 Micron Technology, Inc. Microlithographic device, microlithographic assist features, system for forming contacts and other structures, and method of determining mask patterns
CN100373258C (zh) 2001-12-26 2008-03-05 松下电器产业株式会社 光掩模、光掩模的制成方法以及使用该光掩模的图案形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315845A (ja) * 1989-06-14 1991-01-24 Hitachi Ltd マスク及びマスク作製方法
US5302477A (en) * 1992-08-21 1994-04-12 Intel Corporation Inverted phase-shifted reticle
JPH09269590A (ja) * 1996-03-29 1997-10-14 Nec Corp フォトマスク及びフォトマスクの製造方法
JPH1048806A (ja) * 1996-08-01 1998-02-20 Nec Corp フォトマスク及びその製造方法、フォトマスクブランクス
JP2000019710A (ja) * 1998-07-07 2000-01-21 Hitachi Ltd 半導体集積回路装置の製造方法
US6326107B1 (en) * 1999-03-19 2001-12-04 Sharp Kabushiki Kaisha Phase shift mask and process for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1408373A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378198B2 (en) 2001-12-26 2008-05-27 Matsushita Electric Industrial Co., Ltd. Photomask
US7449285B2 (en) 2001-12-26 2008-11-11 Panasonic Corporation Method for forming pattern
US7501213B2 (en) 2001-12-26 2009-03-10 Panasonic Corporation Method for forming generating mask data
US7569312B2 (en) 2003-02-17 2009-08-04 Panasonic Corporation Mask data creation method
US7524620B2 (en) 2003-02-17 2009-04-28 Panasonic Corporation Pattern formation method
US7332250B2 (en) 2003-06-24 2008-02-19 Matsushita Electric Industrial Co., Ltd. Photomask
DE10359991B4 (de) * 2003-09-30 2006-05-11 Infineon Technologies Ag Phasenschiebermaske
DE10359991A1 (de) * 2003-09-30 2005-05-12 Infineon Technologies Ag Phasenschiebermaske
JP2009104195A (ja) * 2003-10-23 2009-05-14 Panasonic Corp マスクデータ作成方法
JP2005275138A (ja) * 2004-03-25 2005-10-06 Renesas Technology Corp 位相シフトマスクおよび、これを用いたパターン露光方法
WO2007102337A1 (ja) * 2006-03-06 2007-09-13 Matsushita Electric Industrial Co., Ltd. フォトマスク、その作成方法、そのフォトマスクを用いたパターン形成方法及びマスクデータ作成方法
US7897298B2 (en) 2006-03-06 2011-03-01 Panasonic Corporation Photomask, photomask fabrication method, pattern formation method using the photomask and mask data creation method
WO2007102338A1 (ja) * 2006-03-09 2007-09-13 Matsushita Electric Industrial Co., Ltd. フォトマスク、その作成方法及びそのフォトマスクを用いたパターン形成方法
US7771902B2 (en) 2006-03-09 2010-08-10 Panasonic Corporation Photomask, fabrication method for the same and pattern formation method using the same
JP2019012280A (ja) * 2018-09-19 2019-01-24 Hoya株式会社 フォトマスク、フォトマスクの製造方法、フォトマスクブランク及び表示装置の製造方法
TWI745873B (zh) * 2019-02-27 2021-11-11 日商Hoya股份有限公司 光罩、光罩之製造方法、及顯示裝置之製造方法

Also Published As

Publication number Publication date
KR100626937B1 (ko) 2006-09-20
US20060183033A1 (en) 2006-08-17
KR100568403B1 (ko) 2006-04-05
JP3984593B2 (ja) 2007-10-03
EP1408373A1 (en) 2004-04-14
JPWO2003062923A1 (ja) 2005-05-26
CN1633625A (zh) 2005-06-29
KR20060002043A (ko) 2006-01-06
EP1408373A4 (en) 2012-01-25
US7449285B2 (en) 2008-11-11
US7378198B2 (en) 2008-05-27
TW576946B (en) 2004-02-21
KR20040030061A (ko) 2004-04-08
KR100573048B1 (ko) 2006-04-26
US20060183032A1 (en) 2006-08-17
CN100373258C (zh) 2008-03-05
KR20060002041A (ko) 2006-01-06
TW200303448A (en) 2003-09-01
KR20060002042A (ko) 2006-01-06
US7501213B2 (en) 2009-03-10
US20040121244A1 (en) 2004-06-24
US7060398B2 (en) 2006-06-13
US20060183034A1 (en) 2006-08-17
KR100568406B1 (ko) 2006-04-05

Similar Documents

Publication Publication Date Title
WO2003062923A1 (fr) Masque photolithographique, son procede de production et procede de formation de motif au moyen dudit masque
JP4324220B2 (ja) フォトマスク、その作成方法、そのフォトマスクを用いたパターン形成方法及びマスクデータ作成方法
JP4791198B2 (ja) フォトマスク、そのフォトマスクを用いたパターン形成方法及びマスクデータ作成方法
WO2002091079A1 (en) Photo mask, production method of the same, pattern forming method using the photo mask
JP2009104195A (ja) マスクデータ作成方法
JP4009219B2 (ja) フォトマスク、そのフォトマスクを用いたパターン形成方法及びマスクデータ作成方法
JP4314288B2 (ja) フォトマスク
JP3984626B2 (ja) パターン形成方法
JP3759138B2 (ja) フォトマスク
JP2004029746A (ja) フォトマスク、その作成方法、及びそのフォトマスクを用いたパターン形成方法
JP3984625B2 (ja) マスクデータ作成方法
JP3984624B2 (ja) パターン形成方法
JP3984627B2 (ja) フォトマスク
JP3738234B2 (ja) フォトマスク、その作成方法、及びそのフォトマスクを用いたパターン形成方法
JP2006338056A (ja) フォトマスク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 02805742.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003562723

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10474336

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002788862

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047000662

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002788862

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057024739

Country of ref document: KR