WO2003058213A1 - Procede et dispositif de reconnaissance de gaz etranger dans des systemes optiques de formation d'images et/ou de guidage de faisceaux - Google Patents

Procede et dispositif de reconnaissance de gaz etranger dans des systemes optiques de formation d'images et/ou de guidage de faisceaux Download PDF

Info

Publication number
WO2003058213A1
WO2003058213A1 PCT/EP2002/014806 EP0214806W WO03058213A1 WO 2003058213 A1 WO2003058213 A1 WO 2003058213A1 EP 0214806 W EP0214806 W EP 0214806W WO 03058213 A1 WO03058213 A1 WO 03058213A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave field
analysis
useful
protective gas
impurities
Prior art date
Application number
PCT/EP2002/014806
Other languages
German (de)
English (en)
Inventor
Gerhart Schroff
Michael Stetter
Original Assignee
Gerhart Schroff
Michael Stetter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerhart Schroff, Michael Stetter filed Critical Gerhart Schroff
Priority to AU2002367326A priority Critical patent/AU2002367326A1/en
Priority to EP02806029A priority patent/EP1463929A1/fr
Publication of WO2003058213A1 publication Critical patent/WO2003058213A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • B23K26/128Laser beam path enclosures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device

Definitions

  • the invention is based on the knowledge that in optical systems which contain gases between the individual optical components (such as mirrors, beam splitters, lenses, optical gratings or prisms), the optical properties depend on the refractive index of the gas used.
  • gases such as mirrors, beam splitters, lenses, optical gratings or prisms
  • the essential influence of foreign gases or other contaminants, which absorb these electromagnetic useful wave fields radiating through the optical system, can be seen in the fact that these foreign gases or contaminants locally or also in the entire beam path of the useful wave field lead to heating of the protective gas used and thus changing the refractive index of the gas and thus the imaging properties.
  • the protective gas surrounding the beam path and usually also the optical components is examined for such foreign gases or impurities by means of the photo-acoustic effect .
  • the shielding gas to be examined is exposed in an examination volume to an intensity-modulated electromagnetic analysis wave field emitted by a beam source (for example by a laser). If this wave field is selected so that at least frequency fractions of these waves can be absorbed by the foreign gases or contaminants, part of the molecules and / or atoms of the foreign gases or contaminants are absorbed by the electromagnetic see waves brought into an energetically excited state.
  • the excited molecules or atoms can release their excitation energy in whole or in part and convert them, for example, into translation, rotation and vibration energy of the collision partners.
  • the increase in the translation energy of the molecules or atoms present in the investigation volume means an increase in temperature and thus an increase in pressure (photoacoustic effect). Periodic pressure fluctuations result from the wave field radiated into the examination volume and changed in intensity periodically.
  • the great advantage of this type of determination of the influences of foreign gases or impurities is to be seen in the direct connection between the heating of the protective gas and the photoacoustic signals used to identify these influences. If, on the other hand, you wanted to work with mass spectrometers, you would first have to identify and clearly identify all foreign gases or impurities in question, their concentration should be determined and the expected thermal influences should be calculated using a comprehensive table.
  • the spectral composition can advantageously be chosen such that the analysis wave field contains all or at least some frequency components of the useful wave field and / or the useful wave field contains all and / or some frequency components of the analysis wave field.
  • a preferred embodiment of the invention provides that the spectral composition of the useful wave field and the analysis wave field match.
  • an analysis laser beam can be used to estimate the influence of foreign gases or impurities on the imaging properties of the laser cutting system (and thus on the cutting quality), which preferably only one, several or all of these laser lines or even more additional Contains laser lines.
  • the analysis laser beam contains all laser lines of the useful laser beam, but no further ones, then the intensity distribution of the individual lines of the analysis laser beam can advantageously be selected to be equal to the intensity distribution of the lines of the useful laser beam (with which the cut is made).
  • the light sources in the UV range can also be used in imaging systems of exposure systems, or the procedure can also be used in laser fusion arrangements, etc.
  • a preferred embodiment of the invention provides that the intensity-modulated analysis wave field is generated by preferably using a beam splitter or a partially transparent mirror or a mirror provided with a bore or a scattering body, such as a thin wire, for a low intensity component from the useful wave field is decoupled.
  • a further advantageous embodiment of the invention provides that the intensity of the analysis wave field is modulated by pulsing the excitation power of the beam source or by periodic masking, preferably by means of a mechanical interrupter wheel.
  • a second laser beam can also be coupled out of the laser very simply by not only laser power from the laser resonator at the output window at which the useful laser beam emerges from the laser decouples, but also on a resonator mirror or another component located in the resonator, such as an etalon, decouples another laser beam with low laser power.
  • a further advantageous embodiment of the invention provides that the examination volume is arranged within the imaging and / or beam guidance system in such a way that gas exchange is possible without great time delays.
  • the beam source 11 designed as a laser emits the useful wave beam 1 as a collimated, slightly divergent laser beam.
  • the beam path of the useful wave field 1 there is a beam splitter 6 and then the actual optical components 10 ′ of the optical imaging or beam guiding system 10, which direct the useful wave field 1 onto the surface 16 to be exposed, processed or evaporated, for example of wafers to be cut or should suitably image targets to be heated in laser fusion.
  • the analysis wave field 4 is coupled out of the useful wave field 1 by means of the beam splitter 6.
  • a decoupling window 19 and a modulation unit 12 are located one after the other in the beam path of the analysis wave field 4.
  • the analysis wave field 4 can emerge from the housing of the imaging or beam guidance system 10 through the decoupling window 19.
  • the analysis beam 4 can be modulated in intensity.
  • the detection chamber 3 is located in the beam path of the analysis wave field 4 'modulated in this way. It has an inlet and outlet window 18, 18', an interior 17 which can be filled with gas and an acoustic sensor 7 arranged in the interior and designed as a microphone.
  • the detection chamber 3 is provided with a filling connection 8 and an evacuation connection 9. It can be filled with the protective gas to be examined for foreign gases or impurities by means of these connections and, after an analysis, emptied, evacuated or also flushed. Since the intensity-modulated analysis wave field 4 'has the same spectral composition as the useful wave field 1 at all times, energy from the analysis wave field 4' is absorbed by the foreign gases or impurities contained in the protective gas if and only if energy from the useful wave field 1 is also absorbed.
  • the radiation energy absorbed when the detection chamber 3 is irradiated by the foreign gases or impurities contained in the protective gas leads to Photoacoustic effect on temperature changes and thus on pressure fluctuations with the frequency impressed by the modulation frequency, which can be converted at the sound sensor 7 into electrical output signals. Since the temperature changes generated are directly proportional to the pressure fluctuations generated under suitable conditions, such as a beam diameter, the dimensions of the detection chamber, the shielding gas used, the pressure set in the detection chamber and the external gases to be detected a photoacoustic signal 5 generated in this way is a unique feature for assessing the beam properties of the optical imaging or beam guidance system.
  • the evacuation connection 9 of the detection chamber is connected to a vacuum pump 24 via line 23 and is provided with an evacuation valve 23 '.
  • the shielding gas is analyzed for foreign gases and / or impurities as follows:
  • Evacuation valve 23 ' is opened until a sufficiently deep vacuum is established in the detection chamber 3 and / or the pressure falls below.
  • the vacuum can preferably be measured by means of a pressure sensor installed in the line 23 between the evacuation valve 23 'and the detection chamber 3;
  • the cleaning of the detection chamber 3 can then be controlled by a sufficiently deep evacuation by means of the evacuation valve 23 '.
  • a constant volume flow can be drawn through the detection chamber by attaching a throttle in the line between the vacuum pump 24 and the evacuation valve 23 'with the evacuation valve and the filling valve open, so that a continuous analysis of the protective gas can be carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

L'invention concerne un procédé et un dispositif de reconnaissance de substances étrangères dans la trajectoire des faisceaux de systèmes optiques de formation d'images ou de guidage de faisceaux (10), dans lesquels l'enceinte entourant la trajectoire des faisceaux ainsi que des composants optiques (10') est remplie ou purgée au moyen d'un gaz inerte. Selon l'invention, ledit gaz inerte est exposé à un champ d'ondes électromagnétiques analytique (4'), modulé en intensité, dans un volume test (3). Un signal photoacoustique (5) est produit pour détecter des impuretés ou des gaz étrangers au moyen d'un effet photoacoustique, lorsque les composantes de fréquences du champ d'ondes analytique (4') sont absorbées par les gaz étrangers et/ou les impuretés.
PCT/EP2002/014806 2002-01-08 2002-12-30 Procede et dispositif de reconnaissance de gaz etranger dans des systemes optiques de formation d'images et/ou de guidage de faisceaux WO2003058213A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002367326A AU2002367326A1 (en) 2002-01-08 2002-12-30 Method and array for the detection of foreign gas in optical imaging and/or beam control systems
EP02806029A EP1463929A1 (fr) 2002-01-08 2002-12-30 Procede et dispositif de reconnaissance de gaz etranger dans des systemes optiques de formation d'images et/ou de guidage de faisceaux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10200349.1 2002-01-08
DE10200349A DE10200349A1 (de) 2002-01-08 2002-01-08 Verfahren und Anordnung zur Fremdgaserkennung im Strahlengang optischer Abbildungs- und/oder Strahlführungssysteme

Publications (1)

Publication Number Publication Date
WO2003058213A1 true WO2003058213A1 (fr) 2003-07-17

Family

ID=7711622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/014806 WO2003058213A1 (fr) 2002-01-08 2002-12-30 Procede et dispositif de reconnaissance de gaz etranger dans des systemes optiques de formation d'images et/ou de guidage de faisceaux

Country Status (4)

Country Link
EP (1) EP1463929A1 (fr)
AU (1) AU2002367326A1 (fr)
DE (1) DE10200349A1 (fr)
WO (1) WO2003058213A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7304716B2 (en) 2002-11-14 2007-12-04 Infineon Technologies Ag Method for purging an optical lens

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029672B4 (de) * 2004-06-11 2007-04-12 Novapax Kunststofftechnik Steiner Gmbh & Co. Kg Vorrichtung zur Bearbeitung von Werkstücken
DE102004034832B4 (de) * 2004-07-19 2014-05-22 Gerhart Schroff Verfahren und Anordnung zur Gasanalyse
CN102066035B (zh) * 2008-06-20 2014-11-12 通快机床两合公司 激光加工设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035484A1 (fr) * 1998-01-07 1999-07-15 Stichting Voor De Technische Wetenschappen Procede de determination par spectroscopie d'un compose organique volatil dans un gaz rejete par un mammalien
WO2001001532A1 (fr) * 1999-06-23 2001-01-04 Lambda Physik Ag Dispositif de commande en ligne de la puissance de sortie d'un laser a ultraviolet a vide

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2820444C2 (de) * 1978-05-10 1982-04-29 Aleksandr Fedorovič Egorov Verfahren und Vorrichtung zur quantitativen Bestimmung des Fremdgas- bzw. -dampfgehaltes in einem Gasgemisch
DE3707622A1 (de) * 1987-03-10 1988-09-22 Pierburg Gmbh Verfahren und vorrichtung zum messen geringer gaskonzentrationen
DE3804134A1 (de) * 1988-02-11 1989-08-24 Felten & Guilleaume Energie Verfahren und einrichtung zum messen der konzentration eines fremdgases in einem gasgemisch unter nutzung eines moires
IT1248992B (it) * 1990-06-25 1995-02-11 Cise Spa Cella optoacustica per la misura di concentrazioni di specie chimiche in fluidi in genere
DE4126885A1 (de) * 1991-08-14 1993-02-18 Michael Rupp Verfahren und vorrichtung zum untersuchen von behaeltnissen auf fremdstoffe
DE4342624C1 (de) * 1993-12-14 1995-06-29 Deutsche Forsch Luft Raumfahrt Vorrichtung zum Erzeugen eines definierten Ozon-Fremdgas-Gemisches und Verfahren zum Bereitstellen eines definierten Ozon-Fremdgas-Gemisches in einem geschlossenen Behälter
DE4427314C2 (de) * 1994-08-02 1997-02-20 Graessle Walter Gmbh Vorrichtung zur Untersuchung von Behältern auf Fremdgase
US5929981A (en) * 1996-06-18 1999-07-27 Ohmeda Inc. System for monitoring contamination of optical elements in a Raman gas analyzer
DE19840345B4 (de) * 1998-09-04 2004-09-30 Dräger Medical AG & Co. KGaA Verfahren und Vorrichtung zum quantitativen Aufspüren eines vorgegebenen Gases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035484A1 (fr) * 1998-01-07 1999-07-15 Stichting Voor De Technische Wetenschappen Procede de determination par spectroscopie d'un compose organique volatil dans un gaz rejete par un mammalien
WO2001001532A1 (fr) * 1999-06-23 2001-01-04 Lambda Physik Ag Dispositif de commande en ligne de la puissance de sortie d'un laser a ultraviolet a vide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7304716B2 (en) 2002-11-14 2007-12-04 Infineon Technologies Ag Method for purging an optical lens

Also Published As

Publication number Publication date
EP1463929A1 (fr) 2004-10-06
DE10200349A1 (de) 2003-07-17
AU2002367326A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
DE102005030151B3 (de) Photoakustischer Freifelddetektor
DE102012217479B3 (de) Gassensor und Verfahren zu dessen Verwendung
EP0803055B1 (fr) Contrôle d'étanchéité photoacoustique avec un laser réglé
DE102012100794B3 (de) Vorrichtung und Verfahren zum Erfassen von Kontaminationen in einem Hydrauliksystem
EP1183523B1 (fr) Appareil d'analyse
DE3139917C2 (fr)
DE102006023061B4 (de) Gasdetektor mit akustischer Messzelle und selektiv adsorbierender Oberfläche
DE2537237A1 (de) Laserabsorptionsspektrometer und verfahren der laserabsorptionsspektroskopie
DE10392663T5 (de) Foto-akustisches Erfassungsverfahren zum Messen der Konzentration von Nicht-Kolenwasserstoff-Komponenten einer methanhaltigen Gasmischung
DE19853049A1 (de) Vorrichtung und Verfahren zum Feststellen eines Lecks sowie Verwendung einer solchen Vorrichtung für die Lecksuche
DE10051691A1 (de) Gasdetektor mit geschlossener Zelle
EP0550542B1 (fr) Dispositif pour la determination qualitative et/ou quantitative de la composition d'un echantillon a analyser
EP3671184A1 (fr) Dispositif de détection d'alcool doté de canaux de mesure redondants et procédé de mesure d'une concentration en éthanol dans l'air inhalé
DE3707622A1 (de) Verfahren und vorrichtung zum messen geringer gaskonzentrationen
DE3938142C2 (fr)
EP0427943B1 (fr) Capteur à fibres optiques servant à la détection d'effets photothermiques
WO2003058213A1 (fr) Procede et dispositif de reconnaissance de gaz etranger dans des systemes optiques de formation d'images et/ou de guidage de faisceaux
DE19632867A1 (de) Meßkopf für die photoakustische Spektroskopie
DE102004031643A1 (de) Nichtdispersiver Infrarot-Gasanalysator
DE3508027A1 (de) Verfahren und einrichtung zum ermitteln der konzentration oder der massenanteile bestimmter gase in gasmischungen
DE102005027023A1 (de) Verfahren und Anordnung zur integralen Dichtheitsprüfung
DE10321806A1 (de) Verfahren und Anordnung zur Fremdgaserkennung in optischen Abbildungs- und/oder Strahlführungssystemen
EP4019938A1 (fr) Cellule de mesure de fluide pour un capteur photoacoustique
DE10306900B4 (de) Spektrometer mit Laseranordnung zur Gasanalyse
DE102004034832B4 (de) Verfahren und Anordnung zur Gasanalyse

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002806029

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002806029

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002806029

Country of ref document: EP