WO2003057624A1 - Matiere spherique en nano-graphite et procede de preparation - Google Patents

Matiere spherique en nano-graphite et procede de preparation Download PDF

Info

Publication number
WO2003057624A1
WO2003057624A1 PCT/JP2002/013304 JP0213304W WO03057624A1 WO 2003057624 A1 WO2003057624 A1 WO 2003057624A1 JP 0213304 W JP0213304 W JP 0213304W WO 03057624 A1 WO03057624 A1 WO 03057624A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanographite
sphere
spherical
spheroid
graphite
Prior art date
Application number
PCT/JP2002/013304
Other languages
English (en)
French (fr)
Inventor
Sumio Iijima
Masako Yudasaka
Fumio Kokai
Kunimitsu Takahashi
Original Assignee
Japan Science And Technology Agency
Nec Corporation
Institute Of Research And Innovation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Nec Corporation, Institute Of Research And Innovation filed Critical Japan Science And Technology Agency
Priority to US10/500,798 priority Critical patent/US20050079354A1/en
Publication of WO2003057624A1 publication Critical patent/WO2003057624A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention of this application relates to a nanographite spherical body and a method for producing the same. More specifically, the invention of this application relates to a nanographite spheroid, which is useful as an abrasive, a lubricant, etc., is chemically stable and soft, and is a fine sphere of the order of nanometers. The present invention relates to a method for producing a nanographite sphere that can be produced by controlling the diameter and shape.
  • these fine spherical bodies those made of metal are relatively easy to manufacture and have moderate hardness as abrasives, but they are easily oxidized and have poor chemical stability.
  • those made of ceramics have the drawbacks that they are easily damaged due to too high hardness and are easily broken due to brittleness, and that it is difficult to manufacture with controlled size. are doing.
  • Polymers have the disadvantage that they are soft and do not damage the object to be polished, but are susceptible to heat and mechanical shock. Each of these spheres is difficult to deform into another shape, and requires an adhesive or the like or a special heat treatment or the like to adhere to each other.
  • the invention of this application has been made in view of the above circumstances, and solves the problems of the prior art, and is useful as an abrasive, a lubricant, etc., and is chemically stable and soft. It is an object of the present invention to provide a nanographite sphere that is a fine sphere on the order of nanometers and a method for producing a nanographite sphere that can be manufactured by controlling its diameter and shape. Disclosure of the invention
  • the invention of this application provides the following inventions to solve the above-mentioned problems.
  • the invention of this application has a structure in which a plurality of polygonal pyramid-shaped multilayer graph eyes are arranged without any gaps around their vertices.
  • the present invention provides a nanographite spherical body characterized in that the nanographite spherical body has a hollow structure and has an outer shape as a whole or a part.
  • the invention of the present application relates to the nanographite sphere described above, and thirdly, a nanographite sphere having a maximum outer diameter of 1 to 100 nm.
  • a nanographite sphere characterized by a substantially elliptical sphere fourth: a nanographite sphere characterized by a substantially hemisphere
  • the present invention provides a nanonanographite sphere, wherein the c-axis of the graphite layer is at an angle of 90 ⁇ 30 ° with respect to the substantially spherical surface.
  • the invention of this application is, in a seventh aspect, a method for producing any one of the above-mentioned nanographite spheres, wherein at least 100 or more atoms or clusters of carbons Disclosed is a method for producing nanographite spheres, which is released into an inert gas atmosphere at 0 atm.
  • the invention of this application is directed to a method for producing a nanographite spheroid according to the invention described above, wherein, in an eighth aspect, C 0 is added to a carbon target in an inert gas atmosphere of 5 to 10 atm.
  • a manufacturing method characterized by controlling the maximum outer diameter of a nanographite spherical body by changing the diameter.
  • the invention of this application A method for producing a nanographite spherical body characterized in that the size and shape of the nanographite spherical body are changed by peeling off the graphite layer of the obtained nanographite spherical body.
  • the nanographite is characterized in that the graphite layer of the nanographite spheroid is peeled off to obtain a substantially spherical or substantially hemispherical nanographite spheroid.
  • the method for producing a spherical body is as follows.
  • a nanographite spherical body is characterized in that a graphite layer is peeled off by dispersing a nanographite spherical body in a liquid solvent and stirring.
  • the production method is, first, a nanographite spheroid characterized in that the nanographite spheroid is separated from the graphite layer by stirring the nanographite spheroid together with gas in a container and stirring.
  • the body manufacturing method Fig. 4 also provides a method for producing nanographite spheroids, characterized in that the graphite layer is peeled off by polishing the nanographite spheroid between two smooth surfaces. I do. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram schematically illustrating the (a) outer shape, (b) structural unit, and (c) structural unit cross section of a nanographite sphere provided by the invention of this application.
  • FIG. 2 is a diagram schematically illustrating a cross section of (a) a whole image, (b) a structural unit, and (c) a structural unit of a nanographite sphere provided by the invention of this application.
  • FIG. 3 is a photograph exemplifying a scanning electron microscope (SEM) image of the graphitic nanosphere of the invention of this application.
  • FIG. 4 is a diagram exemplifying a Raman spectrum of the graphite nanosphere of the invention of this application.
  • FIG. 5 is a photograph exemplifying a transmission electron microscope (TEM) image of the graphite eye nanosphere of the invention of this application.
  • TEM transmission electron microscope
  • FIG. 6 is a photograph exemplifying a transmission electron microscope (TEM) image of the graphitic nanosphere of the invention of this application.
  • TEM transmission electron microscope
  • the nanographite sphere provided by the invention of this application has a structure in which a plurality of polygonal pyramid-shaped multilayer graphites are arranged without gaps around their vertices. It is characterized by being substantially spherical as a part or part.
  • FIGS. 1 (a) to 1 (c) schematically illustrate an example of the structure of the nanographite sphere.
  • (a) is a diagram exemplifying the outer shape of the nanographite spherical body of the invention of this application.
  • (B) shows the shape of the multilayer graphite, which is a constituent unit of the nanographite sphere, and
  • (c) is a cross-sectional view thereof.
  • the nanographite spheroid of the invention of the present application is composed of, for example, a multilayer pyramid A-BCDEFG-like multilayer Daraphyte as shown in (b) as one constituent unit.
  • the apex A is the center and the bottom surface BCDDEF is on the outside, with no gaps between them.
  • the size of the bottom surface (for example, the length of BE) of this polygonal pyramid-shaped multilayer graph item is considered to be approximately 50 to 100 nm. As a whole, it is a nanometer with a diameter of about 1 to 100 nm, and has a substantially spherical shape as shown in (a). Note that the expression “substantially spherical” in the invention of this application is, to be precise, a substantially polyhedral shape (substantially polyhedron) and does not indicate an exact spherical shape.
  • the nanographite spheroid of the invention of this application is composed of a plurality of multilayer graphites, it can be regarded as substantially spherical as a whole, and the invention of this application as a novel Daraite structure Since the characteristic shape of the nanographite spheroid can be represented most appropriately, the expression of approximately spherical is used.
  • nanographite spherical body when the size, height, etc., of the bottom surface of each of the multilayer Daraphytes, which are constituent elements, are almost constant, the outer shape is substantially spherical as a whole as described above. Become. On the other hand, when the size and height of the bottom surface of each of the constituent multilayer graphites are different, nanographite spheres having a substantially spherical shape in part and various shapes as a whole are realized. Will be. For example, Physically, any substantially elliptical sphere or the like having a major axis of about 1 to 100 nm can be realized.
  • a nanographite having a peculiar shape such that a polygonal pyramid-shaped multilayer graphite as a constituent unit is partially omitted.
  • FIGS. 2 (a) to (c) schematically show another example of the structure of the nanographite spherical body of the invention of the present application. did.
  • the nanographite sphere has a multilayer graphite, which is a constituent element, in the shape of a truncated pyramid HIJKLM-BCDDEFG. In other words, it is a shape in which the polygonal pyramid A—HIJKLM at the tip end is missing from the polygonal pyramid A—BCDDEFG in FIG.
  • the size (for example, the length of BE) of the bottom surface of the multi-layer graphite in the shape of a truncated polygonal pyramid is considered to be approximately 50 to 10 Onm, as described above. Then, this multi-layered frustum of polygonal pyramid shape is arranged without gaps, for example, with the top surface HIJKLM on the center side and the bottom surface BCDEFG on the outside, and as a whole, as shown in (a), the diameter is A hollow approximately spherical shape is formed at 1 to 1000 nm.
  • the crystal ab plane of the multilayer graphite is parallel to the bottom surface BCDEFG.
  • the crystal c-axis is at an angle of 90 ° ⁇ 30 ° with respect to the bottom surface BCDEFG. That is, in the nanographite spherical body of the invention of this application, the c-axis of the graphite layer is 9 0 Sat 3 0. It is characterized by being an angle between.
  • FIGS. 1 (b) and 2 (b) illustrate the case where the polygonal pyramid or the truncated polygonal pyramid of the multi-layered graphite that is a constituent unit has a hexagonal shape BCDDEFG.
  • the graphite crystal is hexagonal and each layer of the multilayer graphite is often hexagonal, and the force of the polygonal pyramid or the truncated pyramid of the graphite layer that is the constituent unit is
  • the bottom shape is not necessarily limited to a hexagonal pyramid. Also, in a single nanographite sphere, it is not necessary that the shape of each multilayer graphite, which is a constituent unit, be the same, and even if various polygonal pyramids or truncated polygonal pyramids are mixed. Good.
  • the multilayer graphite which is a constituent unit, may be connected by van der Waals force or may be chemically bonded.
  • the chemical bond may be, for example, the end of the graphite layer belonging to a different structural unit may be bonded by a carbon sp 2 6-membered ring bond, or a bond other than the sp 2 6-membered ring bond. They may be connected via a mode.
  • the nanographite sphere as described above can be produced by the method for producing nanographite of the present invention. That is, the method for producing a nanographite spheroid of the invention of the present application is characterized in that atoms or clusters of carbon at 100 or more are released into an inert gas atmosphere at 5 to 10 atm. And
  • the 1 0 0 0 or more atoms or clustered carbon are, for example, the in an inert gas atmosphere of 5-1 0 atm, etc. be generated by irradiation of C 0 2 laser foremost carbon target Bok Is exemplified as a suitable example.
  • the inert gas for example, a rare gas such as He, Ar, or Ne can be used.
  • the maximum outer diameter of the nanographite spherical body can be controlled by changing the type, pressure, or temperature of the inert gas. For example, as the type of inert gas becomes smaller, the pressure of the inert gas becomes lower in the range of about 5 to 10 atmospheres, and the temperature of the inert gas becomes 170,000.
  • T Spherical nanographite spheres obtained by lowering in the range of about 20 The maximum outer diameter of the body can be reduced.
  • the substantially spherical nanographite sphere of the invention of this application and the substantially spherical nanographite sphere having a hollow structure can be obtained at the same time.
  • the nanographite spherical body of the invention of this application can be manufactured in various shapes such as a substantially elliptical sphere and a hemisphere in addition to a substantially spherical shape due to its structure.
  • a roughly elliptical nanographite sphere is manufactured by peeling the surface layer of a multilayer graphite, which is a component of the roughly spherical nanographite sphere, into an overall elliptical sphere. can do.
  • a nanographite sphere having an arbitrary size and shape can be obtained depending on the number of peeled graphite layers and the peeling position.
  • a nanographite sphere having a smaller maximum outer diameter can be produced by uniformly peeling off the graphite layer on the surface of the substantially spherical nanographite sphere. It is also possible to manufacture a hemispherical nanographite sphere or the like by peeling off, for example, about a hemisphere of a polygonal pyramid-shaped graphite layer which is a constituent element of the nanographite sphere. is there.
  • Various methods can be considered as means for peeling off the graphite layer. For example, by dispersing the nanographite spheres in a liquid solvent and stirring vigorously with a shaker or the like, one to several layers of the graphite layer on the surface can be peeled off.
  • the liquid solvent in this case include inorganic solvents such as water, carbon disulfide, and acids; hydrocarbons such as benzene, toluene ', and xylene; organic solvents such as alcohols, ethers, and derivatives thereof; and methyl methacrylate.
  • Polymers such as (PMMA), polyethylene (PE), and polyvinyl chloride (PVC) and mixtures thereof can be used.
  • Another alternative is to use a nanodalla between two smooth surfaces, for example. By placing the spherical spheres between them and polishing the nanographite spheres to move these two smooth surfaces, one to several layers of the graphite layer on the surface can be peeled off .
  • nanographite spheres of various shapes can be manufactured.
  • the nanographite sphere of the invention of the present application obtained in this manner can be easily controlled with a maximum outer diameter of 1 to 100 nm, and is a novel nanometer order fine particle.
  • Various applications are possible as spherical bodies.
  • the nanographite sphere has a graphite layered structure, so that it is stable at high temperatures and has excellent chemical corrosion resistance. Further, it is not as hard and brittle as ceramics, not as soft as polymers, and has appropriate hardness and mechanical strength. Therefore, the nanographite spheres of the invention of this application are useful, for example, as abrasives, lubricants, etc., and provide a completely new nanographite material.
  • Figure 3 shows a scanning electron microscope (SEM) image of the graphite nanospheres obtained when the argon atmosphere pressure was set to 8 atmospheres. The purity of the graphite nanospheres was 90%, and the yield was 90%.
  • Figure 4 shows the Raman spectrum of this graphite nanosphere.
  • Figures 5 and 6 show transmission electron microscope (TEM) images. In the Raman spectrum shown in Fig. 4, peaks peculiar to graphite are observed at around 158,2, 350 cm- 1 and it was confirmed that this graphite nanosphere was formed from the graphite. Was. From Figs. 5 and 6, it was confirmed that there were several graphite planes on the surface of the nanographite sphere. From the intensity ratio of the two peaks in the Raman spectrum, the size of the graphite plane was estimated to be about 50 to 10 O nm, which was consistent with the TEM image in FIG.
  • SEM scanning electron microscope
  • nanographite spheres that are useful as abrasives, lubricants, etc., are chemically stable, soft, and fine spheres in the order of nanometers, and their diameters and shapes
  • the present invention provides a method for producing a nanographite sphere that can be produced by controlling the temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

明 細 書 ナノグラフアイ 卜球状体とその製造方法 技術分野
この出願の発明は、ナノグラフアイ 卜球状体とその製造方法に関 するものである。 さ らに詳しく は、 この出願の発明は、 研磨材、 潤 滑材等として有用で、 化学的に安定で柔らかく、 ナノメー トルオー ダ一の微細な球状体であるナノグラフアイ ト球状体と、その直径お よび形状を制御して製造することのできるナノグラフ アイ ト球状 体の製造方法に関するものである。 背景技術
従来より、 研磨材あるいは潤滑材等として、 金属、 セラミ ックス あるいは高分子からなるナノメー トルオーダ一の微細な球状体が 使用されている。
これらの微細な球状体のうち、 金属製のものは、 製造が比較的容 易で、 研磨材等として適度な硬度を有しているものの、 酸化され易 く、 化学的安定性に乏しいといった欠点がある。 また、 セラミ ック ス製のものは、硬度が高すぎるために被研磨物等を傷をつけやすく また脆いために割れやすく、さらには大きさを制御して製造するの が難しいといった欠点を有している。そして高分子製のものについ ては、 柔らかいために被研磨物等を傷つけないものの、 熱や機械的 衝撃に弱いといった欠点がある。 そして、 これらの球状体はいずれ も、 他の形状に変形することが困難であり、 また互いを接着するた めには接着剤等や、 特別な熱処理等を必要としていた。
そこで、 この出願の発明は、 以上の通りの事情に鑑みてなされた ものであり、 従来技術の問題点を解消し、 研磨材、 潤滑材等と して 有用で、 化学的に安定で柔らかく、 ナノメー トルオーダーの微細な 球状体であるナノグラフアイ ト球状体と、その直径および形状を制 御して製造することのできるナノ グラフアイ 卜球状体の製造方法 を提供することを課題としている。 発明の開示
そこで、 この出願の発明は、 上記の課題を解決するものと して、 以下の通りの発明を提供する。
すなわち、 まず第 1 には、 この出願の発明は、 複数の多角錐状の 多層グラフ アイ 卜がその頂点を中心にして互いに隙間なく配置さ れた構造を有し、 外形が、 全体としてもしく は一部として略球形で あることを特徴とするナノグラフアイ ト球状体を、そして第 2 には 複数の多角錐台状の多層グラフアイ トがその頂面を中心側にして 互いに隙間なく配置された構造を有し、外形が全体としてもしくは 一部として、中空の略球形であることを特徴とするナノグラフアイ ト球状体を提供する。
そして、 この出願の発明は、 上記のナノグラフアイ 卜球状体につ いて、 第 3 には、 最大外径が 1〜 1 0 0 0 n mであることを特徴と するナノグラフアイ 卜球状体を、 第 4には、 略楕円球形であること を特徴とするナノ グラフアイ ト球状体を、 第 5には、 略半球形であ ることを特徴とするナノグラフアイ 卜球状体を、 第 6 には、 グラフ アイ 卜層の c 軸が、 略球形の表面に対して 9 0 ± 3 0 ° の間の角度 であることを特徴とするナノナノグラフアイ ト球状体を提供する。 一方で、 この出願の発明は、 第 7 には、 上記いずれかのナノグラ フアイ ト球状体の製造方法であって、 1 0 0 0で以上の原子あるい はクラスター状の炭素を、 5〜 1 0気圧の不活性ガス雰囲気中に放 出することを特徴とするナノグラフアイ ト球状体の製造方法を提 供する。
さらに、 この出願の発明は、 上記の発明のナノグラフアイ ト球状 体の製造方法において、 第 8 には、 5〜 1 0気圧の不活性ガス雰囲 気中で、 炭素夕 ゲッ トに C 0 2 レーザーを照射することで、 1 0 0 0で以上の原子あるいはクラスター状の炭素を発生させること を特徴とする製造方法を、 第 9 には、 不活性ガスの種類、 圧力ある いは温度を変化させることでナノ グラフアイ 卜球状体の最大外径 を制御することを特徴とする製造方法を提供する。
加えて、 この出願の発明は、 第 1 0には、 上記いずれかの方法で 得られたナノグラフアイ ト球状体のグラフアイ ト層を剥離するこ とで、ナノグラフアイ ト球状体の大きさおよび形状を変化させるこ とを特徴とするナノグラフアイ ト球状体の製造方法を、第 1 1 には ナノグラフアイ ト球状体のグラフアイ ト層を剥離することで、略精 円球形あるいは略半球形のナノグラフアイ ト球状体とすることを 特徴とするナノグラフアイ ト球状体の製造方法を、 第 1 2には、 ナ ノグラフアイ ト球状体を液溶媒中に分散させて攪拌することで、グ ラファイ ト層を剥離することを特徴とするナノグラフアイ ト球状 体の製造方法を、 第 1 3には、 ナノグラフアイ ト球状体を気体とと もに容器中に閉じ込めて攪拌することで、グラフアイ ト層を剥離す ることを特徴とするナノグラフアイ ト球状体の製造方法を、第 1 4 には、ナノグラフアイ ト球状体を 2枚の平滑面の間に挟んで研磨す ることで、グラフアイ ト層を剥離することを特徴とするナノグラフ アイ ト球状体の製造方法をも提供する。 図面の簡単な説明
図 1 は、 この出願の発明が提供するナノグラフアイ ト球状体の ( a ) 外形、 ( b ) 構成単位、 および ( c ) 構成単位の断面を、 模 式的に例示した図である。
図 2は、 この出願の発明が提供するナノ グラフアイ ト球状体の ( a ) 全体像、 ( b ) 構成単位、 および ( c ) 構成単位の断面を、 模式的に例示した図である。
図 3は、この出願の発明のグラフアイ トナノ球状体の走査型電子 顕微鏡 ( S E M) 像を例示した写真である。
図 4は、この出願の発明のグラフアイ トナノ球状体のラマンスぺ ク トルを例示した図である。
図 5は、この出願の発明のグラフアイ トナノ球状体の透過型電子 顕微鏡 (T E M) 像を例示した写真である。
図 6は、この出願の発明のグラフアイ トナノ球状体の透過型電子 顕微鏡 (T EM) 像を例示した写真である。 発明を実施するための最良の形態
3
差眷ぇ ^ 則 26) この出願の発明は、 上記の通りの特徴を持つものであるが、 以下 にその実施の形態について説明する。
まず、 この出願の発明が提供するナノグラフアイ ト球状体は、 複 数の多角錐状の多層グラフ アイ トがその頂点を中心にして互いに 隙間なく配置された構造を有し、 外形が、 全体としてもしく は一部 として略球形であることを特徴としている。 図 1 ( a ) 〜 ( c ) に、 このナノ グラフアイ ト球状体の構造の一例を模式的に例示した。
( a ) は、 この出願の発明のナノグラフアイ ト球状体の外形を例示 した図である。 ( b ) は、 このナノグラフアイ ト球状体の構成単位 である多層グラフアイ トの形状を示し、( c )はその断面図である。
よ り具体的には、 この出願の発明のナノグラフアイ ト球状体は、 たとえば ( b ) に示すような多角錐 A— B C D E F G状の多層ダラ ファイ トが一つの構成単位となり、 この多層グラフアイ トが複数、
( a ) に示すようにその頂点 Aを中心とし、 底面 B C D E F Gを外 側にして互いに隙間なく配置されたような構造を有している。この 多角錐状の多層グラフアイ 卜の底面の大きさ (たとえば B Eの長 さ) は、 おおよそ 5 0〜 1 0 0 n m程度であると考えられる。 そし て、 全体としては、 直径が 1 〜 1 0 0 0 n m程度のナノ メー トルォ —ダ一で、 ( a ) に示したような略球形である。 なお、 この出願の 発明における略球形との表現は、 正確には略多面形 (略多面体) で あって、 厳密な球状を示すものではない。 しかし、 この出願の発明 のナノグラフアイ ト球状体は複数の多層グラフアイ トからなるた め全体としてほぼ球状とみることができること、 また、 新規なダラ フ アイ ト構造体としてのこの出願の発明のナノグラフ アイ ト球状 体の特徴的な形状を最も適切に表現し得ることから、略球形との表 現を使用している。
このナノグラフアイ ト球状体において、構成要素である多層ダラ フ ァイ ト各々の底面の大きさおよび高さ等がほぼ一定である場合 には、その外形は、前記のとおり全体として略球形となる。一方で、 構成要素である多層グラフアイ 卜の各々の底面の大きさや高さ等 が異なる場合には、 一部として略球形で、 全体としては様々な形状 のナノグラフアイ ト球状体が実現されることになる。 たとえば、 具 体的には、 長径が 1〜 1 0 0 0 n m程度の、 任意の略楕円球状等が 実現される。 また、 このような略球形あるいは略楕円形等のナノグ ラフ ァイ ト球状体において、構成単位である多角錐状の多層グラフ アイ 卜の一部が欠如したような特異な形状のナノ グラフアイ ト球 状体や、 たとえば半球分だけ欠如したような、 半球形のナノグラフ ァィ ト球状体等も実現される。
また、 図 1 ( a ) 〜 ( c ) に対応して、 図 2 ( a ) 〜 ( c ) に、 この出願の発明のナノグラフアイ ト球状体の構造の別の一例を模 式的に例示した。 このナノグラフアイ ト球状体は、 図 2 ( b ) に示 したように、構成要素である多層グラフアイ 卜が多角錐台 H I J K LM— B C D E F G状となっている。 すなわち、 図 1 における多角 錐 A— B C D E F Gから先端部の多角錐 A— H I J K L Mが欠如 した形状である。この多角錐台状の多層グラフアイ トの底面の大き さ (たとえば B Eの長さ) は、 上記と同じく、 おおよそ 5 0〜 1 0 O n m程度であると考えられる。そしてこの多角錐台状の多層ダラ フアイ 卜が、 たとえばその頂面 H I J K L Mを中心側にし、 底面 B C D E F Gを外側にして互いに隙間なく配置され、 全体としては、 ( a ) に示したように、 直径が 1〜 1 0 0 0 n mで中空の略球形を 形成している。
このような中空構造のナノグラフアイ ト球状体においても、前記 のとおり、構成要素である各多層グラフアイ 卜の底面の大きざおよ び形状等がほぼ一定である場合には全体としての外形は略球形と なり、構成要素である多層グラフアイ 卜の大きさおよび形状が異な る場合には、一部としての略球形で全体として様々な形状のナノグ ラフアイ ト球状体が実現される。 たとえば、 略楕円形や略半球形、 さらには特異な形状のナノグラフアイ ト球状体等が実現される。 そして、これらのこの出願の発明のナノグラフアイ ト球状体にお いて、 図 1 ( c ) および図 2 ( c ) に示したように、 多層グラファ ィ 卜の結晶 a b面は底面 B C D E F Gと平行であり、結晶 c軸は底 面 B C D E F Gに対して 9 0 ° ± 3 0 ° の間の角度となっている。 すなわち、 この出願の発明のナノグラフアイ ト球状体において、 グ ラフ ァイ ト層の c軸は、ナノグラフアイ 卜球状体の表面に対して 9 0 土 3 0。 の間の角度であることを特徴としている。
なお、 図 1 ( b ) および図 2 ( b ) では、 構成単位である多層グ ラフアイ トの多角錐あるいは多角錐台の底面形状が六角形 B C D E F Gの場合を例示している。 これは、 グラフアイ 卜の結晶が六方 晶であるために多層グラフアイ トの各層が六角形となることが多 いためである力 、構成単位であるグラフアイ ト層の多角錐あるいは 多角錐台の底面形状は必ずしも六角錐に限定されない。 また、 一つ のナノグラフアイ ト球状体において、構成単位である各多層グラフ アイ トの形状が同一である必要はなく、様々な多角錐状あるいは多 角錐台状のものが混在していてもよい。
またこの出願の発明のナノグラフアイ ト球状体において、構成単 位である各多層グラフアイ ト間は、ファンデルワールス力でつなが つている場合と、 化学結合している場合とがある。 この場合の化学 結合は、 たとえば、 異なる構成単位に属するグラフアイ ト層の端同 士が炭素の s p 2六員環結合で結合していてもよいし、あるいは s p 2六員環結合以外の結合様式を介して結合していてもよい。
以上のようなナノグラフアイ ト球状体は、この出願の発明のナノ グラフアイ トの製造方法により製造することができる。 すなわち、 この出願の発明のナノ グラフ アイ ト球状体の製造方法は、 1 0 0 0で以上の原子あるいはクラスター状の炭素を、 5〜 1 0気圧の不 活性ガス雰囲気中に放出することを特徵としている。
この 1 0 0 0で以上の原子あるいはクラスター状の炭素は、たと えば、 5〜 1 0気圧の不活性ガス雰囲気中で、 炭素ターゲッ 卜に C 0 2 レーザ一を照射することで発生させること等が、 好適な例とし て例示される。 不活性ガスとしては、 たとえば、 H e , A r , N e などの希ガス等を使用することができる。
また、 この出願の発明においては、 不活性ガスの種類、 圧力ある いは温度を変化させることで、ナノ グラフアイ ト球状体の最大外径 を制御することが可能とされる。 たとえば、 不活性ガスの種類を分 子量の小さいものにするほど、不活性ガスの圧力を 5〜 1 0気圧程 度の範囲で低くするほど、 また、 不活性ガスの温度を 1 7 0 0 T:〜 2 0で程度の範囲で低くするほど、得られるナノグラフアイ ト球状 体の最大外径を小さくすることができる。
これによつて、この出願の発明の略球状のナノグラフアイ ト球状 体および中空構造を有する略球状のナノグラフアイ ト球状体を同 時に得ることができる。
また、 この出願の発明のナノグラフアイ ト球状体は、 その構造か ら、 略球形以外にも、 たとえば、 略楕円球状や半球状等の多様な形 状のものを製造することができる。 たとえば、 略楕円球状のナノグ ラファイ ト球状体は、略球状のナノグラフアイ ト球状体における構 成要素である多層グラフアイ トの表面層を、全体として楕円球形に なるように剥がすことで、 製造することができる。 このとき、 剥が すグラフアイ ト層の数や剥がす位置により、任意の大きさおよび形 状のナノグラフアイ ト球状体を得ることができる。 もちろん、 略球 状のナノグラフアイ ト球状体の表面のグラフアイ ト層を均一に剥 がすことにより、さ らに最大外径の小さなナノグラフアイ ト球状体 を製造することもできる。 また、 このナノグラフアイ ト球状体の構 成要素である多角錐状のグラフアイ ト層をたとえば約半球分だけ 剥がすことにより、半球状のナノグラフアイ ト球状体等を製造する ことも可能である。
グラフアイ ト層を剥がす手段としては、様々な方法を考慮するこ とができる。 たとえば、 このナノグラフアイ ト球状体を液溶媒中に 分散させ、 振とう機等により激しく攪拌することで、 表面のグラフ アイ ト層を 1〜数層ずつ剥離することができる。この場合の液溶媒 としては、 水, 二硫化炭素, 酸等の無機溶媒、 ベンゼン, トルエン', キシレン等の炭化水素やアルコール、 エーテル、 およびその誘導体 等の有機溶媒、 ポリ メ夕ク リル酸メチル ( P M M A )、 ポリエチレ ン ( P E )、 ポリ塩化ビニル ( P V C ) 等の高分子およびこれらの 混合物等を使用することができる。 また、 ナノグラフアイ ト球状体 を、 不活性ガス、 窒素、 酸素等の気体とともに容器中に閉じ込めて 激しく攪拌することなどでも、表面のグラフアイ十層を 1〜数層ず つ剥離することができる。 これらの攪拌には、 たとえば、 回転数 1 5 0 0 r p m程度の破碎機等を利用することが簡便である。
さ らに別の手段としては、たとえば 2枚の平滑面の間にナノダラ フアイ ト球状体を挟むようにして置き、ナノグラフアイ ト球状体を 研磨するようにしてこの 2枚の平滑面を運動させることで、表面の グラフアイ ト層を 1〜数層ずつ剥離することができる。
以上のこの出願の発明の方法により、多様な形状のナノグラファ ィ ト球状体を製造することができる。
このようにして得られる この出願の発明のナノグラフアイ ト球 状体は、 最大外径が 1 〜 1 0 0 0 n mで容易に制御可能であり、 全 く新規なナノ メー トルオーダーの微細な球状体として様々な応用 が可能とされる。 また、 このナノグラフアイ 卜球状体は、 グラファ ィ ト層状構造を有するために高温で安定し、化学的耐食性にも優れ ている。 さ らにセラミ ックスほど硬度が高くなくて脆くなく、 高分 子ほど柔らかくなく、 適度な硬度と機械的強度とを備えている。 従 つて、 この出願の発明のナノグラフアイ ト球状体は、 たとえば、 研 磨材、 潤滑材等として有用であり、 さらに全く新しいナノグラファ ィ 卜材料を提供するものである。
以下に実施例を示し、この発明の実施の形態についてさらに詳し く説明する。 実施例
5 〜 1 0気圧で変化させたアルゴンガス雰囲気下で、炭素をター ゲッ 卜として 2 5 W / c m 2の高パワー C〇 2レーザーを照射し.、 4 0 0 O :以上の原子およびクラスター状の炭素を発生させたの ち急冷し、 生成物を回収した。
この生成物を電子顕微鏡で観察したところ、ほぼ均一な大きさの 略球形のナノグラフアイ ト球状体が得られていることが確認され た。 このナノグラフアイ ト球状体の直径は、 アルゴン雰囲気圧が 5 気圧から 1 0気圧へと高くなるにしたがって、 1 0 0 n mから 7 0 0 n m程度まで大きくなることが確認された。
アルゴン雰囲気圧を 8気圧としたときに得られたグラフアイ ト ナノ球状体の走査型電子顕微鏡 ( S E M ) 像を図 3 に示した。 グラ フアイ トナノ球状体の純度は 9 0 %で、 収率は 9 0 %であった。 ま た、 図 4にこのグラフアイ 卜ナノ球状体のラマンスぺク トルを、 図 5, 6に透過型電子顕微鏡 (T E M) 像を例示した。 図 4のラマン スペク トルでは、 1 5 8 2 , 1 3 5 0 c m— 1付近にグラフアイ ト 特有のピークがみられ、このグラフアイ トナノ球状体がグラフアイ 卜からできていることが確認された。 また、 図 5 , 6からは、 ナノ グラフアイ ト球状体の表面にはいく つかのグラフアイ ト面の存在 が確認された。 ラマンスぺク トルの 2つのピークの強度比より、 グ ラファイ ト面の大きさは 5 0〜 1 0 O n m程度と推定でき、図 6の T E M像と一致した。
もちろん、 この発明は以上の例に限定されるものではなく、 細部 については様々な態様が可能であることは言うまでもない。 産業上の利用可能性
以上詳しく説明した通り、 この発明によって、 研磨材、 潤滑材等 として有用で、 化学的に安定で柔らかく、 ナノメー トルオーダーの 微細な球状体であるナノグラフアイ 卜球状体と、その直径および形 状を制御して製造することのできるナノグラフアイ ト球状体の製 造方法が提供される。

Claims

請求の範囲
1 . 複数の多角錐状の多層グラフアイ トがその頂点を中心にして 互いに隙間なく配置された構造を有し、 外形が、 全体としてもしく は一部として略球形であることを特徴とするナノグラフアイ ト球 状体。
2 . 複数の多角錐台状の多層グラフアイ トがその頂面を中心側に して互いに隙間なく配置された構造を有し、外形が全体としてもし く は一部として、中空の略球形であることを特徴とするナノ グラフ アイ ト球状体。
3 . 最大外径が 1 〜 1 0 0 0 n mであることを特徴とする請求項 1 または 2記載のナノ グラフアイ ト球状体。
4 . 略楕円球形であることを特徴とする請求項 1 ないし 3 いずれ かに記載のナノグラフアイ ト球状体。
5 . 略半球形であることを特徵とする請求項 1ないし 3いずれか に記載のナノグラフアイ ト球状体。
6 . グラフアイ ト層の c 軸が、 略球形の表面に対して 9 0 ± 3 0 ° の間の角度である ことを特徴とする請求項 1 ないし 5 いずれ かに記載のナノナノグラフアイ 卜球状体。
7 . 請求項 1 ないし 6 いずれかに記載のナノグラフアイ ト球状体 の製造方法であって、 1 0 0 0で以上の原子あるいはクラスター状 の炭素を、 5 〜 1 0気圧の不活性ガス雰囲気中に放出することを特 徵とするナノグラフアイ ト球状体の製造方法。
8 . 5 〜 1 0気圧の不活性ガス雰囲気中で、 炭素ターゲッ 卜に C 0 2 レーザーを照射することで、 1 0 0 0で以上の原子あるいはク ラスター状の炭素を発生させることを特徴とする請求項 7 記載の ナノグラフアイ ト球状体の製造方法。
9 . 不活性ガスの種類、 圧力あるいは温度を変化させることでナ ノ グラフアイ ト球状体の最大外径を制御することを特徴とする請 求項 7 または 8記載のナノグラフアイ ト球状体の製造方法。
1 0 . 請求項 7ないし 9 いずれかの方法で得られたナノグラファ ィ ト球状体のグラフアイ ト層を剥離することで、ナノグラフアイ ト 球状体の最大外径および形状を変化させることを特徴とするナノ グラフアイ 卜球状体の製造方法。
1 1 . ナノグラフアイ ト球状体のグラフアイ ト層を剥離すること で、略楕円球形あるいは略半球形のナノグラフアイ ト球状体とする ことを特徴とする請求項 1 0 記載のナノグラフアイ ト球状体の製 造方法。
1 2 . ナノグラフアイ ト球状体を液溶媒中に分散させて攪拌する ことで、グラフアイ ト層を剥離することを特徴とする請求項 1 0 ま たは 1 1記載のナノグラフアイ ト球状体の製造方法。
1 3 . ナノ グラフアイ 卜球状体を気体とともに容器中に閉じ込め て攪拌することで、グラフアイ ト層を剥離することを特徴とする請 求項 1 0 または 1 1記載のナノ グラフアイ ト球状体の製造方法。
1 4 . ナノグラフアイ ト球状体を 2枚の平滑面の間に挟んで研磨 することで、グラフアイ ト層を剥離することを特徵とする請求項 1 0 または 1 1 記載のナノグラフアイ ト球状体の製造方法。
PCT/JP2002/013304 2002-01-08 2002-12-19 Matiere spherique en nano-graphite et procede de preparation WO2003057624A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/500,798 US20050079354A1 (en) 2002-01-08 2002-12-19 Nano-graphite spherical material and method for preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002001848A JP3598291B2 (ja) 2002-01-08 2002-01-08 ナノグラファイト球状体とその製造方法
JP2002-1848 2002-01-08

Publications (1)

Publication Number Publication Date
WO2003057624A1 true WO2003057624A1 (fr) 2003-07-17

Family

ID=19190675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013304 WO2003057624A1 (fr) 2002-01-08 2002-12-19 Matiere spherique en nano-graphite et procede de preparation

Country Status (3)

Country Link
US (1) US20050079354A1 (ja)
JP (1) JP3598291B2 (ja)
WO (1) WO2003057624A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095275A1 (ja) 2004-03-30 2005-10-13 Tokai Carbon Co., Ltd. カーボンナノバルーン構造体とその製造方法および電子放出素子

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1547674A1 (en) * 2003-12-23 2005-06-29 MediGene Oncology GmbH Method for producing colloidal nanoparticles
JP2006151797A (ja) * 2004-10-28 2006-06-15 Mitsubishi Chemicals Corp 球状炭素粒子の集合体およびその製造方法
CN1789365A (zh) * 2004-12-16 2006-06-21 鸿富锦精密工业(深圳)有限公司 抛光磨料及其制造方法
EP2186775A4 (en) 2007-08-27 2014-08-06 Toyo University PROCESS FOR DECOMPOSING A CARBON CONTAINER, METHOD FOR PRODUCING A CARBIDE MICROSTRUCTURE AND METHOD FOR FORMING A THIN CARBENT FILM
WO2009120804A2 (en) * 2008-03-28 2009-10-01 Applied Materials, Inc. Improved pad properties using nanoparticle additives
US9574155B2 (en) 2008-07-02 2017-02-21 Nanotech Lubricants, LLC Lubricant with nanodiamonds and method of making the same
US20100215960A1 (en) * 2009-02-24 2010-08-26 Toyota Motor Engineering & Manufacturing North America, Inc. Hollow carbon spheres
US10138129B2 (en) 2016-05-24 2018-11-27 Ford Global Technologies, Llc Carbon spheres and methods of making the same
JP6759070B2 (ja) * 2016-11-21 2020-09-23 大阪瓦斯株式会社 薄片状カーボンの製造方法
KR102050583B1 (ko) 2018-11-20 2019-12-03 주식회사 성진엔씨 구형 그라파이트 나노입자를 포함하는 윤활유

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3074170B1 (ja) * 1999-05-27 2000-08-07 大澤 映二 ナノサイズ真球状黒鉛製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KASUYA D. ET AL: "Formation of C60 using CO2 laser vaporization of graphite at room temperature", CHEM. PHYS. LETT., vol. 337, 2001, pages 25 - 30, XP004216535 *
KOKAI F. ET AL: "Emission imaging spectroscopic and shadowgraphic studies on the growth dynamics of graphitic carbon particles synthesized by CO2 laser vaporization", J. PHYS. CHEM. B., vol. 103, 1999, pages 8686 - 8693, XP002966054 *
SAITO Y. ET AL: "Growth and structure of graphitic tubules and polyhedral particles in arc-discharge", CHEMICAL PHYSSICS LETTERS, vol. 204, no. 3-4, 1993, pages 277 - 282, XP002966052 *
UGARTE D. ET AL: "Curling and closure of graphitic networks under electron-beam irradiation", NATURE, vol. 359, 1992, pages 707 - 709, XP002966053 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095275A1 (ja) 2004-03-30 2005-10-13 Tokai Carbon Co., Ltd. カーボンナノバルーン構造体とその製造方法および電子放出素子
EP1731483A1 (en) * 2004-03-30 2006-12-13 Hirofumi Takikawa Carbon nanoballoon structure and method for preparation thereof, and electron releasing element
EP1731483A4 (en) * 2004-03-30 2011-01-05 Hirofumi Takikawa NAO-BALLOON CARBON STRUCTURE AND PREPARATION METHOD AND ELECTRONIC RELEASE ELEMENT

Also Published As

Publication number Publication date
US20050079354A1 (en) 2005-04-14
JP3598291B2 (ja) 2004-12-08
JP2003206120A (ja) 2003-07-22

Similar Documents

Publication Publication Date Title
Zhai et al. Carbon nanomaterials in tribology
WO2003057624A1 (fr) Matiere spherique en nano-graphite et procede de preparation
TWI517774B (zh) 製造多層石墨烯被覆基板之方法
US10850496B2 (en) Chemical-free production of graphene-reinforced inorganic matrix composites
JP6618800B2 (ja) 粒子材料を乾式粉砕するプロセス
JP7062588B2 (ja) グラフェン材料のケミカルフリー製造
Ōsawa Monodisperse single nanodiamond particulates
TWI632112B (zh) Method for preparing nano graphene sheets
JPWO2005040065A1 (ja) カーボンナノチューブ分散複合材料の製造方法
WO2017215544A1 (zh) 一种疏水无机粉体材料的制备方法
KR101247125B1 (ko) 파괴강도가 개선된 세라믹 복합체의 제조방법
Kang et al. Pentagonal multi-shell Cu nanowires
JP2004323345A (ja) 炭素粒子およびその製造方法
Wang et al. Liquid metal combinatorics toward materials discovery
Behera et al. Nanomaterials
WO2003024585A1 (en) Method of producing nanoparticles
Saha et al. Classification of nanomaterials and their physical and chemical nature
Ōsawa Single-nano buckydiamond particles: Synthesis strategies, characterization methodologies and emerging applications
EP2455337B1 (en) Process for fabrication and surface modification of colloidal carbon spheres in supercritical media
JP4292292B2 (ja) ナノメートル構造体及びその製造方法
JP3381798B2 (ja) 炭素超微粒子の製造方法
KR101407710B1 (ko) 유성형 매체 분쇄기를 이용한 판상형 금속-탄소나노튜브 복합재 형성방법
Gür Tools and strategies for developing new materials
JP2010099800A (ja) ナノ材料の製造方法およびナノ材料
Li et al. Liquid Metal-Enabled Chemical Synthesis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10500798

Country of ref document: US

122 Ep: pct application non-entry in european phase