WO2003050939A1 - Procede d'identification du moment d'inertie d'un moteur asynchrone - Google Patents

Procede d'identification du moment d'inertie d'un moteur asynchrone Download PDF

Info

Publication number
WO2003050939A1
WO2003050939A1 PCT/CN2002/000853 CN0200853W WO03050939A1 WO 2003050939 A1 WO2003050939 A1 WO 2003050939A1 CN 0200853 W CN0200853 W CN 0200853W WO 03050939 A1 WO03050939 A1 WO 03050939A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
speed
torque
inertia
moment
Prior art date
Application number
PCT/CN2002/000853
Other languages
English (en)
French (fr)
Inventor
Hongxin Liu
Kemeng Zhang
Juntian Li
Guowei Liu
Original Assignee
Emerson Network Power Co. Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Network Power Co. Ltd filed Critical Emerson Network Power Co. Ltd
Priority to AU2002349460A priority Critical patent/AU2002349460A1/en
Publication of WO2003050939A1 publication Critical patent/WO2003050939A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/10Determining the moment of inertia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present invention relates to motor technology, and more particularly, to a method for obtaining a rotational inertia parameter of an asynchronous motor in a frequency control system of vector control or direct torque vector control.
  • the vector control of asynchronous motors has been widely used in the field of transmission.
  • the control idea is to decompose the stator current of the asynchronous motor into two parts: the excitation current component and the torque current component.
  • the field current component controls the magnetic flux of the motor and the output torque is controlled by controlling the torque current component of the predetermined current.
  • FIG 1 is the structure diagram of the most widely used speed vector control system.
  • the torque component command and the excitation current component command of the stator current in Figure 1 are the current values in the synchronous rotating coordinate system.
  • the torque current component command l t * is the output of the speed regulator, and the excitation current component command and the motor's current Carry current and field weakening control.
  • the adjustment of the torque current and the excitation current is performed in the synchronous rotation coordinate system.
  • the output of the two current regulators is the component of the stator voltage vector on the two coordinate axes in the synchronous rotation coordinate system.
  • the instantaneous values of the three-phase voltage instructions are obtained after coordinate transformation of the two voltage instruction components output by the current regulator.
  • These three instantaneous voltage values are the input instructions of the pulse width modulation (PWM) inverter.
  • PWM pulse width modulation
  • the detected three-phase current value undergoes coordinate transformation to obtain two current feedback components of the current in the synchronous rotation coordinate system, and these two current components are used as feedback for current closed-loop control.
  • the slip angular frequency is calculated according to the torque current component, and the feedback motor speed is added to obtain the rated synchronous rotation angular frequency.
  • the integral is used to obtain the rotation angle of the synchronous rotation coordinate system, which is used for the three-phase stationary coordinate system to the synchronous rotation coordinate system. Coordinate transformation.
  • FIG. 2 is a structural diagram of a torque vector control system. Torque vector control is different from speed vector The key of control lies in: The goal of speed vector control is speed, so its torque current component command l t * is calculated by the speed regulator through the speed closed loop, as shown in Figure 1; and torque vector control The torque is directly controlled, so the torque current component command l t * is directly given, as shown in FIG. 2.
  • the moment of inertia of the motor is a parameter related to the dynamic process of the motor, and the above-mentioned identification methods of the appropriate vector control of speed or torque vector are not mature. Because the former controls the motor speed abruptly and uses the motor motion equation to identify the moment of inertia, but the process current when the motor speed changes abruptly is very easy to cause overcurrent fault, so this method is difficult to be practical in engineering. Since the torque current component is directly given, the accuracy of identification is not high and it is difficult to be practical. Summary of invention
  • the technical problem to be solved by the present invention is to provide a simple, practical and high-precision method for identifying the rotational inertia of an asynchronous motor in view of the above-mentioned defects of the prior art.
  • the method for identifying the moment of inertia of an asynchronous motor of the present invention includes the following steps.
  • the motor is controlled to run at a constant angular acceleration from a first angular velocity ⁇ , no-load operation to a second angular velocity ⁇ 2 , and record the no-load running time At;
  • the speed vector control method is used to control the electric ft at a constant angular speed at no load and stable speed to determine the friction torque value
  • the method for identifying the moment of inertia provided by the present invention has high accuracy in identifying parameters, which can greatly improve the performance of vector control.
  • FIG. 1 is a structure diagram of a widely used asynchronous motor speed vector control system
  • FIG. 2 is a detailed illustration of the structure diagram of an asynchronous motor torque vector control system
  • the method of the present invention recognizes the moment of inertia of a motor, and comprehensively utilizes speed vector control and torque vector control. Because the torque current component in vector control is easy to control and thus easy to control the torque, the torque vector control method is used to control the motor to run at a constant angular acceleration, so that the motor runs from the first angular velocity to the second angular velocity ⁇ 2 without load. And record this period of no-load running time At. When calculating the moment of inertia, it is necessary to know the friction torque of the motor.
  • the present invention uses the characteristics of easy torque calculation in speed vector control. Under speed vector control, the motor is controlled to run at a certain constant angular speed at no load to obtain the torque at this time. The torque current component l t * can conveniently obtain the torque at this time, that is, the friction torque J.
  • J is the moment of inertia of the motor
  • is the instantaneous mechanical angular velocity of the rotor
  • T e is the instantaneous electromagnetic torque
  • is the load torque.
  • To is the friction torque.
  • the torque vector control method is used to identify the moment of inertia of the motor.
  • the structure of the torque vector control system is shown in Figure 2.
  • torque vector control given a constant torque current component l t A , the electromagnetic torque T e is constant, and the angular acceleration of the motor is also constant.
  • the electromagnetic torque can be calculated by the following formula: Among them: is the mutual inductance of the motor, L r is the rotor inductance, P is the number of pole pairs of the motor, ⁇ 2 is the rotor flux linkage (in the vector control of the rotor magnetic field orientation, the rotor flux linkage is controlled to be constant).
  • the method of the invention is successfully applied in a high-performance vector-controlled inverter.
  • the inverter uses a TMS320F240 chip as the core control CPU, and the output of the inverter controls the motor operation.
  • a torque vector control method is used first to control the motor to run at zero angular speed from a constant speed to the rated speed of the motor at a constant angular acceleration, and then record the running time; then switch to using speed vector control to control the motor at the rated speed. Run at constant speed at the speed, and measure the torque current component.
  • Use the formula (4) to calculate the friction torque of the motor, and then substitute it into the The moment of inertia of the motor is calculated in equation (5).
  • the above two embodiments recognize the moment of inertia at the time of starting up and the time of shutting down.
  • the control process is simple and can be obtained in the same acceleration (or deceleration) process of the motor.
  • the friction torque is not constant and is also affected by the speed of the motor.
  • the angular speed ⁇ 3 ( ⁇ + ⁇ 2 ) / 2 when the motor is running at no load and steady speed can be taken, for example, take ⁇ 3 is one-half of the rated speed, but this will increase the control flow.
  • a 7.5KW inverter with a motor of 2.2KW and 4KW was used to perform the inertia identification test, and the result of the identification was compared with the motor nameplate parameters.
  • the test motor nameplate data is shown in Table 1, and the result of the frequency converter inertia identification is shown in Table 2.

Description

异步电机转动惯量辩识方法 发明领域
本发明涉及电机技术, 更具体地说, 涉及一种在矢量控制或直接 转矩矢量控制的变频调速系统中获得异步电机转动惯量参数的方法。 发明背景
异步电机的矢量控制在传动领域得到了很广泛的应用,其控制思路 是将异步电机的定子电流分解为励磁电流分量和转矩电流分量两部 分, 仿照直流电动机的控制思路, 通过控制定子电流的励磁电流分量 来控制电动机的磁通和通过控制定予电流的转矩电流分量来控制输出 转矩。
图 1是应用最广泛的速度矢量控制系统结构图。 图 1 中定子电流 的转矩分量指令和励磁电流分量指令都是同步旋转坐标系中的电流 值, 转矩电流分量指令 lt*是速度调节器的输出, 而励磁电流分量指令 与电机的空载电流以及弱磁控制有关。 转矩电流和励磁电流的调节是 在同步旋转坐标系中进行的, 两个电流调节器的输出即为定子电压矢 量在同步旋转坐标系中两个坐标轴上的分量。 电流调节器输出的两个 电压指令分量经坐标变换后得到三相电压指令的瞬时值, 这三个电压 瞬时值就是脉冲宽度调制 (PWM)逆变器的输入指令。 另一方面, 检测 的三相电流值经过坐标变换得到电流在同步旋转坐标系中的两个电流 反馈分量, 这两个电流分量作为电流闭环控制的反馈。 另外, 根据转 矩电流分量计算出滑差角频率, 加上反馈的电机转速, 得到额定同步 旋转角频率, 积分得到同步旋转坐标系的旋转角度, 用于三相静止坐 标系到同步旋转坐标系的坐标变换中。
图 2是转矩矢量控制系统结构图。 转矩矢量控制区别于速度矢量 控制的关键在于: 速度矢量控制控制的目标是转速, 所以它的转矩电 流分量指令 lt*是通过速度闭环, 由速度调节器计算而来的, 如图 1所 示; 而转矩矢量控制直接对转矩进行控制, 故其转矩电流分量指令 lt* 是直接给定的, 如图 2所示。
然而, 电机的转动惯量是与电机的动态过程相关的参数,上述单独 的速度适量矢量控制或转矩矢量控制的辩识方法都不成熟。 因为前者 通过控制电机速度突变, 利用电机运动方程辩识转动惯量, 但电机速 度突变时的过程电流很^:, 容易产生过流故障, 所以这种方法很难在 工程上实用, 后一种方法由于转矩电流分量是直接给定的, 因此, 辩 识的精度不高, 也难以实用。 发明概述
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一 种简单实用且高精度的异步电机转动惯量辩识方法。
本发明的异步电机转动惯量辩识方法包括以下步骤,
采用转矩矢量控制方法,控制该电机以恒定角加速度从第一角速度 ω,空载运行到第二角速度 ω2, 记录该空载运行时间 At;
采用速度矢量控制方法, 控制该电 ft在一个恒定角速度 下空载 稳速运行, 确定摩擦转矩值;
根据所测得的运行时间 M和摩擦转矩 To得出该电机的转动惯量上 本发明提供的转动惯量辩识方法辩识参数精度高,可大大提高矢量 控制的性能。
下面将结合附图及实施例对本发明作进一步说明。 附图的简要说明
图 1是一种广泛应用的异步电机速度矢量控制系统结构图; 图 2是异步电机转矩矢量控制系统结构图 发明的详细说明
本发明方法辩识电机的转动惯量,综合利用了速度矢量控制和转矩 矢量控制。 由于矢量控制中转矩电流分量易于控制、 从而易于控制转 矩的特点, 使用转矩矢量控制方法控制电机以一个恒定角加速度运行, 使电机从第一个角速度 空载运行到第二角速度 ω2,并记录下这段空 载运行时间 At。 在计算转动惯量时, 需要知道电机摩擦转矩, 本发明 利用速度矢量控制中转矩易于计算的特点, 在速度矢量控制下, 控制 电机在一定恒定角速度下空载运行,便可取得这时的转矩电流分量 lt*, 可方便得出此时的转矩, 即摩擦转矩 J。
其辩识原理可由下面的电机的运动方程解释之:
(1) J_¾_ =Te-T,-To
dt 式中, J为电机的转动惯量,(^为转子的瞬时机械角速度, Te为瞬 时电磁转矩, η为负载转矩, 当电机空载运行时为负载转矩为零, 即 η=ο, To为摩擦转矩。 根据运动方程, 让电机按恒定角加速度从角速 度^运行到角速度 ω2, 记录这段运行时间 At, 贝 IJ:
(2) J d(°r =J ω2→2 =Te-T|-T0
dt At 可得出转动惯量为:
(3) J= At (Te -T, - To)
ω2-ω-ι 在本发明中,采用转矩矢量控制方法辩识电机的转动惯量,所采用 的转矩矢量控制系统的结构如图 2所示。 在转矩矢量控制中, 给定一 个恒定的转矩电流分量 lt A, 则电磁转矩 Te恒定、 电机运行角加速度也 恒定, 电磁转矩可由下式计算求得:
Figure imgf000006_0001
其中: 为电机互感, Lr为转子电感, P为电机极对数, Ψ2为转 子磁链 (在转子磁场定向的矢量控制中, 转子磁链被控制为常数)。
在本发明中保持电机空载运行, 则转动惯量相应为:
(5) J = _ At*( Te - To) _
(02— 1
由公式 (5)可见, 只要确定摩擦转矩 TQ, 转动惯量就能很容易地获 得。
在本发明中,计算摩擦转矩的方法是使用速度矢量控制方法,控制 电机空载稳定运行在一恒定角速度 ω3下,由于电机恒速运行,则 Δω=0, 此时的电磁转矩全部用来克服摩擦转矩, 即; T0= Te, 因此, 利用电磁 转矩的计算公式 (4),计算出电磁转矩 Te就可获得摩擦转矩值 To,其中 的转矩电流分量 lt A是通过速度闭环由速度调节器计算后输出的, 可直 接得到。 有了运行时间 At, 各角速度 ω2ωι的值和磨擦转矩 To就可 由公式 (4)和 (5)确定转动惯量 J。
本发明方法在高性能的矢量控制变频器中得到成功应用,该变频器 采用 TMS320F240芯片作为核心控制 CPU, 变频器的输出控制电机 运行。 根据本发明, 首先采用转矩矢量控制方法, 控制电机以一个恒 定角加速度从零速空载运行到电机额定转速, 记录下这段运行时间; 然后再切换到采用速度矢量控制, 控制电机在额定转速下恒速运行, 并测得转矩电流分量, 用公式 (4)计算出电机的摩擦转矩值, 再代入公 式 (5)中计算出电机的转动惯量。 当然, 也可以先控制电机在额定转速 下恒速运行测试摩擦转矩值, 再用转矩矢量控制方法控制电机从额定 转速减速到零, 记录这段减速时间, 然后计算转动惯量。 以上两种实 施方案在开机时和关机时辨识转动惯量, 控制流程简洁, 可在电机的 同一个加速 (或减速) 过程中获得。 实际上, 摩擦转矩并不恒定, 还 会受到电机转速的影响, 为了更精确地辨识转动惯量, 可取电机空载 稳速运行时的角速度 ω3=(ωι2)/2, 例如取 ω3为二分之一的额定转 速, 但这样会增加控制流程。
根据本发明用一台 7.5KW变频器分别带 2.2KW、 4KW的电机进 行了转动惯量辩识试验, 并把辩识的结果与电机铭牌参数相比较。 试 验电机铭牌数据如表 1所示,变频器转动惯量辩识的结果如表 2所示。
表 1 试验电机铭牌数据
Figure imgf000007_0001
表 2 变频器参数辩识结果
Figure imgf000007_0002
用来设计速度调节器的参数, 实现自适应控制。
实验表明,本发明提供的转动惯量辩识方法辩识参数精度高,可大 大提高矢量控制的性能。

Claims

权利要求
1.一种异步电机转动惯量辩识方法, 其特征在于, 包括以下步骤: 采用转矩矢量控制方法,控制该电机以一个恒定角加速度从第一角 速度 ωι空载运行到第二角速度 ω2, 记录这段空载运行时间 At;
采用速度矢量控制方法, 控制该电机在一个恒定角速度 ω3下空载 稳速运行, 并测取这时的转矩电流分量 lt*;
根据该电机在所述恒定角速度 ω3下空载稳速运行测得的转矩电流 分量 lt*确定出电机的摩擦转矩 To,再根据所记录的运行时间 At和确定 的摩擦转矩 To得到该电机的转动惯量 J。
2. 根据权利要求 1所述的异步电机转动惯量辩识方法,其特征在 于, 所述第一角速度 ωι为零, 第二角速度 ω2为电机的额定转速, 所 述恒定角速度 ω3也为电机的额定转速。
3. 据权利要求 2所述的异步电机转动惯量辩识方法,其特征在于, 当该电机从零速空载运行到电机额定转速,并记下这段运行时间 At后, 再切换到速度矢量控制, 即控制电机在所述额定转速下恒速运行, 并 得到所述转矩电流分量 lt*。
4. 根据权利要求 1所述的异步电机转动惯量辩识方法,其特征在 于, 所述第一角速度 为电机的额定转速, 第二角速度 ω2为零, 所 述恒定角速度 ω3也为电机的额定转速。
It*后,再采用转矩矢量控制方法控制电机从该额定转速减速到零,并记 录这段减速时间 At。
6.根据权利要求 1所述的异步电机转动惯量辩识方法, 其特征在 于, 所述恒定角速度 ω3=(ωι2)/2。
PCT/CN2002/000853 2001-12-05 2002-11-28 Procede d'identification du moment d'inertie d'un moteur asynchrone WO2003050939A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002349460A AU2002349460A1 (en) 2001-12-05 2002-11-28 Method for identifying the moment of inertia of asynchronous motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN01130057.4 2001-12-05
CNB011300574A CN1193497C (zh) 2001-12-05 2001-12-05 异步电机转动惯量辨识方法

Publications (1)

Publication Number Publication Date
WO2003050939A1 true WO2003050939A1 (fr) 2003-06-19

Family

ID=4669688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2002/000853 WO2003050939A1 (fr) 2001-12-05 2002-11-28 Procede d'identification du moment d'inertie d'un moteur asynchrone

Country Status (3)

Country Link
CN (1) CN1193497C (zh)
AU (1) AU2002349460A1 (zh)
WO (1) WO2003050939A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595327A (zh) * 2013-11-04 2014-02-19 朱淼 电气传动系统中电动机转动惯量的实验估计方法
CN109839592A (zh) * 2017-11-27 2019-06-04 维谛技术有限公司 一种识别同步电机静止/旋转的方法、相关设备及变频器

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100516802C (zh) * 2005-12-16 2009-07-22 比亚迪股份有限公司 汽车惯量的测定方法
IT1394426B1 (it) * 2009-06-05 2012-06-15 Reel S R L Unipersonale Metodo di controllo di un motore
CN101699763B (zh) * 2009-09-11 2011-09-14 上海新时达电气股份有限公司 交流永磁同步电机伺服系统的转动惯量辨识方法
EP2421145B1 (de) * 2010-08-16 2015-02-11 Baumüller Nürnberg GmbH Vorrichtung und Verfahren zur drehgeberlosen Identifikation elektrischer Ersatzschaltbildparameter eines Drehstrom-Asynchronmotors
CN102374924B (zh) * 2010-08-23 2014-02-05 中国航空工业集团公司航空动力控制系统研究所 一种他励直流电机转动惯量的测量方法
CN102269638B (zh) * 2011-04-27 2013-01-02 中国科学院光电技术研究所 伺服转台LuGre模型摩擦参数及转动惯量的一体化测量方法
JP6014401B2 (ja) * 2012-07-25 2016-10-25 東芝シュネデール・インバータ株式会社 電動機制御装置
CN103777143A (zh) * 2014-02-20 2014-05-07 深圳乐行天下科技有限公司 一种电机模拟惯性负载的测试方法
CN104596702A (zh) * 2014-12-23 2015-05-06 北京首钢股份有限公司 一种固有转动惯量的测量方法
US9843536B2 (en) * 2015-02-27 2017-12-12 Netapp, Inc. Techniques for dynamically allocating resources in a storage cluster system
CN105790665B (zh) * 2016-04-28 2019-02-22 广东威灵电机制造有限公司 电机转动惯量的测量方法、装置和电机控制系统
CN107565877B (zh) * 2016-06-30 2020-07-24 施耐德电气工业公司 用于控制电机的方法和设备
CN106998161B (zh) * 2017-03-31 2019-05-21 苏州伟创电气设备技术有限公司 一种伺服系统的转动惯量辨识方法及装置
CN108195512A (zh) * 2017-12-26 2018-06-22 顺丰科技有限公司 一种无人机电机转动惯量测量方法及测量装置
CN108427285B (zh) * 2018-04-09 2021-04-02 天津大学 面向发动机台架的转速自适应控制系统及其方法
CN109595191B (zh) * 2018-11-19 2020-08-25 深圳和而泰智能控制股份有限公司 一种变频吊扇的叶片识别方法及相应装置
CN114006560A (zh) * 2021-10-29 2022-02-01 国家管网集团川气东送天然气管道有限公司 一种基于矢量控制的电机转动惯量辩识方法、系统及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1021928C (zh) * 1987-04-10 1993-08-25 广东机械学院 异步电动机机械特性电脑测试仪
JPH06189576A (ja) * 1992-12-14 1994-07-08 Mitsubishi Heavy Ind Ltd 誘導電動機の制御装置
JPH06209589A (ja) * 1993-08-10 1994-07-26 Hitachi Ltd ベクトル制御装置の自動調整方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1021928C (zh) * 1987-04-10 1993-08-25 广东机械学院 异步电动机机械特性电脑测试仪
JPH06189576A (ja) * 1992-12-14 1994-07-08 Mitsubishi Heavy Ind Ltd 誘導電動機の制御装置
JPH06209589A (ja) * 1993-08-10 1994-07-26 Hitachi Ltd ベクトル制御装置の自動調整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU MINGJIN: "One new method of estimating the inertia moment of an engine", JOURNAL OF JINAN COMMUNICATIONS COLLEGE, vol. 7, no. 2, June 1999 (1999-06-01), pages 25 - 30 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595327A (zh) * 2013-11-04 2014-02-19 朱淼 电气传动系统中电动机转动惯量的实验估计方法
CN103595327B (zh) * 2013-11-04 2016-01-20 朱淼 电气传动系统中电动机转动惯量的实验估计方法
CN109839592A (zh) * 2017-11-27 2019-06-04 维谛技术有限公司 一种识别同步电机静止/旋转的方法、相关设备及变频器

Also Published As

Publication number Publication date
CN1354558A (zh) 2002-06-19
CN1193497C (zh) 2005-03-16
AU2002349460A1 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
WO2003050939A1 (fr) Procede d'identification du moment d'inertie d'un moteur asynchrone
CN102684592B (zh) 一种永磁同步电机转矩磁链控制方法
WO2022133892A1 (zh) 永磁同步电机的mtpa控制方法、装置、系统及设备
JP2008512078A (ja) 巻線型回転子同期電動機を制御するための方法
CN101383585A (zh) 一种用于交流异步电机的无速度传感器的矢量控制方法
JP5595835B2 (ja) 電動機の駆動装置
CN110661461B (zh) 一种压缩机永磁同步电机控制方法、装置及空调器
JP3771544B2 (ja) 永久磁石形同期電動機の制御方法及び装置
CN110530083B (zh) 一种压缩机电机控制方法、装置及空调器
CN102510260B (zh) 一种考虑铁耗的感应电机矢量控制方法
CN107947669B (zh) 一种混合励磁同步电机非线性逆推跟踪控制方法
JP2004032907A (ja) 永久磁石式同期モータの制御装置
JP2001352800A (ja) 同期電動機の定数同定方法および同期電動機の定数同定機能付き制御装置
CN108418485B (zh) 一种隐极式混合励磁电机恒功率损耗模型预测控制方法
Magzoub et al. Analysis and modeling of indirect field-oriented control for PWM-driven induction motor drives
CN105811842B (zh) 一种感应电动机前馈型间接矢量控制系统及其控制方法
CN105763126B (zh) 一种感应电动机反馈型间接矢量控制系统及其控制方法
JP2019134612A (ja) 電動機の制御装置
Jing et al. Optimization of speed loop control technology for permanent magnet synchronous motor servo system
WO2019008838A1 (ja) 誘導電動機の駆動装置及び駆動方法
Singh Performance evaluation of direct torque control with permanent magnet synchronous motor
CN111245320B (zh) 基于功率平衡的同步磁阻电机的控制方法和控制装置
JP2001238493A (ja) 発電機の制御装置
Huang et al. Research on the Inertia Identification of AC Servo System Based on Asynchronous Motor
Xuan et al. Discussion on Control Technology of Linear Motor Based on Speed Sensorless

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP