WO2003044129A1 - Un procedimiento para la oxidacion de compuestos de azufre de las fracciones gasolina, kerosene y diesel - Google Patents

Un procedimiento para la oxidacion de compuestos de azufre de las fracciones gasolina, kerosene y diesel Download PDF

Info

Publication number
WO2003044129A1
WO2003044129A1 PCT/ES2002/000546 ES0200546W WO03044129A1 WO 2003044129 A1 WO2003044129 A1 WO 2003044129A1 ES 0200546 W ES0200546 W ES 0200546W WO 03044129 A1 WO03044129 A1 WO 03044129A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
catalyst
oxidation
microporous
oxidizing agent
Prior art date
Application number
PCT/ES2002/000546
Other languages
English (en)
French (fr)
Inventor
Avelino Corma Canos
Marcelo Eduardo Domine
Cristina Martinez Sanchez
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200102669A external-priority patent/ES2192967B1/es
Priority claimed from ES200102754A external-priority patent/ES2192969B1/es
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Cientificas
Priority to EP02787975A priority Critical patent/EP1462504A1/en
Priority to AU2002354180A priority patent/AU2002354180A1/en
Publication of WO2003044129A1 publication Critical patent/WO2003044129A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/14Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one oxidation step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/12Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with oxygen-generating compounds, e.g. per-compounds, chromic acid, chromates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/04Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one extraction step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/08Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one sorption step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta

Definitions

  • the present invention belongs to the field of hydrocarbon refining in which heterogeneous catalysis methods are applied. More particularly, the invention is encompassed in the sector of desulfurization of fuel fractions by catalytic oxidative techniques. STATE OF THE PRIOR ART OF THE INVENTION
  • the predominant sulfur compounds are benzothiophene, dibenzothiophene and their respective alkylated derivatives. All of them cause corrosion in refining equipment and combustion engines, poisoning of catalysts used in refineries or catalytic converters of gaseous effluents. In addition, these compounds are one of the major causes of pollution, because when they are subject to combustion they become sulfur oxides, which released into the atmosphere give rise to the formation of oxy acids that contribute to the phenomenon known as acid rain.
  • ODS oxidative desulfurization processes
  • Heteropolyacids of the peroxotungstophosphate type in biphasic systems are capable of oxidizing mercaptans, dibenzothiophenes and alkyl dibenzothiophenes although they are less effective with the thiogenic and benzothiophene compounds (FM Collins et al. J. Mol. Ca tal. A: Chem., 117, 397, 1997).
  • the catalysts used in the process should contain the active component of the catalyst (Ti) only in network positions. This would be in accordance with previous work in which this material has been used for epoxidation reactions of olefins, and in which it is insisted that the active Ti is located in the network, being the Ti extrarred or Ti in non-reticular positions harmful to the epoxidation process (JC van der Wall et al., J " . Mol. Catal. A: Chem., 124, 137, 1997).
  • the present invention aims to provide a new process for the oxidation of sulfur compounds of fuel fractions selected from gasoline fractions, kerosene fractions and diesel fractions that overcome the drawbacks of the prior art.
  • the present invention relates to a process for the oxidation of sulfur compounds in fuel fractions selected from gasoline fractions, kerosene fractions and diesel fractions, comprising an oxidation step in which a reaction mixture containing the at least one of said fractions is subjected to an oxidation reaction of said sulfur compounds with at least one oxidizing agent selected from peroxides and hydroperoxides, in a single liquid phase and without using solvent, and in the presence of at least one micro solid catalyst and / or mesoporous selected from microporous molecular sieves, mesoporous molecular sieves and combinations thereof, and a separation stage in which unreacted products are separated from products that have reacted in the reaction stage, this procedure being characterized because molecular sieves they have a
  • the present invention is based on the fact that, surprisingly, the micro and / or mesoporous solid catalysts formed by micro and mesoporous molecular sieves, such as the zeolitic ones, which contain Ti at the same time in network positions and in non-reticular positions, allow the oxidation of thiogenic compounds with greater conversions by catalyst weight than for example zeolites in which only Ti exists in the network as indicated in document FR-A-2802939, and in the corresponding work published in ⁇ J. Catal. , 198, 179 (2001).
  • the resulting catalyst is an organic-inorganic hybrid material that contains Ti in network positions and in non-reticular positions, which not only produces excellent results when it works with peroxides or hydroperoxides as oxidizing agents and without any solvent, or with H 2 0 2 and a co-solvent, but also produces excellent levels of oxidation of sulfur compounds when working in a single phase and peroxides or hydroperoxides are used , such as tert-butyl hydroperoxide (TBHP), as an oxidizing agent.
  • TBHP tert-butyl hydroperoxide
  • organic hydroperoxides as oxidizing agents with the catalysts claimed in the present patent allows to carry out a process of selective oxidation of sulfur compounds in liquid fuels in which, in addition to eliminating subsequent stages of phase separation, it is produced as a byproduct derived from the use of TBHP as a tert-butanol oxygenating agent, a compound that increases the octane rating of gasoline.
  • the process of the present invention although also applicable to desulfurize unrefined crude oil fractions, is especially suitable for the oxidation of the sulfur compounds remaining in hydrotreated fractions of the gasoline, kerosene and diesel type, and with sulfur contents less than 300 ppm.
  • microporous molecular sieves and their organic-inorganic "composites”, all containing Si and Ti, are active and selective for the oxidation of sulfur compounds present in liquid fuels working with inorganic peroxides or hydroperoxides as oxidizing agents, such as for example H 2 0 2 , perborates, or complexes H 2 0 2 -Urea among others, in the absence of solvent, or by adding a cosolvent, such as acetonitrile; as well as when working in a single phase without solvent and using organic peroxides, such as tert-butyl hydroperoxide (TBHP).
  • inorganic peroxides or hydroperoxides as oxidizing agents, such as for example H 2 0 2 , perborates, or complexes H 2 0 2 -Urea among others, in the absence of solvent, or by adding a cosolvent, such as acetonitrile; as well as when working in a single phase without solvent and using organic peroxides
  • the process of the present invention even though it is also applicable to desulfurize fractions of unpretreated gasoline, kerosene and diesel, is especially suitable for the oxidation of the sulfur compounds remaining in hydrotreated fractions of the gasoline, kerosene and diesel type , and with sulfur contents less than 500 ppm.
  • organic or inorganic hydroperoxides such as t-butyl hydroperoxide, perborates, H 2 0 2 or H 2 0 2 -Urea complexes
  • the catalyst is a microporous solid selected from sieves microporous molecules, such as for example ITQ-7, UTD-1, Mordenite, Beta, ITQ-16 zeolites, all of them contain at least Si and Ti, and may contain Si-C bonds in their composition, and in which Ti is in network positions and in non-grid or extra-net positions, as opposed to what is reported in the document FR-A-28022939 which insists and specifies that the claimed Ti catalysts must contain the Ti only in network positions.
  • the catalyst is a mesoporous solid based on mesoporous molecular sieves such as for example MCM-41, MCM-48, SBA-15, it contains Ti in network positions (tetrahedral Ti) and Ti in extrarred positions (octahedral Ti ), and also containing in its composition Si-C links.
  • a convenient microporous molecular sieve has the following chemical formula in its calcined and anhydrous state: y (A 1 / n n + X0 2 ): t T0 2 : Si0 2 : x Ti0 2 in which:
  • - T represents at least one tetravalent element other than Si and Ti, - t is between 0 and 0.2, and
  • - x is between 0.02 and 0.12 (between 3 and 12% by weight as Ti0 2 )
  • Said microporous molecular sieve can be synthesized in the presence of compounds containing Si-C groups, or it is subjected to a post-synthesis silylation step creating Si-C bonds, and consequently a hybrid material or organic-inorganic composite.
  • microporous solid materials for example, materials with crystalline structure of the zeolites Beta, ITQ-7, Mordenite, UTD-1, may be mentioned.
  • Titanium is introduced in the synthesis stage, or also in a post-synthesis treatment.
  • the oxidizing agents are organic peroxides or hydroperoxides such as t-butyl hydroperoxide, or inorganic peroxides such as perborates, H 2 0 2 , perborates or complexes H 2 0 2 - Urea.
  • the catalyst can operate in a single-phase system where the liquid fuel and the oxidizing agent are mixed, from the point of view of the liquid components, and in any case without the need to use a solvent, as per example the acetonitrile described in document FR-A-2802939.
  • a solvent as per example the acetonitrile described in document FR-A-2802939.
  • the sulfur compounds present in gasoline fractions both light and heavy fractions
  • kerosene and diesel are transformed into other oxidized products with different boiling points and different polarities that have a boiling point above cutting of the fractions in question and / or that can be more easily extracted as for example by separation by adsorption, by distillation or by extraction following conventional techniques, or they can be selectively extracted.
  • the catalysts used in the process of the present invention that contain Ti in the network and extrared are also active and selective, and in any case more active than the Ti catalysts used in the process described in document FR-A-2802939, in which it is specified that the Ti must be only in network positions, when it is desired to work in the presence of solvent.
  • the oxidation of the sulfur compounds present in the liquid fuels is carried out by contacting a reactive mixture containing the fuel fraction and the organic peroxide or hydroperoxide, in a single phase and in the absence of solvent, or with a small amount of a solvent, such as acetonitrile, with the microporous solid catalyst, containing Ti in network and extra-net positions, and whether or not containing Si-C species, at a temperature between 10 and 120 ° C during reaction times that can vary between 2 minutes and 24 hours depending on the catalyst and the reaction conditions employed.
  • a solvent such as acetonitrile
  • the weight ratio of the fuel fraction to catalyst is between 5 and 600, and preferably between 10 and 300, the weight ratio being between the fuel fraction and oxidizing agent between 300 and 10, and preferably between 200 and 20
  • the hydrophilicity-hydrophobicity properties of the catalyst can be modified by the synthesis conditions by which the molecular sieves are obtained, or by anchoring organosiliceous compounds on the surface of the microporous solid in a post-synthesis treatment, the result of said anchoring being a hybrid catalyst or organic-inorganic composite that contains at least Si, and Ti in network and extra-net positions, and which may also contain silicon bonded to carbon.
  • titanium in molecular sieves containing pores with rings of 12 or more members, and containing some channel with a diameter greater than 0.6 nm can be made by direct synthesis, in which a titanium precursor is added to the synthesis gel, such that the final material contains Ti both in network positions as extrarred; or, also by the subsequent anchoring of titanium compounds on the surface of the materials.
  • microporous solid catalysts those formed by Ti-Beta with Ti in network and extra-net positions are described below. These catalysts show, through the use of UV-Visible and Raman spectroscopy, the presence of tetrahedrally coordinated Ti (network Ti), as well as octahedral Ti in extra-netted positions, or even Ti in the form of Ti0 2 .
  • Beta zeolite-based catalysts have an intense band in the UV-Vis spectrum centered around 220 nm, indicating the presence of Ti in tetrahedral environments and in network positions, and an additional wide band at 270-280 nm indicating the presence of Ti in octahedral environments, which correspond to Ti located outside the zeolitic network ( Figure 1) (JC van der Waal et al., J. Mol. Catal. A: Chem., 124, 137, 1997). Likewise, these catalysts have a Raman spectrum characterized by the presence of a band centered at 150 cm "1 attributed to the presence of Ti located outside the zeolitic network.
  • catalysts claimed in the present invention, which are more active and selective than the corresponding catalysts that only contain Ti in the network, as described in FR-A-2802939 for oxidation reactions of sulfides in general, and of alkyl or aryl sulfides, thiophene, alkyl thiophenes, benzothiophene, alkyl benzothiophenes, without being particularly limiting.
  • species containing Si-C bonds can be introduced at a stage during the synthesis, or at a post-synthesis stage, giving rise to the corresponding organic-inorganic microporous material that is used in the sulfur compound oxidation process. of the present invention.
  • microporous catalysts described herein can also be used to oxidize sulfur compounds, in a system that contains or not a cosolvent, and H 2 0 2 as an oxidant.
  • the activity of our catalyst containing Ti in network and extra-net positions, in the case of microporous materials, is superior to what is described in document FR-A-2802939 in which catalysts that only contain Ti are used in positions of net.
  • the oxidation of sulfur compounds, and more specifically thiogenic compounds present in petroleum derivatives can be carried out in a process in a single liquid phase and in the absence of solvent, using inorganic peroxides as oxidizing agents, such as H 2 0 2 - H 2 N-NH 2 complex (hydrogen peroxide - urea), or a perborate.
  • inorganic peroxides such as H 2 0 2 - H 2 N-NH 2 complex (hydrogen peroxide - urea), or a perborate.
  • a binder or a matrix that can be formed of silica, alumina, can be added to the catalyst formed by the microporous solid. kaolin, mixture of these, or any other component known in the art.
  • the purpose of the binder and / or matrix is to provide, among others, greater physical resistance to the catalyst.
  • the binder and / or matrix content is between 1 and 80% by weight.
  • the process for the oxidation of sulfur of the gasoline, kerosene and diesel fractions is characterized in that the oxidation stage is carried out in a discontinuous reactor, a continuous stirred tank reactor (CSTR), in a continuous fixed bed reactor, in a fluidized bed reactor, or a boiling bed reactor, using peroxides or hydroperoxides as oxidizing agents in a single organic phase and in the absence of solvent, or in two phases by adding a co-solvent.
  • CSTR continuous stirred tank reactor
  • the weight ratio of the fuel fraction to catalyst is between 5 and 600, and preferably between 10 and 300, the weight ratio being between the fuel fraction and oxidizing agent between 300 and 10 , and preferably between 200 and 20; while the weight ratio between the co-solvent and the fuel fraction is between 0 and 8, and preferably between 0 and 4.
  • the process temperature is between 10 and 120 ° C, and preferably between 20 and 80 ° C; and the reaction time ranges from 2 minutes to 24 hours.
  • the products of the oxidation reaction are separated by distillation, extraction with suitable solvent, or by adsorption for example on an adsorption column that allows selectively adsorbing the more polar oxidized compounds formed during the step oxidation of sulfur compounds; the remaining unreacted being able to be totally or partially recycled to the reactor.
  • solid mesoporous catalysts based on mesoporous molecular sieves, or containing micro and mesopores, claimed in the present invention, they have the following chemical composition in their calcined and anhydrous state: and (A 1 n n + X0 2 ) : t T0 2 : Si0 2 : x Ti0 2 where x can vary between 0.015 and 0.065; (2 and 8% by weight in the form of Ti0 2 ) and X corresponds to a trivalent element such as Fe, Al, B, Ga, Cr or a mixture thereof, being between 0 and 0.2 and preferably between 0 and 0.1 .
  • T corresponds to tetravalent elements other than Si and Ti, such as V, Sn, and t is comprised between 0 and 1, and preferably between 0 and 0.2.
  • organic groups R are introduced during the synthesis or in post-synthesis steps, so that Si-C bonds are generated, where R corresponds to organic compounds such as alkyl, aryl or polyaromatic groups, which may or may not be functionalized with groups acids, aminos, thiols, sulfonic or tetralkylammonics.
  • the oxidation of sulfur compounds can be carried out in a single liquid phase and in the absence of solvent, using hydroperoxides as oxidizing agents.
  • organic such as tert-butyl hydroperoxide, or peroxides inorganic, such as for example the complex H 2 0 2 - H 2 N-NH 2 (hydrogen peroxide-urea), or a perborate.
  • the oxidation stage can be carried out in reactors of the discontinuous type, continuous agitator tank (CSTR), continuous fixed bed, fluidized bed, or a reactor of a boiling bed, using hydroperoxides as organic oxidizing agents in a single organic phase and in the absence of solvent.
  • CSTR continuous agitator tank
  • the weight ratio of the fuel fraction to catalyst is usually between 5 and 600, and preferably between 10 and 300.
  • the weight ratio between the fuel fraction and oxidizing agent is conveniently between 300 and 10, and preferably between 200 and 20.
  • the process temperature is conveniently between 10 and 120 ° C, and preferably between 20 and 80 ° C; and the reaction time ranges from 2 minutes to 24 hours.
  • the products of the oxidation reaction can be separated by distillation, extraction with suitable solvent, or by adsorption in for example an adsorption column that allows selectively adsorbing the more polar oxidized compounds formed during the oxidation stage of the sulfur compounds; the remaining unreacted being able to be totally or partially recycled to the reactor.
  • Figure 1 shows UV-visible spectra of various Beta-type materials that are described in more detail in the examples
  • Figure 2 shows Raman spectra of various Beta-type materials that are described in more detail in Examples 1 and 2
  • Figure 3 shows UV-visible spectra of Ti-MCM-41 type materials that are described in more detail in Examples 6 and 7
  • Figure 4 shows a UV-visible spectrum of a Ti-Beta type material referred to in Examples 3 and 11
  • Figure 5 shows the results of an assay described in greater detail in Example 5
  • Figure 7 shows the results of the test of Example 14 concerning the oxidation of sulfur compounds present in Synthetic Gasoline (B) with H202 at 80 ° C during
  • compositions of the fractions of heavy gasoline, and simulated gasoline and diesel were those detailed in the following tables:
  • Synthetic gasoline (A) >>>>>>> Composition
  • Synthetic gasoline (B) >>>>>>> Composition
  • Example 1 Preparation of a microporous material (Beta type) containing Ti in net positions and extrared in its composition.
  • TEOS tetraethylorthosilicate
  • Example 2 Preparation of a microporous material (Beta type) containing Ti only in network positions in its composition.
  • TEOS tetraethylorthosilicate
  • TEAOH tetraethylammonium hydroxide
  • H 2 0 2 8.80 g of H 2 0 2 (35%).
  • 2.41 g of Ti tetraethoxide are added and the mixture is left stirring and evaporating the ethanol formed in the hydrolysis of TEOS.
  • 6.22 g of HF (aq., 48%) and a suspension of Beta zeolite seeds (0.64 g of desaluminized Beta zeolite in 3 g of water) are then added.
  • the molar composition of the gel is as follows:
  • Example 3 Preparation of a microporous material (Beta type) containing practically all the Ti located in extrarred positions in its composition.
  • 30 g of tetraethylorthosilicate (TEOS) and 32.99 g of tetraethylammonium hydroxide (TEAOH, 35% aqueous solution) are mixed in a container and the mixture is left stirring and evaporating the ethanol formed in the hydrolysis of TEOS.
  • 3.2 g of hydrofluoric acid (HF, 48% in water) are added and a gel is obtained.
  • a suspension of Beta zeolite seeds (0.36 g of desaluminized Beta zeolite in 1.5 g of water) is then added.
  • the molar composition of the gel is as follows: Si0 2 : 0.27 TEA 2 0: 0.54 HF: 7.5 H 2 0
  • the resulting gel is placed in a PTFE coated autoclave by heating at 140 ° C and under rotation (60 rpm) for 24 hours. Finally, the product is recovered by filtration and a Beta zeolite is obtained whose Ray diffraction pattern shows a crystallinity of 100%. The solid is calcined at 580 ° C for 3 hours maintaining high crystallinity.
  • the solid thus obtained (Beta zeolite) is impregnated with a Titanium compound on the surface, according to the following procedure: 5 g of the Beta zeolite obtained are impregnated with 50 g of a tetra-iso-proproxide solution Titanium ⁇ [(CH 3 -) 2 -CH-0] 4 Ti ⁇ in iso-propanol (0.5% P / P), with stirring for 2 hours. The resulting mixture is heated under vacuum with continuous stirring until the alcohol evaporates. The resulting solid is washed with dichloromethane and then calcined in an air atmosphere at 530 ° C for 3 hours. The X-ray diffraction pattern of the solid obtained indicates that the crystallinity of the material has been maintained, while its UV-Visible spectrum can be observed in Figure 4.
  • Example 4 Comparison: Activity for the selective oxidation of sulfur compounds present in Synthetic Gasoline (A) with TBHP and in a single liquid phase, in the absence of solvent, using a Ti-Beta catalyst containing Ti in network and extra-net positions (Example 1), a Ti-Beta catalyst containing Ti only in network positions (Example 2), and a catalyst with Ti only in extrared positions (Example 3).
  • Example 5 Influence of the network Ti content and extra-net on the activity of the catalysts for the selective oxidation of sulfur compounds present in a mixture of synthetic Gasoline (B) with TBHP as an oxidizing agent and in the absence of solvent.
  • Example 6 Preparation of a MCM-41 type mesoporous molecular sieve containing Ti in network positions and extrared in its composition.
  • TAB cetyltrimethylammonium bromide
  • the material can be activated by calcination or by chemical extraction.
  • 3.0 g of the solid material are placed in a tubular quartz reactor and a dry nitrogen stream of 50 ml-min "1 is passed while raising the temperature to 540 ° C to 3 ° C-min " 1 .
  • nitrogen is passed for 60 minutes, after which, the nitrogen flow is changed to a dry air flow of 50 ml-min "1.
  • the calcination is prolonged for an additional 360 minutes and the solid is cooled to Ambient temperature This heat treatment allows to completely remove all the organic occluded in the pores of the material
  • 5.5 g of the material are treated with 276.4 g of a solution of 0.05 M sulfuric acid in ethanol.
  • This solid has a specific surface area of 983 m 2 -g "1 , in addition to presenting bands in the UV-Vis spectrum centered at 220 nm and 270 nm, which correspond to species of tetrahedral (" networked Ti ”) and octahedral Ti (“Ti extrarred”) respectively (Figure 3).
  • Example 7 Preparation of a mesoporous molecular sieve type MCM-41 containing only tetrahedral Ti ("Ti in network”) in its composition.
  • TAB cetyltrimethylammonium bromide
  • the activation of the material can be done by calcination or chemical extraction.
  • 3.0 g of the solid material are placed in a tubular quartz reactor and a dry nitrogen stream of 50 ml-min "1 is passed while raising the temperature to 540 ° C to 3 ° C-min " 1 .
  • nitrogen is passed for 60 minutes, after which, the nitrogen flow is changed to a dry air flow of 50 ml-min "1.
  • the calcination is prolonged for an additional 360 minutes and the solid is cooled to Ambient temperature This heat treatment allows to completely remove all the organic occluded in the pores of the material
  • 5.5 g of the material are treated with 276.4 g of a solution of 0.05 M sulfuric acid in ethanol.
  • Example 8 Silylation of a material as described in examples 6 and 7. 2.0 g of one the samples obtained in examples 6 and 7 are dehydrated at 100 ° C and 10 "3 Torr for 2 hours. The sample is cooled, and at room temperature a solution of 1.88g of hexamethyldisilazane (CH 3 ) 3 is added Si-NH- Si (CH 3 ) 3 ) in 30g of toluene The resulting mixture is refluxed at 120 ° C for 90 minutes and washed with toluene The final product is dried at 60 ° C.
  • CH 3 hexamethyldisilazane
  • This solid has a specific surface area of 965 m 2 -g "1 , while the spectrum of 29 Si-MAS-NMR has a resonance band at -10 ppm assigned to the presence of Si-C bonds.
  • Example 9 Comparison: Activity for the selective oxidation of sulfur compounds present in HCN Gasoline with TBHP as an oxidizing agent and in a single liquid phase, in the absence of solvent, using as mesoporous materials containing Ti without silylation as catalysts (Example 6 and 7) and silylated (Example 8).
  • Ti-MCM-41 (Ex. 7) Ti-MCM-41 (Ex. 6) Ti-MCM-41- Sililada (Ex. 8)
  • Example 10 Comparison: Activity for the selective oxidation of sulfur compounds present in Diesel simulated with TBHP as an oxidizing agent and in a single liquid phase, in the absence of solvent, using as mesoporous materials containing Ti without silylation (Example 6) and silylated as catalysts (Example 8).
  • Example 11 Preparation of a microporous material (Beta type) containing practically all the Ti located in extrarred positions in its composition.
  • TEOS tetraethylorthosilicate
  • TEAOH tetraethylammonium hydroxide
  • a suspension of Beta zeolite seeds (0.36 g of desaluminized Beta zeolite in 1.5 g of water) is then added.
  • the molar composition of the gel is as follows:
  • the solid thus obtained (Beta zeolite) is impregnated with a Titanium compound on the surface, according to the following procedure: 5 g of the Beta zeolite obtained are impregnated with 50 g of a solution of titanium tetraisoisopropoxide ⁇ [( CH 3 -) 2 -CH-0] 4 Ti ⁇ in iso-propanol (0.5% P / P), with stirring for 2 hours. The resulting mixture is heated under vacuum with continuous stirring until the alcohol evaporates. The resulting solid is washed with dichloromethane and then calcined in an air atmosphere at 580 ° C for 3 hours. The X-ray diffraction pattern of the solid obtained corresponds to that shown in Figure 4 and indicates that the crystallinity of the material has been maintained.
  • Example 12 Comparison: Activity for the selective oxidation of Sulfur compounds present in Synthetic Gasoline (A) with H 2 0 2 and in the absence of solvent, using a Ti-Beta catalyst containing Ti in network and extra-net positions (Example 1 ), a Ti-Beta catalyst containing Ti only in network positions (Example 2), and a catalyst with Ti only in extra-net positions (Example 11).
  • Example 13 Influence of the network Ti content and extra-net on the activity of the catalysts for the selective oxidation of sulfur compounds present in a mixture of synthetic Gasoline (B) with H 2 0 2 as oxidizing agent and in the absence of solvent.
  • Example 14 Advantage of the catalyst containing Ti in the network and extra-net compared to that containing Ti only in the network, using H 2 0 2 at 35% by weight as an oxidizing agent and without using co-solvent.
  • Example 15 Advantage of the catalyst containing Ti in net and extrared compared to that containing Ti only in the network, using H 2 0 2 at 35% by weight as oxidizing agent and acetonitrile as solvent in different proportions.
  • Examples 1 and 2 30 mg of one of the microporous materials described (examples 1 and 2) are introduced into a glass reactor at 80 ° C containing 120 mg of hydrogen peroxide (H 2 0 2 , Sol. 35% by weight), and 15000 mg of a mixture composed of acetonitrile (co-solvent) and synthetic gasoline (B) in different weight ratios.
  • the reaction mixture is stirred and samples are taken at different reaction times in order to follow the kinetics thereof until 7 hours of reaction.
  • the catalysts used are described below:
  • Example 16 Comparison: Activity for the selective oxidation of sulfur compounds present in synthetic Diesel with H 2 0 2 and in the absence of solvent, using a Ti-Beta catalyst containing Ti in network and extra-net positions (Example 1), a Ti-Beta catalyst containing Ti only in network positions (Example 2). 30 mg of one of the materials described in examples 1 and 2, are introduced into a 80 ° C glass reactor containing 15000 mg of synthetic Diesel and 120 mg of hydrogen peroxide (H 2 0 2 , Sol. To 35 % in weigh). The reaction mixture is stirred and sample is taken at 7 hours of reaction. The samples are analyzed by GC with a special S detector, the initial and final compositions being in the content of non-oxidized sulfur compounds for the reaction mixtures and the conversions obtained as follows:
  • Example 17 Silylation of a material as described in example 1.
  • 2.0 g of the sample obtained in example 1 are dehydrated at 100 ° C and 10 "3 Torr for 2 hours.
  • the sample is cooled, and at room temperature is added a solution of 1.88g of hexamethyldisilazane (CH 3 ) 3 Si-NH-Si (CH 3 ) 3 ) in 30g of toluene
  • the resulting mixture is refluxed at 120 ° C for 90 minutes and washed with toluene. dry at 60 ° C.
  • the solid has bands in the UV-Vis spectrum centered at 220 and 270 nm, which indicate the presence of Ti in network and extra-net positions respectively.
  • the spectrum of 29 Si-MAS-NMR has a resonance band at -10 ppm assigned to the presence of Si-C bonds.
  • Example 18 Comparison: Activity for the selective oxidation of sulfur compounds present in LCN gasoline with TBHP as an oxidizing agent and in a single liquid phase, in the absence of solvent, using as microporous materials containing Ti without silylation (Example 1) and silylated as catalysts (Example 17).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Un procedimiento o para la oxidación de compuestos de azufre presentes en las fracciones gasolina, kerosene y diesel, que comprende una etapa oxidación en la que una mezcla de reacción se somete a una reacción de oxidación de dichos compuestos de azufre con un agente oxidante seleccionado entre peróxidos, peróxidos inorgánicos, peróxidos orgánicos y hidroperóxidos, en una fase líquida y sin utilizar disolvente, y en presencia de al menos un catalizador sólido micro y/o mesoporoso seleccionado entre tamices moleculares microporosos, tamices moleculares microporosos, tamices moleculares mesoporosos y combinaciones de los mismos y una etapa de separación en la que se separanproductos sin reaccionar de productos que han reaccionado en la etapa de reacción, teniendo los catalizadores micro y/o mesoporosos, que comprenden Ti incorporado en la red y en posiciones no reticulares, un diámetro de canal superior a 0, 6nm.

Description

TITULO DE LA INVENCIÓN
UN PROCEDIMIENTO PARA LA OXIDACIÓN DE COMPUESTOS DE AZUFRE
DE LAS FRACCIONES GASOLINA, KEROSENE Y DIESEL
CAMPO TÉCNICO DE LA INVENCIÓN La presente invención pertenece al campo del refino de hidrocarburos en el que se aplican métodos de catálisis heterogénea. Más particularmente, la invención se engloba en el sector de la desulfurización de fracciones de combustible mediante técnicas oxidativas catalíticas. ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓN
Los requerimientos legislativos que se han ido implantando a nivel internacional y nacional en los distintos países desarrollados del mundo con respecto a los combustibles líquidos a fin de reducir la contaminación del medioambiente, han llevado a la reducción paulatina de los contenidos de azufre en cortes de gasolina y diesel, y han estimulado un gran desarrollo de los procesos de hidrodesulfurización (HDS) , los cuales han dominado ampliamente la desulfurización de combustibles líquidos en el pasado. Uno de los objetivos más importantes en el área de la química del petróleo y del refino es, por tanto, la producción de combustibles líquidos con menores contenidos de Azufre, siendo de consenso general en la legislación de la mayoría de los países el llevar los niveles de reducción por debajo de las 10 ppm en todos los combustibles comerciales en los próximos 10 años. Menores contenidos de Azufre en los combustibles de transportación redunda en beneficios para la calidad del aire reduciendo las emisiones de SOx, e indirectamente también la cantidad de N0X por mejora en el comportamiento de los convertidores catalíticos que en ausencia de compuestos de Azufre funcionan mejor.
Sin embargo, su costo, prohibitivo para la mayoría de las pequeñas y medianas refinerías, y la necesidad de mayores disminuciones en los niveles de azufre en la composición de las fracciones gasolina y diesel, se han conjuntado para motivar el desarrollo de tecnologías alternativas, que por sí solas o en combinación con las ya existentes produzcan una fuerte disminución del contenido de S hasta un rango de 10-100 ppm. Actualmente, entre los compuestos de azufre más comunes presentes en cortes de gasolina se pueden citar sulfuros, disulfuros, mercaptanos, tiofeno y sus derivados alquilados, benzotiofeno entre otros. En el caso de las fracciones del destilado de petróleo normalmente utilizadas como alimentación diesel, cuya temperatura inicial de destilación es superior a 160°C normalmente, los compuestos de azufre predominantes son benzotiofeno, dibenzotiofeno y sus respectivos derivados alquilados. Todos ellos son causantes de corrosión en los equipos de refino y en los motores de combustión, de envenenamiento de catalizadores utilizados en refinerías o en convertidores catalíticos de efluentes gaseosos. Además, estos compuestos son una de las mayores causas de polución, debido a que sometidos a combustión se convierten en óxidos de azufre, los cuales liberados en la atmósfera dan lugar a la formación de oxi- ácidos que contribuyen al fenómeno conocido como lluvia acida.
Se han explorado diversos procesos alternativos o complementarios para desulfurización de gasolina y diesel, como adsorción directa (US-A-4 , 830, 733) , bio-procesado (US- A- 5,910,440; A. P. Borole et al. ACS Div. Pet . Chem. Preprints, 45, 2000) y oxidación selectiva (S. E. Bonde et al. ACS Div. Pet . Chem . Preprints , 44 [2 ] , 199, 1998; US-A- 3,919,405; *ΪUS-A-3 , 341 , 448 ) ; además de la aplicación de tecnologías alternativas a procesos ya conocidos, como es el caso del nuevo proceso OATS (proceso de alquilación de BP, Hydrocarbon Processing, Feb. 2001) .
Una de las alternativas que se están estudiando últimamente son los denominados procesos de desulfurización oxidativa (ODS) , en los cuales se trata de oxidar a los compuestos de azufre presentes en los combustibles líquidos de manera económica y suficientemente selectiva, incrementando así su polaridad y peso molecular para facilitar su posterior separación por extracción o destilación. Hasta el momento no ha sido desarrollado ningún proceso comercial de desulfuración oxidativa debido fundamentalmente a la combinación de requerimientos regulatorios y económicos a escala industrial, si bien existe una gran variedad de ellos en desarrollo (S. E. Bonde et al. ACS Div. Pet . Chem . Preprints , 45 , 375, 2000) . Se ha reportado la utilización de peroxiácidos orgánicos, como el ácido peroxiacético, para la eliminación de sulfuros, disulf ros y mercaptanos presentes en combustibles líquidos consiguiendo disminuciones del 95% en el contenido de azufre de algunas gasolinas trabajando a temperaturas entre 2 y 100 °C (S. E. Bonde et al. ACS Div. Pet . Chem . Preprints , 44 [2] , 199, 1998). Los heteropoliácidos del tipo peroxotungstofosfatos en sistemas bifásicos, con H202 como oxidante y agentes de transferencia de fase, son capaces de oxidar mercaptanos, dibenzotiofenos y alquil -dibenzotiofenos aunque son menos efectivos con los compuestos tiofénicos y benzotiofénicos (F. M. Collins et al. J. Mol . Ca tal . A : Chem . , 117, 397, 1997) .
La utilización de catalizadores sólidos del tipo Ti- silicalitas en líquidos que contienen compuestos de azufre consigue bajos niveles de conversión a las correspondientes sulfonas (JP-A-11140462) . Si bien los catalizadores del tipo TS-1 y TS-2, basados en titanosilicatos microporosos con estructura zeolítica (US-A-4 , 410 , 501) , permiten la oxidación selectiva de distintos sulfuros con agua oxigenada en dos fases, una formada por la fase hidrocarburo y otra la fase acuosa a las que se les añade un disolvente (R. S. Reddy et al. ". Chem . Soc . , Chem. Commun . , 84, 1992; V. Hulea et al. J. Mol . Catal . A : Chem . , 111 , 325, 1996), su pequeña apertura de poro imposibilita su uso en procesos en los que están involucradas moléculas más grandes como es el caso de los benzotiofenos, dibenzotiofenos, y sus respectivos homólogos alquil, dialquil y tri -alquil sustituidos, principales componentes de la fracción diesel, alquilados, y cuya oxidación es la más problemática.
Recientemente, se ha llevado a cabo la oxidación de compuestos de azufre presentes en kerosene en un sistema bifásico, que comprende una fase hidrocarbonada y una fase acuosa, en presencia de un agente oxidante soluble en la fase acuosa (H202 acuoso) , añadiendo acetonitrilo como codisolvente y utilizando la zeolita Ti-Beta y el material mesoporoso Ti-HMS como catalizadores (FR-A-2802939 ; V. Hulea et al., J. Catal . , 198 , 179, 2001). La presencia de un medio bifásico obliga a introducir un proceso subsecuente de separación de las fases, así como a la recuperación del disolvente que se encuentra en una fase junto al H20 y a la mayor parte de los productos de oxidación de los compuestos de azufre. En el documento FR- A-2802939, se indica específicamente que los catalizadores utilizados en el proceso, y más específicamente la zeolita Ti-Beta, debe contener el componente activo del catalizador (Ti) solamente en posiciones de red. Esto estaría de acuerdo con trabajos previos en los que este material se ha utilizado para reacciones de epoxidación de olefinas, y en los que se insiste en que el Ti activo se encuentra localizado en la red, siendo el Ti extrarred o Ti en posiciones no reticulares perjudicial para el proceso de epoxidación (J. C. van der Wall et al., J". Mol . Catal . A : Chem . , 124, 137, 1997) .
La necesaria presencia de disolventes en las reacciones de desulfuración del estado de la técnica y las tasas de conversión relativamente bajas de los procedimientos convencionales suponen inconvenientes que complican y encarecen la aplicación de tales reacciones y procedimientos a escala industrial . DESCRIPCIÓN DE LA INVENCIÓN
La presente invención tiene por objeto proporcionar un nuevo procedimiento para la oxidación de compuestos de azufre de fracciones de combustible seleccionadas entre fracciones gasolina, fracciones kerosene y fracciones diesel que supere los inconvenientes del estado de la técnica. Para lograr este objetivo, la presente invención se refiere a un procedimiento para la oxidación de compuestos de azufre en fracciones de combustible seleccionadas entre fracciones gasolina, fracciones kerosene y fracciones diesel, que comprende una etapa oxidación en la que una mezcla de reacción que contiene al menos una de dichas fracciones se somete a una reacción de oxidación de dichos compuestos de azufre con al menos un agente oxidante seleccionado entre peróxidos y hidroperóxidos, en una sola fase líquida y sin utilizar disolvente, y en presencia de al menos un catalizador sólido micro y/o mesoporoso seleccionado entre tamices moleculares microporosos, tamices moleculares mesoporosos y combinaciones de los mismos, y una etapa de separación en la que se separan productos sin reaccionar de productos que han reaccionado en la etapa de reacción, estando caracterizado este procedimiento porque los tamices moleculares tienen un diámetro de canal superior a 0.6 nm y comprenden al menos Si, y Ti incorporado en la red y en posiciones no reticulares. La presente invención se basa en que, sorprendentemente, los catalizadores sólidos micro y/o mesoporosos formados por tamices moleculares micro y mesoporosos, como por ejemplo los zeolíticos, que contienen al mismo tiempo Ti en posiciones de red y en posiciones no reticulares, permiten la oxidación de compuestos tiofénicos con mayores conversiones por peso de catalizador que por ejemplo zeolitas en las que sólo existe Ti en red tal y como se indica en el documento FR-A-2802939, y en el correspondiente trabajo publicado en <J. Catal . , 198 , 179 (2001) . Más aún, se ha encontrado que existe una zona de composiciones óptimas en referencia a la relación Ti extrarred / Ti en red en los catalizadores zeolíticos, siendo estos catalizadores capaces de funcionar en un sistema monofásico en lugar del sistema bifásico descrito en el documento FR-A-2802939, o en un sistema bifásico en el que se emplea un codisolvente, como por ejemplo acetonitrilo. Además, estos catalizadores son más activos y selectivos que los análogos conteniendo sólo Ti en red cuando se trabaja en un sistema bifásico, en este caso utilizando un codisolvente. También se ha observado que un catalizador basado en un material tipo "composite" formado por un componente orgánico unido al componente inorgánico formado por los tamices moleculares microporosos, es activo y más selectivo que el material inorgánico puro.
Finalmente, se ha observado que cuando se introducen enlaces Si-C en los catalizadores arriba definidos, el catalizador resultante que es un material híbrido orgánico- inorgánico que contiene Ti en posiciones de red y en posiciones no reticulares, que no solamente produce excelentes resultados cuando se trabaja con peróxidos o hidroperóxidos como agentes oxidantes y sin disolvente alguno, o con H202 y un codisolvente, sino que además produce excelentes niveles de oxidación de los compuestos de azufre cuando se trabaja en una sola fase y se utilizan peróxidos o hidroperóxidos, como por ejemplo el hidroperóxido de tert-butilo (TBHP) , como agente oxidante. La utilización de hidroperóxidos orgánicos como agentes oxidantes con los catalizadores reivindicados en la presente patente permite llevar a cabo un proceso de oxidación selectiva de compuestos de azufre en combustibles líquidos en el que, además de eliminar etapas posteriores de separación de fases, se produce como subproducto derivado de la utilización del TBHP como agente oxigenante tert-butanol , compuesto que eleva el octanaje de gasolinas. El proceso de la presente invención, aún cuando también es aplicable para desulfurar fracciones del crudo no refinadas, es especialmente adecuado para la oxidación de los compuestos de azufre remanentes en fracciones hidrotratadas del tipo gasolina, kerosene y diesel, y con contenidos de azufre menores de 300 ppm. Por otra parte, los tamices moleculares microporosos y sus "composites" orgánico-inorgánicos, todos ellos conteniendo Si y Ti, son activos y selectivos para la oxidación de compuestos de azufre presentes en combustibles líquidos trabajando con peróxidos o hidroperóxidos inorgánicos como agentes oxidantes, como por ejemplo H202, perboratos, o complejos H202-Urea entre otros, en ausencia de disolvente, o añadiendo un codisolvente, como por ejemplo acetonitrilo; así como cuando se trabaja en una sola fase y sin disolvente y utilizando peróxidos orgánicos, como por ejemplo hidroperóxido de tert-butilo (TBHP) . En este caso, el proceso de la presente invención, aún cuando también es aplicable para desulfurar fracciones de gasolina, queroseno y diesel no pretratadas, es especialmente adecuado para la oxidación de los compuestos de Azufre remanentes en fracciones hidrotratadas del tipo gasolina, queroseno y diesel, y con contenidos de Azufre menores de 500 ppm.
De acuerdo con la invención, como agentes oxidantes pueden emplearse hidroperóxidos orgánicos o inorgánicos, como por ejemplo hidroperóxido de t-butilo, perboratos, H202 o complejos H202 - Urea, Cuando el catalizador es un sólido microporoso seleccionado entre tamices moleculares microporosos, como por ejemplo zeolitas ITQ-7, UTD-1, Mordenita, Beta, ITQ-16, todos ellos contienen al menos Si y Ti, y pueden tener en su composición enlaces Si-C, y en los que el Ti está en posiciones de red y en posiciones no reticulares o de extrarred, en contraposición a lo reportado en el documento FR-A-28022939 en la que se insiste y especifica que los catalizadores de Ti reivindicados deben contener el Ti únicamente en posiciones de red. En el caso de que el catalizador sea un sólido mesoporoso basado en tamices moleculares mesoporosos tales como por ejemplo MCM-41, MCM- 48, SBA-15, contiene Ti en posiciones de red (Ti tetraédrico) y Ti en posiciones extrarred (Ti octaédrico) , y conteniendo además en su composición enlaces Si-C.
Un tamiz molecular microporoso conveniente tiene la siguiente fórmula química en su estado calcinado y anhidro: y (A1/n n+ X02) : t T02 : Si02 : x Ti02 en la que:
- X representa al menos un elemento trivalente,
- y está comprendido entre 0 y 0.2, - A representa cationes mono, di o trivalentes, o mezclas de éstos,
- n = 1, 2 ó 3,
- T representa al menos un elemento tetravalente distinto de Si y Ti, - t está comprendido entre 0 y 0.2, y
- x está comprendido entre 0.02 y 0.12 (entre 3 y 12 % en peso como Ti02)
Dicho tamiz molecular microporoso puede ser sintetizado en presencia de compuestos que contienen grupos Si-C, o bien se somete a una etapa de sililación postsíntesis creándose enlaces Si-C, y por consiguiente un material híbrido o composite orgánico- inorgánico.
Entre dichos materiales sólidos microporosos, se pueden citar por ejemplo, materiales con estructura cristalina de las zeolitas Beta, ITQ-7, Mordenita, UTD-1,
ITQ-7, ITQ-16 y en general sólidos microporosos que contienen canales con anillos de 12 o más miembros con diámetro de al menos unos de sus poros superior a 0.6 nm. El titanio se introduce en la etapa de síntesis, o también en un tratamiento posterior a la síntesis. Los agentes oxidantes son peróxidos o hidroperóxidos orgánicos como por ejemplo hidroperóxido de t-butilo, o peróxidos inorgánicos como por ejemplo perboratos, H202, perboratos o complejos H202 - Urea. En proceso de la presente invención, el catalizador puede funcionar en un sistema monofásico donde se mezclan el combustible líquido y el agente oxidante, desde el punto de vista de los componentes líquidos, y en cualquier caso sin la necesidad de utilizar un disolvente, como por ejemplo el acetonitrilo que se describe en el documento FR-A-2802939. Mediante esta oxidación selectiva, los compuestos de azufre presentes en fracciones de gasolina (tanto en las fracciones ligeras como pesadas) , kerosene y diesel se transforman en otros productos oxidados con diferente punto de ebullición y diferente polaridad que tienen un punto de ebullición por encima del corte de las fracciones en cuestión y/o que pueden ser más fácilmente extraídos como por ejemplo por separación por adsorción, por destilación o por extracción siguiendo técnicas convencionales, o pueden ser extraídos selectivamente. Mediante el procedimiento de la presente invención se consiguen altas conversiones y selectividades en la oxidación de dichos compuestos de azufre. Los catalizadores empleados en el procedimiento de la presente invención que contienen Ti en la red y extrarred, son también activos y selectivos, y en cualquier caso más activos que los catalizadores de Ti utilizados en el proceso descripto en el documento FR-A-2802939, en el que se especifica que el Ti debe estar únicamente en posiciones de red, cuando se desee trabajar en presencia de disolvente .
De acuerdo con la presente invención, la oxidación de los compuestos de azufre presentes en los combustibles líquidos se lleva a cabo poniendo en contacto una mezcla reactiva que contiene la fracción de combustible y el peróxido o hidroperóxido orgánico, en una sola fase y en ausencia de disolvente, o con una pequeña cantidad de un disolvente, como por ejemplo acetonitrilo, con el catalizador sólido microporoso, conteniendo Ti en posiciones de red y extrarred, y conteniendo o no especies Si-C, a una temperatura comprendida entre 10 y 120°C durante tiempos de reacción que pueden variar entre 2 minutos y 24 horas dependiendo del catalizador y de las condiciones de reacción empleadas. La relación en peso de la fracción de combustible a catalizador está comprendida entre 5 y 600, y preferentemente entre 10 y 300, estando la relación en peso entre la fracción de combustible y agente oxidante comprendida entre 300 y 10, y preferentemente entre 200 y 20. Las propiedades de hidrofilicidad- hidrofobicidad del catalizador pueden ser modificadas mediante las condiciones de síntesis por las cuales se obtienen los tamices moleculares, o mediante el anclaje de compuestos organosilíceos en la superficie del sólido microporoso en un tratamiento postsíntesis, siendo el resultado de dicho anclaje un catalizador híbridos o composite orgánico-inorgánico que contiene al menos Si, y Ti en posiciones de la red y extrarred, y que además puede contener silicio unido a carbono. La incorporación de titanio en los tamices moleculares conteniendo poros con anillos de 12 o más miembros, y conteniendo algún canal con un diámetro superior a 0.6 nm, puede realizarse mediante síntesis directa, en el que un precursor de titanio es adicionado al gel de síntesis, de tal manera que el material final contenga Ti tanto en posiciones de red como de extrarred; o bien, además mediante el anclaje posterior de compuestos de titanio sobre la superficie de los materiales .
Como ejemplos de catalizadores sólidos microporosos utilizados, se describen a continuación los formados por Ti-Beta con Ti en posiciones de red y extrarred. Estos catalizadores muestran, mediante la utilización de espectroscopia UV-Visible y Raman, la presencia de Ti tetraédricamente coordinado (Ti de red) , así como Ti octaédrico en posiciones extrarred, o incluso Ti en forma de Ti02.
Los catalizadores basados en zeolita Beta presentan una banda intensa en el espectro UV-Vis centrada alrededor de 220 nm, lo que indica la presencia de Ti en entornos tetraédricos y en posiciones de red, y una banda adicional ancha a 270-280 nm que indica la presencia de Ti en entornos octaédricos, que corresponden a Ti situado fuera de la red zeolítica (Figura 1) (J. C. van der Waal et al., J. Mol . Catal . A : Chem. , 124, 137, 1997). Así mismo, estos catalizadores presentan un espectro de Raman caracterizado por la presencia de una banda centrada a 150 cm"1 atribuida a la presencia de Ti situado fuera de la red zeolítica
(Figura 2) (C. B. Dartt et al., Appl . Catal . , A143, 53,
1996) . La presencia de ambos tipos de centros de Ti en estos materiales produce catalizadores, reivindicados en la presente invención, que son más activos y selectivos que los correspondientes catalizadores que sólo contienen Ti en red, tal y como se describe en el documento FR-A-2802939 para reacciones de oxidación de sulfuros en general, y de alquil o aril-sulfuros, tiofeno, alquil-tiofenos, benzotiofeno, alquil-benzotiofenos, sin ser limitantes en particular.
En estos catalizadores se pueden introducir, en una etapa durante la síntesis, o bien en una etapa postsíntesis, especies que contienen enlaces Si-C, dando lugar al correspondiente material microporoso orgánico- inorgánico que se usa en el procedimiento de oxidación de compuestos de azufre de la presente invención.
Los catalizadores microporosos descritos en la presente memoria pueden también ser utilizados para oxidar compuestos de azufre, en un sistema que contiene o no un codisolvente, y H202 como oxidante. La actividad de nuestro catalizador conteniendo Ti en posiciones de red y extrarred, en el caso de los materiales microporosos, es superior a lo que se describe en el documento FR-A-2802939 en el que se emplean catalizadores que sólo contienen Ti en posiciones de red.
Con nuestros catalizadores se puede llevar a cabo la oxidación de compuestos de azufre, y más específicamente compuestos tiofénicos presentes en derivados del petróleo, en un proceso en una sola fase líquida y en ausencia de disolvente, utilizando como agentes oxidantes peróxidos inorgánicos, tales como el complejo H202 - H2N-NH2 (peróxido de hidrógeno - urea) , o un perborato.
Para su mejor operabilidad, al catalizador formado por el sólido microporoso se le puede adicionar un aglomerante, o una matriz que puede estar formada por sílice, alúmina, caolín, mezcla de éstos, o cualquier otro componente conocido en el arte. La finalidad del aglomerante y/o matriz es la de proporcionar, entre otras, una mayor resistencia física al catalizador. Usualmente el contenido en aglomerante y/o matriz está comprendido entre 1 y 80% en peso.
El proceso para la oxidación de azufre de las fracciones gasolina, queroseno y diesel está caracterizado porque la etapa de oxidación se lleva a cabo en un reactor discontinuo, un reactor continuo de tanque agitado (CSTR) , en un reactor continuo de lecho fijo, en un reactor de lecho fluidizado, o un reactor de lecho ebullente, utilizando peróxidos o hidroperóxidos como agentes oxidantes en una única fase orgánica y en ausencia de disolvente, o en dos fases mediante el agregado de un codisolvente. En el caso de un reactor discontinuo la relación en peso de la fracción de combustible a catalizador está comprendida entre 5 y 600, y preferentemente entre 10 y 300, estando la relación en peso entre la fracción de combustible y agente oxidante comprendida entre 300 y 10, y preferentemente entre 200 y 20; mientras que la relación en peso entre el codisolvente y la fracción de combustible está comprendida entre 0 y 8, y preferentemente entre 0 y 4. La temperatura del proceso está comprendida entre 10 y 120°C, y preferentemente entre 20 y 80°C; y el tiempo de reacción oscila entre 2 minutos y 24 horas . Los productos de la reacción de oxidación se separan por destilación, extracción con disolvente adecuado, o por adsorción por ejemplo en una columna de adsorción que permite adsorber selectivamente los compuestos oxidados más polares formados durante la etapa de oxidación de los compuestos de azufre; pudiendo el resto no reaccionado ser reciclado total o parcialmente al reactor.
En lo que se refiere a los catalizadores sólidos mesoporosos basados en tamices moleculares mesoporosos, o conteniendo micro y mesoporos, reivindicados en la presente invención, éstos tienen la siguiente composición química en su estado calcinado y anhidro: y (A1 n n+ X02) : t T02 : Si02 : x Ti02 donde x puede variar entre 0.015 y 0.065; (2 y 8% en peso en forma de Ti02) y X corresponde a un elemento trivalente como por ejemplo Fe, Al, B, Ga, Cr o mezcla de ellos, estando y comprendido entre 0 y 0.2 y preferentemente entre 0 y 0.1. A corresponde a uno o más cationes de compensación mono, di o trivalentes, o mezclas de éstos, siendo n = 1, 2 o 3. T corresponde a elementos tetravalentes otros que Si y Ti, como por ejemplo V, Sn, y t está comprendido entre 0 y 1, y preferentemente entre 0 y 0.2. En dicho tamiz se introducen durante la síntesis o en etapas postsíntesis grupos orgánicos R, de manera tal que se generan enlaces Si-C, donde R corresponde a compuestos orgánicos tales como grupos alquilo, arilo o poliaromáticos, que pueden o no estar funcionalizados con grupos ácidos, aminos, tioles, sulfónicos o tetralquilamónicos . Con los catalizadores antes descritos se puede llevar a cabo la oxidación de compuestos de azufre, y más específicamente la oxidación de compuestos tiofénicos presentes en derivados del petróleo, en un proceso en una sola fase líquida y en ausencia de disolvente, utilizando como agentes oxidantes hidroperóxidos orgánicos, como por ejemplo hidroperóxido de tert-butilo, o peróxidos inorgánicos, tales como por ejemplo el complejo H202 - H2N- NH2 (peróxido de hidrógeno - urea) , o un perborato.
En el proceso para la oxidación de azufre de las fracciones gasolina, kerosene y diesel la etapa de oxidación puede llevarse a cabo en reactores del tipo discontinuo, continuo de tanque agitador (CSTR) , continuo de lecho fijo, de lecho fluidizado, o un reactor de lecho ebullente, utilizando hidroperóxidos como agentes oxidantes orgánicos en una única fase orgánica y en ausencia de disolvente. En el caso de un reactor discontinuo la relación en peso de la fracción de combustible a catalizador está habitualmente comprendida entre 5 y 600, y preferentemente entre 10 y 300. La relación en peso entre la fracción de combustible y agente oxidante convenientemente está comprendida entre 300 y 10, y preferentemente entre 200 y 20. La temperatura del proceso está convenientemente comprendida entre 10 y 120°C, y preferentemente entre 20 y 80 °C; y el tiempo de reacción oscila entre 2 minutos y 24 horas. Los productos de la reacción de oxidación puede separarse por destilación, extracción con disolvente adecuado, o por adsorción en por ejemplo una columna de adsorción que permite adsorber selectivamente los compuestos oxidados más polares formados durante la etapa de oxidación de los compuestos de azufre; pudiendo el resto no reaccionado ser reciclado total o parcialmente al reactor.
MODOS DE REALIZAR LA INVENCIÓN Los siguientes ejemplos ilustran realizaciones correspondientes a la preparación de catalizadores que pueden emplearse en el procedimiento de la presente invención, y a la aplicación de los mismos a la reacción de oxidación selectiva de compuestos con azufre contenidos en fracciones de gasolina pesada, y gasolina y/o diesel simulados .
En los ejemplos, se hará referencia a unas figuras en las que la figura 1 muestra espectros de UV-visible de diversos materiales de tipo Beta que se describen con más detalle en los ejemplos; la figura 2 muestra espectros Raman de diversos materiales de tipo Beta que se describen con más detalle en los ejemplos 1 y 2 ; la figura 3 muestra espectros de UV-visible de materiales de tipo Ti-MCM-41 que se describen con más detalle en los ejemplos 6 y 7; la figura 4 muestra un espectro de UV-visible de un material de tipo Ti-Beta al que se hace referencia en los ejemplos 3 y 11; y la figura 5 muestra los resultados de un ensayo que se describe con mayor detalle en el ejemplo 5; la figura 6 muestra los resultados del ensayo del ejemplo 13 referente a la oxidación de compuestos de azufre presentes en Gasolina sintética (B) con materiales microporosos conteniendo Ti a 80 °C por 7 hs (S Inicial =
220ppm) ; la figura 7 muestra los resultados del ensayo del ejemplo 14 referente a la oxidación de compuestos de azufre presentes en Gasolina sintética (B) con H202 a 80 °C durante
7hs (S Inicial = 220ppm) ; la figuras 8 y 9 muestran los resultados del ensayo del ejemplo 15 referente a la oxidación de compuestos de
Azufre presentes en Gasolina sintética (B) con H202 a 80 °C durante 7hs (S Inicial = 220ppm) .
En los ejemplos, las composiciones de las fracciones de gasolina pesada, y gasolina y diesel simuladas fueron las que se detallan en las siguientes tablas:
Corte de Gasolina Pesada Comercial >>>>>> HCN (de
COMPAÑÍA ESPAÑOLA DE PETRÓLEOS, S.A. -CEPSA)
Composición Tb Inicial (°C) = 80.6 - Tb Final (°C) = 226.5
Figure imgf000020_0001
S en Gasolina (ppm) 1583 S Total (ppm) 1598 Corte de Gasolina Liviana >>>>>> LCN (de CEPSA)
Composición
Tb Inicial (°C) = 41.0 - Tb Final (°C) = 198.1
Figure imgf000021_0001
S en Gasolina (ppm) 291 S Total (ppm) 296
Gasolina sintética (A) >>>>>> Composición
Figure imgf000021_0002
Figure imgf000022_0001
S en Mezcla (ppm) 220
Gasolina sintética (B) >>>>>> Composición
Figure imgf000022_0002
S en Mezcla (ppm) = 220
Diesel sintético >>>>>> Composición
Figure imgf000022_0003
S en Mezcla (ppm) = 900
Diesel simulado >>>>>> Composición
Figure imgf000023_0001
S en Mezcla (ppm) = 300
Ejemplo 1: Preparación de un material microporoso (tipo Beta) conteniendo Ti en posiciones de red y extrarred en su composición.
35 g de tetraetilortosilicato (TEOS) se hidrolizan en 41.98 g de hidróxido de tetraetilamonio (TEAOH, solución acuosa al 35%) y 5.96 g de H202 (35%) . A continuación se adicionan 3.83 g de tetraetóxido de Ti y se deja la mezcla agitando y evaporando el etanol formado en la hidrólisis del TEOS. Se añaden a continuación 4.15 g de HF (aq. , 48%) y una suspensión de semillas de zeolita Beta (0.4 g de zeolita Beta desaluminizada en 2 g de agua) . La composición molar del gel es la siguiente:
Ti02 : 10 Si02 : 6 TEAOH : 3.6 H202 : 80 H20 : 6 HF Se calienta la mezcla resultante en autoclaves recubiertos internamente de PTFE a 140 °C y durante el calentamiento los autoclaves se mantienen bajo rotación (60rpm) . Tras 20 días de calentamiento se filtra la mezcla (pH=8.7) y se obtienen 23 g de zeolita Beta de alta cristalinidad (superior al 90% por comparación con un estándar) por cada lOOg de gel . El sólido obtenido se calcina en atmósfera de aire a 580 °C durante 3 horas. El patrón de difracción de rayos X del sólido indica que se ha mantenido la cristalinidad del material. El contenido en Ti de la zeolita en su forma calcinada y anhidra determinado por análisis químico es del 7.5% en peso, expresado como Ti02, mostrándose sus espectros de UV-Visible y Raman en las Figuras 1 y 2.
Ejemplo 2: Preparación de un material microporoso (tipo Beta) conteniendo Ti sólo en posiciones de red en su composición.
55 g de tetraetilortosilicato (TEOS) se hidrolizan en 62.40 g de hidróxido de tetraetilamonio (TEAOH, solución acuosa al 35%) y 8.80 g de H202 (35%) . A continuación se adicionan 2.41 g de tetraetóxido de Ti y se deja la mezcla agitando y evaporando el etanol formado en la hidrólisis del TEOS. Se añaden a continuación 6.22 g de HF (aq. , 48%) y una suspensión de semillas de zeolita Beta (0.64 g de zeolita Beta desaluminizada en 3 g de agua) . La composición molar del gel es la siguiente:
Ti02 : 25 Si02 : 14 TEAOH : 8.6 H202 : 190 H20 : 14 HF Se calienta la mezcla resultante en autoclaves recubiertos internamente de PTFE a 140 °C y durante el calentamiento los autoclaves se mantienen bajo rotación (60rpm) . Tras 6 días de calentamiento se filtra la mezcla (pH=8.0) y se obtienen 24 g de zeolita Beta de alta cristalinidad (superior al 95% por comparación con un estándar) por cada lOOg de gel. El sólido obtenido se calcina en atmósfera de aire a 580°C durante 3 horas. El patrón de difracción de rayos X del sólido indica que se ha mantenido la cristalinidad del material. El contenido en Ti de la zeolita en su forma calcinada y anhidra determinado por análisis químico es del 2.3% en peso, expresado como Ti02, mostrándose sus espectros de UV-Visible y Raman en las Figuras 1 y 2.
Ejemplo 3: Preparación de un material microporoso (tipo Beta) conteniendo prácticamente todo el Ti situado en posiciones extrarred en su composición. 30 g de tetraetilortosilicato (TEOS) y 32.99 g de hidróxido de tetraetilamonio (TEAOH, solución acuosa al 35%) se mezclan en un recipiente y se deja la mezcla agitando y evaporando el etanol formado en la hidrólisis del TEOS. Para clarificar la solución se añaden 3.2 g de ácido fluorhídrico (HF, al 48% en agua) y un gel es obtenido. Se añade a continuación una suspensión de semillas de zeolita Beta (0.36 g de zeolita Beta desaluminizada en 1.5 g de agua) . La composición molar del gel es la siguiente: Si02 : 0.27 TEA20 : 0.54 HF: 7.5 H20
El gel resultante se dispone en autoclave recubierto de PTFE calentando a 140 °C y bajo rotación (60rpm) durante 24 horas. Finalmente, el producto es recuperado por filtración y se obtiene una zeolita Beta cuyo patrón de difracción de Rayos muestra una cristalinidad del 100%. El sólido se calcina a 580 °C durante 3 horas manteniendo una alta cristalinidad.
Al sólido así obtenido (zeolita Beta) se le impregna un compuesto de Titanio sobre la superficie, según el siguiente procedimiento: 5 g de la zeolita Beta obtenida se impregnan con 50 g de una disolución de tetra-iso-propóxido de Titanio { [ (CH3-) 2-CH-0] 4Ti} en iso-propanol (al 0.5%P/P), con agitación durante 2 horas. La mezcla resultante se calienta a vacío con agitación continua hasta evaporación del alcohol. El sólido resultante se lava con diclorometano y luego se calcina en atmósfera de aire a 530 °C durante 3 horas. El patrón de difracción de rayos X del sólido obtenido indica que se ha mantenido la cristalinidad del material, mientras que su espectro de UV-Visible se puede observar en la figura 4.
Ejemplo 4: Comparación: Actividad para la oxidación selectiva de compuestos de azufre presentes en Gasolina sintética (A) con TBHP y en una sola fase líquida, en ausencia de disolvente, utilizando un catalizador de Ti- Beta conteniendo Ti en posiciones de red y extrarred (Ejemplo 1) , un catalizador de Ti-Beta conteniendo Ti sólo en posiciones de red (Ejemplo 2) , y un catalizador con Ti sólo en posiciones extrarred (Ejemplo 3) .
30 mg de uno de los materiales descritos en los ejemplos 1, 2 y 3, se introducen en un reactor de vidrio a 80°C que contiene 15000 mg de Gasolina sintética (A) y 80 mg de hidroperóxido de t-butilo (TBHP, Sol. al 80% en peso) . La mezcla de reacción que está formada por una sola fase líquida se agita y se toma muestra a las 7 horas de reacción. Las muestras son analizadas mediante GC con detector específico de S, siendo las composiciones iniciales y finales en contenido de compuestos de azufre no oxidados para las mezclas de reacción y las conversiones obtenidas las siguientes:
S en Mezcla (ppm) - Detector Específico de S Ti-Beta Ti-Beta con Ti Ti-Beta con Ti en red en red y extrarred con Ti extrarred
Inicial 240 240 240
Final 144 21 201
Conv. (%)= 40.0 92.0 17.3
Los resultados indican claramente que el catalizador Ti-Beta conteniendo Ti en posiciones de red y extrarred es más activo que el que únicamente contiene Ti en red o Ti prácticamente sólo en posiciones extrarred.
Ejemplo 5: Influencia del contenido de Ti de red y extrarred sobre la actividad de los catalizadores para la oxidación selectiva de compuestos de azufre presentes en una mezcla de Gasolina sintética (B) con TBHP como agente oxidante y en ausencia de disolvente.
30 mg del catalizador se introducen en un reactor de vidrio a 80°C que contiene 15000 mg de Gasolina sintética (B) y 80 mg de hidroperóxido de t-butilo (TBHP, Sol. al 80% en peso) . La mezcla de reacción que está formada por una sola fase líquida se agita y se toma muestra a las 7 horas de reacción. Las muestras son analizadas mediante GC con detector específico de S, y las conversiones obtenidas para cada uno de los catalizadores ensayados se ilustran en figura 5.
Los resultados muestran como los catalizadores que contienen Ti en posiciones de red y extrarred son más activos que el que sólo posee Ti en la red, y además la actividad depende de la relación Ti en red / Ti extrarred. Ejemplo 6: Preparación de un tamiz molecular mesoporoso tipo MCM-41 conteniendo Ti en posiciones de red y extrarred en su composición.
3.11 g de bromuro de cetiltrimetilamonio (CTAB) se disuelven 20.88 g de agua. A esta disolución se le añaden 5.39 g de hidróxido de tetrametilamonio (TMAOH) y 0.30 g de tetraetóxido de titanio (TEOT) y se agita hasta completa disolución del titanio. Posteriormente se adicionan 3.43 g de sílice dando lugar a un gel que se agita a temperatura ambiente durante 1 hora a 250 r.p.m. La mezcla resultante se introduce en autoclaves y se calienta a 100 °C a la presión autógena del sistema durante 48 horas. Transcurrido este tiempo, se recupera un sólido por filtración, lavado exhaustivo con agua destilada y secado a 60 °C durante 12 horas.
La activación del material puede realizarse mediante calcinación o por extracción química. En el primer caso, 3.0 g del material sólido se disponen en un reactor tubular de cuarzo y se hace pasar una corriente de nitrógeno seco de 50 ml-min"1 mientras se eleva la temperatura hasta 540°C a 3°C-min"1. Una vez alcanzada la temperatura se pasa nitrógeno durante 60 minutos, transcurridos los cuales, el flujo de nitrógeno se cambia por un flujo de aire seco de 50 ml-min"1. La calcinación se prolonga durante 360 minutos más y el sólido se enfría a temperatura ambiente. Este tratamiento térmico permite eliminar completamente todo el orgánico ocluido en los poros del material . En el caso de la extracción química, 5.5 g del material son tratados con 276.4 g de una disolución de 0.05 M de ácido sulfúrico en etanol. Esta suspensión se agita a refuljo durante una hora. El sólido se recupera por filtración y se lava con etanol hasta pH neutro. El sólido resultante se seca a 100 °C durante 30 minutos. Obteniéndose 3.51 g de producto. El sólido resultante se somete a una segunda etapa de extracción en la 3.5 g de sólido se adicionan a una disolución de ácido clorhídrico 0.15 M en Etanol/heptano (48:52), empleándose una relación líquido/sólido de 50. Esta suspensión se refluye con agitación constante durante 24 horas, filtrándose y lavándose con etanol. El sólido resultante se seca a 60 °C durante 12 horas. Este sólido presenta una superficie específica de 983 m2-g"1, además de presentar bandas en el espectro UV-Vis centradas a 220 nm y 270 nm, las cuales corresponden a especies de Ti tetraédrico ("Ti en red") y octaédrico ("Ti extrarred") respectivamente (Figura 3).
Ejemplo 7: Preparación de un tamiz molecular mesoporoso tipo MCM-41 conteniendo sólo Ti tetraédrico ("Ti en red") en su composición.
3.11 g de bromuro de cetiltrimetilamonio (CTAB) se disuelven 20.88 g de agua. A esta disolución se le añaden 5.39 g de hidróxido de tetrametilamonio (TMAOH) y 0.10 g de tetraetóxido de titanio (TEOT) y se agita hasta completa disolución del titanio. Posteriormente se adicionan 3.43 g de sílice dando lugar a un gel que se agita a temperatura ambiente durante 1 hora a 250 r.p.m. La mezcla resultante se introduce en autoclaves y se calienta a 100 °C a la presión autógena del sistema durante 48 horas. Transcurrido este tiempo, se recupera un sólido por filtración, lavado exhaustivo con agua destilada y secado a 60 °C durante 12 horas .
La activación del material puede realizarse mediante calcinación o por extracción química. En el primer caso, 3.0 g del material sólido se disponen en un reactor tubular de cuarzo y se hace pasar una corriente de nitrógeno seco de 50 ml-min"1 mientras se eleva la temperatura hasta 540°C a 3°C-min"1. Una vez alcanzada la temperatura se pasa nitrógeno durante 60 minutos, transcurridos los cuales, el flujo de nitrógeno se cambia por un flujo de aire seco de 50 ml-min"1. La calcinación se prolonga durante 360 minutos más y el sólido se enfría a temperatura ambiente. Este tratamiento térmico permite eliminar completamente todo el orgánico ocluido en los poros del material . En el caso de la extracción química, 5.5 g del material son tratados con 276.4 g de una disolución de 0.05 M de ácido sulfúrico en etanol. Esta suspensión se agita a refuljo durante una hora. El sólido se recupera por filtración y se lava con etanol hasta pH neutro. El sólido resultante se seca a 100 °C durante 30 minutos. Obteniéndose 3.51 g de producto. El sólido resultante se somete a una segunda etapa de extracción en la 3.5 g de sólido se adicionan a una disolución de ácido clorhídrico 0.15 M en Etanol/heptano (48:52), empleándose una relación líquido/sólido de 50. Esta suspensión se refluye con agitación constante durante 24 horas, filtrándose y lavándose con etanol. El sólido resultante se seca a 60 °C durante 12 horas. Este sólido presenta una superficie específica de 983 m2-g"1, así como una banda en el espectro UV-Vis centrada a 220 nm que corresponde a especies de Ti tetraédrico o en posiciones de red (Figura 3) .
Ejemplo 8: Sililación de un material como los descritos en los ejemplos 6 y 7. 2.0 g de una las muestras obtenidas en los ejemplos 6 y 7 se deshidratan a 100 °C y 10"3 Torr durante 2 horas. La muestra se enfría, y a temperatura ambiente se adiciona una disolución de 1.88g de hexametildisilazano (CH3)3Si-NH- Si(CH3)3) en 30g de tolueno. La mezcla resultante se refluye a 120°C durante 90 minutos y se lava con tolueno. El producto final se seca a 60 °C.
Este sólido presenta una superficie específica de 965 m2-g"1, mientras que el espectro de 29Si-MAS-RMN presenta una banda de resonancia a -10 ppm asignada a la presencia de enlaces Si-C.
Ejemplo 9: Comparación: Actividad para la oxidación selectiva de compuestos de azufre presentes en Gasolina HCN con TBHP como agente oxidante y en una sola fase líquida, en ausencia de disolvente, utilizando como catalizadores materiales mesoporosos conteniendo Ti sin sililación (Ejemplo 6 y 7) y sililado (Ejemplo 8) .
200 mg del catalizador se introducen en un reactor de vidrio a 80 °C que contiene 5000 mg de Gasolina Pesada (HCN) y 200 mg de hidroperóxido de t-butilo (TBHP, Sol. al 80% en peso) . La mezcla de reacción que está formada por una sola fase se agita y se toma muestra a las 7 horas de reacción. Las muestras son analizadas mediante GC con detector específico de S, y las conversiones obtenidas para cada uno de los catalizadores ensayados son las siguientes:
S en Gasolina (ppm) - Detector Específico de S
Ti-MCM-41 (Ej . 7) Ti-MCM-41 (Ej . 6) Ti-MCM-41- Sililada (Ej . 8)
"Ti en red" "Ti en red y extrarred" Inicial 1383 1383 1383
Final 1126 1050 35
Conv. (%)= 19.3 24.1 98.0
Los resultados muestran claramente que los tamices moleculares mesoporosos reivindicados en esta invención y que contienen enlaces Si-C, es decir, que han sido sometidos a un proceso de sililación y son por tanto materiales orgánico- inorgánico, son más activos que aquellos que contienen únicamente Si y Ti .
Ejemplo 10: Comparación: Actividad para la oxidación selectiva de compuestos de azufre presentes en Diesel simulado con TBHP como agente oxidante y en una sola fase líquida, en ausencia de disolvente, utilizando como catalizadores materiales mesoporosos conteniendo Ti sin sililación (Ejemplo 6) y sililado (Ejemplo 8) .
30 mg de uno de los materiales descritos en los ejemplos 6 y 8 se introducen en un reactor de vidrio a 80 °C que contiene 15000 mg de Diesel simulado y 80 mg de hidroperóxido de t-butilo (TBHP, Sol. al 80% en peso). La mezcla de reacción que está formada por una sola fase se agita y se toma muestra a las 7 horas de reacción. Las muestras son analizadas mediante GC con detector específico de S, y las conversiones obtenidas para cada uno de los catalizadores ensayados son las siguientes:
S en Diesel Simulado (ppm) - Detector Específico de S Ti-MCM-41 Ti-MCM-41-Sililada Inicial 860 860
Final 491 9
Conv. (%) 42.9 99.0
Ejemplo 11: Preparación de un material microporoso (tipo Beta) conteniendo prácticamente todo el Ti situado en posiciones extrarred en su composición.
30 g de tetraetilortosilicato (TEOS) y 32.99 g de hidróxido de tetraetilamonio (TEAOH, solución acuosa al 35%) se mezclan en un recipiente y se deja la mezcla agitando y evaporando el etanol formado en la hidrólisis del TEOS. Para clarificar la solución se añaden 3.2 g de ácido fluorhídrico (HF, al 48% en agua) y un gel es obtenido. Se añade a continuación una suspensión de semillas de zeolita Beta (0.36 g de zeolita Beta desaluminizada en 1.5 g de agua). La composición molar del gel es la siguiente :
Si02 : 0.27 TEA20 : 0.54 HF: 7.5 H20 El gel resultante se dispone en autoclave recubierto de PTFE calentando a 140 °C y bajo rotación (60rpm) durante 24 horas. Finalmente, el producto es recuperado por filtración y se obtiene una zeolita Beta cuyo patrón de difracción de Rayos muestra una cristalinidad del 100%. El sólido se calcina a 580 °C durante 3 horas manteniendo una alta cristalinidad.
Al sólido así obtenido (zeolita Beta) se le impregna un compuesto de Titanio sobre la superficie, según el siguiente procedimiento: 5 g de la zeolita Beta obtenida se impregnan con 50 g de una disolución de tetra- iso-propóxido de Titanio { [ (CH3-) 2-CH-0] 4Ti} en iso-propanol (al 0.5%P/P), con agitación durante 2 horas. La mezcla resultante se calienta a vacío con agitación continua hasta evaporación del alcohol. El sólido resultante se lava con diclorometano y luego se calcina en atmósfera de aire a 580 °C durante 3 horas. El patrón de difracción de rayos X del sólido obtenido corresponde al que muestra la figura 4 e indica que se ha mantenido la cristalinidad del material .
Ejemplo 12: Comparación: Actividad para la oxidación selectiva de compuestos de Azufre presentes en Gasolina sintética (A) con H202 y en ausencia de disolvente, utilizando un catalizador de Ti-Beta conteniendo Ti en posiciones de red y extrarred (Ejemplo 1) , un catalizador de Ti-Beta conteniendo Ti sólo en posiciones de red (Ejemplo 2) , y un catalizador con Ti sólo en posiciones extrarred (Ejemplo 11) .
50 mg de uno de los materiales descritos en los ejemplos 1, 2 y 3 se introducen en un reactor de vidrio a 80 °C que contiene 15000 mg de Gasolina sintética (A) y 120 mg de peróxido de hidrógeno (H202, Sol. al 35% en peso), sin introducir ningún codisolvente. La mezcla de reacción se agita y se toma muestra a las 7 horas de reacción. Las muestras son analizadas mediante GC con detector especial de S, siendo las composiciones iniciales y finales en contenido de compuestos de azufre no oxidados para las mezclas de reacción y las conversiones obtenidas las siguientes:
S en Mezcla (ppm) - Detector Especial S Ti-Beta Ti-Beta con Ti Ti-Beta con Ti en red en red y extrarred con Ti extrarred
Inicial 240 240 240
Final 47 4 140
Conv.(%)= 80.5 98.3 41.7
Ejemplo 13: Influencia del contenido de Ti de red y extrarred sobre la actividad de los catalizadores para la oxidación selectiva de compuestos de azufre presentes en una mezcla de Gasolina sintética (B) con H202 como agente oxidante y en ausencia de disolvente.
30 mg del catalizador se introducen en un reactor de vidrio a 80 °C que contiene 15000 mg de Gasolina sintética
(B) y 120 mg de peróxido de hidrógeno (H202, Sol. al 35% en peso), sin introducir ningún codisolvente. La mezcla de reacción se agita y se toma muestra a las 7 horas de reacción. Las muestras son analizadas mediante GC con detector especial de S, y las conversiones obtenidas para cada uno de los catalizadores ensayados se ilustran en la figura 6.
Ejemplo 14: Ventaja del catalizador conteniendo Ti en red y extrarred en comparación con el que contiene Ti sólo en la red, utilizando H202 al 35% en peso como agente oxidante y sin utilizar codisolvente.
30 mg de uno de los materiales microporosos descritos (ejemplos 1 y 2) se introducen en un reactor de vidrio a 80 °C que contiene 120 mg de peróxido de hidrógeno (H202, Sol. al 35% en peso) y 15000 mg de Gasolina sintética (B) . No se introduce ningún codisolvente. La mezcla de reacción se agita y se toman muestras a diferentes tiempos de reacción a los fines de seguir la cinética de la misma hasta las 7 horas de reacción. Los catalizadores utilizados se describen a continuación:
Ti-Beta (7.5%Ti02) - Ti incorporado en posiciones de red y extrarred, (Ejemplo 1) ,
Ti-Beta (2.3%Ti02) - Ti incorporado sólo en posiciones de red, (Ejemplo 2),
Los resultados de la oxidación de los compuestos de azufre, expresados como conversiones en función del tiempo, obtenidos para cada muestra se observan en la figura 7.
Ejemplo 15: Ventaja del catalizador conteniendo Ti en red y extrarred en comparación con el que contiene Ti sólo en la red, utilizando H202 al 35% en peso como agente oxidante y acetonitrilo como disolvente en diferentes proporciones.
30 mg de uno de los materiales microporosos descritos (ejemplos 1 y 2) se introducen en un reactor de vidrio a 80 °C que contiene 120 mg de peróxido de hidrógeno (H202, Sol. al 35% en peso), y 15000 mg de una mezcla compuesta por acetonitrilo (codisolvente) y Gasolina sintética (B) en diferentes relaciones en peso. La mezcla de reacción se agita y se toman muestras a diferentes tiempos de reacción a los fines de seguir la cinética de la misma hasta las 7 horas de reacción. Los catalizadores utilizados se describen a continuación:
Ti-Beta (7.5%Ti02) - Ti incorporado en posiciones de red y extrarred, (Ejemplo 1) ,
Ti-Beta (2.3%Ti02) - Ti incorporado sólo en posiciones de red, (Ejemplo 2), Los resultados de la oxidación de los compuestos de azufre, expresados como conversiones en función del tiempo, obtenidos para las mencionados materiales microporosos a diferentes relaciones acetonitrilo / hidrocarburos se observan en la figura 8 (relación acetonitrilo / hidrocarburos = 0.15 / 1 = 2 g de acetonitrilo / 13 g de hidrocarburos) y en la figura 9 (relación acetonitrilo / hidrocarburos = 0.3 / 1 = 3.5 g de acetonitrilo / 11.5 g de hidrocarburos) .
Ejemplo 16: Comparación: Actividad para la oxidación selectiva de compuestos de Azufre presentes en Diesel sintético con H202 y en ausencia de disolvente, utilizando un catalizador de Ti-Beta conteniendo Ti en posiciones de red y extrarred (Ejemplo 1) , un catalizador de Ti-Beta conteniendo Ti sólo en posiciones de red (Ejemplo 2) . 30 mg de uno de los materiales descritos en los ejemplos 1 y 2, se introducen en un reactor de vidrio a 80°C que contiene 15000 mg de Diesel sintético y 120 mg de peróxido de hidrógeno (H202, Sol. al 35% en peso). La mezcla de reacción se agita y se toma muestra a las 7 horas de reacción. Las muestras son analizadas mediante GC con detector especial de S, siendo las composiciones iniciales y finales en contenido de compuestos de azufre no oxidados para las mezclas de reacción y las conversiones obtenidas las siguientes:
S en Mezcla (ppm) - Detector Especial S
Ti-Beta con Ti Ti-Beta con Ti en red y extrarred en red (Ej . 2)
Inicial 300 300
Final 119 199
Conv. (%) = 60.1 33.5
Ejemplo 17: Sililación de un material como el descrito en el ejemplo 1. 2.0 g de la muestra obtenida en el ejemplo 1 se deshidratan a 100 °C y 10"3 Torr durante 2 horas. La muestra se enfría, y a temperatura ambiente se adiciona una disolución de 1.88g de hexametildisilazano (CH3)3Si-NH- Si(CH3)3) en 30g de tolueno. La mezcla resultante se refluye a 120 °C durante 90 minutos y se lava con tolueno. El producto final se seca a 60 °C.
El sólido presenta bandas en el espectro UV-Vis centradas a 220 y 270 nm, que indican la presencia de Ti en posiciones de red y extrarred respectivamente. Además el espectro de 29Si-MAS-RMN presenta una banda de resonancia a -10 ppm asignada a la presencia de enlaces Si-C.
Ejemplo 18: Comparación: Actividad para la oxidación selectiva de compuestos de Azufre presentes en Gasolina LCN con TBHP como agente oxidante y en una sola fase líquida, en ausencia de disolvente, utilizando como catalizadores materiales microporosos conteniendo Ti sin sililación (Ejemplo 1) y sililado (Ejemplo 17) .
200 mg del catalizador se introducen en un reactor de vidrio a 80 °C que contiene 5000 mg de Gasolina Liviana (LCN) y 200 mg de hidroperóxido de t-butilo (TBHP, Sol. al 80% en peso) . La mezcla de reacción se agita y se toma muestra a las 7 horas de reacción. Las muestras son analizadas mediante GC con detector especial de S, y las conversiones obtenidas para cada uno de los catalizadores ensayados son las siguientes:
S en Gasolina (ppm) - (Detector de S) Ti-Beta (Ej . 1) Ti-Beta-
Sililada (Ej . 8)
Inicial 291 291
Final 177 123
Conv. (%) 39.2 57.7

Claims

REIVINDICACIONES
1. Un procedimiento para la oxidación de compuestos de azufre de fracciones de combustible seleccionadas entre fracciones gasolina, fracciones kerosene y fracciones diesel, que comprende una etapa oxidación en la que una mezcla de reacción que contiene al menos una de dichas fracciones se somete a una reacción de oxidación de dichos compuestos de azufre con al menos un agente oxidante seleccionado entre peróxidos, peróxidos inorgánicos, peróxidos orgánicos y hidroperóxidos, en una fase líquida y sin utilizar disolvente, y en presencia de al menos un catalizador sólido micro y/o mesoporoso seleccionado entre tamices moleculares microporosos, tamices moleculares mesoporosos y combinaciones de los mismos, y una etapa de separación en la que se separan productos sin reaccionar de productos que han reaccionado en la etapa de reacción, caracterizado porque los tamices moleculares tienen un diámetro de canal superior a 0.6 nm y comprenden al menos Si, y Ti incorporado en la red y en posiciones no reticulares .
2. Un procedimiento según la reivindicación 1, caracterizado porque el catalizador es un catalizador sólido microporoso que comprende un tamiz molecular microporoso .
3. Un procedimiento según la reivindicación 2, caracterizado porque el contenido de Ti en red más Ti extrarred en el catalizador sólido microporoso está comprendido entre 3 y 12% en peso en forma de Ti02 con respecto al peso total del tamiz molecular microporoso.
4. Un procedimiento según una de las reivindicaciones 2 y 3, caracterizado porque la composición química del catalizador sólido microporoso en su estado calcinado y anhidro es
y (A1/n n+ X02) : t T02 : Si02 : x Ti02 en la que :
- X representa al menos un elemento trivalente,
- y está comprendido entre 0 y 0.2,
- A representa cationes mono, di o trivalentes, o mezclas de éstos, - n = 1, 2 ó 3,
- T representa al menos un elemento tetravalente distinto de Si y Ti,
- t está comprendido entre 0 y 1, y
- x está comprendido entre 0.02 y 0.12, (entre 3 y 12% en peso en forma de Ti02)
5. Un procedimiento según una de las reivindicaciones 2 a 4, caracterizado porque el catalizador sólido microporoso tiene una estructura correspondiente a una zeolita seleccionada entre zeolitas Beta, zeolitas ITQ-7, zeolitas UTD-1, Mordenita y zeolitas ITQ-16.
6. Un procedimiento según una de las reivindicaciones 2 a 4, caracterizado porque el catalizador sólido microporoso tiene una estructura cristalina seleccionada entre estructuras cristalinas de la zeolita Beta, de un polimorfo de la zeolita Beta, y combinaciones de las mismas.
7. Un procedimiento según una de las reivindicaciones 2 a
6, y caracterizado porque el catalizador sólido microporoso ha sido preparado mediante un proceso que comprende una etapa, seleccionada entre etapas de síntesis y etapas de postsíntesis, en la que se introducen en el catalizador enlaces Si -C.
8. Un procedimiento según una de las reivindicaciones 2 a
7, caracterizado porque el catalizador sólido microporoso está comprendido en una matriz inorgánica, con un aglomerante y combinaciones de los mismos.
9. Un procedimiento según una de las reivindicaciones 2 a
8, caracterizado porque el agente oxidante está seleccionado entre H02, H202 acuoso, hidroperóxido de tert-butilo, perboratos y complejo H202 - Urea.
10. Un procedimiento según la reivindicación 1, caracterizado porque comprende realizar una reacción de oxidación de dichos compuestos de azufre usando H202 acuoso como agente oxidante, y utilizando un codisolvente en una relación en peso de la fracción de codisolvente/combustible es 8, y utilizando como catalizadores tamices moleculares microporosos .
11. Un procedimiento según la reivindicación 4, caracterizado porque t está comprendido entre 0 y 0,2.
12. Un procedimiento según la reivindicación 4, caracterizado porque el elemento trivalente X está seleccionado entre Fe, Al, B, Ga, Cr y combinaciones de los mismos .
13. Un procedimiento según la reivindicación 4 , caracterizado porque el elemento tetravalente T está seleccionado entre V y Sn y combinaciones de los mismos.
14. Un procedimiento según la reivindicación 8, caracterizado porque la matriz inorgánica está seleccionada entre sílice, alúmina, caolín y combinaciones de los mismos .
15. Un procedimiento según la reivindicación 1, caracterizado porque el agente oxidante está seleccionado entre hidroperóxido de tert-butilo, hidroperóxido de etil- benceno o hidroperóxido de eumeno .
16. Un procedimiento según la reivindicación 10, caracterizado porque el codisolvente está seleccionado entre acetonitrilo, metil-tert-butil-eter, nitrometano, dimetilsulfóxido, y mezclas de los mismos.
17. Un procedimiento según la reivindicación 1, caracterizado porque el catalizador sólido mesoporoso está seleccionado entre tamices moleculares mesoporosos y tamices moleculares que contienen meso y microporos, y porque contiene al menos Si, Ti incorporado en la red (en posiciones tetraédricas) y en posiciones no reticulares (octaédricas) del tamiz molecular, y silicio unido a carbono .
18. Un procedimiento según la reivindicación 17, caracterizado porque el tamiz molecular mesoporoso en su forma calcinada y anhidra, y sin componente orgánico, tiene la composición química y (A1/n n+ X02) : t T02 : Si02 : x Ti02 en la que:
X representa al menos a un elemento trivalente, y está comprendido entre 0 y 0.2 y preferentemente entre 0 y 0.1,
A representa a cationes de compensación mono, di o trivalentes, o mezclas de éstos, - n = 1, 2 o 3,
T representa al menos un elemento tetravalente otros que Si y Ti, t está comprendido entre 0 y 1, y preferentemente entre 0 y 0.2 y x puede variar entre 0.015 y 0.065; (2 y 8% en peso en forma de Ti02) .
19. Un procedimiento según una de las reivindicaciones 17 y 18, caracterizado porque el catalizador sólido mesoporoso corresponde a un material seleccionado entre materiales del tipo MCM-41, MCM-48, SBA-15, y HMS .
20. Un procedimiento según una de las reivindicaciones 17 a 19, caracterizado porque el catalizador sólido mesoporoso ha sido preparado mediante un proceso que comprende una etapa, seleccionada entre etapas de síntesis y etapas postsíntesis, en la que se introducen en el catalizador enlaces Si -C .
21. Un procedimiento según una de las reivindicaciones 17 a 20, caracterizado porque el catalizador sólido mesoporoso está comprendido en una matriz inorgánica.
22. Un procedimiento según una de las reivindicaciones 17 a 21, caracterizado porque el agente oxidante está seleccionado entre hidroperóxidos orgánicos .
23. Un procedimiento según una de las reivindicaciones 17 a 21, caracterizado porque el agente oxidante un complejo H202 - Urea.
24. Un procedimiento según una de las reivindicaciones 17 a 21, caracterizado porque el agente oxidante es un perborato.
25. Un procedimiento según la reivindicación 1, caracterizado porque dicha reacción de oxidación se lleva a cabo en un reactor seleccionado entre un reactor discontinuo, un reactor CSTR, un reactor continuo de lecho fijo, un reactor de lecho fluidizado y un reactor de lecho ebullente .
26. Un procedimiento según la reivindicación 1, caracterizado porque dicha reacción de oxidación se lleva a cabo en un reactor discontinuo, con una relación en peso de la fracción de combustible a catalizador comprendida entre 5 y 600, una relación en peso entre la fracción de combustible y el agente oxidante comprendida entre 300 y 10, y una relación codisolvente/fracción de combustible entre 0 y 8, particularmente entre 0 y 4.
27. Un procedimiento según la reivindicación 26, caracterizado porque dicha relación en peso entre la fracción de combustible y el catalizador está comprendida entre 10 y 300.
28. Un procedimiento según la reivindicación 26, caracterizado porque dicha relación en peso entre la fracción de combustible y el agente oxidante está comprendida entre 200 y 20.
29. Un procedimiento según la reivindicación 1 a 28, caracterizado porque dicha reacción de oxidación se lleva a cabo a una temperatura comprendida entre 10 y 120 °C.
30. Un procedimiento según la reivindicación 1, caracterizado porque dicha reacción de oxidación se lleva a cabo a una temperatura comprendida entre 20 y 80 °C.
31. Un procedimiento según la reivindicación 1, caracterizado porque dicha reacción de oxidación se produce en un tiempo de reacción entre 2 minutos y 24 horas.
32. Un procedimiento según la reivindicación 1, caracterizado porque dicha etapa de separación está seleccionada entre etapas de adsorción, etapas de destilación, etapas de extracción con un disolvente, y combinaciones de las mismas.
33. Un procedimiento según la reivindicación 7 o 20, caracterizado porque los enlaces Si -C han sido introducidos en el catalizador en una etapa de sililación postsíntesis .
34. Un procedimiento según la reivindicación 8 o 21, caracterizado porque la matriz inorgánica está seleccionada entre matrices de sílice, matrices de alúmina, matrices de caolín y combinaciones de las mismas.
35. Un procedimiento según la reivindicación 22, caracterizado porque el agente oxidante es hidroperóxido de tert-butilo.
36. Un procedimiento según la reivindicación 1 o 32, caracterizado porque comprende además una etapa de reciclado, en la que se reintroducen en la mezcla de reacción al menos parte de los productos sin reaccionar.
37. Un procedimiento según una cualquiera de las reivindicaciones precedentes, caracterizado porque la oxidación es una oxidación selectiva.
PCT/ES2002/000546 2001-11-20 2002-11-20 Un procedimiento para la oxidacion de compuestos de azufre de las fracciones gasolina, kerosene y diesel WO2003044129A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02787975A EP1462504A1 (en) 2001-11-20 2002-11-20 Method of oxidising sulphur compounds present in gasoline, kerosene and diesel fractions
AU2002354180A AU2002354180A1 (en) 2001-11-20 2002-11-20 Method of oxidising sulphur compounds present in gasoline, kerosene and diesel fractions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES200102669A ES2192967B1 (es) 2001-11-20 2001-11-20 Proceso y catalizadores para la oxidacion de compuestos de azufre de las fracciones gasolina, queroseno y diesel.
ESP0102669 2001-11-20
ESP0102754 2001-11-30
ES200102754A ES2192969B1 (es) 2001-11-30 2001-11-30 Proceso y catalizadores para la oxidacion selectiva de compuestos de azufre presentes en gasolina, queroseno y diesel.

Publications (1)

Publication Number Publication Date
WO2003044129A1 true WO2003044129A1 (es) 2003-05-30

Family

ID=26156255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000546 WO2003044129A1 (es) 2001-11-20 2002-11-20 Un procedimiento para la oxidacion de compuestos de azufre de las fracciones gasolina, kerosene y diesel

Country Status (3)

Country Link
EP (1) EP1462504A1 (es)
AU (1) AU2002354180A1 (es)
WO (1) WO2003044129A1 (es)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015030A1 (es) * 2002-08-07 2004-02-19 Consejo Superior De Investigaciones Cientificas Proceso para la oxidación de mercaptanos, compuestos tiofénicos y sus derivados, en las fracciones gasolina, queroseno y diesel
WO2005054410A1 (en) * 2003-11-26 2005-06-16 Lyondell Chemical Technology, L.P. Desulfurization process
WO2005071046A1 (en) * 2004-01-09 2005-08-04 Lyondell Chemical Technology, L.P. Desulfurization process
CN100408658C (zh) * 2005-05-24 2008-08-06 中国石油化工股份有限公司 一种柴油氧化萃取脱硫的方法
CN105170176A (zh) * 2015-09-30 2015-12-23 万华化学集团股份有限公司 一种烯烃环氧化催化剂及其制备方法和应用
CN106350108A (zh) * 2016-10-08 2017-01-25 长春工业大学 一种柴油馏分脱硫方法
CN108295809A (zh) * 2018-02-05 2018-07-20 中国海洋石油集团有限公司 一种复合脱硫吸附剂及其制备方法和用途
CN113293028A (zh) * 2016-11-22 2021-08-24 Rj利格鲁普公司 分离热解油的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798525B (zh) * 2009-02-06 2012-11-21 中国石油化工股份有限公司 一种柴油的氧化脱硫方法
CN102302940A (zh) * 2011-07-15 2012-01-04 成都理工大学 一种新型光催化剂S掺杂SiO2/TiO2复合材料的制备方法
CN105130763B (zh) * 2015-09-22 2017-01-11 江苏兰丰环保科技有限公司 一种甲基叔丁基醚的脱硫方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048119A1 (fr) * 1999-12-28 2001-07-05 Elf Antar France Procede de desulfuration des derives du thiophene contenus dans des carburants
WO2002031086A1 (es) * 2000-10-11 2002-04-18 Consejo Superior De Investigaciones Cientificas Procedimiento y catalizadores para la eliminación de compuestos de azufre de la fracción gasolina
WO2002083819A1 (es) * 2001-04-12 2002-10-24 Consejo Superior De Investigaciones Cientificas Proceso y catalizadores para la eliminacion de compuestos de azufre de la fraccion diesel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048119A1 (fr) * 1999-12-28 2001-07-05 Elf Antar France Procede de desulfuration des derives du thiophene contenus dans des carburants
WO2002031086A1 (es) * 2000-10-11 2002-04-18 Consejo Superior De Investigaciones Cientificas Procedimiento y catalizadores para la eliminación de compuestos de azufre de la fracción gasolina
WO2002083819A1 (es) * 2001-04-12 2002-10-24 Consejo Superior De Investigaciones Cientificas Proceso y catalizadores para la eliminacion de compuestos de azufre de la fraccion diesel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015030A1 (es) * 2002-08-07 2004-02-19 Consejo Superior De Investigaciones Cientificas Proceso para la oxidación de mercaptanos, compuestos tiofénicos y sus derivados, en las fracciones gasolina, queroseno y diesel
WO2005054410A1 (en) * 2003-11-26 2005-06-16 Lyondell Chemical Technology, L.P. Desulfurization process
WO2005071046A1 (en) * 2004-01-09 2005-08-04 Lyondell Chemical Technology, L.P. Desulfurization process
CN100408658C (zh) * 2005-05-24 2008-08-06 中国石油化工股份有限公司 一种柴油氧化萃取脱硫的方法
CN105170176A (zh) * 2015-09-30 2015-12-23 万华化学集团股份有限公司 一种烯烃环氧化催化剂及其制备方法和应用
CN105170176B (zh) * 2015-09-30 2017-05-17 万华化学集团股份有限公司 一种烯烃环氧化催化剂及其制备方法和应用
CN106350108A (zh) * 2016-10-08 2017-01-25 长春工业大学 一种柴油馏分脱硫方法
CN113293028A (zh) * 2016-11-22 2021-08-24 Rj利格鲁普公司 分离热解油的方法
CN108295809A (zh) * 2018-02-05 2018-07-20 中国海洋石油集团有限公司 一种复合脱硫吸附剂及其制备方法和用途
CN108295809B (zh) * 2018-02-05 2020-12-11 中国海洋石油集团有限公司 一种复合脱硫吸附剂及其制备方法和用途

Also Published As

Publication number Publication date
AU2002354180A1 (en) 2003-06-10
EP1462504A1 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
WO2002083819A1 (es) Proceso y catalizadores para la eliminacion de compuestos de azufre de la fraccion diesel
WO2002031086A1 (es) Procedimiento y catalizadores para la eliminación de compuestos de azufre de la fracción gasolina
Tuel Modification of mesoporous silicas by incorporation of heteroelements in the framework
Zhao et al. Advances in mesoporous molecular sieve MCM-41
JP3443428B2 (ja) 合成メソポーラス結晶性物質の改変方法
ES2261080B1 (es) Procedimiento y catalizadores para la expoxidacion de compuestos olefinicos en presencia de oxigeno.
Wang et al. One-pot extraction and aerobic oxidative desulfurization with highly dispersed V 2 O 5/SBA-15 catalyst in ionic liquids
WO2003044129A1 (es) Un procedimiento para la oxidacion de compuestos de azufre de las fracciones gasolina, kerosene y diesel
ES2346521T3 (es) Material cristalino microporoso de naturaleza zeolitica (zeolita itq-22) su metodo de sintesis y su uso como catalizador.
Du et al. Synthesis of hierarchically porous TS-1 zeolite with excellent deep desulfurization performance under mild conditions
KR20000062388A (ko) 제올라이트 에스에스제트-47
JP2007532451A (ja) 微孔性非晶質物質、該物質の製造法及び有機化合物の接触変換における該物質の使用
US5681789A (en) Activation of as-synthesized titanium-containing zeolites
Zhu et al. Oxidative desulfurization of model oil over Ta-Beta zeolite synthesized via structural reconstruction
Ma et al. Hierarchical Ti-Beta zeolites with uniform intracrystalline mesopores hydrothermally synthesized via interzeolite transformation for oxidative desulfurization
JP2006514145A (ja) 有機硫黄の酸化方法
KR20000062389A (ko) 제올라이트 에스에스제트-45
Inchaurrondo et al. Catalytic ozonation of an azo-dye using a natural aluminosilicate
ES2321548T3 (es) Utilizacion de una zeolita de tipo faujista intercambiada parcialmente con cesio para realizar la desulfuracion impulsada de una mezcla de hidrocarburos.
Nanoti et al. Mesoporous silica as selective sorbents for removal of sulfones from oxidized diesel fuel
Wu et al. Selective liquid-phase oxidation of cyclopentene over MWW type titanosilicate
KR100915025B1 (ko) 선택산화탈황용 촉매와 이의 제조방법
Chatterjee et al. Role and effect of supercritical fluid extraction of template on the Ti (IV) active sites of Ti-MCM-41
WO2004015030A1 (es) Proceso para la oxidación de mercaptanos, compuestos tiofénicos y sus derivados, en las fracciones gasolina, queroseno y diesel
KR101918775B1 (ko) 탄화수소의 산화 탈황방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002787975

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002787975

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP