WO2003042627A2 - Feldeffekttransistor-sensor für eine sonde eines rastersondenmikroskoskops - Google Patents

Feldeffekttransistor-sensor für eine sonde eines rastersondenmikroskoskops Download PDF

Info

Publication number
WO2003042627A2
WO2003042627A2 PCT/EP2002/012513 EP0212513W WO03042627A2 WO 2003042627 A2 WO2003042627 A2 WO 2003042627A2 EP 0212513 W EP0212513 W EP 0212513W WO 03042627 A2 WO03042627 A2 WO 03042627A2
Authority
WO
WIPO (PCT)
Prior art keywords
channel
sensor
electrode
sample
voltage
Prior art date
Application number
PCT/EP2002/012513
Other languages
English (en)
French (fr)
Other versions
WO2003042627A3 (de
Inventor
Klaus Edinger
Ivajlo Rangelow
Piotr Grabiec
John Melngailis
Original Assignee
Universität Kassel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität Kassel filed Critical Universität Kassel
Priority to AU2002358004A priority Critical patent/AU2002358004A1/en
Publication of WO2003042627A2 publication Critical patent/WO2003042627A2/de
Publication of WO2003042627A3 publication Critical patent/WO2003042627A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/30Scanning potential microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/07Non contact-making probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices

Definitions

  • the invention relates to a sensor with at least one field effect transistor (FET) having at least one semiconductor material.
  • FET field effect transistor
  • MOS-FET metal oxide semiconductor field effect transistor
  • the electrical resistance of the transistor channel (gate) is controlled by means of a channel electrode insulated from the channel by an oxide layer, such an electrode is not provided in a FET sensor.
  • the resistance of the transistor channel is influenced by the interaction with a sample to be examined, which allows conclusions to be drawn about the nature of the sample, in particular the sample surface.
  • US 4,020,830 discloses the use of a field effect transistor as a chemical sensor.
  • a membrane is attached to an insulation layer of the transistor channel, which membrane with the surface of a sample to be examined, for example a liquid, is brought into contact.
  • the membrane is designed such that it selectively interacts with a predetermined type of ions in the sample.
  • the application of a voltage between the sample and the transistor results in an interaction between the membrane and the ions of the sample, which in turn leads to a change in the channel resistance of the transistor, which allows conclusions to be drawn about the nature of the sample to be examined.
  • the invention has for its object to provide a field effect transistor sensor for examining sample surfaces with the highest possible spatial resolution.
  • a sensor according to the invention in particular for a probe of a scanning probe microscope, for examining sample surfaces or fields located adjacent to the sensor provides at least one field effect transistor (FET) having at least one semiconductor material without a channel electrode, the surface of which is three-dimensional at least in the region of the channel (gate) is trained.
  • FET field effect transistor
  • the lateral resolution of an FET sensor depends both on the distance from the sensor to the sample, which is essentially limited by the thickness of a layer of a dielectric covering the transistor channel, and on the dimension of the channel, ie its length and width. The smaller the sample / sensor distance chosen and the smaller the channel is dimensioned, the higher the resolution of the sensor.
  • the dimension of the transistor channel is predetermined, inter alia, by the methods used in the manufacture of the FET sensor, in particular the lithography methods.
  • the transistor surface in the region of the channel, as provided according to the invention but additionally three-dimensional, for example pointed, and is the channel e.g. Placed over the apex of a pyramid or a cone made of a semiconductor material, the lateral resolving power can exceed the dimension of the channel due to the distance dependence of the electrical field strength and thus the maximum resolving power otherwise limited by the structuring methods.
  • the lateral resolution of a sensor according to the invention is consequently increased compared to a sensor with a flat transistor surface.
  • a sensor according to the invention can therefore be used particularly well for the detection of electrical, magnetic and / or chemical interactions and for the detection of electromagnetic radiation with a high spatial resolution.
  • a sensor according to the invention can additionally or simultaneously be used as a probe of a conventional atomic force microscope.
  • Advantageous embodiments of the invention can be found in the subclaims, the description and the drawing.
  • the surface in the region of the channel (gate) is designed pyramid-like.
  • the distance dependence of the electric field strength can be exploited particularly well to improve the resolving power of the sensor.
  • pyramid-like structures, particularly in crystalline semiconductor substrates can easily be produced by plasma etching processes (cf., for example, H. Jansen et al., A Survey on the Reactive Ion Etching of Silicon in Microtechnology, J. Micromech. Microeng., Vol. 6, 14ff (1996)).
  • the surface in the region of the channel (gate) can be conical, step-like or wedge-shaped.
  • the transistor is designed as a field-effect transistor of the enhancement mode (enhancement mode FET).
  • the transistor is designed as a depletion mode field effect transistor (depletion mode FET).
  • depletion mode FET depletion mode field effect transistor
  • a current flows between the source and the drain, which is a measure of the electrical resistance of the channel, even without an external electric field.
  • the channel does not have to be inverted by an external field to allow current to flow between the source and the sink, so that with the depletion type FET sensor, comparatively small electrical fields are sufficient to change the channel resistance and are thus made accessible for measurement.
  • the use of a depletion type field effect transistor consequently results in a sensor with increased sensitivity.
  • the senor has an electrode for applying a setting voltage in order to electrically preset the electrical resistance of the channel (gate).
  • the sensitivity of the sensor according to the invention can be adapted to the strength of an electrical field.
  • the transistor is advantageously designed as a junction field effect transistor (JFET). Such transistors allow the channel resistance to be set to a predetermined value in a simple manner.
  • JFET junction field effect transistor
  • Another object of the invention is a method for spatially resolved examination of a sample surface extending essentially in the XY direction, in which a sensor of the type mentioned above is attached to an end of a probe of a scanning probe microscope facing the sample surface, the sensor in the vicinity of Is brought sample surface, a voltage is applied between the source and drain of the transistor, a voltage is optionally applied between the sample and sensor, the sensor, in particular in a raster movement, is moved in the XY direction relative to the sample surface, wherein either the sensor is held at a constant height Z with respect to the XY plane above the sample surface and the Current flow from the source through the channel to the drain is measured and recorded depending on the XY position of the sensor, or the sensor is moved at a constant distance from the sample surface such that the current flow from the source ( source) remains constant through the channel (gate) to the sink (drain), and the extent of movement of the sensor in the Z direction as a function of the XY position of the sensor is recorded, and an image of the sample surface
  • the method according to the invention represents a possibility of using a sensor according to the invention, in which the resolving power of the sensor can be used particularly well.
  • a depletion type FET sensor is preferably used and a set voltage is applied to the sensor to preset the resistance of the channel (gate) to a predetermined value. This allows the sensitivity of the sensor to be adjusted to the sample to be examined.
  • Another object of the invention is a Hall sensor made of at least one semiconductor material for detecting magnetic fields, the lateral resolution of which is electrically adjustable. With such a Hall sensor, the strength of a magnetic field can be measured particularly well in a spatially resolved manner.
  • At least two channels which are perpendicular to one another, in particular perpendicular to one another and intersect in an intersection area are preferably provided in a substrate which have a polarity of the majority charge carriers which is opposite to the substrate, a control voltage being able to be applied to one channel for generating a current flow through the channel and a Hall voltage generated by a magnetic field being measurable on the other channel.
  • a Hall sensor according to the invention advantageously has an electrode for applying a setting voltage in order to set the extent of the crossing region in the plane spanned by the channels. In this way, the resolution of the Hall sensor can be adjusted, in particular increased.
  • Another object of the invention is a semiconductor electrode, the electrode surface of which is electrically adjustable.
  • Such an electrode can be used to carry out particularly spatially resolved capacitance measurements or electrochemical potential determinations on samples to be examined.
  • a first channel section which can be contacted from outside the substrate and runs essentially parallel to the substrate surface, is provided in a semiconductor substrate and merges into a second channel section running perpendicular to the substrate surface, which borders on the substrate surface, the electrode surface being covered by the lateral extent of the second channel section on the substrate surface is determined.
  • the channel sections preferably have a polarity of the majority charge carriers that is opposite to the substrate. It is particularly expedient if the semiconductor electrode has an electrode for applying an adjusting voltage in order to adjust the extent of the channel sections and in particular the extent of the second channel section on the substrate surface. As a result, the electrode area can be adjusted, in particular reduced, whereby the resolution of a spatially resolved capacitance measurement or potential determination can be set, in particular increased.
  • Another object of the invention is a method for spatially resolved capacitance measurement or electrochemical potential determination of a sample extending in the XY direction, in which a semiconductor electrode according to one of the aforementioned types is attached to an end of a probe of a scanning probe microscope facing the sample surface, to the semiconductor substrate an adjusting voltage is applied in order to set the expansion of the electrode area to a predetermined value, the electrode, in particular in a raster movement, is moved in the XY direction relative to the sample, the electrode is brought into contact with the sample at predetermined intervals, between sample and if necessary a voltage is applied to the sensor, the capacitance or the electrochemical potential of the sample is determined and recorded as a function of the XY position of the electrode, and an image of the sample is created from the recorded capacitance or potential values becomes.
  • Fig. 1 shows an enhancement type field effect transistor without
  • FIG. 5 shows a plan view of a Hall sensor according to the invention
  • Fig. 6 is a sectional view of the Hall sensor along the line A-A of Fig. 5;
  • FIG. 7 shows a plan view of a semiconductor electrode according to the invention.
  • FIG. 1 shows a known planar field effect transistor (FET) of the enhancement type (enhancement mode FET) which can be used as a detector and which comprises a p-doped silicon substrate 10.
  • FET planar field effect transistor
  • the substrate 10 has two n + -doped regions 14, 16, the one region 14 by means of a sink electrode 18 contacted and connected to a voltage source 20 and acts as a drain.
  • the other n + -doped region 16 is grounded by means of a source electrode 22 and acts as a source (see above).
  • the sensor surface 12 is provided with a layer 24 made of a dielectric, preferably made of silicon dioxide.
  • the region of the substrate 10 near the surface located between the depression 14 and the source 16 forms the channel 26 (gate) of the transistor.
  • a channel electrode is typically attached to the oxide layer 24 in the region of the channel 26 in order to control the conductivity of the channel 26 and thus the current flow from source 16 to sink 14 by means of a voltage applied to the channel electrode such a channel electrode is not provided for an FET used as a sensor.
  • the conductivity of the channel 26 is influenced by electrical, magnetic or chemical interactions of the channel 26 with the external fields or sample surfaces to be examined, or by exposing the sensor surface 12 to electromagnetic radiation.
  • the sensor shown in FIG. 1 is an enrichment type FET, which means that the channel 26 basically has the same doping as the substrate 10. A current flow from source 16 to sink 14 can therefore only take place if the channel 26 is inverted, ie if an external electrical field to be examined is so strong that the electrical resistance of the channel 26 is generated by the generation of a sufficient number of mobile charge carriers (electrons) is sufficiently reduced. Since correspondingly strong electric fields are required for the inversion of the channel 26, an enrichment type FET has a relatively low sensor sensitivity. In addition, the channel 26 must be inverted over its entire length in order to achieve a current flow from source 16 to sink 14.
  • the resolving power of such a sensor is determined not only by the thickness of the oxide layer 24 but also by the dimension of the channel 26, the resolving power of the sensor shown in FIG. 1 is limited by the distance between the depression 14 and the source 16, ie it cannot be better than that Length of the channel 26.
  • the channel 26 of a depletion type FET has a doping of the same type as the sink 14 and the source 16 - in the example shown an n-doping.
  • the system channel 26 / substrate 10 consequently forms a pn junction.
  • the channel 26 is already conductive in an initial state, so that when a voltage is applied between the sink 14 and the source 16, a current flows even without the interaction of the sensor with an external electrical field. In this way, weaker electric fields are made accessible for a measurement, so that a depletion-type FET has a higher sensor sensitivity than an enrichment-type FET. At the same time, a higher resolving power of the sensor can be achieved since the entire channel 26 does not have to be inverted for a current flow between source 16 and sink 14. The resolution is therefore basically not limited by the length of the channel 26.
  • the substrate 10 of a JFET is contacted with a setting electrode 28, which is connected to a voltage source 30 in order to apply a setting voltage between the substrate 10 and the channel 26.
  • the extension of the channel 26 can be varied in the direction perpendicular to the sensor surface 12, ie the depth of the channel 26, by the setting voltage. By applying the voltage in the blocking direction of the pn junction, the cross section of the channel 26 can be reduced by depletion on charge carriers.
  • the setting voltage consequently provides an additional possibility of presetting the conductivity of the channel 26 and thus adapting the sensitivity of the sensor to the strength of an electric field to be examined.
  • the sensor surface 12 of the sensor according to the invention is at least partially three-dimensional and preferably a tip.
  • a non-exhaustive selection of configurations of a three-dimensional sensor surface 12 that are considered according to the invention is shown by way of example in FIG. 4:
  • the sensor surface 12 can be designed as (a) 3-sided or 4-sided pyramid tip or as (b) cone tip.
  • a (c) step-like or (d) wedge-shaped design of the tip is also conceivable.
  • the three-dimensional configuration of the substrate surface 12 according to the invention also includes spherical shapes.
  • the sensor surface 12 of the sensor in FIG. 3 is at least partially formed as a pyramid tip. Such a structure can easily be produced by known etching or sawing methods in substrates, in particular from crystalline silicon.
  • the substrate 10 of the sensor consists of p-doped silicon, while the sink 14 and source 16 are formed as n-doped regions in the substrate 10.
  • the depression 14 and source 16 are arranged on the pyramid base in the flat region 32 of the sensor surface 12 and extend in a region near the surface along a large part of the pyramid flanks 34 in the direction of the pyramid tip 36.
  • the region near the surface of the pyramid tip 36 itself is designed as a channel 26 , As already explained above, this can be an inverted or doped channel, so that a sensor in the manner of an FET of the enrichment type or - as in the example shown - of the depletion type is present.
  • a voltage can be applied between the sink 14 and the source 16 by means of a voltage source 20 and a current flowing through the channel 26 between the source 16 and the sink 14 by means of a current measuring device 38 Measure current.
  • the electrical resistance of the channel 26 can be preset by means of a voltage which can be applied to the substrate 10 by means of an adjusting electrode 28 attached to the substrate 10.
  • the sensor ie the pyramid tip 36
  • a voltage is applied between the sensor and the sample 42 by means of a voltage source 44
  • an electrical voltage is generated between the sample surface 40 and the pyramid tip 36 Field generated which acts on the channel 26 and changes its conductivity.
  • the strength of the electric field between the sample surface and the pyramid tip 36 can be determined on the basis of the current flow between the sink 14 and the source 16 determined in the measuring device 38 and conclusions can be drawn about the nature of the sample surface 40.
  • the lateral resolution of the sensor depends on the one hand on the distance of the pyramid tip 36 from the sample surface 40. A minimum distance is predetermined by the thickness of the oxide layer 24 covering the sensor surface 12.
  • the resolution depends on the lateral extent of the channel 26. Since the channel 26 is placed over the apex of the pyramid tip 36 according to the invention, the effective dimension of the channel 26 is smaller than the actual dimension of the channel 26 because of the quadratic dependence of the electric field strength on the distance to the sample surface 40. the steeper the pyramid is formed, ie the smaller the angle that the pyramid flanks 34 form with one another.
  • a sensor according to the invention can be integrated, for example, in the tip of a scanning probe of a scanning probe microscope and moved in a raster movement relative to a sample surface, whereby a high-resolution examination of a sample surface is made possible.
  • the sensor can be moved, for example, at a constant height Z with respect to an XY plane at least approximately defined by the sample surface 40, the current flow through the transistor being recorded as a function of the location of the sensor.
  • the sensor can be moved over the sample surface 40 in such a way that the current flow through the transistor always remains constant, the deflection of the sensor in the Z direction being recorded as a function of the XY position of the sensor.
  • a spatially resolved image of the sample surface 40 can be created, which allows conclusions to be drawn about the nature of the sample 42 or sample surface 40.
  • a sensor according to the invention can additionally or simultaneously be used for a probe of a conventional atomic force microscope.
  • the effective width and depth of the channel 26 can be reduced by applying a blocking voltage to the semiconductor substrate 10, and thus both the sensitivity and the lateral resolution of the sensor via the lithographic structuring specified size can be increased.
  • Detectors for electrical charges in particular electrically charged molecules or atoms (ions), which are located in the vicinity of the sensor in the gas phase, in solution or absorbed on a solid surface.
  • Chemical sensors by means of which a selective attachment of chemical species (e.g. ions or molecules) to a correspondingly prepared channel electrode can be detected.
  • chemical species e.g. ions or molecules
  • the potential of the channel electrode e.g. by a
  • the channel electrode itself (eg palladium for hydrogen) or other, mostly organic materials which selectively bind the species to be detected serve as chemically selective materials.
  • the selective material is either between the channel electrode and the oxide layer covering the channel (see, for example, US Pat. No. 4,698,657) or is applied, for example as a self-assembling thin film (self-assembled monolayer), directly to the channel electrode (cf. for example US ' 4,881, 109).
  • the electric field can also be generated via the FET channel by an electrolyte solution which is in direct contact with the oxide layer covering the channel by means of an ion-selective membrane (cf. P. Bergveld, IEEE Transactions of Biomedical Engineering; Vol. 19; 342ff (1972), and KD Wise et al.,
  • Detection by means of FET sensors in the depletion mode and in particular in combination with the junction mode (JFET effect) is provided.
  • the use of sensors according to the invention is not limited to probe tips, but is provided wherever the increase in resolution in one dimension is an improvement and / or the second dimension is determined by other lithographic methods.
  • One example is the application as a chemical detector in a micro-structured transport channel (microfluidic channel) for specific or non-specific detection of chemical species flowing past according to points 2 and 3 above.
  • Another example is the use as an electrostatic scanning sensor (“reading head”) for electrical charges stored on mass storage devices, in analogy to a magnetic reading head of conventional hard disk drives.
  • a further subject of the invention is the Hall sensor shown in FIG. 5 for the detection of magnetic fields according to the Hall effect principle.
  • the Hall sensor according to the invention has a p-type silicon substrate, in the area near the surface of which two n-type channels 112, 114 are provided, that run perpendicular to each other and intersect in an intersection area 116.
  • a constant control current I Tavern can flow through a channel 112, and the Hall voltage NHII generated by an external magnetic field can be measured on the other channel 114.
  • the channels 112, 114 each form a pn junction with the substrate 110, the regions 122 characterizing the respective space charge or depletion zones.
  • an electrode 120 connected to a voltage source 118 is attached to the substrate 110.
  • the extent of the channels 112, 114 can be changed, for example by means of depletion on charge carriers, if the voltage is applied in the reverse direction of the pn junctions. This way you can in particular also reduce the intersection area 116. This in turn results in an improvement in the resolution of the Hall sensor.
  • the semiconductor electrode shown in FIG. 7, the electrode surface of which is adjustable according to the JFET principle.
  • the semiconductor electrode has a p-type silicon substrate 210, in which an n-type channel section 214 is formed below a substrate surface 212 and essentially parallel to this surface 212. At one end, this channel section 214 is connected to a current or voltage source 218 by means of an electrode 216. At the other end of the parallel channel section 214 there is a channel section 220 running perpendicular to the surface 12 and reaching as far as the surface 12, the extent of which on the surface 212 defines the electrode surface.
  • An electrode 224 connected to a voltage source 222 for applying a reverse voltage is also attached to the substrate 210.
  • the extension of the vertical channel section 220 on the substrate surface 212 can be controlled by applying a reverse voltage between the substrate 210 and the n-doped region 214, 220. In this way, in the case of a semiconductor electrode according to the invention, an electrically adjustable electrode surface can be achieved, the size of which is less than the lithographically predetermined electrode surface.
  • the semiconductor electrode according to the invention can consequently be used as a detection means with an electrically adjustable lateral resolution.
  • the electrically set resolution can exceed the lithographically predetermined resolution.
  • the fact that the vertical channel section 220 is surrounded by the opposite electrical potential of the substrate can result in a concentration of the field strength in the direction perpendicular to the substrate surface 212 and can lead to a focusing effect which contributes to a further increase in the resolution.
  • a semiconductor electrode according to the invention can be used, for example, as a highly spatially resolving probe for capacitance measurements or as an electrochemical probe for determining the electrochemical potential of an electrolyte solution.
  • the semiconductor electrode can be integrated into the tip of a probe of a scanning probe microscope and can be used for capacitance measurement or electrochemical potential determination. Both types of microscopy are used in conjunction with metal electrodes and are referred to as "Scanning Capacitance Microscopy” (SCN) or “Scanning Electrochemical Microscopy” (SECM).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Die Erfindung betrifft einen Sensor, insbesondere für eine Sonde eines Rastersondenmikroskops, zum Untersuchen sich benachbart zum Sensor befindlicher Probenoberflächen (40) oder Felder mit zumindest einem, wenigstens ein Halbleitermaterial aufweisenden Feldeffekttransistor (FET). Des Weiteren betrifft die Erfindung einen Hallsensor aus zumindest einem Halbleitermaterial zum Detektieren von magnetischen Feldern, dessen laterales Auflösungsvermögen elektrisch einstellbar ist, sowie eine Halblei-terelektrode (28), deren Elektrodenfläche elektrisch einstellbar ist.

Description

Feldeffekttransistor-Sensor
Die Erfindung betrifft einen Sensor mit zumindest einem, wenigstens ein Halbleitermaterial aufweisenden Feldeffekttransistor (FET) .
Grundsätzlich ist die Verwendung eines Feldeffekttransistors, insbesondere eines Metalloxidhalbleiter- Feldeffekttransistors (MOS-FET), als Sensor bekannt. Während bei einem herkömmlichen MOS-FET der elektrische Widerstand des Transistorkanals (gate) mittels einer durch eine Oxidschicht gegenüber dem Kanal isolierten Kanalelektrode gesteuert wird, ist eine derartige Elektrode bei einem FET-Sensor nicht vorgesehen. Bei der Verwendung des FET als Sensor wird der Widerstand des Transistorka- nals durch die Wechselwirkung mit einer zu untersuchenden Probe beein- flusst, wodurch sich Rückschlüsse auf die Beschaffenheit der Probe, insbesondere der Probenoberfläche, ziehen lassen.
Aus der US 4,873,871 ist beispielsweise die Verwendung eines Feldeffekt- transistors als Beschleunigungssensor bekannt. Dabei ist in der Nähe des Transistorkanals ein bei Beschleunigung des Sensors auslenkbarer Mik- robalken derart angeordnet, dass sich bei Annäherung des Mikrobalkens an den Transistorkanal oder bei Entfernung des Mikrobalkens vom Transistorkanal der Kanalwiderstand entsprechend ändert.
In der US 4,020,830 ist die Verwendung eines Feldeffekttransistors als chemischer Sensor offenbart. Dabei ist auf einer Isolationsschicht des Transistorkanals eine Membran angebracht, die mit der Oberfläche einer zu untersuchenden Probe, beispielsweise einer Flüssigkeit, in Kontakt gebracht wird. Die Membran ist derart ausgebildet, dass sie selektiv mit einer vorbestimmten Art von Ionen der Probe wechselwirkt. Das Anlegen einer Spannung zwischen der Probe und dem Transistor resultiert in einer Wechselwirkung zwischen der Membran und den Ionen der Probe, die ihrerseits zu einer Veränderung des Kanalwiderstandes des Transistors führt, die Rückschlüsse auf die Beschaffenheit der zu untersuchenden Probe zulässt.
Der Erfindung liegt die Aufgabe zugrunde, einen Feldeffekttransistor- Sensor zur Untersuchung von Probenoberflächen mit möglichst hoher Ortsauflösung zu schaffen.
Zur Lösung der Aufgabe ist ein Sensor mit den Merkmalen des Anspruchs 1 vorgesehen.
Ein erfindungsgemäßer Sensor, insbesondere für eine Sonde eines Rastersondenmikroskops, zum Untersuchen sich benachbart zum Sensor befindlicher Probenoberflächen oder Felder sieht zumindest einen, wenigs- tens ein Halbleitermaterial aufweisenden Feldeffekttransistor (FET) ohne Kanalelektrode vor, dessen Oberfläche zumindest im Bereich des Kanals (gate) dreidimensional ausgebildet ist.
Die laterale Auflösung eines FET-Sensors hängt sowohl vom Abstand des Sensors zur Probe, der im Wesentlichen durch die Dicke einer den Transistorkanal überdeckenden Schicht aus einem Dielektrikum begrenzt ist, als auch von der Dimension des Kanals, d.h. seiner Länge und seiner Breite, ab. Je kleiner der Proben/ Sensor- Abstand gewählt und je kleiner der Kanal dimensioniert ist, desto höher ist das Auflösungsvermögen des Sensors.
Dabei ist die Dimension des Transistorkanals unter anderem durch die bei der Herstellung des FET-Sensors eingesetzten Verfahren, insbesondere die Lithographieverfahren, vorgegeben. Ist die Transistoroberfläche im Bereich des Kanals, wie erfindungsgemäß vorgesehen, zusätzlich jedoch dreidimensional, beispielsweise spitz, ausgebildet, und wird der Kanal z.B. über den Scheitelpunkt einer aus einem Halbleitermaterial bestehenden Pyra- mide oder eines Kegels gelegt, kann das laterale Auflösungsvermögen wegen der Abstandsabhängigkeit der elektrischen Feldstärke die Dimension des Kanals und somit das sonst durch die Strukturierungsverfahren begrenzte maximale Auflösungsvermögen übersteigen. Durch die erfindungsgemäß vorgesehene dreidimensionale Ausbildung der Transistor- Oberfläche zumindest im Bereich des Kanals (gate) ist das laterale Auflösungsvermögen eines erfindungsgemäßen Sensors folglich gegenüber einem Sensor mit planer Transistoroberfläche erhöht.
Ein erfindungsgemäßer Sensor lässt sich also besonders gut zur Detektion von elektrischen, magnetischen und/ oder chemischen Wechselwirkungen sowie zur Detektion elektromagnetischer Strahlung mit hoher Ortsauflösung einsetzen.
Da eine derartige Spitzengeometrie auch bei Detektionssonden in der Rasterkraftmikroskopie verwendet wird, kann ein erfindungsgemäßer Sensor darüber hinaus zusätzlich oder gleichzeitig als Sonde eines herkömmlichen Rasterkraftmikroskops verwendet werden. Vorteilhafte Ausführungsformen der Erfindung sind den Unteransprüchen, der Beschreibung und der Zeichnung zu entnehmen.
Gemäß einer vorteilhaften Ausführungsform des erfindungsgemäßen Sensors ist die Oberfläche im Bereich des Kanals (gate) pyramidenartig ausgebildet. Dadurch lässt sich die Abstandsabhängigkeit der elektrischen Feldstärke besonders gut zur Verbesserung des Auflösungsvermögens des Sensors ausnutzen. Darüber hinaus lassen sich pyramidenartige Strukturen, insbesondere in kristallinen Halbleitersubstraten, durch Plasma- Ätzverfahren leicht erzeugen (vgl. z.B. H. Jansen et al., A Survey on the Reactive Ion Etching of Silicon in Microtechnology, J. Micromech. Microeng., Vol. 6, 14ff (1996)).
Alternativ kann die Oberfläche im Bereich des Kanals (gate) kegelförmig, treppenartig oder keilförmig ausgebildet sein.
Gemäß einer Variante des erfindungsgemäßen Sensors ist der Transistor als Feldeffekttransistor vom Anreicherungstyp (enhancement mode FET) ausgebildet.
Gemäß einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Sensors ist der Transistor als Feldeffekttransistor vom Verarmungstyp (depletion mode FET) ausgebildet. In Transistoren dieses Typs fließt bereits ohne ein äußeres elektrisches Feld ein Strom zwischen Quel- le (source) und Senke (drain), der ein Maß für den elektrischen Widerstand des Kanals (gate) darstellt. Im Gegensatz zum FET vom Anreicherungstyp muss der Kanal nicht erst durch ein äußeres Feld invertiert werden, um einen Stromfluss zwischen Quelle und Senke zu ermöglichen, so dass beim FET-Sensor vom Verarmungstyp vergleichsweise kleine elektrische Felder ausreichen, um den Kanalwiderstand zu verändern, und somit der Messung zugänglich gemacht werden. Die Verwendung eines Feldeffekttransistors vom Verarmungstyp resultiert folglich in einem Sensor mit erhöhter Empfindlichkeit.
Besonders günstig ist es, wenn der Sensor eine Elektrode zum Anlegen einer Einstellspannung aufweist, um den elektrischen Widerstand des Kanals (gate) elektrisch voreinzustellen. Auf diese Weise lässt sich die Empfindlichkeit des erfindungsgemäßen Sensors auf die Stärke eines elektrischen Feldes anpassen.
Vorteilhafterweise ist der Transistor als Sperrschicht- Feldeffekttransistor (junction field effect transistor JFET) ausgebildet. Derartige Transistoren ermöglichen auf einfache Weise die Einstellung des Kanalwiderstandes auf einen vorbestimmten Wert.
Weiterer Gegenstand der Erfindung ist ein Verfahren zum ortsaufgelösten Untersuchen einer sich im wesentlichen in XY-Richtung erstreckenden Probenoberfläche, bei dem ein Sensor nach einer der voranstehend genannten Art an einem zur Probenoberfläche weisenden Ende einer Sonde eines Rastersondenmikroskops angebracht wird, der Sensor in die Nähe der Probenoberfläche gebracht wird, zwischen Quelle (source) und Senke (drain) des Transistors eine Spannung angelegt wird, zwischen Probe und Sensor gegebenenfalls eine Spannung angelegt wird, der Sensor, insbesondere in einer Rasterbewegung, in XY-Richtung relativ zur Probenoberfläche bewegt wird, wobei entweder der Sensor in einer konstanten Höhe Z bezüglich der XY-Ebene über der Probenoberfläche gehalten wird und der Stromfluss von der Quelle (source) durch den Kanal (gate) zur Senke (drain) gemessen und in Abhängigkeit der XY-Position des Sensors aufgezeichnet wird, oder der Sensor derart in konstantem Abstand zur Probenoberfläche bewegt wird, dass der Stromfluss von der Quelle (source) durch den Kanal (gate) zur Senke (drain) konstant bleibt, und das Ausmaß einer Bewegung des Sensors in Z- Richtung in Abhängigkeit der XY-Position des Sensors aufgezeichnet wird, und aus den aufgezeichneten Strom- oder Auslenkungswerten ein Abbild der Probenoberfläche erstellt wird.
Das erfindungsgemäße Verfahren stellt eine Möglichkeit zur Verwendung eines erfindungsgemäßen Sensors dar, bei der das Auflösungsvermögen des Sensors besonders gut ausgenutzt werden kann.
Bevorzugt wird ein FET-Sensor vom Verarmungstyp verwendet und eine Einstellspannung an den Sensor angelegt, um den Widerstand des Kanals (gate) auf einen vorbestimmten Wert voreinzustellen. Dadurch lässt sich die Empfindlichkeit des Sensors auf die zu untersuchende Probe anpassen.
Weiterer Gegenstand der Erfindung ist ein Hallsensor aus zumindest einem Halbleitermaterial zum Detektieren von magnetischen Feldern, dessen laterales Auflösungsvermögen elektrisch einstellbar ist. Mittels eines derartigen Hallsensors lässt sich die Stärke eines magnetischen Feldes besonders gut ortsaufgelöst messen.
Bevorzugt sind bei einem erfindungsgemäßen Hallsensor zumindest zwei quer zueinander, insbesondere senkrecht aufeinander stehende, sich in einem Kreuzungsbereich kreuzende Kanäle in einem Substrat vorgesehen, die eine gegenüber dem Substrat umgekehrte Polarität der Mehrheitsladungsträger aufweisen, wobei an einem Kanal zur Erzeugung eines Stromflusses durch den Kanal eine Steuerspannung anlegbar und an dem anderen Kanal eine durch ein magnetisches Feld erzeugte Hall Spannung messbar ist.
Vorteilhafterweise weist ein erfindungsgemäßer Hallsensor eine Elektrode zum Anlegen einer Einstellspannung auf, um die Ausdehnung des Kreuzungsbereiches in der durch die Kanäle aufgespannten Ebene einzustel- len. Auf diese Weise ist das Auflösungsvermögen des Hallsensors einstellbar, insbesondere erhöhbar.
Weiterer Gegenstand der Erfindung ist eine Halbleiterelektrode, deren Elektrodenfläche elektrisch einstellbar ist. Mittels einer derartigen Elekt- rode lassen sich besonders hoch ortsaufgelöste Kapazitätsmessungen oder elektrochemische Potentialbestimmungen an zu untersuchenden Proben durchführen.
Vorteilhafterweise ist in einer erfindungsgemäßen Halbleiterelektrode in einem Halbleitersubstrat ein von außerhalb des Substrats kontaktierba- rer, im wesentlichen parallel zur Substratoberfläche verlaufender erster Kanalabschnitt vorgesehen, der in einen senkrecht zur Substratoberfläche verlaufenden zweiten Kanalabschnitt übergeht, welcher an die Substratoberfläche grenzt, wobei die Elektrodenfläche durch die laterale Ausdeh- nung des zweiten Kanalabschnitts an der Substratoberfläche bestimmt ist.
Bevorzugt weisen die Kanalabschnitte eine gegenüber dem Substrat umgekehrte Polarität der Mehrheitsladungsträger auf. • Besonders günstig ist es, wenn die Halbleiterelektrode eine Elektrode zum Anlegen einer Einstellspannung aufweist, um die Ausdehnung der Kanalabschnitte und insbesondere die Ausdehnung des zweiten Kanalab- Schnitts an der Substratoberfläche einzustellen. Dadurch ist die Elektrodenfläche einstellbar, insbesondere verringerbar, wodurch sich die Auflösung einer ortsaufgelösten Kapazitätsmessung oder Potentialbestimmung einstellen, insbesondere erhöhen lässt.
Weiterer Gegenstand der Erfindung ist ein Verfahren zur ortsaufgelösten Kapazitätsmessung oder elektrochemischen Potentialbestimmung einer sich in XY-Richtung erstreckenden Probe, bei dem eine Halbleiterelektrode nach einer der voranstehend genannten Arten an einem zur Probenoberfläche weisenden Ende einer Sonde eines Rastersondenmikroskops ange- bracht wird, an dem Halbleitersubstrat eine Einstellspannung angelegt wird, um die Ausdehnung der Elektrodenfläche auf einen vorbestimmten Wert einzustellen, die Elektrode, insbesondere in einer Rasterbewegung, in XY-Richtung relativ zur Probe bewegt wird, die Elektrode in vorbestimmten Abständen mit der Probe in Kontakt gebracht wird, wobei zwischen Probe und Sensor gegebenenfalls eine Spannung angelegt wird, die Kapazität oder das elektrochemische Potential der Probe bestimmt und in Abhängigkeit der XY-Position der Elektrode aufgezeichnet wird, und aus den aufgezeichneten Kapazitäts- oder Potentialwerten ein Abbild der Probe erstellt wird.
Nachfolgend werden die verschiedenen Aspekte der Erfindung rein beispielhaft anhand jeweils einer Ausführungsform unter Bezugnahme auf die Zeichnung beschrieben. Es zeigen: Fig. 1 einen Feldeffekttransistor vom Anreicherungstyp ohne
Kanalelektrode;
Fig. 2 einen Sperrschicht-Feldeffekttransistor vom Verarmungstyp ohne Kanalelektrode;
Fig.3 einen erfindungsgemäßen Sensor;
Fig. 4 alternative Ausbildungen der Sensoroberfläche im Bereich des Kanals;
Fig. 5 eine Draufsicht eines erfindungsgemäßen Hallsensors;
Fig. 6 eine Schnittansicht des Hallsensors entlang der Linie A-A von Fig. 5;
Fig. 7 eine Draufsicht einer erfindungsgemäßen Halbleiterelektrode;
Fig. 8 eine Schnittansicht der Halbleiterelektrode entlang der Linie
B-B von Fig. 7.
In Fig. 1 ist ein als Detektor einsetzbarer bekannter planarer Feldeffekt- transistor (FET) vom Anreicherungstyp (enhancement mode FET) dargestellt, der ein p-dotiertes Siliziumsubstrat 10 umfasst. In der Nähe einer Sensoroberfläche 12 weist das Substrat 10 zwei jeweils n+-dotierte Bereiche 14, 16 auf, wobei der eine Bereich 14 mittels einer Senkenelektrode 18 kontaktiert und mit einer Spannungsquelle 20 verbunden ist und als Senke (drain) wirkt. Der andere n+-dotierte Bereich 16 ist mittels einer Quellenelektrode 22 geerdet und wirkt als Quelle (so rce). Die Sensoroberfläche 12 ist mit einer Schicht 24 aus einem Dielektrikum, vorzugsweise aus Siliziumdioxid, versehen.
Der zwischen Senke 14 und Quelle 16 gelegene oberflächennahe Bereich des Substrats 10 bildet den Kanal 26 (gate) des Transistors. Während bei Metalloxidhalbleiter-Feldeffekttransistoren (MOS-FET) im Bereich des Kanals 26 typischerweise eine Kanalelektrode auf der Oxydschicht 24 angebracht wird, um durch eine an die Kanalelektrode angelegte Spannung die Leitfähigkeit des Kanals 26 und somit den Stromfluss von Quelle 16 zu Senke 14 zu steuern, ist bei einem als Sensor eingesetzten FET eine solche Kanalelektrode nicht vorgesehen. Bei derartigen Sensortransistoren erfolgt die Beeinflussung der Leitfähigkeit des Kanals 26 durch elektrische, magnetische oder chemische Wechselwirkungen des Kanals 26 mit zu untersuchenden äußeren Feldern oder Probenoberflächen, oder indem die Sensoroberfläche 12 elektromagnetischer Strahlung ausgesetzt wird.
Bei dem in Fig. 1 gezeigten Sensor handelt es sich um einen FET vom Anreicherungstyp, das bedeutet, der Kanal 26 weist grundsätzlich die gleiche Dotierung wie das Substrat 10 auf. Ein Stromfluss von Quelle 16 zu Senke 14 kann daher nur erfolgen, wenn der Kanal 26 invertiert wird, d.h. wenn ein äußeres zu untersuchendes elektrisches Feld so stark ist, dass durch die Erzeugung einer ausreichenden Anzahl beweglicher Ladungsträger (Elektronen) der elektrische Widerstand des Kanals 26 ausreichend verringert wird. Da für die Inversion des Kanals 26 entsprechend starke elektrische Felder nötig sind, weist ein FET vom Anreicherungstyp eine relativ geringe Sensorempfindlichkeit auf. Zusätzlich muss der Kanal 26 über seine gesamte Länge invertiert werden, um einen Stromfluss von Quelle 16 zu Senke 14 zu erreichen. Da das Auflösungsvermögen eines derartigen Sensors neben der Dicke der Oxidschicht 24 auch durch die Dimension des Kanals 26 bestimmt ist, ist das Auflösungsvermögen des in Fig. 1 gezeigten Sensors durch den Abstand zwischen Senke 14 und Quelle 16 begrenzt, d.h. es kann nicht besser als die Länge des Kanals 26 sein.
In Fig. 2 ist ein Sensor nach Art eines Sperrschicht-Feldeffekttransistors (junction field effect transistor JFET) vom Verarmungstyp mit planarer Sensoroberfläche 12 dargestellt. Im Gegensatz zum FET vom Anreicherungstyp weist der Kanal 26 eines FET vom Verarmungstyp eine Dotie- rung vom gleichen Typ wie Senke 14 und Quelle 16 auf - im gezeigten Beispiel eine n-Dotierung. Das System Kanal 26 / Substrat 10 bildet folglich einen pn-Übergang.
Der Kanal 26 ist bereits in einem Ausgangszustand leitend, so dass bei Anlegen einer Spannung zwischen Senke 14 und Quelle 16 auch ohne die Wechselwirkung des Sensors mit einem äußeren elektrischen Feld ein Strom fließt. Auf diese Weise werden schwächere elektrische Felder einer Messung zugänglich gemacht, so dass ein FET vom Verarmungstyp eine höhere Sensorempfindlichkeit aufweist als ein FET vom Anreicherungstyp. Gleichzeitig kann ein höheres Auflösungsvermögen des Sensors erreicht werden, da für einen Stromfluss zwischen Quelle 16 und Senke 14 nicht der gesamte Kanal 26 invertiert werden muss. Die Auflösung ist grundsätzlich also nicht durch die Länge des Kanals 26 begrenzt. Zusätzlich ist das Substrat 10 eines JFET mit einer Einstellelektrode 28 kontaktiert, die mit einer Spannungsquelle 30 verbunden ist, um zwischen Substrat 10 und Kanal 26 eine Einstellspannung anzulegen. Durch die Einstellspannung lässt sich die Ausdehnung des Kanals 26 in zur Sensoroberfläche 12 senkrechter Richtung, d.h. die Tiefe des Kanals 26, variieren. Durch Anlegen der Spannung in Sperrrichtung des pn-Über- gangs kann der Querschnitt des Kanals 26 durch Verarmung an Ladungsträgern verkleinert werden.
Man gewinnt durch die Einstellspannung folglich eine zusätzliche Möglichkeit, die Leitfähigkeit des Kanals 26 voreinzustellen und somit die Empfindlichkeit des Sensors an die Stärke eines zu untersuchenden elektrischen Feldes anzupassen.
Fig. 3 zeigt einen erfindungsgemäßen Sensor nach Art eines Sperrschicht- Feldeffekttransistors (JFET) vom Verarmungstyp. Im Gegensatz zu bekannten, beispielsweise in Fig. 1 und Fig. 2 gezeigten, Sensoren ist die Sensoroberfläche 12. des erfindungsge äßen Sensors zumindest be- reichsweise dreidimensional und vorzugsweise als Spitze ausgebildet. Eine nicht abschließende Auswahl erfindungsgemäß in Betracht kommender Ausbildungen einer dreidimensionalen Sensoroberfläche 12 ist exemplarisch in Fig. 4 dargestellt: So kann die Sensoroberfläche 12 beispielsweise als (a) 3- oder 4-seitige Pyramidenspitze oder als (b) Kegelspitze ausgebil- det sein. Denkbar ist aber auch eine (c) treppenartige oder (d) keilförmige Ausbildung der Spitze. Darüber hinaus umfasst die erfindungsgemäße dreidimensionale Ausbildung der Substratoberfläche 12 auch sphärische Formen. Die Sensoroberfläche 12 des Sensors in Fig. 3 ist zumindest bereichsweise als Pyramidenspitze ausgebildet. Eine derartige Struktur lässt sich durch bekannte Ätz- oder Sägeverfahren in Substraten, insbesondere aus kri- stallinem Silizium, leicht herstellen.
Das Substrat 10 des Sensors besteht aus p-dotiertem Silizium, während Senke 14 und Quelle 16 als n-dotierte Bereiche im Substrat 10 ausgebildet sind. Dabei sind Senke 14 und Quelle 16 an der Pyramidenbasis im planen Bereich 32 der Sensoroberfläche 12 angeordnet und erstrecken sich in einem oberflächennahen Bereich entlang eines größten Teils der Pyramidenflanken 34 in Richtung der Pyramidenspitze 36. Der oberflächennahe Bereich der Pyramidenspitze 36 selbst ist als Kanal 26 ausgebildet. Dabei kann es sich, wie bereits voranstehend erläutert, um einen invertierten oder dotierten Kanal handeln, so dass ein Sensor nach Art eines FET vom Anreicherungstyp oder - wie im dargestellten Beispiel - vom Verarmungstyp vorliegt.
Mittels einer an der Senke 14 angebrachten Senkenelektrode 18 sowie einer an der Quelle 16 angebrachten Quellenelektrode 22 lässt sich zwischen Senke 14 und Quelle 16 mittels einer Spannungsquelle 20 eine Spannung anlegen und mittels einer Strommesseinrichtung 38 ein durch den Kanal 26 zwischen Quelle 16 und Senke 14 fließender Strom messen. Dabei lässt sich durch eine mittels einer am Substrat 10 angebrachten Einstellelektrode 28 an das Substrat 10 anlegbare Spannung der elektrische Widerstand des Kanals 26 voreinstellen. Wird der Sensor, d.h. die Pyramidenspitze 36, nunmehr in die Nähe oder in Kontakt mit der Probenoberfläche 40 einer zu untersuchenden Probe 42 gebracht und zwischen Sensor und Probe 42 mittels einer Spannungsquelle 44 eine Spannung angelegt, so wird zwischen Probenoberfläche 40 und Pyramidenspitze 36 ein elektrisches Feld erzeugt, welches auf den Kanal 26 einwirkt und dessen Leitfähigkeit verändert. Anhand des in der Messeinrichtung 38 ermittelten Stromflusses zwischen Senke 14 und Quelle 16 lässt sich die Stärke des elektrischen Feldes zwischen Probenoberfläche und Pyramidenspitze 36 ermitteln und auf die Beschaffenheit der Probenoberfläche 40 zurückschließen.
Das laterale Auflösungsvermögen des Sensors ist zum einen vom Abstand der Pyramidenspitze 36 zur Probenoberfläche 40 abhängig. Dabei wird ein minimaler Abstand durch die Dicke der die Sensoroberfläche 12 überde- ckenden Oxidschicht 24 vorgegeben.
Zum anderen hängt das Auflösungsvermögen von der lateralen Ausdehnung des Kanals 26 ab. Da der Kanal 26 erfindungsgemäß über den Scheitel der Pyramidenspitze 36 gelegt ist, ist die effektive Dimension des Kanals 26 wegen der quadratischen Abhängigkeit der elektrischen Feldstärke vom Abstand zur Probenoberfläche 40 kleiner als die tatsächliche Dimension des Kanals 26. Das Auflösungsvermögen des Sensors wird umso höher, je steiler die Pyramide ausgebildet ist, d.h. je kleiner der Winkel ist, den die Pyramidenflanken 34 miteinander bilden.
Ein erfindungsgemäßer Sensor lässt sich beispielsweise in der Spitze einer Rastersonde eines Rastersondenmikroskops integrieren und in einer Rasterbewegung relativ zu einer Probenoberfläche bewegen, wodurch eine hoch ortsaufgelöste Untersuchung einer Probenoberfläche ermöglicht wird.
Dabei lässt sich der Sensor beispielsweise in einer konstanten Höhe Z bezüglich einer zumindest annähernd durch die Probenoberfläche 40 definierten XY-Ebene über die Probenoberfläche 40 hinweg bewegen, wobei in Abhängigkeit vom Ort des Sensors der Stromfluss durch den Transistor aufgezeichnet wird. Alternativ kann der Sensor der Kontur der Probenoberfläche 40 folgend derart über die Probenoberfläche 40 hinweg bewegt werden, dass der Stromfluss durch den Transistor stets konstant bleibt, wobei die Auslenkung des Sensors in Z-Richtung in Abhängigkeit der XY-Position des Sensors aufgezeichnet wird. In beiden Fällen lässt sich ein ortsaufgelöstes Abbild der Probenoberfläche 40 erstellen, welches Rückschlüsse auf die Beschaffenheit der Probe 42 oder Probenoberfläche 40 zulässt.
Da auch in der Rasterkraftmikroskopie Sonden mit Spitzengeometrie verwendet werden, kann ein erfindungsgemäßer Sensor zusätzlich oder gleichzeitig auch für eine Sonde eines konventionellen Rasterkraftmikro- skops verwendet werden.
In Sensoren, die auf dem Prinzip des Feldeffekttransistors vom Verarmungstyp basieren, kann durch Anlegen einer Sperrspannung an das Halbleitersubstrat 10 die effektive Breite und Tiefe des Kanals 26 verrin- gert werden und damit sowohl die Sensitivität als auch die laterale Auflösung des Sensors über das durch die lithographische Strukturierung vorgegebene Maß hinaus erhöht werden. Durch die Kombination des JFET-Prinzips mit einem Verarmungstyp FET lassen sich somit eine Viel- zahl von hochauflösenden Sensoren realisieren, welche auf einer Änderung des Kanalwiderstands durch Wechselwirkung mit der zu untersuchenden Probe 42 beruhen:
1. Detektoren für elektrische Felder, die zwischen einer zu untersuchenden Festkörperoberfläche und dem Sensor bestehen, wobei sich die Feldstärke aus dem an der zu untersuchenden Probe anliegenden elektrischen Potential, der Dielektrizitätskonstanten eines auf der Probenoberfläche vorhandenen Isolatormaterials und dem Probenabstand zum Sensor ergibt.
2. Detektoren für elektrische Ladungen, insbesondere elektrisch geladene Moleküle oder Atome (Ionen), welche sich in der Nähe des Sensors in der Gasphase, in Lösung oder absorbiert an einer Festkörperoberfläche befinden.
3. Chemische Sensoren, durch die eine selektive Anlagerung von chemischen Spezies (z.B. Ionen oder Molekülen) an eine entsprechend präparierte Kanalelektrode detektierbar ist. Durch die An- lagerung wird das Potential der Kanalelektrode (z.B. durch eine
Änderung der Austrittsarbeit des Elektrodenmaterials) verschoben, was eine messbare Änderung des Kanalwiderstands zur Folge hat. Als chemisch selektive Materialien dienen dabei entweder die Kanalelektrode selbst (z.B. Palladium für Wasserstoff) oder andere, meist organische Materialien, welche die zu detek- tierende Spezies selektiv binden. Das selektive Material befindet sich dabei entweder zwischen der Kanalelektrode und der den Kanal überdeckenden Oxidschicht (vgl. z.B. US 4,698,657) oder wird, beispielsweise als selbstorganisierender Dünnfilm (seif as- sembled monolayer), direkt auf die Kanalelektrode aufgebracht (vgl. z.B. US '4,881, 109).
Bei einem chemischen Sensor ohne Kanalelektrode kann das e- lektrische Feld über den FET-Kanal auch durch eine Elektrolyt- lösung erzeugt werden, welche mittels einer ionenselektiven Membran in direktem Kontakt mit der den Kanal überdeckenden Oxidschicht steht (vgl. P. Bergveld, IEEE Transactions of Biome- dical Engineering; Vol. 19; 342ff (1972), und K.D. Wise et al.,
IEEE Transactions of Biomedical Engineering; Vol. 21; 485ff (1974)).
Im Gegensatz zu den zitierten verschiedenen Ausführungsarten chemischer FET-Sensoren ist erfindungsgemäß die chemische
Detektion mittels FET-Sensoren im Verarmungsbetrieb und insbesondere in Kombination mit dem Sperrschichtbetrieb (JFET- Effekt) vorgesehen.
4. Hochauflösende Temperatursensoren für die Rastersondenmikroskopie, bei denen der Effekt ausgenutzt wird, dass sich der Widerstand des Kanals mit der Temperatur ändert.
Grundsätzlich ist der Einsatz erfindungsgemäßer Sensoren nicht auf Sondenspitzen begrenzt, sondern überall dort vorgesehen, wo bereits die Erhöhung der Auflösung in einer Dimension eine Verbesserung darstellt und/ oder die zweite Dimension durch andere lithographische Verfahren bestimmt wird. Als Beispiel sei die Anwendung als chemischer Detektor in einem mikro strukturierten Transportkanal (microfluidic Channel) zur spezifischen oder unspezifischen Detektion vorbeiströmender chemischer Spezies gemäß der voranstehend aufgeführten Punkte 2 und 3 genannt. Ein weiteres Beispiel stellt die Verwendung als elektrostatischer Abtast- sensor („Lesekopf') für auf Massenspeichern gespeicherte elektrische Ladungen dar, in Analogie zu einem magnetischen Lesekopf herkömmlicher Festplattenlaufwerke.
Einen weiteren Gegenstand der Erfindung stellt der in Fig. 5 gezeigte Hallsensor zur Detektion magnetischer Felder nach dem Halleffekt- Prinzip dar. Der erfindungsgemäße Hallsensor weist ein p-leitendes Siliziumsubstrat auf, in dessen oberflächennahem Bereich zwei n-leitende Kanäle 112, 114 vorgesehen sind, die senkrecht zueinander verlaufen und sich in einem Kreuzungsbereich 116 kreuzen. Durch Anlegen einer Spannung kann durch einen Kanal 112 ein konstanter Steuerstrom Isteuer fließen, wobei die durch ein äußeres magnetisches Feld erzeugte Hallspannung NHaii am anderen Kanal 114 gemessen werden kann.
Die Kanäle 112, 114 bilden mit dem Substrat 110 jeweils einen pn- Übergang, wobei die Bereiche 122 die jeweiligen Raumladungs- oder Verarmungszonen kennzeichnen.
Wie in Fig. 6 gezeigt ist, ist am Substrat 110 eine mit einer Spannungsquelle 118 verbundene Elektrode 120 angebracht. Durch Anlegen einer Spannung zwischen den Kanälen 112, 114 und dem Substrat 110 lässt sich die Ausdehnung der Kanäle 112, 114 verändern, beispielsweise durch Verarmung an Ladungsträgern verringern, wenn die Spannung in Sperrrichtung der pn-Übergänge angelegt wird. Auf diese Weise wird lässt sich insbesondere auch der Kreuzungsbereich 116 verkleinern. Dies wiederum resultiert in einer Verbesserung des Auflösungsvermögens des Hallsensors.
Ein weiterer Gegenstand der Erfindung ist die in Fig. 7 gezeigte Halbleiterelektrode, deren Elektrodenfläche erfindungsgemäß nach dem JFET- Prinzip einstellbar ist. Die Halbleiterelektrode weist ein p-leitendes Siliziumsubstrat 210 auf, in dem ein unterhalb einer Substratoberfläche 212 und im wesentlichen parallel zu dieser Oberfläche 212 verlaufender n- leitender Kanalabschnitt 214 ausgebildet ist. An seinem einen Ende ist dieser Kanalabschnitt 214 mittels einer Elektrode 216 mit einer Stromoder Spannungsquelle 218 verbunden. Am anderen Ende des parallel verlaufenden Kanalabschnitts 214 schließt sich ein senkrecht zur Oberfläche 12 verlaufender und bis an die Oberfläche 12 heranreichender Ka- nalabschnitt 220 an, dessen Ausdehnung an der Oberfläche 212 die Elektrodenfläche definiert.
Am Substrat 210 ist außerdem eine mit einer Spannungsquelle 222 verbundene Elektrode 224 zum Anlegen einer Sperrspannung angebracht. Durch Anlegen einer Sperrspannung zwischen dem Substrat 210 und dem n-dotierten Bereich 214, 220 kann die Ausdehnung des senkrechten Kanalabschnitts 220 an der Substratoberfläche 212 kontrolliert werden. Auf diese Weise lässt sich bei einer erfindungsgemäßen Halbleiterelektrode eine elektrisch einstellbare Elektrodenfläche erreichen, deren Größe die der lithographisch vorgegebenen Elektrodenfläche unterschreitet.
Die erfindungsgemäße Halbleiterelektrode lässt sich folglich als Detekti- onsmittel mit einer elektrisch einstellbaren lateralen Auflösung verwen- den, wobei die elektrisch eingestellte Auflösung die lithographisch vorgegebene Auflösung übertreffen kann. Darüber hinaus kann sich dadurch, dass der senkrecht verlaufende Kanalabschnitt 220 von dem entgegengesetzten elektrischen Potential des Substrats umgeben ist, eine Konzentra- tion der Feldstärke in zur Substratoberfläche 212 senkrechter Richtung ergeben und zu einem Fokussierungseffekt führen, der zu einer weiteren Steigerung der Auflösung beiträgt.
Eine erfindungsgemäße Halbleiterelektrode kann beispielsweise als hoch ortsauflösende Sonde für Kapazitätsmessungen oder als elektrochemische Sonde zur Bestimmung des elektrochemischen Potentials einer Elektrolyt- lösung eingesetzt werden. Dabei kann die Halbleiterelektrode erfindungsgemäß in die Spitze einer Sonde eines Rastersondenmikroskops integriert sein und zur Kapazitätsmessung bzw. elektrochemischen Potentialbe- Stimmung benutzt werden. In Verbindung mit Metallelektroden werden beide Mikroskopiearten angewendet und als „Scanning Capacitance Mic- roscopy" (SCN) bzw. „Scanning Electrochemical Microscopy" (SECM) bezeichnet.
Bezugszeichenliste
Substrat
Sensoroberfläche
Senke
Quelle
Senkenelektrode
Spannungsquelle
Quellenelektrode
Oxidschicht
Kanal
Einstellelektrode
Spannungsquelle planarer Bereich
Pyramidenflanke
Pyramidenspitze
Strommesseinrichtung
Probenoberfläche
Probe
Spannungsquelle
Substrat
Kanal
Kanal
Kreuzungsbereich
Spannungsquelle
Elektrode
Verarmungszone
Substrat
Oberfläche paralleler Kanalabschnitt
Elektrode
Stromquelle senkrechter Kanalabschnitt
Spannungsquelle
Elektrode

Claims

Ansprüche
1. Sensor, insbesondere für eine Sonde eines Rastersondenmikroskops, zum Untersuchen sich benachbart zum Sensor befindlicher Probenoberflächen (40) oder Felder, mit zumindest einem, wenigstens ein Halbleitermaterial aufweisenden Feldeffekttransistor (FET) ohne Kanalelektrode, dessen Oberfläche (12) zumindest im Bereich des Kanals (gate 26) dreidimensional ausgebildet ist.
2. Sensor nach Anspruch 1 , dadurch gekennzeichnet, dass die Oberfläche (12) im Bereich des Kanals (gate 26) pyramidenartig ausgebildet ist.
3. Sensor nach Anspruch 1 , dadurch gekennzeichnet, dass die Oberfläche (12) im Bereich des Kanals (gate 26) kegelförmig ausgebildet ist.
4. Sensor nach Anspruch 1 , dadurch gekennzeichnet, dass die Oberfläche (12) im Bereich des Kanals (gate 26) treppenartig ausgebildet ist.
5. Sensor nach Anspruch 1 , dadurch gekennzeichnet, dass die Oberfläche (12) im Bereich des Kanals (gate 26) keilförmig ausgebildet ist.
6. Sensor nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Transistor als Feldeffekttransistor vom Anreicherungstyp (enhancement mode FET) ausgebildet ist.
7. Sensor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Transistor als Feldeffekttransistor vom Verarmungstyp (depletion mode FET) ausgebildet ist.
8. Sensor nach Anspruch 7, gekennzeichnet durch eine Elektrode (28) zum Anlegen einer Einstellspannung, um den elektrischen Widerstand des Kanals (gate 26) elektrisch voreinzustellen.
9. Sensor nach einem der vorherigen Ansprüche, dadurch gekennzeichne t, dass der Transistor als Sperrschicht-Feldeffekttransistor (junction field effect transistor JFET) ausgebildet ist.
10. Verfahren zum ortsaufgelösten Untersuchen einer sich im Wesentlichen in XY-Richtung erstreckenden Probenoberfläche (40), bei dem ein Sensor nach einem der vorherigen Ansprüche an einem zur Probenoberfläche (40) weisenden Ende einer Sonde eines Rastersondenmikroskops angebracht wird, der Sensor in die Nähe der Probenoberfläche (40) gebracht wird, zwischen Quelle (source 16) und Senke (drain 14) des Transistors eine Spannung angelegt wird, zwischen Probe (42) und Sensor gegebenenfalls eine Spannung angelegt wird, der Sensor, insbesondere in einer Rasterbewegung, in XY-
Richtung relativ zur Probenoberfläche (40) bewegt wird, wobei entweder der Sensor in einer konstanten Höhe Z bezüglich der XY-Ebene über der Probenoberfläche (40) gehalten wird und der Stromfluss von der Quelle (source 16) durch den Kanal (gate 26) zur Senke (drain 14) gemessen und in Abhängigkeit der XY-Position des
Sensors aufgezeichnet wird, oder der Sensor derart in konstantem Abstand zur Probenoberfläche (40) bewegt wird, dass der Stromfluss von der Quelle (source 16) durch den Kanal (gate 26) zur Senke (drain 14) konstant bleibt, und das Ausmaß einer Bewegung des Sensors in Z-Richtung in Abhängigkeit der XY-Position des Sensors aufgezeichnet wird, und aus den aufgezeichneten Strom- oder Auslenkungswerten ein Abbild der Probenoberfläche (40) erstellt wird.
11. Verfahren nach Anspruch 10, dadurch g e k e n n z e i c h n e t dass ein Sensor nach einem der Ansprüche 7 bis 9 verwendet wird und eine Einstellspannung an den Sensor angelegt wird, um den Widerstand des Kanals (gate 26) auf einen vorbestimmten Wert voreinzustellen.
12. Hallsensor aus zumindest einem Halbleitermaterial zum Detektieren von magnetischen Feldern, dessen laterales Auflösungsvermögen elektrisch einstellbar ist.
13. Hallsensor nach Anspruch 12, dadurch gekennzeichnet, dass in einem Substrat (110) zumindest zwei quer zueinander, insbesondere senkrecht aufeinander stehende, sich in einem Kreuzungsbereich (116) kreuzende Kanäle (112, 114) vorgesehen sind, die eine gegenüber dem Substrat (110) umgekehrte Polarität der
Mehrheitsladungsträger aufweisen, wobei an einem Kanal (112) zur Erzeugung eines Stromflusses durch den Kanal (112) eine Steuerspannung anlegbar und an dem anderen Kanal (114) eine durch ein magnetisches Feld erzeugte Hallspannung messbar ist.
14. Hallsensor nach Anspruch 13, ge kennzeichnet durch eine Elektrode (120) zum Anlegen einer Einstellspannung, um die Ausdehnung des Kreuzungsbereiches (116) in der durch die Kanäle (112, 114) aufgespannten Ebene einzustellen.
15. Halbleiterelektrode, deren Elektrodenfläche elektrisch einstellbar ist.
16. Halbleiterelektrode nach Anspruch 15, dadurch gekennzeichnet, dass in einem Halbleitersubstrat (210) ein von außerhalb des Substrats (210) kontaktierbarer, im wesentlichen parallel zur Substrat- Oberfläche (212) verlaufender erster Kanalabschnitt (214) vorgesehen ist, der in einen senkrecht zur Substratoberfläche (212) verlaufenden zweiten Kanalabschnitt (220) übergeht, welcher an die Substratoberfläche (212) grenzt, wobei die Elektrodenfläche durch die laterale Ausdehnung des zweiten Kanalabschnitts (220) an der Sub- stratoberfläche (212) bestimmt ist.
17. Halbleiterelektrode nach Anspruch 16, dadurch gekennzeichnet, dass die Kanalabschnitte (214, 220) eine gegenüber dem Substrat (210) umgekehrte Polarität der Mehrheitsladungsträger aufweisen.
18. Halbleiterelektrode nach Anspruch 17, gekennzeichnet durch eine Elektrode, zum Anlegen einer Einstellspannung, um die Aus- dehnung der Kanalabschnitte (214, 220) und insbesondere die Ausdehnung des zweiten Kanalabschnitts (220) an der Substratoberfläche (212) einzustellen.
19. Verfahren zur ortsaufgelösten Kapazitätsmessung oder elektroche- mischen Potentialbestimmung einer sich in XY-Richtung erstreckenden Probe, bei dem eine Halbleiterelektrode nach einem der Ansprüche 15 bis 18 an einem zur Probenoberfläche weisenden Ende einer Sonde eines Rastersondenmikroskops angebracht wird, an dem Halbleitersubstrat eine Einstellspannung angelegt wird, um die Ausdehnung der Elektrodenfläche auf einen vorbestimmten Wert einzustellen, die Elektrode, insbesondere in einer Rasterbewegung, in XY- Richtung relativ zur Probe bewegt wird, die Elektrode in vorbestimmten Abständen mit der Probe in Kontakt gebracht wird, wobei zwischen Probe und Sensor gegebenenfalls eine Spannung angelegt wird, die Kapazität oder das elektrochemische Potential der Probe bestimmt und in Abhängigkeit der XY-Position der Elektrode aufgezeichnet wird, und aus den aufgezeichneten Kapazitäts- oder Potentialwerten ein
Abbild der Probe erstellt wird.
PCT/EP2002/012513 2001-11-14 2002-11-08 Feldeffekttransistor-sensor für eine sonde eines rastersondenmikroskoskops WO2003042627A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002358004A AU2002358004A1 (en) 2001-11-14 2002-11-08 Field effect transistor sensor for a screen probe microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10155930.5A DE10155930B4 (de) 2001-11-14 2001-11-14 Feldeffekttransistor-Sensor
DE10155930.5 2001-11-14

Publications (2)

Publication Number Publication Date
WO2003042627A2 true WO2003042627A2 (de) 2003-05-22
WO2003042627A3 WO2003042627A3 (de) 2004-02-19

Family

ID=7705721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/012513 WO2003042627A2 (de) 2001-11-14 2002-11-08 Feldeffekttransistor-sensor für eine sonde eines rastersondenmikroskoskops

Country Status (4)

Country Link
US (1) US7335942B2 (de)
AU (1) AU2002358004A1 (de)
DE (1) DE10155930B4 (de)
WO (1) WO2003042627A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1544858A1 (de) * 2003-12-17 2005-06-22 Hewlett-Packard Development Company, L.P. Kontaktierende Speicherungssondeanordnungen mit Fet-Sensor und Schreibheizelement
EP1544859A1 (de) * 2003-12-17 2005-06-22 Hewlett-Packard Development Company, L.P. Schreib-/Leseanordnungen für Sonden
EP2535725A1 (de) * 2011-06-17 2012-12-19 Imec Sonde für die Abtastsondenmikroskopie

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423954B2 (en) * 2003-12-17 2008-09-09 Hewlett-Packard Development Company, L.P. Contact probe storage sensor pod
US8018818B2 (en) * 2006-03-30 2011-09-13 International Business Machines Corporation Systems and methods for storing and reading data in a data storage system
KR100773556B1 (ko) * 2006-08-02 2007-11-07 삼성전자주식회사 전계 재생/기록 헤드와 그의 제조방법 및 전계 재생/기록헤드를 포함한 정보 재생/기록 장치
KR100790893B1 (ko) * 2006-10-20 2008-01-03 삼성전자주식회사 볼록한 저항성 팁을 구비한 반도체 탐침 및 그 제조방법
US9828696B2 (en) 2011-03-23 2017-11-28 Nanohmics, Inc. Method for assembly of analyte filter arrays using biomolecules
CH705724B9 (fr) * 2011-11-03 2016-05-13 Sigatec Sa Pièce de micromécanique, notamment pour l'horlogerie.
US9070733B2 (en) * 2012-07-25 2015-06-30 California Institute Of Technology Nanopillar field-effect and junction transistors with functionalized gate and base electrodes
US9170165B2 (en) * 2013-03-25 2015-10-27 Globalfoundries U.S. 2 Llc Workfunction modulation-based sensor to measure pressure and temperature
US11988662B2 (en) 2015-12-07 2024-05-21 Nanohmics, Inc. Methods for detecting and quantifying gas species analytes using differential gas species diffusion
US10386365B2 (en) 2015-12-07 2019-08-20 Nanohmics, Inc. Methods for detecting and quantifying analytes using ionic species diffusion
US10386351B2 (en) 2015-12-07 2019-08-20 Nanohmics, Inc. Methods for detecting and quantifying analytes using gas species diffusion
US20170221783A1 (en) * 2016-01-28 2017-08-03 Leonard TEDESCHI Self-aware production wafers
EP3599471A1 (de) 2018-07-26 2020-01-29 IMEC vzw Vorrichtung zur messung von oberflächeneigenschaften eines materials
EP3671224B1 (de) * 2018-12-20 2022-06-08 IMEC vzw Verfahren und vorrichtung zur ausrichtung einer sonde zur rastersondenmikroskopie an der spitze einer zugespitzten probe
GB201913936D0 (en) * 2019-09-27 2019-11-13 Univ Coventry A magnetic field sensor
WO2022260992A2 (en) * 2021-06-08 2022-12-15 The Regents Of The University Of California Three-dimensional transistor arrays for intra- and inter-cellular recording

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668865A (en) * 1985-03-07 1987-05-26 International Business Machines Corporation Scanning tunneling microscope
US5225771A (en) * 1988-05-16 1993-07-06 Dri Technology Corp. Making and testing an integrated circuit using high density probe points
US5393401A (en) * 1991-05-10 1995-02-28 Knoll; Meinhard Method of manufacturing miniaturized components of chemical and biological detection sensors that employ ion-selective membranes, and supports for such components
US5546375A (en) * 1992-07-15 1996-08-13 Canon Kabushiki Kaisha Method of manufacturing a tip for scanning tunneling microscope using peeling layer
US5578814A (en) * 1993-09-29 1996-11-26 Intronix, Inc. Sensor device for storing electromagnetic radiation and for transforming such into electric signals
EP0984444A2 (de) * 1998-08-19 2000-03-08 Canon Kabushiki Kaisha Sonde und Informationsaufzeichnungs-/ wiedergabegerät unter Verwendung einer solchen
US20010021575A1 (en) * 1999-04-22 2001-09-13 International Business Machines Corporation High resolution dopant/impurity incorporation in semiconductors via a scanned atomic force probe
US20020008304A1 (en) * 1999-11-09 2002-01-24 Gunbae Lim Scanning probe microscope (SPM) probe having field effect transistor channel and method of fabricating the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US21575A (en) * 1858-09-21 Chuen
US8304A (en) * 1851-08-19 Register for omnibus-drivers
US4020830A (en) * 1975-03-12 1977-05-03 The University Of Utah Selective chemical sensitive FET transducers
JPS5466194A (en) 1977-11-04 1979-05-28 Kuraray Co Fet sensor
US4698657A (en) * 1984-02-10 1987-10-06 Sharp Kabushiki Kaisha FET type sensor and a method for driving the same
EP0214805B1 (de) 1985-08-29 1993-05-26 Matsushita Electric Industrial Co., Ltd. Einen Feldeffekttransistor benutzender Fühler und dessen Herstellungsverfahren
US4873871A (en) * 1988-06-17 1989-10-17 Motorola, Inc. Mechanical field effect transistor sensor
FR2672158B1 (fr) 1991-01-24 1993-04-09 Commissariat Energie Atomique Capteur pour la detection d'especes chimiques ou de photons utilisant un transistor a effet de champ.
JP3452658B2 (ja) * 1994-09-14 2003-09-29 オリンパス光学工業株式会社 集積型spmセンサ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668865A (en) * 1985-03-07 1987-05-26 International Business Machines Corporation Scanning tunneling microscope
US5225771A (en) * 1988-05-16 1993-07-06 Dri Technology Corp. Making and testing an integrated circuit using high density probe points
US5393401A (en) * 1991-05-10 1995-02-28 Knoll; Meinhard Method of manufacturing miniaturized components of chemical and biological detection sensors that employ ion-selective membranes, and supports for such components
US5546375A (en) * 1992-07-15 1996-08-13 Canon Kabushiki Kaisha Method of manufacturing a tip for scanning tunneling microscope using peeling layer
US5578814A (en) * 1993-09-29 1996-11-26 Intronix, Inc. Sensor device for storing electromagnetic radiation and for transforming such into electric signals
EP0984444A2 (de) * 1998-08-19 2000-03-08 Canon Kabushiki Kaisha Sonde und Informationsaufzeichnungs-/ wiedergabegerät unter Verwendung einer solchen
US20010021575A1 (en) * 1999-04-22 2001-09-13 International Business Machines Corporation High resolution dopant/impurity incorporation in semiconductors via a scanned atomic force probe
US20020008304A1 (en) * 1999-11-09 2002-01-24 Gunbae Lim Scanning probe microscope (SPM) probe having field effect transistor channel and method of fabricating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1544858A1 (de) * 2003-12-17 2005-06-22 Hewlett-Packard Development Company, L.P. Kontaktierende Speicherungssondeanordnungen mit Fet-Sensor und Schreibheizelement
EP1544859A1 (de) * 2003-12-17 2005-06-22 Hewlett-Packard Development Company, L.P. Schreib-/Leseanordnungen für Sonden
US7460462B2 (en) 2003-12-17 2008-12-02 Hewlett-Packard Development Company, L.P. Contact probe storage fet sensor and write heater arrangements
US7542402B2 (en) 2003-12-17 2009-06-02 Seagate Technology Llc Contact probe storage FET sensor and write heater arrangements
EP2535725A1 (de) * 2011-06-17 2012-12-19 Imec Sonde für die Abtastsondenmikroskopie

Also Published As

Publication number Publication date
US20050062116A1 (en) 2005-03-24
US7335942B2 (en) 2008-02-26
WO2003042627A3 (de) 2004-02-19
DE10155930A1 (de) 2003-05-22
DE10155930B4 (de) 2020-09-24
AU2002358004A1 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
DE10155930B4 (de) Feldeffekttransistor-Sensor
DE69233641T2 (de) Herstellungsverfahren für integrierte ausgerichtete Tunnelspitzenpaare
DE102006052863B4 (de) Schutzstruktur für Halbleitersensoren und deren Verwendung
EP1272860B1 (de) Sensor-anordnung und verfahren zum erfassen eines zustands eines transistors einer sensor-anordnung
DE112005001781B4 (de) Verfahren und Vorrichtung zum Messen eines zeitveränderlichen, durch einen Ionenkanal fließenden Stroms mit einer kapazitiven Messelektrode
EP1272842A1 (de) Biosensor und verfahren zum ermitteln makromolekularer biopolymere mit einem biosensor
DE10029501C1 (de) Vertikal-Transistor mit beweglichen Gate und Verfahren zu dessen Herstelllung
EP3066459B1 (de) Vorrichtung und verfahren zur messung kleiner spannungen und potentiale an einer biologischen, chemischen oder anderen probe
EP3510389B1 (de) Vorrichtung basierend auf einem nanodrahtkreuz zur messung kleiner potentiale einer probe, verfahren zur herstellung der vorrichtung und verwendung der vorrichtung
DE10043731C2 (de) Meßsonde, deren Verwendung und Herstellung und Meßsystem zum Erfassen von elektrischen Signalen in einer integrierten Halbleiterschaltung
DE19844676C1 (de) Mikromechanischer Sensor auf Basis des Feldeffekts und dessen Verwendung
DE102011089261A1 (de) Transistorstruktur, Verfahren zur Herstellung einer Transistorstruktur, Kraftmesssystem
DE10118367C2 (de) Sensor zum Messen einer Gaskonzentration oder Ionenkonzentration
EP2027459B1 (de) Feuchtesensor und verfahren zum messen der feuchte eines gasförmigen mediums
DE10161213B4 (de) Gassensor und Verfahren zur Detektion von einer oder mehrerer Komponenten eines Gasgemisches und/oder von Gasen in einer Flüssigkeit nach dem Prinzip der Austrittsarbeitsmessung
DE10218325A1 (de) Chip-Anordnung, Chip-Array und Verfahren zum Betreiben einer Chip-Anordnung
WO1999014613A1 (de) Sensorelement
DE69531266T2 (de) Magnetsensor
DE102010038725A1 (de) Vorrichtung und Verfahren zur Gasdetektion
DE19840157A1 (de) Ortsaufgelöster Potential-Sensor und -Stimulator auf Halbleiterbasis
DE102011107649A1 (de) Cantilever-basierter Sensor zur Abstandsmessung oder Gasdetektion
EP1422519B1 (de) Sensor zum Messen einer Gaskonzentration oder Ionenkonzentration
DE10332451B4 (de) Verfahren und Vorrichtung zum Bestimmen eines Höhenprofils auf einer Substratoberfläche
EP3004818A1 (de) Feldeffekttransistor-infrarotsensor mit beweglicher gateelektrode
EP1337842A2 (de) Messanordnung zum nachweis einer ein- oder mehrdimensionalen verteilung einer chemischen oder biochemischen komponente

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10495632

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP