明 細 書 Specification
有機塩素系化合物除去用活性炭素繊維 Activated carbon fiber for removing organic chlorine compounds
技 術 分 野 Technical field
本発明は、 有機塩素系化合物除去用吸着材として有用な活性炭素繊維に関する。 The present invention relates to an activated carbon fiber useful as an adsorbent for removing an organic chlorine-based compound.
背 景 技 術 Background technology
最近、 水道水用の水源の水質が富栄養化等の理由により悪化しつつある。 例え ば、 発ガン性のおそれがあるトリハロメタンのほか、 トリクロロエチレン、 二塩 化メチレン等の有機塩素系化合物が原水中に含まれているのが確認されている。 このため、 急速濾過装置、 塩素処理装置等の浄水設備において活性炭を用いて原 水を処理することにより、 上記のような有機塩素系化合物を吸着して除去する試 みがなされている。 Recently, the quality of tap water has been deteriorating due to eutrophication and other reasons. For example, it has been confirmed that raw water contains trichloromethane, which has a risk of carcinogenicity, and organic chlorine compounds such as trichloroethylene and methylene dichloride. For this reason, attempts have been made to adsorb and remove the above-mentioned organochlorine compounds by treating raw water with activated carbon in water purification equipment such as rapid filtration equipment and chlorination equipment.
このような狰水設備に用いられる活性炭は、 多数の細孔からなる多孔質構造が 発達した炭素材料であり、 その吸着性能は細孔容積の大小のみにより決まるので はなく、 被吸着分子の大きさと細孔径の大きさとの関係に大きく左右される。 例 えば、 一般に大きな細孔径を有する活性炭では有機塩素系化合物の総吸着容量は 小さいが、 通水吸着除去に好ましく用いられ、 活性炭の再生に適している。 逆に、 小さな細孔径を有する活性炭では有機塩素系化合物の総吸着容量は大きいが、 通 水吸着除去性能は良くない。 Activated carbon used in such a water supply facility is a carbon material with a porous structure with many pores developed, and its adsorption performance is not determined only by the size of the pore volume, but by the size of the molecule to be adsorbed. And the size of the pore diameter. For example, in general, activated carbon having a large pore diameter has a small total adsorption capacity of organochlorine compounds, but is preferably used for removal of water by adsorption and suitable for regeneration of activated carbon. Conversely, activated carbon with a small pore size has a large total adsorption capacity for organochlorine compounds, but does not have good water adsorption and removal performance.
活性炭の細孔径の大きさや細孔径分布は、 通常、 その原料 (例えばヤシ殻、 お が屑、 石炭等の炭素質原料) の種類あるいは陚活方法により左右される場合が多 レ^ 例えば、 ヤシ殻、 おが屑等の木質系原料を用いた場合は細孔径の小さな活性 炭しか得られない。 一方、 石炭系の原料を用いた場合は細孔径の大きな活性炭し か得られない。 このため、 有機塩素系化合物の通水吸着除去性能に優れるととも に総吸着容量の大きい活性炭を得ることは困難である。 The pore size and pore size distribution of activated carbon often depend on the type of raw material (for example, coconut shell, sawdust, and carbonaceous raw materials such as coal) or the activation method. When wood-based raw materials such as shells and sawdust are used, only activated carbon with a small pore diameter can be obtained. On the other hand, when coal-based raw materials are used, only activated carbon with a large pore diameter can be obtained. For this reason, it is difficult to obtain an activated carbon having a high total adsorption capacity as well as excellent water adsorption and removal performance of organic chlorine compounds.
大きな細孔径と小さな細孔径を兼ね備えた活性炭素繊維を得るため、 例えば原 料となるコールタールピッチに金属を添加し、 通常の紡糸工程、 不融化工程、 賦 活工程及び自然冷却工程を経て作製する方法もある。 ところが、 この方法では、 細孔径の大小は形成できるものの、 製造ロットごとにメソ細孔の大きさにバラッ キがある。
細孔径の大きい活性炭と細孔径の小さい活性炭とは、 その平均細孔径で大小が 表される。 平均細孔怪は、 一般に、 窒素吸着による細孔分布解析により算出され る。 しかし、 窒素吸着では、 窒素の分子径に起因し、 IUPAC基準であるウルトラ ミクロ細孔において、 ほとんど窒素の多分子層吸着にならない。 このため、 従来 の被吸着物質の吸着除去性能は、 ウルトラミク口細孔が幾分不正確な細孔径及び 細孔容積値として解析されると同時に、 メソ細孔も幾分不正確な細孔径及び細孔 容積値として解析される。 これにより、 誤った吸着性能評価を行う場合が多い。 例えば、 通水破過試験により性能評価を行った場合、 破過曲線から算出される平 衡吸着容量とミクロ細孔容積との差が大きくなり、 吸着性能解析の精度に悪影響 を及ぼす。 In order to obtain activated carbon fibers with both large and small pore diameters, for example, a metal is added to coal tar pitch, which is the raw material, and it is produced through normal spinning, infusibilization, activation, and natural cooling steps There is also a way to do it. However, with this method, although the size of the pore diameter can be formed, the size of the mesopores varies from production lot to production lot. Activated carbon with a large pore size and activated carbon with a small pore size are expressed in terms of their average pore size. The average pore size is generally calculated by pore distribution analysis by nitrogen adsorption. However, in nitrogen adsorption, due to the molecular size of nitrogen, almost no multi-layer adsorption of nitrogen occurs in the ultra micropores based on the IUPAC standard. For this reason, the conventional adsorptive removal performance of the substance to be adsorbed is determined by analyzing the pores of Ultramik mouth as somewhat inaccurate pore size and pore volume value, And pore volume values. As a result, erroneous adsorption performance evaluation is often performed. For example, when performance is evaluated by a water breakthrough test, the difference between the equilibrium adsorption capacity calculated from the breakthrough curve and the micropore volume becomes large, which adversely affects the accuracy of the adsorption performance analysis.
また、 液体アルゴン温度におけるアルゴン吸着等で細孔分布解析を行うという 方法も考えられるが、 解析に使用する計算手段はいずれも t一プロット法である ことが多い。 t一プロットはメソ細孔が存在すると毛管凝縮により多分子層吸着 より余分に吸着し、 吸着等温線グラフの上側にずれるために細孔径及び細孔容積 値が実際と異なる。 このため、 t一プロット法は、 ミクロ細孔の解析には適さな い (文献 「カーボン用語辞典」 炭素材料学会力一ボン用語辞典編集委員会 編集、 ァグネ承風社 2000年 10月 5日発行、 240頁参照、 t一プロット法の解説について は文献 「新版活性炭」 、 真田雄三 ·鈴木基之 ·藤元薰 編集、 講談社 1992年 3月 1曰発行、 26〜29頁 など参照) 。 Further, a method of performing pore distribution analysis by argon adsorption or the like at the temperature of liquid argon can be considered, but the calculation means used for the analysis is often a t-plot method. In the t-plot, the presence of mesopores causes extra adsorption by multi-layer adsorption due to capillary condensation and shifts to the upper side of the adsorption isotherm graph. For this reason, the t-plot method is not suitable for analyzing micropores. (Reference: “Carbon Glossary” edited by the Carbon Materials Society of Japan, Rikibon Glossary Editing Committee, published by Agne Shofusha on October 5, 2000) , P. 240, and for a description of the t-plotting method, see "New Edition Activated Carbon", edited by Yuzo Sanada, Motoyuki Suzuki, edited by Fujimoto, Kodansha, published March 1, 1992, pages 26-29).
発 明 の 開 示 Disclosure of the invention
本発明の主な目的は、 有機塩素系化合物の通水吸着に対して効果的な吸着除去 性能を発揮する活性炭素繊維を提供することにある。 特に、 作為的な賦活後処理 により決まつ'た割合の大小の細孔径をもつ活性炭素繊維について、 ミク口細孔と メソ細孔の細孔径及び細孔容積値を詳細に解析することにより、 さらには活性炭 素繊維の総酸性官能基量を特定することにより、 有機塩素系化合物除去用に適し た活性炭素繊維を提供することにある。 A main object of the present invention is to provide an activated carbon fiber exhibiting an effective adsorption and removal performance for adsorbing organic chlorine compounds through water. In particular, for activated carbon fibers with large and small pore diameters in the ratio determined by artificial post-activation treatment, the pore diameters and pore volume values of the micropores and mesopores are analyzed in detail, It is another object of the present invention to provide an activated carbon fiber suitable for removing organic chlorine-based compounds by specifying the total acidic functional group content of the activated carbon fiber.
本発明者は、 従来技術の問題点に鑑み、 鋭意研究を重ねた結果、 特定構造を有 する活性炭素繊維が上記目的を達成できることを見出し、 本発明を完成するに至 つた。
すなわち、 本発明は、 下記の有機塩素系化合物除去用活性炭素繊維に係るもの である。 The present inventor has conducted intensive studies in view of the problems of the prior art, and as a result, has found that an activated carbon fiber having a specific structure can achieve the above object, and has completed the present invention. That is, the present invention relates to the following activated carbon fiber for removing an organic chlorine-based compound.
1. 有機塩素系化合物を吸着除去するために用いられる活性炭素繊維であって、 液体アルゴン温度におけるアルゴン吸着等温線より a s解析で求めた細孔分布 において、 1. Activated carbon fiber used to adsorb and remove organochlorine compounds. In the pore distribution determined by as analysis from the argon adsorption isotherm at the temperature of liquid argon,
(1) ミクロ細孔の比表面積が 700m2Zg以上であり、 (1) The specific surface area of the micropore is 700 m 2 Zg or more,
(2) メソ細孔の比表面積が 30m2Zg以上であり、 (2) the specific surface area of the mesopores is 30 m 2 Zg or more,
( 3 ) メソ細孔の細孔容積が全細孔容積の 10 %以上 70 %以下である、 ことを特徵とする有機塩素系化合物除去用活性炭素繊維。 (3) The activated carbon fiber for removing organic chlorine-based compounds, wherein the mesopores have a pore volume of 10% to 70% of the total pore volume.
2. 総酸性官能基量が 0. 2 mm o 1以下である前記項 1記載の有機塩素系化 合物除去用活性炭素繊維。 2. The activated carbon fiber for removing an organic chlorine-based compound according to the above item 1, wherein the total amount of acidic functional groups is 0.2 mmo1 or less.
3. 有機塩素系化合物除去用活性炭素繊維の製造方法であって、 3. A method for producing an activated carbon fiber for removing an organic chlorine-based compound,
(ィ) 活性炭前駆体を溶融紡糸し、 不融ィ匕処理し、 賦活処理することにより活性 炭素繊維を得る工程、 及び (A) melt activated spinning of the activated carbon precursor, infusibilizing treatment, and activation treatment to obtain activated carbon fiber; and
(口) 得られた活性炭素繊維の液体アルゴン温度におけるアルゴン吸着等温線よ り s解析で求めた細孔分布において、 (Mouth) In the pore distribution obtained by s analysis from the argon adsorption isotherm at the liquid argon temperature of the obtained activated carbon fiber,
(1) ミクロ細孔の比表面積が 700m2Zg以上であり、 (1) The specific surface area of the micropore is 700 m 2 Zg or more,
(2) メソ細孔の比表面積が 3 Om2Zg以上であり、 (2) The specific surface area of the mesopores is 3 Om 2 Zg or more,
( 3 ) メソ細孔の細孔容積が全細孔容積の 10 %以上 70 %以下である活性炭素 繊維を選出する工程 (3) Step of selecting activated carbon fibers having a mesopore pore volume of 10% to 70% of the total pore volume
を有することを特徴とする製造方法。 The manufacturing method characterized by having.
4. 有機塩素系化合物除去用活性炭素繊維を選出する方法であって、 4. A method for selecting activated carbon fibers for removing organic chlorine-based compounds,
活性炭素繊維の液体アルゴン温度におけるアルゴン吸着等温線より a s解析で 求めた細孔分布において、 In the pore distribution obtained by the as analysis from the argon adsorption isotherm at the liquid argon temperature of the activated carbon fiber,
(1) ミクロ細孔の比表面積が 700m2Zg以上であり、 (1) The specific surface area of the micropore is 700 m 2 Zg or more,
(2) メソ細孔の比表面積が 3 On^Zg以上であり、 (2) The specific surface area of the mesopores is 3 On ^ Zg or more,
( 3 ) メソ細孔の細孔容積が全細孔容積の 10 %以上 70 %以下である活性炭素 繊維を有機塩素系化合物除去用活性炭素繊維として選出することを特徴とする方 (3) A method characterized in that activated carbon fibers having a mesopore pore volume of 10% or more and 70% or less of the total pore volume are selected as activated carbon fibers for removing organic chlorine-based compounds.
' 法。
5 . 活性炭素繊維を用いて有機塩素系化合物を吸着除去する方法であって、 当該活性炭素繊維が、 液体アルゴン温度におけるアルゴン吸着等温線より ひ s 解析で求めた細孔分布において、 'Law. 5. A method for adsorbing and removing an organochlorine compound using activated carbon fiber, wherein the activated carbon fiber has a pore distribution determined by an s-analysis from an argon adsorption isotherm at a liquid argon temperature.
( 1 ) ミクロ細孔の比表面積が 7 0 0 m2Z g以上であり、 (1) a specific surface area of micropores 7 0 0 m 2 Z g or more,
( 2 ) メソ細孔の比表面積が 3 0 m2Z g以上であり、 (2) the specific surface area of the mesopores is 30 m 2 Zg or more,
( 3 ) メソ細孔の細孔容積が全細孔容積の 1 0 %以上 7 0 %以下である、 有機塩素系化合物の除去方法。 (3) A method for removing an organochlorine compound, wherein the pore volume of mesopores is 10% or more and 70% or less of the total pore volume.
6 . 有機塩素系化合物が、 卜リハロメタン、 トリクロロエチレン及び二塩化メ チレンの少なくとも 1種である前記項 5記載の除去方法。 6. The removal method according to the above item 5, wherein the organic chlorine compound is at least one of trihalomethane, trichloroethylene and methylene dichloride.
7 . ミク口細孔が、 直径 2 0 A未満である前記項 1記載の有機塩素系化合物除 去用活性炭素繊維。 7. The activated carbon fiber for removing organic chlorine-based compounds according to the above item 1, wherein the pores at the mouth of the mouth have a diameter of less than 20 A.
8. メソ細孔が、 直径 2 0 A以上 5 0 0 A未満である前記項 1記載の有機塩素 系化合物除去用活性炭素繊維。 8. The activated carbon fiber for removing organic chlorine-based compounds according to the above item 1, wherein the mesopores have a diameter of not less than 20 A and less than 500 A.
9 . 有機塩素系化合物が、 トリハロメタン、 トリクロロエチレン及ぴニ塩ィ匕メ チレンの少なくとも 1種である前記項 1記載の有機塩素系化合物除去用活性炭素 繊維。 9. The activated carbon fiber for removing an organic chlorine-based compound according to the above item 1, wherein the organic chlorine-based compound is at least one of trihalomethane, trichloroethylene and dichloromethane.
1 0 . OH基、 00〇11基及び〇0〇=〇基の合計量が0. 2 mmo l以下で ある前記項 1記載の有機塩素系化合物除去用活性炭素繊維。 Item 2. The activated carbon fiber for removing an organic chlorine-based compound according to the above item 1, wherein the total amount of the 10.OH group, 00-11 group and {0} = 〇 group is 0.2 mmol or less.
1 1 . 有機金属化合物を含む活性炭前駆体混合物から得られる前記項 1記載の 有機塩素系化合物除去用活性炭素繊維。 11. The activated carbon fiber for removing organic chlorine-based compounds according to the above item 1, which is obtained from an activated carbon precursor mixture containing an organometallic compound.
1 2. イツトリゥム化合物、 鉄化合物及びマグネシゥム化合物の少なくとも 1 種の有機金属化合物を含む活性炭前駆体混合物から得られる前記項 1記載の有機 塩素系化合物除去用活性炭素繊維。 1 2. The activated carbon fiber for removing organic chlorine-based compounds according to the above item 1, which is obtained from an activated carbon precursor mixture containing at least one kind of organometallic compound of an iron compound, an iron compound and a magnesium compound.
1 3. 前記項 1記載の活性炭素繊維が充填された管状体に被処理水を通水する ことにより、 被処理水中の有機塩素系化合物を除去する方法。 1 3. A method for removing organic chlorine-based compounds in water to be treated by passing the water to be treated through a tubular body filled with activated carbon fibers according to the above item 1.
以下、 本発明について詳細に説明する。 ' Hereinafter, the present invention will be described in detail. '
1 . 有機塩素系化合物除去用活性炭素繊維 1. Activated carbon fiber for removing organic chlorine compounds
本発明の有機塩素系化合物除去用活性炭素繊維は、 有機塩素系化合物を吸着除 去するために用いられる活性炭素繊維であって、
液体アルゴン温度におけるアルゴン吸着等温線より《 s解析で求めた細孔分布 において、 The activated carbon fiber for removing an organochlorine compound of the present invention is an activated carbon fiber used for adsorbing and removing an organochlorine compound, From the argon adsorption isotherm at the liquid argon temperature,
(1) ミクロ細孔の比表面積が 70
以上であり、 (1) The specific surface area of the micropore is 70 That's it,
(2) メソ細孔の比表面積が 3 Orr^Zg以上であり、 (2) The specific surface area of the mesopores is 3 Orr ^ Zg or more,
( 3 ) メソ細孔の細孔容積が全細孔容積の 10 %以上 70 %以下である、 ことを特徴とする。 (3) The mesopores have a pore volume of 10% to 70% of the total pore volume.
ミク口細孔は、 液体アルゴン温度でのアルゴン吸着による as解析での比表面 積が 700m2Zg以上 (好ましくは 750m2Zg以上) である。 この比表面積 が 700m2/g未満の場合は、 通水吸着における被吸着物質の総吸着容量が小 さくなる。 本発明におけるミクロ細孔とは、 直径 2 OA未満の細孔をいい、 ウル トラミクロ細孔を含む。 The micropore has a specific surface area of 700 m 2 Zg or more (preferably 750 m 2 Zg or more) in as analysis by argon adsorption at liquid argon temperature. When the specific surface area is less than 700 m 2 / g, the total adsorption capacity of the substance to be adsorbed in the water adsorption becomes small. The micropore in the present invention refers to a pore having a diameter of less than 2 OA, and includes an ultramicropore.
メソ細孔は、 液体アルゴン温度でのアルゴン吸着による as解析での比表面積 が 30m2/"g以上 (好ましくは 100m2Zg以上) である。 この比表面積が 3 Om2Zg未満の場合は、 被吸着物質を効果的に通水吸着除去するのが困難にな る。 本発明におけるメソ細孔とは、 直径 2 OA以上 50 OA未満の細孔をいう。 また、 本発明の活性炭素繊維は、 液体アルゴン温度でのアルゴン吸着による a s解析でのメソ細孔の細孔容積 (容積率) が全細孔容積の 10%以上 70%以下 (好ましくは 20%以上 60%以下〉 であ'る。 この細孔容積が 10%未満の場合 は、 被吸着物質を効果的に通水吸着除去するのが困難になる。 また、 この細孔容 積が 70%を超える場合は、 通水吸着における被吸着物質の総吸着容量が小さく なる。 The mesopores have a specific surface area of 30 m 2 / "g or more (preferably 100 m 2 Zg or more) as analyzed by argon adsorption at the temperature of liquid argon. If this specific surface area is less than 3 Om 2 Zg, The mesopores in the present invention mean pores having a diameter of 2 OA or more and less than 50 OA. The pore volume (volume ratio) of mesopores in as analysis by argon adsorption at the temperature of liquid argon is 10% or more and 70% or less (preferably 20% or more and 60% or less) of the total pore volume. If the pore volume is less than 10%, it becomes difficult to effectively remove the adsorbed substance by water absorption, and if the pore volume exceeds 70%, The total adsorption capacity of the substance to be adsorbed is reduced.
本発明の活性炭素繊維におけるメソ細孔容積及びミク口細孔容積は、 アルゴン ガスを自動ガス吸着測定装置 (Quantachrome 社製) で液体アルゴン温度におい て吸着させ、 装置プログラムにおいて吸着等温線データから a s^-析により自動 で詳細に算出できる。 メゾ細孔及びミクロ細孔の比表面積も同様にして算出でき る。 The mesopore volume and the micropore volume of the activated carbon fiber of the present invention can be calculated from the adsorption isotherm data in the device program by adsorbing argon gas at the temperature of liquid argon using an automatic gas adsorption measuring device (manufactured by Quantachrome). Detailed calculations can be made automatically by ^ -analysis. The specific surface area of mesopores and micropores can be calculated in the same manner.
上記 a s解析とは、 表面構造が良く理解されている固体の II型吸着等温線を標 準吸着等温線として得られる a s -プロットを求める方法である。 a s -プロット 自体は公知の方法に従って求めることができる (例えば、 文献 「カーボン用語辞
典」 炭素材料学会力一ボン用語辞典編集委員会 編集、 ァグネ承風社 2000年 10月 5日発行、 10頁に記載のものを参照) 。 a s-プロットは、 通常の BET解析より 吸着量の平均誤差が少ないという点で有利である。 The above-mentioned as analysis is a method of obtaining an as-plot obtained as a standard adsorption isotherm using a type II adsorption isotherm of a solid whose surface structure is well understood. The as-plot itself can be determined according to a known method (for example, the reference “carbon terminology”). ), Edited by the Editorial Committee of the Glossary of Terms by the Society of Carbon Materials, published by Agune Shofusha on October 5, 2000, page 10). The a s-plot is advantageous in that the average error of the adsorption amount is smaller than that of the normal BET analysis.
本発明の活性炭素繊維は、 総酸性官能基量が 0. 21111110 1以下 (特に0. 1 7mmo 1以下) であることが好ましい。 この総酸性官能基量を 0. 2mmo l 以下とすることによって、 通水吸着における被吸着物質の総吸着容量をいつそう 高めることが可能となる。 酸性官能基は、 主に OH基、 COOH基及び C〇C = O基である。 The activated carbon fiber of the present invention preferably has a total acidic functional group content of 0.211111101 or less (particularly 0.17 mmo1 or less). By setting the total amount of the acidic functional groups to 0.2 mmol or less, it becomes possible to further increase the total adsorption capacity of the substance to be adsorbed in the flow-through adsorption. The acidic functional groups are mainly OH groups, COOH groups and C〇C = O groups.
本発明の活性炭素繊維における総酸性官能基量は、 Boehem滴定法により求め る。 Boehem滴定法は、 活性炭等に広く用いられている分析方法であり、 酸ノ塩 基滴定により活性炭表面の酸性酸素官能基を分類し、 定量するものである (例え ば、 文献 [Angew. Chem., Intern. Ed. Engl ·, 5, 533 (1966)]に記載された方法など参 照) 。 分析手法は、 まず試料活性炭素繊維を 105 °Cで 2時間乾燥後、 0. 99 〜 1. 01 gに枰量し、 50mlのアル力リ水溶液に浸漬する。 アル力リ水溶液 は水酸化ナトリウム、 炭酸ナトリウム、 炭酸水素ナトリウムの 3種類を用い、 濃 度はいずれも 0. Imo lZLとする。 この浸漬液はシールし、 24時間放置後、 活性炭素繊維を濾過して取り出し、 浸漬液の 10mlをピぺットで秤取し、 0. lmo 1 の塩酸で滴定する。 滴定は 3回行い、 平均値を用いる。 この値と、 ブランクのアル力リ滴定値との差から、 活性炭素繊維の表面酸性酸素官能基量を 算出する。 The total amount of acidic functional groups in the activated carbon fiber of the present invention is determined by a Boehem titration method. The Boehem titration method is a widely used analytical method for activated carbon and the like. It classifies and quantifies the acidic oxygen functional groups on the activated carbon surface by acid salt group titration (for example, see Angew. Chem. , Intern. Ed. Engl ·, 5, 533 (1966)]. The analysis method is as follows: First, the sample activated carbon fiber is dried at 105 ° C for 2 hours, weighed to 0.99 to 1.01 g, and immersed in 50 ml of Arikari aqueous solution. Three kinds of aqueous solution of sodium hydroxide, sodium hydroxide, sodium carbonate and sodium hydrogencarbonate are used. This immersion liquid is sealed, and after standing for 24 hours, the activated carbon fiber is removed by filtration, 10 ml of the immersion liquid is weighed with a pipet, and titrated with 0.1 mol of hydrochloric acid. Perform the titration three times and use the average value. From the difference between this value and the titration value of the blank, the amount of surface acidic oxygen functional groups of the activated carbon fiber is calculated.
アル力リの種類と反応する表面酸性酸素官能基より、 水酸化ナトリゥムと炭酸 ナトリゥムとの滴定値から算出される表面酸性酸素官能基量の差が OH基量に相 当し、 炭酸ナトリゥムと炭酸水素ナトリゥムとの滴定値から算出される表面酸性 酸素官能基量の差が CO C =〇基量に相当し、 炭酸水素ナトリゥムの滴定値から 算出される表面酸性酸素官能基量が C O O H基量に相当する。 From the surface acidic oxygen functional groups that react with the type of alkaline, the difference in the amount of surface acidic oxygen functional groups calculated from the titration values of sodium hydroxide and sodium carbonate corresponds to the amount of OH groups, and sodium carbonate and carbonic acid The difference in the amount of surface acidic oxygen calculated from the titration value with sodium hydrogen is equivalent to CO C = amount of base, and the amount of surface acidic oxygen functional group calculated from the titration value of sodium hydrogen carbonate is equivalent to the amount of COOH. Equivalent to.
本発明の活性炭素繊維は、 トリハロメタン (例えばクロ口ホルム) 、 トリクロ 口エチレン、 二塩化メチレン等の有機塩素系化合物の除去用として適している。 特に、 トリハロメタン類除去用として有用である。 換言すれば、 本発明は、 本発 明の活性炭素繊維を用いる有機塩素系化合物の除去方法も包含する。
本発明の活性炭素繊維は、 従来より使用されている浄水設備、 浄水装置等の活 性炭の代替材料として使用することができる。 特に、 通水しながら有機塩素系化 合物を効果的に吸着除去できる点で有利である。 例えば、 活性炭素繊維が充填さ れた管状体に被処理水を通水することにより、 被処理水中の有機塩素系化合物を 除去することができる。 この場合の通水量、 活性炭素繊維の充填量等は、 従来技 術の条件等に従えば良い。 The activated carbon fiber of the present invention is suitable for removing organic chlorinated compounds such as trihalomethane (for example, chloroform), trichloroethylene, and methylene dichloride. It is particularly useful for removing trihalomethanes. In other words, the present invention also includes a method for removing an organic chlorine-based compound using the activated carbon fiber of the present invention. The activated carbon fiber of the present invention can be used as a substitute for activated carbon in water purification equipment and water purification equipment that have been conventionally used. In particular, it is advantageous in that the organic chlorine compound can be effectively adsorbed and removed while passing water. For example, by passing water to be treated through a tubular body filled with activated carbon fibers, an organic chlorine-based compound in the water to be treated can be removed. In this case, the flow rate of water, the filling amount of activated carbon fibers, and the like may be in accordance with the conditions of the conventional technology.
2 . 活性炭素繊維の製造方法 2. Manufacturing method of activated carbon fiber
本発明の活性炭素繊維の製造方法は限定的でなく、 例えば次のような製造工程 により製造することができる。 The method for producing the activated carbon fiber of the present invention is not limited. For example, it can be produced by the following production steps.
まず、 有機金属化合物と活性炭前駆体とを溶媒中で混合し、 活性炭前駆体混合 物を得る。 First, an organometallic compound and an activated carbon precursor are mixed in a solvent to obtain an activated carbon precursor mixture.
活性炭前駆体は、 容易に活性炭になり得、 しかも上述の有機金属化合物と溶媒 を用いて混合可能なものであれば特に限定されるものではないが、 炭素化時にお ける理論炭化収率が良好な点でピッチを用いるのが好ましい。 The activated carbon precursor is not particularly limited as long as it can easily become activated carbon and can be mixed with the above-mentioned organometallic compound and a solvent, but the theoretical carbonization yield during carbonization is good. Therefore, it is preferable to use the pitch.
有機金属化合物としては、 例えばイットリウム化合物、 チタン化合物、 ジルコ ニゥム化合物、 バナジウム化合物、 鉄化合物、 マグネシウム化合物等を挙げるこ とができる。 これらは 1種又は 2種以上で用いることができる。 イットリウム化 合物としては、 例えば卜リスァセチルァセトナトジアコイットリウム、 イツトリ ゥムイソプロポキシド、 イットリウムァセチルァセトナ一ト等が挙げられる。 鉄 化合物としては、 例えばトリスァセチルァセトナト鉄、 トリスシクロペン夕ジェ ニル鉄等が挙げられる。 チタン化合物としては、 例えばチタンォキソァセチルァ セトナ一ト等が挙げられる。 ジルコニウム化合物としては、 例えばジルコニウム ァセチルァセトナート等が挙げられる。 マグネシゥム化合物としては、 例えばマ グネシゥムァセチルァセトナート等が挙げられる。 特に、 活性炭に形成される細 孔の制御効果が高いという点でィットリゥム化合物、 鉄化合物及びマグネシウム 化合物の少なくとも 1種が好ましい。 Examples of the organometallic compound include an yttrium compound, a titanium compound, a zirconium compound, a vanadium compound, an iron compound, and a magnesium compound. These can be used alone or in combination of two or more. Examples of the yttrium compound include trisacetyl acetonatodiacoyttrium, yttrium isopropoxide, and yttrium acetyl acetonate. Examples of iron compounds include trisacetylacetonatoiron, triscyclopentenyliron, and the like. Examples of the titanium compound include titanium oxacetyl acetate. Examples of the zirconium compound include zirconium acetyl acetonate and the like. Examples of the magnesium compound include magnesium acetylacetonate. In particular, at least one of a yttrium compound, an iron compound and a magnesium compound is preferable in that the effect of controlling pores formed in the activated carbon is high.
溶媒は、 有機金属ィヒ合物と活性炭前駆体の双方を溶解することができるもので あれば特に限定されるものではない。 なお、 溶媒は利用する有機金属化合物と活 性炭前駆体の種類に応じて適宜選択することができる。
上述の溶媒を用いて上述の有機金属化合物と活性炭前駆体とを混合する場合は、 予め有機金属化合物を溶解した溶媒中に活性炭前駆体を添加して混合する方法、 及び活性炭前駆体中に予め有機金属化合物を溶解した溶媒を添加して混合する方 法等を採用することができる。 このような混合操作においては、 均一な混合を達 成するために攪拌、 過熱等の操作が適宜加えられてもよい。 The solvent is not particularly limited as long as it can dissolve both the organometallic compound and the activated carbon precursor. The solvent can be appropriately selected according to the type of the organometallic compound and the activated carbon precursor to be used. When mixing the above-mentioned organometallic compound and the activated carbon precursor using the above-mentioned solvent, a method of adding and mixing the activated carbon precursor in a solvent in which the organometallic compound is dissolved in advance, and A method in which a solvent in which an organometallic compound is dissolved is added and mixed may be employed. In such a mixing operation, operations such as stirring and heating may be appropriately added to achieve uniform mixing.
有機金属化合物、 活性炭前駆体及び溶媒を含む上述の混合物を調整する場合に は、 通常、 金属成分の含有量が活性炭前駆体混合物の 0 . 0 1〜5重量%、 好ま しくは 0 . 1〜 2重量%になるよう有機金属化合物と活性炭前駆体との混合割合 を設定する。 なお、 ここで言う金属成分の含有量は、 有機金属化合物としての含 有量ではなく、 金属元素換算の量である。 When preparing the above-mentioned mixture containing an organometallic compound, an activated carbon precursor and a solvent, the content of the metal component is usually from 0.01 to 5% by weight of the activated carbon precursor mixture, preferably from 0.1 to 5%. The mixing ratio of the organometallic compound and the activated carbon precursor is set to 2% by weight. Here, the content of the metal component is not the content as the organometallic compound but the amount in terms of the metal element.
上記割合が 0 . 0 1重量%未満の場合は、 得られる活性炭に上述のような多孔 質構造が形成されにくくなる場合があり、 結果的に当該活性炭が低分子化合物及 び高分子化合物の双方に対して所要の吸着除去性能を発揮しにくくなるおそれが ある。 逆に、 5重量%を超える場合は、 得られる活性炭中で金属が凝縮しやすく なるために上述のような多孔質構造が形成されにくくなり、 結果的に当該活性炭 が低分子化合物及び高分子化合物の双方に対して所要の吸着除去性能を発揮しに くくなるおそれがある。 更には、 上述の混合物の紡糸性が損なわれるおそれがあ る。 なお、 有機金属化合物の割合が大きくなると、 一般に平均細孔径が大きくな る。 When the above ratio is less than 0.01% by weight, the above-mentioned porous structure may not be easily formed in the obtained activated carbon, and as a result, the activated carbon may contain both a low molecular weight compound and a high molecular weight compound. In some cases, it may be difficult to achieve the required adsorption removal performance. On the other hand, when the content exceeds 5% by weight, the metal is easily condensed in the obtained activated carbon, so that the porous structure as described above is difficult to be formed. As a result, the activated carbon is a low molecular weight compound and a high molecular weight compound. In both cases, it may be difficult to exhibit the required adsorption and removal performance. Furthermore, the spinnability of the above mixture may be impaired. Incidentally, as the proportion of the organometallic compound increases, the average pore diameter generally increases.
次に、 得られた活性炭前駆体混合物を溶融紡糸法により繊維化し、 炭素化処理 及び Z又は不融化処理を施し、 その後さらに賦活処理を施す。 この際、 活性炭前 駆体混合物は、 予め溶媒を除去しておくことが好ましい。 Next, the obtained activated carbon precursor mixture is fiberized by a melt spinning method, subjected to carbonization treatment and Z or infusibilization treatment, and then further activated. At this time, it is preferable to remove the solvent from the activated carbon precursor mixture in advance.
活性炭前駆体混合物の炭素化処理方法、 不融化処理方法及び賦活処理方法は特 に限定されるものではない。 例えば、 以下のような方法でそれぞれ実施すること ができる。 The carbonization method, the infusibilization method, and the activation method of the activated carbon precursor mixture are not particularly limited. For example, it can be carried out in the following manner.
炭素化処理は、 窒素等の不活性ガス雰囲気下において、 活性炭前駆体混合物を 昇温速度 5〜 1 0 分程度で 8 0 0〜 1 2 0 0 °C程度まで加熱し、 そのときの 最大温度を最大限 1 0分間程維持することにより実施することができる。 In the carbonization treatment, the activated carbon precursor mixture is heated to about 800 to 1200 ° C at a heating rate of about 5 to 10 minutes under an atmosphere of an inert gas such as nitrogen, and the maximum temperature at that time. Is maintained for up to 10 minutes.
不融化処理は、 不活性ガス雰囲気又は酸素含有ガス雰囲気下において、 活性炭
前駆体混合物をその融点以下の温度から昇温速度 0. 1〜 5 Z分程度の割合で 4 0 0。C程度まで加熱することにより実施することができる。 The infusibilization treatment is performed in an inert gas atmosphere or an oxygen-containing gas atmosphere. The temperature of the precursor mixture is raised from a temperature lower than its melting point to 400 at a rate of about 0.1 to 5 Z minutes. It can be carried out by heating to about C.
さらに、 賦活処理は、 水蒸気、 二酸化炭素、 酸素及びこれらの混合ガス並びに これらのガスを窒素等の不活性ガスで希釈したガス雰囲気中において、 炭素化処 理及び Z又は不融化処理が施された活性炭前駆体混合物を 8 0 0〜: L 2 0 0 °C程 度に加熱して 5〜1 2 0分程度保持することにより実施することができる。 Further, the activation treatment was performed by carbonization treatment and Z or infusibilization treatment in a gas atmosphere in which water vapor, carbon dioxide, oxygen and a mixed gas thereof and these gases were diluted with an inert gas such as nitrogen. It can be carried out by heating the activated carbon precursor mixture to about 800 to: L200 ° C and keeping it for about 5 to 120 minutes.
陚活処理の後、 酸素を含まない雰囲気中 (例えば窒素雰囲気中) において 3 0 0 °C以下まで冷却することにより、 総酸性官能基量が 0 . 2 mm o l以下である 本発明の活性炭素繊維の製造が可能である。 After the activation treatment, the activated carbon of the present invention having a total acidic functional group content of 0.2 mmol or less is cooled to 300 ° C. or less in an oxygen-free atmosphere (for example, in a nitrogen atmosphere). The production of fibers is possible.
3 . 有機塩素系化合物除去用活性炭素繊維の選出方法 3. Selection method of activated carbon fiber for removing organic chlorine compounds
本発明では、 有機塩素系化合物除去用に適した活性炭素繊維をより確実に得る ため、 このようにして得られた活性炭素繊維の液体アルゴン温度におけるァルゴ ン吸着等温線より a s解析で求めた細孔分布において、 In the present invention, in order to more reliably obtain activated carbon fibers suitable for removing organochlorine-based compounds, fine carbon particles obtained by as-analysis from the argon adsorption isotherm at the liquid argon temperature of the activated carbon fibers thus obtained are used. In the pore distribution,
( 1 ) ミクロ細孔の比表面積が 7 0 0 m2Z g以上であり、 (1) a specific surface area of micropores 7 0 0 m 2 Z g or more,
( 2 ) メソ細孔の比表面積が 3 O n^Zg以上であり、 (2) the specific surface area of the mesopores is 3 O n ^ Zg or more,
( 3 ) メソ細孔の細孔容積が全細孔容積の 1 0 %以上 7 0 %以下である活性炭素 繊維を選出する工程を有することが望ましい。 細孔分布は、 上記と同様にして液 体アルゴン温度におけるアルゴン吸着等温線よりひ s解析で求めることができる。 また、 本発明は、 有機塩素系化合物除去用活性炭素繊維を選出する方法も包含 する。 すなわち、 有機塩素系化合物除去用活性炭素繊維を選出する方法であって、 活性炭素繊維の液体アルゴン温度におけるアルゴン吸着等温線より a s解析で 求めた細孔分布において、 (3) It is desirable to have a step of selecting activated carbon fibers in which the pore volume of the mesopores is 10% or more and 70% or less of the total pore volume. The pore distribution can be obtained from the argon adsorption isotherm at the liquid argon temperature by the H-analysis in the same manner as described above. The present invention also includes a method for selecting activated carbon fibers for removing an organic chlorine-based compound. In other words, this is a method for selecting activated carbon fibers for removing organic chlorine-based compounds.In the pore distribution obtained by the as analysis from the argon adsorption isotherm of the activated carbon fibers at the liquid argon temperature,
( 1 ) ミクロ細孔の比表面積が 7 0 0 m2Zg以上であり、 (1) a specific surface area of micropores 7 0 0 m 2 Zg above,
( 2 ) メソ細孔の比表面積が 3 0 m2Zg以上であり、 (2) the specific surface area of the mesopores is 30 m 2 Zg or more,
( 3 ) メソ細孔の細孔容積が全細孔容積の 1 0 %以上 7 0 %以下である活性炭素 繊維を有機塩素系化合物除去用活性炭素繊維として選出することを特徴とする方 法も本発明に含まれる。 この選出方法は、 上記のような製法以外の方法で製造さ れた活性炭素繊維を含め、 あらゆる活性炭素繊維に適用できる。 上記 (1 ) 〜 (3) Another method is to select activated carbon fibers having a mesopore pore volume of 10% to 70% of the total pore volume as activated carbon fibers for removing organic chlorine-based compounds. Included in the present invention. This selection method can be applied to all activated carbon fibers, including activated carbon fibers produced by a method other than the above-mentioned production method. The above (1) ~
( 3 ) の条件をすベて満たす活性炭素繊維は、 有機塩素系化合物除去用として優
れた効果を発揮する。 Activated carbon fiber that satisfies all the conditions of (3) is excellent for removing organic chlorine-based compounds. Demonstrated effects.
本発明の活性炭素繊維は、 特定の多孔質構造を有することから、 有機塩素系化 合物の通水吸着に適した大径の細孔と、 有機塩素化合物の総吸着容量が大きくな る小径の細孔とを兼ね備えている。 このため、 本発明の活性炭素繊維は、 有機塩 素系化合物の通水吸着において良好な吸着除去性能を発揮することができる。 例えば、 本発明活性炭素繊維を水道水等の浄化用に用いる場合には、 水道水中 に含まれる発ガン性のおそれがあるトリハロメタン、 トリクロロエチレン、 二塩 化メチレン等の有機塩素系化合物を効果的に吸着除去することができる。 Since the activated carbon fiber of the present invention has a specific porous structure, large-diameter pores suitable for adsorbing organic chlorine-based compounds through water and small-diameter pores having a large total adsorption capacity for organic chlorine compounds are provided. It has both pores. For this reason, the activated carbon fiber of the present invention can exhibit good adsorption and removal performance in adsorbing organic chloride compounds through water. For example, when the activated carbon fiber of the present invention is used for purifying tap water or the like, organochlorine-based compounds such as trihalomethane, trichloroethylene, and methylene dichloride which may be carcinogenic contained in tap water are effectively removed. It can be removed by adsorption.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 試験例 1におけるクロ口ホルム通水破過試験の結果を示すグラフであ る。 FIG. 1 is a graph showing the results of a cross-hole holm breakthrough test in Test Example 1.
図 2は、 試験例 1におけるトリクロロエチレン通水破過試験の結果を示すダラ フである。 FIG. 2 is a graph showing the results of the trichlorethylene breakthrough test in Test Example 1.
図 3は、 試験例 1における二塩化メチレン通水破過試験の結果を示すグラフで ある。 FIG. 3 is a graph showing the results of a methylene dichloride water breakthrough test in Test Example 1.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例及び比較例を示し、 本発明の特徴とするところをより明確に説明 する。 ただし、 本発明は、 これら実施例に限定されるものではない。 Hereinafter, examples and comparative examples will be shown, and features of the present invention will be described more clearly. However, the present invention is not limited to these examples.
実施例 1 Example 1
水分及びキノリン不溶分を除去したコ一ルタール 1 1 0 0 gを窒素雰囲気下で 8 0 に加温し、 これにトリスァセチルァセトナトジアコイットリウム 〔Y (C Hs C O C H C O C Hs) 2 · 2 H20) 4. 0 gを溶解したキノリン 1 0 O m lを 徐々に滴下しながら 5時間攪拌した。 110 g of the coal tar from which water and quinoline insolubles were removed was heated to 80 under a nitrogen atmosphere, and trisacetylacetonatodiacoyttrium (Y (C Hs COCHCOC Hs) 2 20 ) 4.0 g of quinoline in which 4.0 g was dissolved was stirred for 5 hours while gradually adding dropwise thereto.
次いで、 これを減圧蒸留した後、 5 LZ分の割合で空気を吹き込みながら 3 3 0 で 3時間反応させ、 活'性炭前駆体混合物であるィットリゥム含有コ一ルター ルビッチを得た。 Next, this was distilled under reduced pressure, and reacted at 330 for 3 hours while blowing air at a rate of 5 LZ, to obtain a yttrium-containing coulter bitch, which was an active carbon precursor mixture.
このようにして得られた活性炭前駆体混合物をノズル径が 0. 3 mmの紡糸器 内に仕込み、 ピッチの溶融温度に加熱しながら巻き取り速度を 1 5 O mZ秒に設 定して紡糸することによりピッチ繊維を得た。
得られたピッチ繊維を空気雰囲気下で常温から昇温速度 2 °CZ分で 3 7 5 °Cま で加熱し、 その温度で 1 5分間保持して不融化処理を施した。 その後、 不融化処 理されたピッチ繊維に対し、 水蒸気を含む窒素ガス雰囲気下において 8 5 0での 炉内で 3 0分間賦活処理を施した後、 窒素雰囲気下において 3 0 0で以下まで 却し、 表 1及び表 2記載の物性を有する活性炭素繊維を得た。 The activated carbon precursor mixture thus obtained is charged into a spinner having a nozzle diameter of 0.3 mm, and is spun at a winding speed of 15 OmZ seconds while being heated to the pitch melting temperature. Thus, a pitch fiber was obtained. The obtained pitch fiber was heated from room temperature to 375 ° C at a temperature rising rate of 2 ° CZ in an air atmosphere, and kept at that temperature for 15 minutes to perform infusibility treatment. After that, the infusibilized pitch fiber is subjected to an activation treatment in a furnace at 850 for 30 minutes in a nitrogen gas atmosphere containing water vapor, and then rejected to 300 or less in a nitrogen atmosphere. Then, activated carbon fibers having the physical properties shown in Tables 1 and 2 were obtained.
表 1 table 1
表 2 Table 2
実施例 2 Example 2
実施例 1に記載の不融化処理されたピッチ繊維に対し、 水蒸気を含む窒素ガス 雰囲気下において 8 7 5。Cの炉内で 3 0分間賦活処理を施した後、 窒素雰囲気下
において 300°C以下まで冷却し、 表 1及び表 2記載の物性を有する活性炭素繊 維を得た。 The pitch fiber subjected to the infusibilizing treatment described in Example 1 was subjected to 875 under a nitrogen gas atmosphere containing water vapor. After activation treatment in the furnace of C for 30 minutes, under nitrogen atmosphere At 300 ° C. or lower to obtain an activated carbon fiber having the physical properties shown in Tables 1 and 2.
比較例 1 Comparative Example 1
市販のコールタールピッチ (大阪ガスケミカル (株) 製) を実施例 1と同様の 紡糸処理及び不融化処理を施し、 得られた不融化繊維を、 水蒸気を含む窒素ガス 雰囲気下において 850°Cの炉内で 30分間赋活処理を施した後、 空気雰囲気下 において自然冷却し、 表 1及び表 2記載の物性を有する活性炭素繊維を得た。 試験例 1 A commercially available coal tar pitch (manufactured by Osaka Gas Chemical Co., Ltd.) was subjected to the same spinning and infusibilizing treatments as in Example 1, and the resulting infusibilized fiber was heated to 850 ° C in a nitrogen gas atmosphere containing steam. After an activation treatment in a furnace for 30 minutes, the mixture was naturally cooled in an air atmosphere to obtain activated carbon fibers having the physical properties shown in Tables 1 and 2. Test example 1
実施例 1、 2及び比較例 1の活性炭素繊維について、 下記の通りのクロ口ホル ム通水破過試験、 トリクロロエチレン通水破過試験及び二塩化メチレン通水破過 試験を実施した。 その結果を図 1、 図 2及び図 3に示す。 The activated carbon fibers of Examples 1 and 2 and Comparative Example 1 were subjected to the following test for water passage through a black mouth, trichlorethylene and water, and methylene dichloride. The results are shown in FIGS. 1, 2 and 3.
(1) クロ口ホルム通水破過試験 (1) Black mouth Holm water breakthrough test
活性炭素繊維を充填密度が 0. 15 g/c cとなるように各々ガラスカラムに 充填し、 クロ口ホルム濃度 50 ^ gZ 1の 2 0°Cの水を空塔速度が 1 0 00 h r 1で通水した。 カラム出口濃度が原水濃度の 20%を超えるまで適時濃度を分析 した。 本発明の活性炭素繊維は比較例 1の活性炭素繊維よりも優れた性能を示し た。 Each activated carbon fiber was packed into a glass column so that the packing density was 0.15 g / cc, and water at 20 ° C with a chromate form concentration of 50 ^ gZ1 was superimposed at a superficial velocity of 1000 hr1. Water passed. Timely concentration analysis was performed until the column outlet concentration exceeded 20% of the raw water concentration. The activated carbon fiber of the present invention exhibited better performance than the activated carbon fiber of Comparative Example 1.
(2) トリクロロェチレン通水破過試験 (2) Trichloroethylene water breakthrough test
活性炭素繊維を充填密度が 0. 15 gZc cとなるように各々ガラスカラムに 充填し、 トリクロロエチレン濃度 50 gZ 1の 20°Cの水を空塔速度が 1 00 Oh r—1で通水した。 カラム出口濃度が原水濃度の 20%を超えるまで適時濃度 を分析した。 本発明の活性炭素繊維は比較例 1の活性炭素繊維よりも優れた性能 を示した。 Each activated carbon fiber was packed in a glass column so as to have a packing density of 0.15 gZcc, and water at 20 ° C with a trichlorethylene concentration of 50 gZ1 was passed at a superficial velocity of 100 Ohr- 1 . The concentration was analyzed in a timely manner until the column outlet concentration exceeded 20% of the raw water concentration. The activated carbon fiber of the present invention exhibited better performance than the activated carbon fiber of Comparative Example 1.
(3) 二塩化メチレン通水破過試験 (3) Methylene dichloride water breakthrough test
活性炭素繊維を、 充填密度が 0. 15 gXc cとなるように各々ガラスカラム に充填し、 二塩化メチレン濃度 50 j gZ 1の 20°Cの水を空塔速度が 1000 h r 】で通水した。 カラム出口濃度が原水濃度の 20 %を超えるまで適時濃度を 分析した。 本発明の活性炭素繊維は比蛟例 1の活性炭素繊維よりも優れた性能を 示した。
Each activated carbon fiber was packed into a glass column so that the packing density became 0.15 gXcc, and water at 20 ° C with methylene dichloride concentration of 50 j gZ1 was passed at a superficial velocity of 1000 hr]. . The concentration was analyzed at appropriate times until the column outlet concentration exceeded 20% of the raw water concentration. The activated carbon fiber of the present invention exhibited better performance than the activated carbon fiber of Comparative Example 1.