JPH08281099A - Adsorbent for organic chlorine compound - Google Patents

Adsorbent for organic chlorine compound

Info

Publication number
JPH08281099A
JPH08281099A JP7088062A JP8806295A JPH08281099A JP H08281099 A JPH08281099 A JP H08281099A JP 7088062 A JP7088062 A JP 7088062A JP 8806295 A JP8806295 A JP 8806295A JP H08281099 A JPH08281099 A JP H08281099A
Authority
JP
Japan
Prior art keywords
adsorbent
pores
adsorption
acidic functional
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7088062A
Other languages
Japanese (ja)
Inventor
Shiro Hamamoto
史朗 濱本
Toshio Tanaka
俊雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP7088062A priority Critical patent/JPH08281099A/en
Publication of JPH08281099A publication Critical patent/JPH08281099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Removal Of Specific Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: To obtain an adsorbent for removing an org. chlorine compd. in an aq. soln. CONSTITUTION: This adsorbent is a carbon compd. having <=0.1meq/g acidic functional group existing on the surface. Since the amt. of acidic functional groups is reduced and pore distribution is made optimum, adsorption sites of a large specific surface area peculiar to activated carbon are effectively utilized and the diffusion of an org. chlorine compd. in pores in water can be improved. As a result, the useful life of this adsorbent at the time of adsorbing and removing an org. chlorine compd. in water can be considerably prolonged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水溶液中の有機塩素系
化合物の除去用の吸着材である。詳しくは、トリハロメ
タンと総称される化合物の除去用の吸着材である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is an adsorbent for removing organic chlorine compounds in an aqueous solution. Specifically, it is an adsorbent for removing compounds collectively called trihalomethane.

【0002】[0002]

【従来の技術】水中の有機塩素系化合物は、臭気の他,
発がん性の問題から、その除去が強く望まれ、高性能な
吸着材の開発が急務とされていた。従来より水中の有機
塩素系化合物の除去においては活性炭が使用されてい
る。有機塩素系化合物の除去性能を高めるため、比表面
積を増大させたり、繊維状の形状を持つ活性炭を利用す
ることで、有機塩素系化合物と吸着材が接触する確率を
増大させ吸着性能を高める試みがなされてきている。し
かしながら、特開平6−100310に示されるよう
に、従来の製造法では1500m2/g以上になるとトリ
ハロメタンに代表される有機塩素系化合物の除去性能が
低下する問題が生じるため、単純に比表面積を増大させ
ることでは問題解決に至らなかった。また、繊維状の形
状を持つ活性炭を利用する試みは特開平6−10616
2に示されるように、充填密度が上げられない点に本質
的問題が存在していた。つまり、上記従来法では、飲料
水のように有機塩素系化合物の含有量が低い場合(1p
pm以下)では大過剰に存在する水分子が細孔を占拠
し、有機塩素系化合物の吸着が早期に飽和に達し、早期
に吸着性が低下するという有機塩素系化合物に対する本
質的な吸着性能、特に長期の使用に耐えるという性能の
向上が図られていなかった。
2. Description of the Related Art Organic chlorine compounds in water are not only odorous,
Due to the problem of carcinogenicity, its removal has been strongly desired, and the development of a high-performance adsorbent has been urgently needed. Conventionally, activated carbon has been used to remove organic chlorine compounds in water. Attempts to increase the adsorption performance by increasing the specific surface area and using activated carbon with a fibrous shape in order to improve the removal performance of organochlorine compounds and thereby increasing the probability of contact between the organochlorine compound and the adsorbent. Has been done. However, as disclosed in JP-A-6-100310, the conventional production method has a problem that the removal performance of an organochlorine compound typified by trihalomethane deteriorates at 1500 m 2 / g or more, so that the specific surface area is simply changed. Increasing it did not solve the problem. Further, an attempt to utilize activated carbon having a fibrous shape is disclosed in Japanese Patent Laid-Open No. 10616/1994.
As shown in 2, there is an essential problem in that the packing density cannot be increased. That is, in the above conventional method, when the content of the organochlorine compound is low as in drinking water (1 p
At pm or less), water molecules present in a large excess occupy the pores, the adsorption of the organochlorine compound reaches saturation early, and the adsorptivity decreases early, which is the essential adsorption performance for the organochlorine compound, In particular, the improvement in performance of withstanding long-term use has not been achieved.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記のような
従来技術の問題点を解決した、即ち有機塩素系化合物を
含んだ水溶液から有機塩素系化合物を除去する場合、多
量に存在する水よりも有機塩素系化合物を吸着しやすく
し、従来の吸着材よりも有機塩素系化合物に対する吸着
性能が長寿命である吸着材を提供することである。
DISCLOSURE OF THE INVENTION The present invention has solved the above-mentioned problems of the prior art, that is, when removing an organic chlorine compound from an aqueous solution containing the organic chlorine compound, it is necessary to remove water from a large amount of water. Another object of the present invention is to provide an adsorbent which makes it easier to adsorb an organic chlorine-based compound and has a longer life than the conventional adsorbents.

【0004】[0004]

【課題を解決するための手段】本発明は、表面に存在す
る酸性官能基の量が、吸着材1gあたり0.1meq以
下の範囲にある多孔質炭素材であることを特徴とする吸
着材である。
The present invention relates to an adsorbent characterized in that the amount of acidic functional groups present on the surface is a porous carbon material in the range of 0.1 meq or less per 1 g of the adsorbent. is there.

【0005】また本発明は、B.E.T.比表面積が1
500m2/g以上でかつ、直径が10〜20Åの細孔の
容積が吸着材1gあたり0.3cc以上であることを特
徴とする吸着材である。また本発明は、直径10〜20
Åの細孔の容積のうち、直径14〜20Åの細孔の容積
の占める割合が70%以上であることを特徴とする吸着
材である。本発明における多孔質炭素材とは、ヤシ殼や
おがくず、木材などの天然有機物、各種合成樹脂や合成
繊維などの合成有機物、あるいは石炭、石炭系ピッチ、
石油系ピッチなどを原料とした活性炭をさらに後述の適
当な処理を施した炭素質の物質である。特にヤシ殻活性
炭は、本発明に適した高比表面積活性炭を製造しうる好
ましい原材料である。
The present invention also relates to E. FIG. T. Specific surface area is 1
The adsorbent is characterized in that the volume of pores having a diameter of 10 to 20Å is 500 m 2 / g or more and 0.3 cc or more per 1 g of the adsorbent. The present invention also has a diameter of 10-20.
The adsorbent is characterized in that the volume of the pores of 14 to 20 Å occupies 70% or more of the volume of the pores of Å. The porous carbon material in the present invention, coconut shell and sawdust, natural organic matter such as wood, synthetic organic matter such as various synthetic resins and synthetic fibers, or coal, coal-based pitch,
It is a carbonaceous substance obtained by further subjecting activated carbon made from petroleum pitch or the like as a raw material to an appropriate treatment described later. Coconut shell activated carbon is a preferred raw material from which high specific surface area activated carbon suitable for the present invention can be produced.

【0006】本発明における有機塩素系化合物とは、通
常トリハロメタンと呼ばれるクロロホルム,ブロモジク
ロロメタン,ジブロモクロロメタン,トリブロモメタン
等を示す。さらに、ジクロロエタン,トリクロロエタ
ン,トリクロロエチレン等に代表される、炭素数2のハ
ロゲン化合物も含まれる。
The organic chlorine compounds in the present invention include chloroform, bromodichloromethane, dibromochloromethane, tribromomethane, etc., which are usually called trihalomethanes. Further, a halogen compound having 2 carbon atoms, which is represented by dichloroethane, trichloroethane, trichloroethylene, etc., is also included.

【0007】有機塩素系化合物用吸着材においては、2
つの問題点を解決しなければならない。1:吸着材の素
材である炭素の物性自身が最適化され、有機塩素系化合
物に対して選択吸着性を持つこと、2:有機塩素系化合
物の吸着に最適な細孔の構造を持つ、つまり最適細孔分
布を持ち、有機塩素系化合物が容易に吸着サイトに拡散
しかつ脱離しにくい構造を持つこと、以上の2点が重要
であると考え、鋭意検討の結果本発明に至った。
In the adsorbent for organic chlorine compounds, 2
We have to solve one problem. 1: The physical properties of carbon, which is the material of the adsorbent, are optimized and have a selective adsorption property for the organochlorine compound, 2: The pore structure is optimal for the adsorption of the organochlorine compound, that is, It was thought that the above two points are important, having an optimal pore distribution, and having a structure in which an organochlorine compound easily diffuses to an adsorption site and is difficult to desorb, and as a result of intensive studies, the present invention has been accomplished.

【0008】まず第1の問題点に関しては、以下の手段
により解決した。Boehmらの方法により求めた吸着
材1gあたりの全表面酸性官能基の量が0.1meq以
下であり、さらに望ましくは、0.05meq以下の吸
着材とした。全表面酸性官能基量が0.1meqより多
い場合、活性炭表面の親水性が増し、水溶液中の吸着で
は水分子が形成するクラスターが、細孔の入り口をふさ
ぐような状態で滞留する。このような状態ではクロロホ
ルムなどの低分子量有機塩素系化合物の分子がその吸着
サイトとなる微細な細孔の表面に拡散、到達することが
妨げられ、有機塩素系化合物の吸着能力が低下する。逆
に全表面酸性官能基の量が上記範囲にある吸着材であれ
ば、有機塩素系化合物の分子の拡散が阻害されず、また
同時に、吸着サイトとなる微細な細孔の表面に親水性基
がほとんど存在しないため、疎水性の有機塩素系化合物
の分子が選択的に吸着可能となる。
First, the first problem was solved by the following means. The amount of all surface acidic functional groups per 1 g of the adsorbent determined by the method of Boehm et al. Is 0.1 meq or less, and more preferably 0.05 meq or less. When the total amount of acidic functional groups on the surface is more than 0.1 meq, the hydrophilicity of the activated carbon surface increases, and the cluster formed by water molecules by adsorption in the aqueous solution stays in a state of blocking the entrance of the pore. In such a state, the molecules of the low molecular weight organochlorine compound such as chloroform are prevented from diffusing and reaching the surface of the fine pores serving as the adsorption site, and the adsorption ability of the organochlorine compound is reduced. On the contrary, if the total surface acidic functional group is an adsorbent having the amount in the above range, the diffusion of the molecules of the organochlorine compound is not hindered, and at the same time, the hydrophilic group is formed on the surface of the fine pores serving as adsorption sites. Since there is almost no, the molecules of the hydrophobic organochlorine compound can be selectively adsorbed.

【0009】表面酸性官能基量を減少させるには、窒素
雰囲気下で加熱するのが最も優れた方法である。ただ
し、単純に窒素ガスに置換した雰囲気で加熱するだけで
は、本発明のような十分な効果を得ることは困難であ
る。窒素ガスを加熱時間中流通させてキャリアガスとし
ての効果を持たせ、酸性官能基の分解により生成したガ
スを除去する方法が効果的である。窒素ガスの流量は、
処理する吸着材5kgに対して1Nリットル/分以上で
あることが望ましい。また加熱流通時の不純物ガス濃度
の管理が重要であり、特に酸素、水蒸気の含有量が問題
となる。酸素濃度は0.5ppm以下、水蒸気濃度は1
ppm以下の窒素ガス雰囲気で加熱することが必要であ
る。加熱温度は400〜1200℃の温度が望ましい。
上記の加熱処理は雰囲気ガスとして窒素以外の不活性ガ
ス、例えばアルゴンガス等を用いても同様の効果が得ら
れる。不活性ガスの流通状態で所定の温度まで昇温した
後に、ガスの流通を止め、真空下で加熱する方法も有効
である。この場合、0.1mmHg以下の真空度を保ち
続けることが望ましい。
Heating in a nitrogen atmosphere is the best method for reducing the amount of surface acidic functional groups. However, it is difficult to obtain sufficient effects as in the present invention by simply heating in an atmosphere in which nitrogen gas is replaced. A method is effective in which nitrogen gas is circulated during the heating time so as to have an effect as a carrier gas, and the gas generated by the decomposition of the acidic functional group is removed. The flow rate of nitrogen gas is
It is preferably 1 N liter / min or more for 5 kg of the adsorbent to be treated. In addition, it is important to control the impurity gas concentration during heating and circulation, and the content of oxygen and water vapor becomes a problem. Oxygen concentration is 0.5ppm or less, water vapor concentration is 1
It is necessary to heat in a nitrogen gas atmosphere of ppm or less. The heating temperature is preferably 400 to 1200 ° C.
The same effect can be obtained in the above heat treatment by using an inert gas other than nitrogen, such as argon gas, as the atmosphere gas. A method is also effective in which the temperature of the inert gas is raised to a predetermined temperature and then the flow of the gas is stopped and the heating is performed under vacuum. In this case, it is desirable to continue to maintain the vacuum degree of 0.1 mmHg or less.

【0010】ここで、全表面酸性官能基量はBoehm
らの報告(Angew. Chem., Intern.Ed. Engl., 5, 533
(1966))にある方法に従って測定した。彼らはアルカリ
溶液に活性炭を加えて振とうした後、消費されたアルカ
リの当量として示される。消費されたアルカリの量は酸
による滴定で求めている。具体的には、乾燥状態の吸着
材0.5gを0.02mol/lの水酸化ナトリム水溶
液60mlに浸漬し、4時間振とうしたのち、その溶液
25mlを分取して0.02mol/l塩酸で滴定を行
い、アルカリの消費量から全酸性官能基量を求めた。
Here, the total amount of acidic functional groups on the surface is Boehm.
Report (Angew. Chem., Intern.Ed. Engl., 5, 533
(1966)). They are shown as the equivalent of alkali consumed after adding activated carbon to an alkaline solution and shaking. The amount of alkali consumed is determined by acid titration. Specifically, 0.5 g of the adsorbent in a dry state is immersed in 60 ml of a 0.02 mol / l sodium hydroxide aqueous solution, shaken for 4 hours, and then 25 ml of the solution is sampled to obtain 0.02 mol / l hydrochloric acid. The amount of total acidic functional groups was determined from the amount of alkali consumed.

【0011】さらに第2の問題点に対して、以下の手段
により解決した。有機塩素系化合物の吸着には、直径1
0〜20Åの範囲のミクロ孔が有効であることが検討の
結果明らかとなった。多孔質の吸着材表面に分子が吸着
されるとき、分子と吸着材表面との相互作用ポテンシャ
ルは細孔が小さくなるほど大きくなり、分子は細孔の表
面により強く吸着される。有機塩素系化合物の典型的な
分子であるクロロホルムは、その分子直径が約4.7Å
である。クロロホルム分子に強い相互作用ポテンシャル
が働くのは、吸着材の細孔壁からせいぜい2分子程度の
距離までである。したがってクロロホルム分子の直径の
4倍、約20Å程度までの細孔、即ち一般にミクロ孔と
呼ばれる範囲の細孔がクロロホルムの吸着には有効と推
定される。
The second problem is solved by the following means. Diameter of 1 for adsorption of organochlorine compounds
As a result of examination, it was revealed that micropores in the range of 0 to 20Å are effective. When molecules are adsorbed on the surface of the porous adsorbent, the interaction potential between the molecules and the surface of the adsorbent becomes larger as the pores become smaller, and the molecules are strongly adsorbed on the surface of the pores. Chloroform, which is a typical molecule of an organochlorine compound, has a molecular diameter of about 4.7Å
Is. The strong interaction potential works on the chloroform molecule from the pore wall of the adsorbent up to a distance of at most two molecules. Therefore, it is estimated that pores up to about 4 times the diameter of the chloroform molecule up to about 20 Å, that is, pores in a range generally called micropores, are effective for adsorbing chloroform.

【0012】上記の範囲のミクロ孔のうちでも直径14
Å以下の非常に小さな細孔は、細孔表面と吸着分子との
間の相互作用ポテンシャルが特に大きく、吸着に特に有
効であると従来考えられてきた。しかし、このように小
さな細孔内では、分子の拡散速度がきわめて遅くなる問
題が生じる。この現象は、吸着材の性能評価として実験
室で行われる平衡吸着量の測定(完全平衡になるまで閉
鎖系で吸着させる測定法)では問題として現れにくい
が、吸着材の層に水溶液を通液させる形式、つまり工業
的に見て一般的な吸着形式で用いられた場合に、特に大
きな問題となることが検討の結果明らかとなった。
Among the micropores in the above range, the diameter 14
It has been conventionally considered that very small pores of Å or less have a particularly large interaction potential between the surface of the pores and the adsorbed molecules and are particularly effective for adsorption. However, in such a small pore, there arises a problem that the diffusion rate of molecules becomes extremely slow. This phenomenon is unlikely to appear as a problem in the measurement of the equilibrium adsorption amount (a measurement method in which adsorption is performed in a closed system until complete equilibrium) is performed in the laboratory as a performance evaluation of the adsorbent, but the aqueous solution is passed through the adsorbent layer. As a result of the investigation, it became clear that it is a particularly serious problem when it is used in the adsorption type, that is, the adsorption type which is industrially common.

【0013】本発明のように、全表面酸性官能基量を制
御し、親和性の向上を図った場合においては、拡散速度
の点で直径14Å以上の細孔が適している。拡散速度の
影響の大きい使用形式(通液方式による吸着)では吸着
材の細孔分布は直径14〜20Åの範囲の細孔容積が直
径10〜20Åの範囲の細孔容積に対して70%以上で
あることが望ましく、さらに望ましくは75%以上であ
る。かように、前記2つの問題点を化学的、物理的な構
造制御で解決することにより、1500m2 /g以上の
高比表面積にもかかわらず、これまで不十分とされてい
た吸着材を有効に活用できるようにした。
When the total amount of acidic functional groups on the surface is controlled to improve the affinity as in the present invention, pores having a diameter of 14Å or more are suitable in terms of diffusion rate. In the usage type with large influence of diffusion rate (adsorption by liquid passage method), the pore distribution of the adsorbent is such that the pore volume in the diameter range of 14 to 20Å is 70% or more of the pore volume in the diameter range of 10 to 20Å. And more preferably 75% or more. As described above, by solving the above-mentioned two problems by controlling the chemical and physical structures, the adsorbent which has been considered insufficient until now can be effectively used despite the high specific surface area of 1500 m 2 / g or more. I was able to utilize it.

【0014】本発明においては、以下に示すような比表
面積,細孔容積を同時に保有する、高賦活度の活性炭が
特に有効に使用出来る。賦活度の一般的パラメーターで
あるB.E.T.比表面積は1500m2/g以上が望ま
しく、さらに望ましくは1600〜2000m2/gの範
囲である。細孔容積は、直径10〜20Åの範囲で0.
3cc/g以上が望ましく、さらに望ましくは0.35
cc/g以上である。B.E.T.比表面積が2000
m2/gより大きい場合には、吸着材の強度が弱くなり、
水溶液を流したときに微粉末化するため好ましくない。
In the present invention, activated carbon having a high specific activation and a specific surface area and a fine pore volume as shown below can be used particularly effectively. B. which is a general parameter of activation degree. E. FIG. T. The specific surface area is 1500 m 2 / g or more is preferable, and more preferably in the range of 1600~2000m 2 / g. The pore volume is 0.
3cc / g or more is desirable, and more desirably 0.35
It is cc / g or more. B. E. FIG. T. Specific surface area is 2000
If it is larger than m 2 / g, the strength of the adsorbent becomes weak,
It is not preferable because it becomes fine powder when the aqueous solution is poured.

【0015】本発明における吸着材の細孔分布および
B.E.T.比表面積は、液体窒素温度での窒素ガスの
吸着等温線の測定を行い、Cranston−Inkley法、および
B.E.T.法により計算し求めた。具体的には、カル
ロエルバ社,ソープトマチック,SSII−80を用い測
定を行った後、Inkley法に基づき細孔径−臨界相
対圧の関係から吸着等温線を細孔分布曲線に変換して求
めた。BET比表面積は、飽和蒸気圧Poと平衡圧力P
との比、P/Poが0.05〜0.3の範囲の吸着量デ
ータを用いて計算により求めた。Inkley法による
細孔分布、BET比表面積の求め方は、慶伊富長,「吸
着」,共立出版,1965年に詳細に示されている。
Pore distribution of the adsorbent in the present invention and B. E. FIG. T. The specific surface area was measured by the adsorption isotherm of nitrogen gas at the liquid nitrogen temperature, the Cranston-Inkley method, and B. E. FIG. T. Calculated by the method. Specifically, it was measured by using Carlo Erba Co., Sorptomatic, SSII-80, and then the adsorption isotherm was converted to a pore distribution curve from the relationship between pore diameter and critical relative pressure based on the Inkley method. . BET specific surface area is saturated vapor pressure Po and equilibrium pressure P
, And P / Po was calculated by using the adsorption amount data in the range of 0.05 to 0.3. The method of determining the pore distribution and BET specific surface area by the Inkley method is described in detail in Keicho Tomicho, "Adsorption", Kyoritsu Shuppan, 1965.

【0016】また本発明の吸着材は、粉末状、粒状、繊
維状等その形態は問わないが、前述したように充填密度
の点から、粒状物や、粉末状物を成形加工したもの等が
有効に使用可能である。中でも粒状物がハンドリングの
点で最も優れ有効である。またその粒子径は、直径50
〜300ミクロンの間にあることが望ましい。直径が3
00ミクロンよりも大きい場合には、粒子の外表面積が
小さくなるため、水溶液の流通速度が速い場合に、有機
塩素系化合物の拡散が充分でなくなり、吸着量が低下す
る。また直径が50ミクロンよりも小さい場合には、水
溶液を流通したときの圧力損失が極めて高くなるため望
ましくない。
The adsorbent of the present invention may be in the form of powder, granules, fibers or the like, but as described above, in terms of packing density, granules or powdered products are processed. It can be used effectively. Among them, granular materials are the most excellent and effective in terms of handling. The particle size is 50
It is desirable to be between ~ 300 microns. Diameter is 3
When it is larger than 00 microns, the outer surface area of the particles becomes small, and when the flow rate of the aqueous solution is high, the diffusion of the organochlorine compound becomes insufficient and the adsorption amount decreases. If the diameter is smaller than 50 microns, the pressure loss when the aqueous solution is circulated becomes extremely high, which is not desirable.

【0017】表面酸性官能基量を減少させるには、窒素
雰囲気下で加熱するのが最も優れた方法である。ただ
し、単純に窒素ガスに置換した雰囲気で加熱するだけで
は、本発明のような十分な効果を得ることは困難であ
る。窒素ガスを加熱時間中流通させてキャリアガスとし
ての効果を持たせ、酸性官能基の分解により生成したガ
スを除去する方法が効果的である。窒素ガスの流量は、
処理する吸着材5kgに対して1Nリットル/分以上で
あることが望ましい。また加熱流通時の不純物ガス濃度
の管理が重要であり、特に酸素、水蒸気の含有量が問題
となる。酸素濃度は0.5ppm以下、水蒸気濃度は1
ppm以下の窒素ガス雰囲気で加熱することが必要であ
る。加熱温度は400〜1200℃の温度が望ましい。
Heating in a nitrogen atmosphere is the best way to reduce the amount of surface acidic functional groups. However, it is difficult to obtain sufficient effects as in the present invention by simply heating in an atmosphere in which nitrogen gas is replaced. A method is effective in which nitrogen gas is circulated during the heating time so as to have an effect as a carrier gas, and the gas generated by the decomposition of the acidic functional group is removed. The flow rate of nitrogen gas is
It is preferably 1 N liter / min or more for 5 kg of the adsorbent to be treated. In addition, it is important to control the impurity gas concentration during heating and circulation, and the content of oxygen and water vapor becomes a problem. Oxygen concentration is 0.5ppm or less, water vapor concentration is 1
It is necessary to heat in a nitrogen gas atmosphere of ppm or less. The heating temperature is preferably 400 to 1200 ° C.

【0018】上記の加熱処理は雰囲気ガスとして窒素以
外の不活性ガス、例えばアルゴンガス等を用いても同様
の効果が得られる。不活性ガスの流通状態で所定の温度
まで昇温した後に、ガスの流通を止め、真空下で加熱す
る方法も有効である。この場合、0.1mmHg以下の
真空度を保ち続けることが望ましい。
In the above heat treatment, the same effect can be obtained even when an inert gas other than nitrogen, such as argon gas, is used as the atmosphere gas. A method is also effective in which the temperature of the inert gas is raised to a predetermined temperature and then the flow of the gas is stopped and the heating is performed under vacuum. In this case, it is desirable to continue to maintain the vacuum degree of 0.1 mmHg or less.

【0019】[0019]

【実施例】以下実施例をあげて本発明を説明するが、本
発明はこれら実施例により限定されるものではない。 実施例1 市販のヤシガラ系粒状活性炭(北村化学=SZP−W)
を粉砕し、180から355ミクロンの範囲に篩い分け
したもの1.5kgをあらかじめ120℃で5時間乾燥
した(これを比較例1とする)、この内の1kgを窒素
雰囲気下(酸素濃度0.3ppm以下、水蒸気濃度0.
2ppm以下、窒素流量2Nリットル/分)において、
2時間で1000℃まで昇温、さらに1000℃で5時
間保持した後、室温まで同様の雰囲気のままで放冷する
ことで、実施例1の吸着材を得た。
The present invention will be described below with reference to examples, but the present invention is not limited to these examples. Example 1 Commercially available coconut husk-based granular activated carbon (Kitamura Chemical = SZP-W)
1.5 kg that were pulverized and sieved in the range of 180 to 355 microns were previously dried at 120 ° C. for 5 hours (this is referred to as Comparative Example 1), and 1 kg of this was dried under a nitrogen atmosphere (oxygen concentration: 0. 3 ppm or less, water vapor concentration of 0.
2ppm or less, nitrogen flow rate 2Nl / min),
The adsorbent of Example 1 was obtained by raising the temperature to 1000 ° C. in 2 hours, holding it at 1000 ° C. for 5 hours, and then allowing it to cool to room temperature in the same atmosphere.

【0020】実施例2 比較例1と同様の方法で粉砕、篩い分け、乾燥した市販
のヤシガラ系粒状活性炭(武田薬品=LGK−498,
比較例2とする)1kgを、窒素雰囲気下(酸素濃度
0.3ppm以下、水蒸気濃度0.2ppm以下、窒素
流量2Nリットル/分)において、2時間で1000℃
まで昇温、さらに1000℃で5時間保持した後、室温
まで同様の雰囲気のままで放冷することで、実施例2の
吸着材を得た。
Example 2 Commercially available coconut husk-based granular activated carbon (Takeda Yakuhin = LGK-498, which was crushed, sieved and dried in the same manner as in Comparative Example 1)
(Comparative Example 2) 1 kg, in a nitrogen atmosphere (oxygen concentration 0.3ppm or less, water vapor concentration 0.2ppm or less, nitrogen flow rate 2Nl / min), 1000 ℃ for 2 hours
After heating up to 1000 ° C. for 5 hours and then allowing to cool to room temperature in the same atmosphere, an adsorbent of Example 2 was obtained.

【0021】実施例3 椰子殻の炭化物であるチャーを原料とし、不純物金属等
を洗浄で十分除去した後、窒素雰囲気下で750℃まで
1時間で昇温した後、窒素雰囲気下で水蒸気濃度15%
の賦活ガスを流し、750℃に保持したまま50時間賦
活を実施し、活性炭を得た。さらに、窒素雰囲気下(酸
素度0.3ppm以下、水蒸気濃度0.2ppm以下、
窒素流量2Nリットル/分)において、2時間で800
℃まで昇温、さらに800℃で5時間保持した後、室温
まで同様の雰囲気のままで放冷することで、実施例3の
吸着材を得た。
Example 3 Using char, which is a charcoal of coconut shell, as a raw material, impurities metals and the like were sufficiently removed by washing, and then the temperature was raised to 750 ° C. for 1 hour in a nitrogen atmosphere, and then the water vapor concentration was 15 in a nitrogen atmosphere. %
Activated gas was flowed, and activation was carried out for 50 hours while maintaining the temperature at 750 ° C. to obtain activated carbon. Furthermore, in a nitrogen atmosphere (oxygen content 0.3 ppm or less, water vapor concentration 0.2 ppm or less,
800 for 2 hours at a nitrogen flow rate of 2 Nl / min)
The adsorbent of Example 3 was obtained by heating to 800 ° C., holding at 800 ° C. for 5 hours, and then allowing to cool to room temperature in the same atmosphere.

【0022】比較例3 市販のヤシガラ系粒状活性炭(武田薬品=粒状白鷺WH
2C)を粉砕し、180から355ミクロンの範囲に篩
い分けしたものを、120℃で5時間乾燥した後、測定
に用いた。
Comparative Example 3 Commercially available coconut husk-based granular activated carbon (Takeda Yakuhin = granular Shirasagi WH
2C) was crushed and sieved in the range of 180 to 355 micron, dried at 120 ° C. for 5 hours, and then used for measurement.

【0023】実施例4 比較例1と同様の方法で粉砕、篩い分け、乾燥した市販
の粒状活性炭(クラレケミカル=クラレコールGW)
を、窒素雰囲気下(酸素濃度0.3ppm以下、水蒸気
濃度0.2ppm以下、窒素流量2Nリットル/分)に
おいて、2時間で1000℃まで昇温、さらに1000
℃で5時間保持した後、室温まで同様の雰囲気のままで
放冷することで、実施例4の吸着材を得た。
Example 4 Commercially available granular activated carbon (Kuraray Chemical = Kuraray Coal GW) pulverized, sieved and dried in the same manner as in Comparative Example 1.
In a nitrogen atmosphere (oxygen concentration 0.3 ppm or less, water vapor concentration 0.2 ppm or less, nitrogen flow rate 2 N liter / min), the temperature was raised to 1000 ° C. in 2 hours, and then 1000
After being kept at 0 ° C. for 5 hours, the adsorbent of Example 4 was obtained by allowing to cool to room temperature in the same atmosphere.

【0024】実施例1から3で得られた吸着材および比
較例1から4の粒状活性炭の有機塩素系化合物除去性能
は、有機塩素系化合物の代表例としてクロロホルムを用
い、次のようにして比較した。すなわち、実施例1から
3の吸着材あるいは比較例1から4の粒状活性炭1gを
それぞれ内径10mmのガラス製カラムに充填し、濃度
40ppb、温度20℃に調整したクロロホルム水溶液
を毎分150m の流量で該カラムに通液した。通液後
の水溶液のクロロホルム濃度をパージ&トラップ付きガ
スクロマトグラフィー質量分析装置によって測定し、除
去率を求めた。
The removal performance of the organic chlorine-based compounds of the adsorbents obtained in Examples 1 to 3 and the granular activated carbons of Comparative Examples 1 to 4 was compared as follows using chloroform as a typical example of the organic chlorine-based compound. did. That is, each of the adsorbents of Examples 1 to 3 or 1 g of granular activated carbon of Comparative Examples 1 to 4 was packed in a glass column having an inner diameter of 10 mm, and a chloroform aqueous solution adjusted to a concentration of 40 ppb and a temperature of 20 ° C. was supplied at a flow rate of 150 m 3 / min. The solution was passed through the column. The chloroform concentration of the aqueous solution after passing the solution was measured by a gas chromatography mass spectrometer equipped with a purge & trap to determine the removal rate.

【0025】得られた実施例1から3の吸着材および比
較例1から4の粒状活性炭の物性値およびクロロホルム
除去性能を表1に示す。ここでクロロホルム除去性能
は、上記のクロロホルム除去率が50%に低下するまで
に吸着材に通液したクロロホルム水溶液の積算流量を、
吸着材1gあたりのリットル数で表したものである。
Table 1 shows the physical properties of the obtained adsorbents of Examples 1 to 3 and the granular activated carbons of Comparative Examples 1 to 4 and the performance of removing chloroform. Here, the chloroform removal performance is defined as the cumulative flow rate of the chloroform aqueous solution that has passed through the adsorbent until the above chloroform removal rate drops to 50%.
It is represented by the number of liters per 1 g of the adsorbent.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】以上のように本発明の吸着材は、酸性官
能基量を減少させ同時に細孔分布を最適化させること
で、活性炭が持つ高比表面積の吸着サイトを有効に活用
すると共に、水中の有機塩素系化合物の細孔内拡散を向
上させることができた。結果として、水中の有機塩素系
化合物の吸着除去における寿命を大幅に改善することが
可能となった。
INDUSTRIAL APPLICABILITY As described above, the adsorbent of the present invention reduces the amount of acidic functional groups and at the same time optimizes the pore distribution, thereby effectively utilizing the adsorption site of activated carbon having a high specific surface area. It was possible to improve the diffusion of organochlorine compounds in water into the pores. As a result, it has become possible to significantly improve the life in the adsorption removal of organic chlorine compounds in water.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】表面に存在する酸性官能基の量が、吸着材
1gあたり0.1meq以下の範囲にある多孔質炭素材
料であることを特徴とする有機塩素系化合物用吸着材。
1. An adsorbent for an organochlorine compound, which is a porous carbon material in which the amount of acidic functional groups present on the surface is within a range of 0.1 meq or less per 1 g of the adsorbent.
【請求項2】B.E.T.比表面積が1500m2/g以
上でかつ、直径が10〜20Åの細孔の容積が吸着材1
gあたり0.3cc以上であることを特徴とする請求項
1の範囲の吸着材。
2. B. E. FIG. T. Adsorbent 1 has a specific surface area of 1500 m 2 / g or more and a volume of pores having a diameter of 10 to 20 Å
The adsorbent according to claim 1, wherein the adsorbent is 0.3 cc or more per g.
【請求項3】直径10〜20Åの細孔の容積のうち、直
径14〜20Åの細孔の容積の占める割合が70%以上
であることを特徴とする請求項2の範囲の吸着材。
3. The adsorbent according to claim 2, wherein the volume of the pores having a diameter of 10 to 20Å occupies 70% or more of the volume of the pores having a diameter of 10 to 20Å.
JP7088062A 1995-04-13 1995-04-13 Adsorbent for organic chlorine compound Pending JPH08281099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7088062A JPH08281099A (en) 1995-04-13 1995-04-13 Adsorbent for organic chlorine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7088062A JPH08281099A (en) 1995-04-13 1995-04-13 Adsorbent for organic chlorine compound

Publications (1)

Publication Number Publication Date
JPH08281099A true JPH08281099A (en) 1996-10-29

Family

ID=13932373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7088062A Pending JPH08281099A (en) 1995-04-13 1995-04-13 Adsorbent for organic chlorine compound

Country Status (1)

Country Link
JP (1) JPH08281099A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261319A (en) * 2000-03-14 2001-09-26 Osaka Gas Co Ltd Activated carbon and method of producing the same
JP2002029722A (en) * 2000-07-21 2002-01-29 Matsushita Electric Ind Co Ltd Activated carbon and water purifier
WO2013191269A1 (en) * 2012-06-22 2013-12-27 クラレケミカル株式会社 Activated carbon for noble metal adsorption, noble metal adsorption filter, and method for recovering noble metals
WO2017149963A1 (en) * 2016-03-01 2017-09-08 三菱重工業株式会社 Activated carbon, method for treating activated carbon, ammonia synthesis catalyst, and method for producing ammonia synthesis catalyst
US10105680B2 (en) 2014-07-25 2018-10-23 Kansai Coke And Chemicals Co., Ltd. Activated carbon with excellent adsorption performance and process for producing same
WO2019244904A1 (en) * 2018-06-19 2019-12-26 株式会社アドール Activated carbon

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261319A (en) * 2000-03-14 2001-09-26 Osaka Gas Co Ltd Activated carbon and method of producing the same
JP2002029722A (en) * 2000-07-21 2002-01-29 Matsushita Electric Ind Co Ltd Activated carbon and water purifier
WO2013191269A1 (en) * 2012-06-22 2013-12-27 クラレケミカル株式会社 Activated carbon for noble metal adsorption, noble metal adsorption filter, and method for recovering noble metals
JPWO2013191269A1 (en) * 2012-06-22 2016-05-26 クラレケミカル株式会社 Activated carbon for precious metal adsorption, precious metal adsorption filter and precious metal recovery method
US9782750B2 (en) 2012-06-22 2017-10-10 Kuraray Co., Ltd. Activated carbon for noble metal adsorption, noble metal adsorption filter, and method for recovering noble metals
US10105680B2 (en) 2014-07-25 2018-10-23 Kansai Coke And Chemicals Co., Ltd. Activated carbon with excellent adsorption performance and process for producing same
WO2017149963A1 (en) * 2016-03-01 2017-09-08 三菱重工業株式会社 Activated carbon, method for treating activated carbon, ammonia synthesis catalyst, and method for producing ammonia synthesis catalyst
WO2019244904A1 (en) * 2018-06-19 2019-12-26 株式会社アドール Activated carbon
JP6683969B1 (en) * 2018-06-19 2020-04-22 株式会社アドール Activated carbon
JP2020111505A (en) * 2018-06-19 2020-07-27 株式会社アドール Activated carbon

Similar Documents

Publication Publication Date Title
Mahajan et al. Surface-treated activated carbon for removal of phenol from water
US4101631A (en) Selective adsorption of mercury from gas streams
JP6379325B1 (en) Activated carbon and manufacturing method thereof
JPH0131450B2 (en)
US20200115255A1 (en) Filtration medium comprising nitrogen and sulfur
JP5133688B2 (en) Cu-ZSM5 zeolite shaped adsorbent, its activation method, temperature fluctuation type adsorption device, and gas purification method
US11873235B2 (en) Activated carbon
JP2001240407A (en) Activated carbon and its manufacturing method
US20070270307A1 (en) Adsorbent And Process For Producing The Same
CN114746175A (en) Molecular polar substance adsorption carbon
JP4774141B2 (en) Activated carbon and manufacturing method thereof
JPH08281099A (en) Adsorbent for organic chlorine compound
KR102239054B1 (en) Removal of chloramine and mercury from aqueous solutions
JP7223985B2 (en) Activated carbon and its manufacturing method
CN115209985B (en) Mercury adsorbent and method for producing same
JP2006015334A (en) Adsorbent and manufacturing method therefor
JP3506043B2 (en) Activated carbon and water purifier using it
KR100613693B1 (en) Antibacterial activated carbon containing halogenated silver, and preparation thereof
JP2950666B2 (en) Activated carbon water purifier
JP3915597B2 (en) Water purification cartridge
EP1541218B1 (en) Process for removing water from ammonia
JP2001170482A (en) Active carbon, its manufacturing method and device for purifying treatment of water using the same
WO2003033135A1 (en) Activated carbon fiber for the removal of organochlorine compounds
EP3812349A1 (en) Activated carbon
JP3412455B2 (en) Activated alumina for arsenate ion adsorption and method for adsorbing arsenate ions from aqueous solution using the same