JP2022132348A - Activated carbon and production method thereof - Google Patents

Activated carbon and production method thereof Download PDF

Info

Publication number
JP2022132348A
JP2022132348A JP2022109604A JP2022109604A JP2022132348A JP 2022132348 A JP2022132348 A JP 2022132348A JP 2022109604 A JP2022109604 A JP 2022109604A JP 2022109604 A JP2022109604 A JP 2022109604A JP 2022132348 A JP2022132348 A JP 2022132348A
Authority
JP
Japan
Prior art keywords
pore volume
activated carbon
pore
calculated
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022109604A
Other languages
Japanese (ja)
Inventor
智康 中野
Tomoyasu Nakano
弘和 清水
Hirokazu Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AD'ALL CO Ltd
Osaka Gas Chemicals Co Ltd
Unitika Ltd
Original Assignee
AD'ALL CO Ltd
Osaka Gas Chemicals Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AD'ALL CO Ltd, Osaka Gas Chemicals Co Ltd, Unitika Ltd filed Critical AD'ALL CO Ltd
Priority to JP2022109604A priority Critical patent/JP2022132348A/en
Publication of JP2022132348A publication Critical patent/JP2022132348A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an activated carbon that has a high total trihalomethane filtration ability even in a water passage treatment performed at a high superficial velocity (SV).
SOLUTION: An activated carbon is provided which has a total pore volume T of 0.3 to 1.5 (cc/g) as calculated by QSDFT method. In the activated carbon, a ratio (A/T) of a pore volume A (cc/g) of pore diameters in the range not more than 0.8 nm of a pore volume as calculated by the QSDFT method with respect to the total pore volume T (cc/g) as calculated by the QSDFT method is 0.5 to 0.7; and a ratio (B/T) of a pore volume B (cc/g) of pore diameters in the range from 2.5 to 3.0 nm of a pore volume as calculated by the QSDFT method with respect to the total pore volume T (cc/g) as calculated by the QSDFT method is 0.02 to 0.06.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、活性炭及びその製造方法に関し、特に、大きな空塔速度下におけるトリハロメタンのろ過能力に優れた、活性炭及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to activated carbon and a method for producing the same, and more particularly to activated carbon and a method for producing the same that are excellent in the ability to filter trihalomethane under high superficial velocity.

従来、飲料用に供される水道水などには、殺菌を目的として塩素が添加されている。しかしながら、水道水中に含まれる塩素は、水道水中に含まれる有機物と反応して、有機ハロゲン系化合物を生成する。例えば、天然有機物であるフミン質が水道水中において塩素と反応すると、発がん性物質であるトリハロメタンを生成することが知られている。そして、水道水中に含まれるこれらの有機ハロゲン系化合物のろ過能力に優れた活性炭が提案されている。 Chlorine is conventionally added to tap water and the like used for drinking purposes for the purpose of sterilization. However, chlorine contained in tap water reacts with organic substances contained in tap water to produce organic halogen compounds. For example, it is known that humic substances, which are natural organic substances, react with chlorine in tap water to produce trihalomethanes, which are carcinogenic substances. Activated carbon has been proposed which is excellent in filtering these organic halogen compounds contained in tap water.

有機ハロゲン系化合物のろ過能力に優れた活性炭として、例えば、細孔径が100Å(10nm)以下の細孔容積に対する、細孔径20Å~100Å(2nm~10nm)の細孔容積比率が5~50%であり、細孔径10Å(1nm)以下の細孔容積比率が45%以上である多孔質炭素を含有する吸着剤が知られている(例えば、特許文献1参照。)。該吸着剤において、細孔径が100Å以下の細孔容積に対して、細孔径20Å~100Åの細孔容積比率を5~50%とするのは、比較的大きな細孔の割合を高めて、動的吸着力を高めるためである。一方、該吸着剤においては、静的吸着力である平衡吸着量を高める必要もあることから、静的平衡吸着量に有効な細孔径10Å以下の細孔容積比率を45%以上とすることが開示されている。そして、該吸着剤は、このような構成とすることによって、静的吸着力と動的吸着力とを両立することができるとされている。 As an activated carbon excellent in the ability to filter organic halogen compounds, for example, the pore volume ratio of pores with a pore diameter of 20 Å to 100 Å (2 nm to 10 nm) to the pore volume of 100 Å (10 nm) or less is 5 to 50%. There is known an adsorbent containing porous carbon having a pore volume ratio of 45% or more with a pore diameter of 10 Å (1 nm) or less (see, for example, Patent Document 1). In the adsorbent, the pore volume ratio of pores with a pore diameter of 20 Å to 100 Å is 5 to 50% with respect to the pore volume of pores with a pore diameter of 100 Å or less. This is to increase the target adsorption force. On the other hand, in the adsorbent, since it is also necessary to increase the equilibrium adsorption amount, which is the static adsorption force, the pore volume ratio of pores with a diameter of 10 Å or less, which is effective for the static equilibrium adsorption amount, should be 45% or more. disclosed. The adsorbent is said to be able to achieve both static adsorption force and dynamic adsorption force by having such a structure.

また、77.4Kにおける窒素吸着等温線よりBJH法で求めた細孔径分布において細孔直径30Å以上50Å未満の範囲のメソ細孔容積が0.02~0.40cc/gであり、かつ、全細孔容積に対する上記範囲のメソ細孔容積の割合が5~45%である活性炭が知られている(例えば、特許文献2参照)。該活性炭によれば、かかる範囲内に上記メソ細孔(直径2~50nmの細孔)容積及び上記割合を制御することによって、各種の被吸着物質(特にトリハロメタン類)の吸着に適した材料とすることができるとされている。 In addition, in the pore size distribution obtained by the BJH method from the nitrogen adsorption isotherm at 77.4 K, the mesopore volume in the range of pore diameters of 30 Å or more and less than 50 Å is 0.02 to 0.40 cc / g, and all Activated carbon in which the ratio of the mesopore volume in the above range to the pore volume is 5 to 45% is known (see, for example, Patent Document 2). According to the activated carbon, by controlling the volume of the mesopores (pores with a diameter of 2 to 50 nm) and the ratio within the above range, it is a material suitable for adsorption of various substances to be adsorbed (especially trihalomethanes). It is said that it can be done.

特開2006-247527号公報JP 2006-247527 A 特開2004-182511号公報JP 2004-182511 A

近年、このような活性炭を含む浄水フィルターには、高い総トリハロメタンろ過能力が求められている。例えば、浄水フィルターには、JIS S3201の「揮発性有機化合物のろ過能力試験」における総トリハロメタンの総ろ過水量(総トリハロメタンの除去率が80%に低下するまでの水量)が多いことが要求されてきている。該総ろ過水量が多いほど、浄水フィルターの使用可能期間(取替え期間)が長くなる。 In recent years, water purification filters containing such activated carbon are required to have a high total trihalomethane filtering capacity. For example, water purification filters are required to have a large total filtered water volume of total trihalomethanes (amount of water until the total trihalomethane removal rate drops to 80%) in JIS S3201 "Volatile Organic Compound Filtration Ability Test". ing. The larger the total amount of filtered water, the longer the usable period (replacement period) of the water purification filter.

加えて、浄水フィルターが水栓一体型浄水器用である場合などには、浄水フィルターは小型化する必要がある。浄水フィルターが小型になると、空塔速度(SV)が大きくなり、高い総トリハロメタンろ過能力を維持することが難しくなる。 In addition, when the water filter is for a faucet-integrated water purifier, the size of the water filter needs to be reduced. As the water purification filter becomes smaller, the superficial velocity (SV) becomes larger, making it difficult to maintain a high total trihalomethane filtration capacity.

本発明者等が検討した結果、特許文献1及び2に開示された活性炭は、SVが1000h-1の条件で評価されているところ、大きな空塔速度(例えばSVが3000h-1程度)の条件下では、総トリハロメタンのろ過能力が十分発揮できないという問題があることが判明した。 As a result of studies by the present inventors, the activated carbons disclosed in Patent Documents 1 and 2 are evaluated under the condition of SV of 1000 h -1 , and the conditions of large superficial velocity (for example, SV of about 3000 h -1 ) It was found that there was a problem in that the filtration capacity of all trihalomethanes could not be exhibited sufficiently under the conditions.

本発明は、上記問題を解決し、大きな空塔速度(SV)での通水処理においても、高い総トリハロメタンろ過能力を有する活性炭及びその製造方法を提供することを主な目的とする。 SUMMARY OF THE INVENTION The main object of the present invention is to solve the above problems and to provide an activated carbon having a high total trihalomethane filtration capacity even in water flow treatment at a high superficial velocity (SV), and a method for producing the same.

当初、本発明者等の検討によれば、トリハロメタン分子は1.5nm以下の細孔に吸着しやすいと考えられた。しかしながら、本発明者等は、大きなSV下において総トリハロメタン分子のろ過を検討する場合には、トリハロメタン分子が細孔内に拡散する速度も重要な要素であると考えた。そこで、本発明者らはこれらの観点から検討を重ね、活性炭の細孔径及びその細孔容積を制御し、全細孔容積に対する0.8nm以下の細孔容積の割合を特定のものとし、且つ全細孔容積に対する2.5nm以上3.0nm以下の細孔径の細孔容積の割合を特定範囲のものとすることで、大きなSV下においても高い総トリハロメタンろ過能力を有することを見出した。 At first, according to the studies of the present inventors, it was thought that trihalomethane molecules were likely to be adsorbed in pores of 1.5 nm or less. However, the present inventors considered that the rate at which trihalomethane molecules diffuse into pores is also an important factor when considering filtration of all trihalomethane molecules under a large SV. Therefore, the present inventors have repeatedly studied from these points of view, and controlled the pore diameter and pore volume of the activated carbon, specified the ratio of the pore volume of 0.8 nm or less to the total pore volume, and It was found that by setting the ratio of the pore volume having a pore diameter of 2.5 nm or more and 3.0 nm or less to the total pore volume within a specific range, a high total trihalomethane filtering ability is obtained even under a large SV.

例えば、特許文献1に開示された発明は、メソ孔のうちでも広範な細孔径範囲である2~10nmの細孔容積を制御することにより動的吸着力を高めることを図っている。しかし、該発明では、例えば3000h-1のような高いSV下でのろ過能力を向上すること、及び、全細孔容積に対する2.5nm以上3.0nm以下の細孔径の細孔容積の割合を制御することは検討されていない。実際、同文献に実施例として具体的に開示された活性炭は、全細孔容積に対する2.5nm以上3.0nm以下の細孔径の細孔容積の割合が小さく、大きな空塔速度の条件下での総トリハロメタンのろ過能力が十分発揮できない。 For example, the invention disclosed in Patent Document 1 attempts to increase the dynamic adsorptive power by controlling the pore volume of 2 to 10 nm, which is a wide pore diameter range among mesopores. However, in the invention, for example, to improve the filtration ability under a high SV such as 3000 h -1 , control is not considered. In fact, the activated carbon specifically disclosed as an example in the same document has a small ratio of the pore volume with a pore diameter of 2.5 nm or more and 3.0 nm or less to the total pore volume, and under the condition of a large superficial velocity The filtration capacity of total trihalomethanes cannot be sufficiently exhibited.

また、例えば、特許文献2に開示された発明は、比較的大きい細孔径3~5nmの範囲の細孔容積を制御することが開示されている。また、制御する方法として、Mg、Mn、Fe、Y、Pt及びGdの少なくとも1種の金属成分を0.01~5重量%含有するピッチを活性炭前駆体として用い、当該前駆体を不融化処理又は炭素化処理し、賦活処理する方法において、上記金属成分の種類を変えることによって、得られる活性炭のメソ細孔モード直径を制御すること、トリハロメタン類の吸着用活性炭を製造する場合には、Fe添加活性炭が水中の有機化合物除去の吸着材として最も優れた効果を発揮することが開示されている。さらに、具体的に実施可能な態様としては、活性炭前駆体にFeを含有させ、水蒸気賦活をおこなう方法が開示されている。しかし、該発明においても、例えば3000h-1のような高いSV下でのろ過能力を向上すること、及び、全細孔容積に対する2.5nm以上3.0nm以下の細孔径の細孔容積の割合を制御することは検討されていない。そして、本発明者等の検討によれば、特許文献2に実施例として具体的に開示された、活性炭前駆体にFeを含有させ水蒸気賦活をおこなう方法では、比較的大きい細孔径3~5nmの範囲の細孔容積は大きくすることができるものの、細孔径0.8nm以下の範囲の細孔容積及び2.5nm以上3.0nm以下の範囲の細孔径の細孔容積を十分に大きいものとすることができず、大きな空塔速度の条件下での総トリハロメタンのろ過能力が十分発揮できないことが判明した。 Further, for example, the invention disclosed in Patent Document 2 discloses controlling the pore volume in the range of relatively large pore diameters of 3 to 5 nm. In addition, as a control method, pitch containing 0.01 to 5% by weight of at least one metal component of Mg, Mn, Fe, Y, Pt and Gd is used as an activated carbon precursor, and the precursor is infusible. Alternatively, in the method of carbonizing and activating, the mesopore mode diameter of the obtained activated carbon is controlled by changing the type of the metal component. It is disclosed that added activated carbon exhibits the best effect as an adsorbent for removing organic compounds in water. Further, as a practical embodiment, a method of adding Fe to the activated carbon precursor and activating with steam is disclosed. However, even in the present invention, it is necessary to improve the filtration ability under a high SV such as 3000 h -1 , and the ratio of the pore volume with a pore diameter of 2.5 nm or more and 3.0 nm or less to the total pore volume is not considered to control According to the studies of the present inventors, in the method of adding Fe to the activated carbon precursor and activating with steam, which is specifically disclosed as an example in Patent Document 2, relatively large pore diameters of 3 to 5 nm are used. Although the pore volume in the range can be increased, the pore volume in the pore diameter range of 0.8 nm or less and the pore volume in the pore diameter range of 2.5 nm to 3.0 nm are sufficiently large. Therefore, it was found that the filtration capacity of all trihalomethanes could not be exhibited sufficiently under the condition of high superficial velocity.

本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。 The present invention is an invention completed by further studies based on these findings.

すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. QSDFT法によって算出される全細孔容積Tが0.3~1.5(cc/g)であって、
前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5~0.7であり、
前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02~0.06である、活性炭。
項2. QSDFT法によって算出される細孔容積のうち3.0nm以上の細孔径の細孔容積が0.02(cc/g)以下である、項1に記載の活性炭。
項3. 比表面積が700m2/g以上2500m2/g以下である、請求項1又は2に記載の活性炭。
項4. 前記活性炭の内部に、モリブデン単体及び/又はモリブデン化合物を含む、項1~3のいずれか1項に記載の活性炭。
項5. 総トリハロメタンろ過能力が50L/g以上である、項1~4のいずれか1項に記載の活性炭。
項6. モリブデンを0.1~1.0質量%含む活性炭前駆体を、CO2濃度が50容積
%以上のガス雰囲気下、雰囲気温度900~1000℃で賦活する工程を含む、項1~5のいずれか1項に記載の活性炭の製造方法。
That is, the present invention provides inventions in the following aspects.
Section 1. The total pore volume T calculated by the QSDFT method is 0.3 to 1.5 (cc/g),
Pore volume A (cc/g) with a pore diameter in the range of 0.8 nm or less among the pore volumes calculated by the QSDFT method with respect to the total pore volume T (cc/g) calculated by the QSDFT method The ratio (A / T) is 0.5 to 0.7,
Pore volume B (cc / Activated carbon whose ratio (B/T) of g) is from 0.02 to 0.06.
Section 2. Item 2. The activated carbon according to Item 1, wherein the pore volume of pores having a diameter of 3.0 nm or more is 0.02 (cc/g) or less in the pore volume calculated by the QSDFT method.
Item 3. The activated carbon according to claim 1 or 2, having a specific surface area of 700 m 2 /g or more and 2500 m 2 /g or less.
Section 4. Item 4. The activated carbon according to any one of items 1 to 3, containing molybdenum elemental substance and/or a molybdenum compound inside the activated carbon.
Item 5. 5. The activated carbon according to any one of Items 1 to 4, which has a total trihalomethane filtration capacity of 50 L/g or more.
Item 6. Any one of Items 1 to 5, comprising a step of activating an activated carbon precursor containing 0.1 to 1.0% by mass of molybdenum at an ambient temperature of 900 to 1000° C. in a gas atmosphere having a CO 2 concentration of 50% by volume or more. 2. A method for producing activated carbon according to item 1.

本発明の活性炭は、QSDFT法によって算出される全細孔容積Tが0.3~1.5(cc/g)であって、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5~0.7であり、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02~0.06であることを特徴としている。本発明の活性炭は、このような構成を備えていることから、大きな空塔速度(SV)での通水処理においても、高い総トリハロメタンろ過能力を有する活性炭を得ることができる。 The activated carbon of the present invention has a total pore volume T calculated by the QSDFT method of 0.3 to 1.5 (cc/g), and a total pore volume T calculated by the QSDFT method (cc/g ), the ratio (A / T) of the pore volume A (cc / g) of the pore diameter in the range of 0.8 nm or less in the pore volume calculated by the QSDFT method is 0.5 to 0.7 , the pore volume B (cc /g) ratio (B/T) is 0.02 to 0.06. Since the activated carbon of the present invention has such a structure, it is possible to obtain an activated carbon having a high total trihalomethane filtering capacity even in water flow treatment at a high superficial velocity (SV).

実施例1の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。4 is a graph showing the pore size distribution of the activated carbon of Example 1 calculated by the QSDFT method. 実施例2の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。4 is a graph showing the pore size distribution of the activated carbon of Example 2 calculated by the QSDFT method. 比較例1の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。4 is a graph showing the pore size distribution of activated carbon of Comparative Example 1 calculated by the QSDFT method. 比較例2の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。4 is a graph showing the pore size distribution of activated carbon of Comparative Example 2 calculated by the QSDFT method. 比較例3の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。10 is a graph showing the pore size distribution of activated carbon of Comparative Example 3 calculated by the QSDFT method.

以下、本発明の活性炭について詳細に説明する。 The activated carbon of the present invention will be described in detail below.

本発明の活性炭は、QSDFT法によって算出される全細孔容積Tが0.3~1.5(cc/g)であって、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5~0.7であり、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02~0.06である。 The activated carbon of the present invention has a total pore volume T calculated by the QSDFT method of 0.3 to 1.5 (cc/g), and a total pore volume T calculated by the QSDFT method (cc/g ), the ratio (A / T) of the pore volume A (cc / g) of the pore diameter in the range of 0.8 nm or less in the pore volume calculated by the QSDFT method is 0.5 to 0.7 , the pore volume B (cc /g) ratio (B/T) is 0.02 to 0.06.

大きなSV下でも高い総トリハロメタンろ過能力を有するものとするには、全細孔容積Tに対する0.8nm以下の細孔容積Aの割合(A/T)を特定範囲とし、且つ全細孔容積Tに対する2.5nm以上3.0nm以下の細孔径の細孔容積Bの割合(B/T)を特定範囲とすることが重要である。本発明者等が検討したところ、0.8nm以下の細孔はトリハロメタン分子を吸着しやすく、2.5nm以上3.0nm以下の細孔はトリハロメタン分子の吸着の他にもトリハロメタン分子の細孔内への拡散にも寄与すると考えられる。そして、本発明者等が検討を重ねたところ、0.8nm以下の細孔容積A及び2.5nm以上3.0nm以下の細孔容積Bは、単に大きくすれば良いというのではなく、全細孔容積Tに対し特定範囲の割合とすることも重要であることが明らかとなった。従って、本発明の活性炭によれば、全細孔容積Tに対する0.8nm以下の細孔容積Aの割合(A/T)及び全細孔容積Tに対する2.5nm以上3.0nm以下の細孔径の細孔容積Bの割合(B/T)を特定の範囲に調整することにより、大きなSV下においても高い総トリハロメタンろ過能力を発揮できるのである。 In order to have a high total trihalomethane filtration ability even under a large SV, the ratio (A / T) of the pore volume A of 0.8 nm or less to the total pore volume T is set to a specific range, and the total pore volume T It is important to set the ratio (B/T) of the pore volume B with a pore diameter of 2.5 nm or more and 3.0 nm or less to the specific range. According to studies by the present inventors, pores of 0.8 nm or less easily adsorb trihalomethane molecules, and pores of 2.5 nm or more and 3.0 nm or less adsorb trihalomethane molecules. It is thought that it also contributes to the diffusion of As a result of repeated studies by the present inventors, it was found that the pore volume A of 0.8 nm or less and the pore volume B of 2.5 nm or more and 3.0 nm or less should not simply be increased. It has also been found that a specific range of ratios to the pore volume T is important. Therefore, according to the activated carbon of the present invention, the ratio (A/T) of the pore volume A of 0.8 nm or less to the total pore volume T and the pore diameter of 2.5 nm or more and 3.0 nm or less to the total pore volume T By adjusting the ratio of the pore volume B (B/T) in the specific range, it is possible to exhibit a high total trihalomethane filtration ability even under a large SV.

本発明において、特定の細孔径範囲の細孔容積は、QSDFT法によって算出されるものである。QSDFT法(急冷固体密度汎関数法)とは、幾何学的・化学的に不規則なミクロポーラス・メソポーラスな炭素の細孔径解析を対象とした、約0.5nm~約40nmまでの細孔径分布の計算ができる解析手法である。QSDFT法では、細孔表面の粗さと不均一性による影響が明瞭に考慮されているため、細孔径分布解析の正確さが大幅に向上した手法である。本発明においては、Quantachrome社製「AUTOSORB-1-MP」を用いて窒素吸着等温線の測定、及びQSDFT法による細孔径分布解析をおこなう。77Kの温度において測定した窒素の脱着等温線に対し、Calculation modelとしてN2 at 77K on carbon[slit pore,QSDFT equilibrium model]を適用して細孔径分布を計算することで、特定の細孔径範囲の細孔容積を算出されることができる。 In the present invention, the pore volume in a specific pore size range is calculated by the QSDFT method. The QSDFT method (quenched solid density functional theory) is a geometrically and chemically irregular microporous mesoporous carbon pore size distribution from about 0.5 nm to about 40 nm. It is an analysis method that can calculate The QSDFT method clearly takes into account the effects of pore surface roughness and non-uniformity, and is therefore a technique that greatly improves the accuracy of pore size distribution analysis. In the present invention, "AUTOSORB-1-MP" manufactured by Quantachrome is used to measure the nitrogen adsorption isotherm and analyze the pore size distribution by the QSDFT method. By applying N at 77K on carbon [slit pore, QSDFT equilibrium model] as a calculation model to the desorption isotherm of nitrogen measured at a temperature of 77 K to calculate the pore size distribution, the specific pore size range Pore volume can be calculated.

本発明の活性炭は、QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5~0.7であり、大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、当該割合は0.52~0.65が好ましく、0.54~0.58が特に好ましい。 The activated carbon of the present invention has a pore volume A ( cc/g) ratio (A/T) is 0.5 to 0.7, and from the viewpoint of making it easier to have a higher total trihalomethane filtration capacity even in water flow treatment at a high superficial velocity (SV). , the ratio is preferably 0.52 to 0.65, particularly preferably 0.54 to 0.58.

本発明の活性炭は、QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02~0.06であり、大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、当該割合は0.03~0.05が好ましい。 The activated carbon of the present invention has pores with a pore diameter in the range of 2.5 to 3.0 nm in the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc/g) calculated by the QSDFT method. The ratio (B/T) of the volume B (cc/g) is 0.02 to 0.06, and it tends to have a higher total trihalomethane filtration capacity even in water flow treatment at a high superficial velocity (SV). From the point of view that the ratio is 0.03-0.05.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)が0.15~1.05cc/gであることが好ましく、0.15~0.40cc/gであることがより好ましく、0.20~0.35cc/gであることが特に好ましい。 From the viewpoint of making it easier to have a higher total trihalomethane filtration ability even in water flow treatment at a high superficial velocity (SV), the activated carbon of the present invention has a pore volume of 0.8 nm or less calculated by the QSDFT method. The pore volume A (cc/g) of the pore diameter in the range of is preferably 0.15 to 1.05 cc/g, more preferably 0.15 to 0.40 cc/g, and 0.20 ~0.35 cc/g is particularly preferred.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)が0.009~0.09cc/gであることが好ましく、0.009~0.04cc/gであることがより好ましく、0.01~0.03cc/gであることが特に好ましい。 From the viewpoint of making it easier to have a higher total trihalomethane filtration capacity even in water flow treatment at a large superficial velocity (SV), the activated carbon of the present invention has a pore volume of 2.5 to 2.5 out of the pore volumes calculated by the QSDFT method. The pore volume B (cc/g) of the pore diameter in the range of 3.0 nm is preferably 0.009 to 0.09 cc/g, more preferably 0.009 to 0.04 cc/g, Particularly preferred is 0.01 to 0.03 cc/g.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち2.0nm以下の範囲の細孔径の細孔容積C(cc/g)が0.3~0.6cc/gであることが好ましく、0.35~0.50cc/gであることがより好ましく、0.46~0.50cc/gであることが特に好ましい。 From the viewpoint of making it easier to have a higher total trihalomethane filtration ability even in water flow treatment at a high superficial velocity (SV), the activated carbon of the present invention has a pore volume of 2.0 nm or less calculated by the QSDFT method. The pore volume C (cc/g) of the pore diameter in the range of is preferably 0.3 to 0.6 cc/g, more preferably 0.35 to 0.50 cc/g, and 0.46 ~0.50 cc/g is particularly preferred.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち2.0nm以上の細孔径の細孔容積D(cc/g)が0.01~0.05cc/gであることが好ましく、0.01~0.03であることがより好ましい。 From the viewpoint of making it easier to have a higher total trihalomethane filtration ability even in water flow treatment at a high superficial velocity (SV), the activated carbon of the present invention has a pore volume of 2.0 nm or more as calculated by the QSDFT method. The pore volume D (cc/g) of the pore diameter is preferably 0.01 to 0.05 cc/g, more preferably 0.01 to 0.03.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち3.0nm以上の細孔径の細孔容積E(cc/g)が0.02cc/g以下であることが好ましく、0.01cc/g以下であることがより好ましく、0.001cc以下であることが特に好ましい。 From the viewpoint of making it easier to have a higher total trihalomethane filtration ability even in water flow treatment at a high superficial velocity (SV), the activated carbon of the present invention has a pore volume of 3.0 nm or more as calculated by the QSDFT method. is preferably 0.02 cc/g or less, more preferably 0.01 cc/g or less, and particularly preferably 0.001 cc or less.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち2.0~2.5nmの範囲の細孔径の細孔容積F(cc/g)が0.01cc/g以下であることが好ましく、0.005cc/g以下であることがより好ましく、0.001cc/g以下であることが特に好ましい。 From the viewpoint of making it easier to have a higher total trihalomethane filtration capacity even in water flow treatment at a high superficial velocity (SV), the activated carbon of the present invention has a pore volume of 2.0 to 2.0 out of the pore volumes calculated by the QSDFT method. The pore volume F (cc/g) of pore diameters in the range of 2.5 nm is preferably 0.01 cc/g or less, more preferably 0.005 cc/g or less, and 0.001 cc/g or less. is particularly preferred.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち2.0nm以下の範囲の細孔径の細孔容積C(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/C)が0.5~0.7であることが好ましく、0.54~0.60であることがより好ましい。 From the viewpoint of making it easier to have a higher total trihalomethane filtration ability even in water flow treatment at a high superficial velocity (SV), the activated carbon of the present invention has a pore volume of 2.0 nm or less calculated by the QSDFT method. The ratio of the pore volume A (cc/g) with a pore diameter in the range of 0.8 nm or less among the pore volumes calculated by the QSDFT method to the pore volume C (cc/g) with a pore diameter in the range of A/C) is preferably 0.5 to 0.7, more preferably 0.54 to 0.60.

本発明の活性炭は、QSDFT法によって算出される全細孔容積Tが0.3~1.5(cc/g)であり、大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、上記全細孔容積Tが0.3~0.8cc/gであることが好ましく、0.35~0.60cc/gであることがより好ましく、0.40~0.55cc/gであることが特に好ましく、0.48~0.53cc/gであることが一層好ましい。 The activated carbon of the present invention has a total pore volume T of 0.3 to 1.5 (cc/g) calculated by the QSDFT method, and even in water flow treatment at a high superficial velocity (SV), it is higher The total pore volume T is preferably 0.3 to 0.8 cc/g, more preferably 0.35 to 0.60 cc/g, from the viewpoint of facilitating the ability to filter the total trihalomethane. 0.40 to 0.55 cc/g is particularly preferred, and 0.48 to 0.53 cc/g is even more preferred.

本発明の活性炭において、活性炭の比表面積(窒素を被吸着物質として用いたBET法(1点法)により測定される値)としては、好ましくは700~2500m2/g程度、より好ましくは1000~2000m2/g程度、特に好ましくは1000~1400m2/g程度が挙げられる。 In the activated carbon of the present invention, the specific surface area of the activated carbon (value measured by the BET method (one-point method) using nitrogen as a substance to be adsorbed) is preferably about 700 to 2500 m 2 /g, more preferably 1000 to 1000 m 2 /g. About 2000 m 2 /g, particularly preferably about 1000 to 1400 m 2 /g.

後述の通り、本発明の製造方法において、活性炭前駆体の主原料(すなわち、本発明の活性炭の由来となる原料)としては、特に制限されず、例えば、不融化或いは炭素化した有機質材料、フェノール樹脂等の不融性樹脂等が挙げられ、該有機質材料としては、例えば、ポリアクリロニトリル、ピッチ、ポリビニルアルコール、セルロース等が挙げられる。これらの中でも、本発明の活性炭は、ピッチに由来することが好ましく、石炭ピッチに由来することがより好ましい。 As will be described later, in the production method of the present invention, the main raw material of the activated carbon precursor (that is, the raw material from which the activated carbon of the present invention is derived) is not particularly limited. Infusible resins such as resins can be used, and examples of the organic material include polyacrylonitrile, pitch, polyvinyl alcohol, and cellulose. Among these, the activated carbon of the present invention is preferably derived from pitch, and more preferably derived from coal pitch.

本発明の活性炭は、上記特定の細孔径分布とするために、活性炭前駆体としてモリブデン化合物を含むものを用いる。そして、本発明の活性炭は、活性炭前駆体に含まれるモリブデン化合物に由来するモリブデン単体及び/又はモリブデン化合物を含むものであってもよい。本発明の活性炭の総質量における、該活性炭に含有されるモリブデン単体及びモリブデン化合物の質量の割合(合計)としては、例えば、0.2~1.0質量%が挙げられ、0.3~0.8質量%が好ましく挙げられる。上記割合は、ICP発光分光分析装置(Varian社製型式715-ES)により測定されるモリブデン元素換算の割合(すなわち、モリブデンの含有量)である。 For the activated carbon of the present invention, one containing a molybdenum compound as an activated carbon precursor is used in order to obtain the above-mentioned specific pore size distribution. The activated carbon of the present invention may contain molybdenum alone and/or a molybdenum compound derived from the molybdenum compound contained in the activated carbon precursor. The ratio (total) of the mass of molybdenum simple substance and molybdenum compound contained in the activated carbon in the total mass of the activated carbon of the present invention is, for example, 0.2 to 1.0% by mass, and 0.3 to 0. 0.8% by mass is preferred. The above ratio is the ratio of molybdenum element conversion (that is, the content of molybdenum) measured by an ICP emission spectrometer (model 715-ES manufactured by Varian).

本発明の活性炭の形態は特に限定されないが、フィルター加工して用いる場合の加工性や浄水器で使用する場合の吸着速度の観点から繊維状活性炭とすることが好ましい。繊維状活性炭の平均繊維径としては、好ましくは30μm以下、より好ましくは5~20μm程度が挙げられる。なお、本発明の繊維状活性炭の平均繊維径は、画像処理繊維径測定装置(JIS K 1477に準拠)により測定した値である。 The form of the activated carbon of the present invention is not particularly limited, but fibrous activated carbon is preferred from the viewpoint of workability when used after being filtered and adsorption speed when used in a water purifier. The average fiber diameter of fibrous activated carbon is preferably 30 μm or less, more preferably about 5 to 20 μm. The average fiber diameter of the fibrous activated carbon of the present invention is a value measured by an image processing fiber diameter measuring device (in accordance with JIS K 1477).

本発明の活性炭は、QSDFT法によって算出される全細孔容積Tが0.3~1.5(cc/g)であって、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5~0.7であり、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02~0.06であることから、大きな空塔速度(SV)での通水処理においても、高い総トリハロメタンろ過能力を有する活性炭を得ることができる。本発明の活性炭が備える、大きな空塔速度(SV)での通水処理における総トリハロメタンろ過能力としては、例えば、SV3000h-1の場合50~90L/gが挙げられ、50~70L/gが好ましく挙げられる。 The activated carbon of the present invention has a total pore volume T calculated by the QSDFT method of 0.3 to 1.5 (cc/g), and a total pore volume T calculated by the QSDFT method (cc/g ), the ratio (A / T) of the pore volume A (cc / g) of the pore diameter in the range of 0.8 nm or less in the pore volume calculated by the QSDFT method is 0.5 to 0.7 , the pore volume B (cc /g) ratio (B/T) is 0.02 to 0.06, it is possible to obtain activated carbon having a high total trihalomethane filtration capacity even in water treatment at a high superficial velocity (SV). can. The total trihalomethane filtration capacity of the activated carbon of the present invention in water treatment at a high superficial velocity (SV) is, for example, 50 to 90 L/g, preferably 50 to 70 L/g, at SV of 3000 h -1 . mentioned.

上記総トリハロメタンろ過能力(L/g)の測定は、以下の方法によりおこなう。すなわち、活性炭を105℃の乾燥機で2時間以上乾燥後、3.0gを採取し、ミキサーで叩解した後にガラスカラムに充填する。ガラスカラムは直径25mmのものを用い、高さ41mmになるように充填する。JIS-S-3201「家庭用浄水器試験方法」に基づいて総トリハロメタン(CHCl3:CHCl2Br:CHClBr2:CHBr3=45:30:20:5)濃度が100±20ppbの試料水を調製し、水温20℃±1℃に管理し、空塔速度3000h-1で活性炭カラムに通水する。試料水及び濾過水の濃度は、非放射線源式電子捕獲型検出器(GC7000EN、株式会社ジェイ・サイエンス・ラボ製)を使用しヘッドスペース法で測定する。濾過水の総トリハロメタン除去率が80%を下回るまで連続して試料水を通水し、除去率80%の通水量(L/g)を活性炭の総トリハロメタン吸着能力とする。 The total trihalomethane filtering capacity (L/g) is measured by the following method. That is, after drying activated carbon in a dryer at 105° C. for 2 hours or longer, 3.0 g of the dried carbon is sampled, beaten with a mixer, and filled in a glass column. A glass column having a diameter of 25 mm is used and packed to a height of 41 mm. Prepare sample water with a total trihalomethane (CHCl 3 :CHCl 2 Br:CHClBr 2 :CHBr 3 =45:30:20:5) concentration of 100±20 ppb based on JIS-S-3201 “Household water purifier test method”. Then, the water temperature is controlled to 20°C ± 1°C, and the water is passed through the activated carbon column at a superficial velocity of 3000 h -1 . The concentrations of sample water and filtered water are measured by the headspace method using a non-radiation source type electron capture detector (GC7000EN, manufactured by J Science Lab Co., Ltd.). The sample water is continuously passed through until the total trihalomethane removal rate of the filtered water falls below 80%, and the water flow rate (L/g) at which the removal rate is 80% is taken as the total trihalomethane adsorption capacity of the activated carbon.

次に、本発明の活性炭の製造方法について詳細に説明する。 Next, the method for producing activated carbon of the present invention will be described in detail.

本発明の活性炭の製造方法は、モリブデンを0.1~1.0質量%含む活性炭前駆体を、CO2濃度が50容積%以上のガス雰囲気下、雰囲気温度900~1000℃で賦活する工程を含むことが好ましい。 The method for producing activated carbon of the present invention includes a step of activating an activated carbon precursor containing 0.1 to 1.0% by mass of molybdenum in a gas atmosphere having a CO 2 concentration of 50% by volume or more at an ambient temperature of 900 to 1000°C. preferably included.

従来、浄水用途、特にトリハロメタン等の低分子の有機ハロゲン系化合物を除去する活性炭においては、活性炭前駆体を、水蒸気を多く含む雰囲気下で賦活する方法が多くおこなわれている。例えば、特許文献1には、実施可能な方法として、フラーレンを活性炭前駆体とし、水蒸気/窒素=50/50(体積比)の雰囲気下で賦活をおこなうことが開示されている。しかし、前述のように、特許文献1で開示された活性炭は2.5nm以上3.0nm以下の範囲の細孔径の細孔容積の割合が小さい。そして、仮に、上記方法において、賦活時間をより長くする等によって、2.5nm以上3.0nm以下の範囲の細孔径の容積の割合を増加することを図ったとしても、0.8nm以下の範囲の細孔径の細孔容積の割合が減少してしまう。 Conventionally, in the case of water purification applications, particularly activated carbon for removing low-molecular-weight organohalogen compounds such as trihalomethane, a method of activating an activated carbon precursor in an atmosphere containing a large amount of water vapor has been widely used. For example, Patent Literature 1 discloses, as a feasible method, fullerene as an activated carbon precursor and activation in an atmosphere of water vapor/nitrogen=50/50 (volume ratio). However, as described above, the activated carbon disclosed in Patent Document 1 has a small pore volume ratio of pore diameters in the range of 2.5 nm or more and 3.0 nm or less. In the above method, even if an attempt is made to increase the volume ratio of pore diameters in the range of 2.5 nm or more and 3.0 nm or less by, for example, increasing the activation time, the range of 0.8 nm or less The ratio of the pore diameter to the pore volume is reduced.

また、特許文献2には、細孔直径30Å以上50Å未満の細孔の容積を特定範囲とするため、Mg、Mn、Fe、Y、Pt及びGdの少なくとも1種の金属成分を含有する活性炭前駆体を、窒素及び飽和水蒸気が存在する雰囲気下、賦活をおこなう方法が開示されている。しかし、該方法では、本発明者等の検討によれば、細孔径0.8nm以下の範囲の細孔容積及び2.5nm以上3.0nm以下の範囲の細孔径の細孔容積を十分に大きいものとすることができない。そして、仮に、上記方法において、賦活時間をより長くする等によって賦活をより進めたとしても、細孔直径30Å以上50Å未満よりも大きい範囲の細孔が発達するのみで2.5nm以上3.0nm以下の範囲の細孔径の細孔容積を大きくすることができない。 Moreover, in Patent Document 2, an activated carbon precursor containing at least one metal component of Mg, Mn, Fe, Y, Pt and Gd is disclosed in order to set the volume of pores having a pore diameter of 30 Å or more and less than 50 Å in a specific range. A method of activating the body in the presence of nitrogen and saturated water vapor is disclosed. However, in this method, according to the study of the present inventors, the pore volume with a pore diameter in the range of 0.8 nm or less and the pore volume with a pore diameter in the range of 2.5 nm or more and 3.0 nm or less is sufficiently large. cannot be assumed. In the above method, even if the activation is further advanced by, for example, increasing the activation time, only pores having a pore diameter of 30 Å or more and less than 50 Å are developed, and the pores are 2.5 nm or more and 3.0 nm. The pore volume cannot be increased for pore diameters within the following range.

一方、本発明の製造方法では、モリブデンを0.1~1.0質量%含む活性炭前駆体を、水蒸気よりもゆるやかに反応するCO2を50容量%以上含む賦活ガスを用いて賦活させることにより、細孔径0.8nm以下の範囲の細孔容積の割合を維持しつつ、2.5nm以上3.0nm以下の範囲の細孔径の細孔容積の割合を制御し特定範囲のものとすることが可能となる。 On the other hand, in the production method of the present invention, an activated carbon precursor containing 0.1 to 1.0% by mass of molybdenum is activated using an activating gas containing 50% by volume or more of CO 2 , which reacts more slowly than steam. , While maintaining the ratio of the pore volume in the range of pore diameters of 0.8 nm or less, it is possible to control the ratio of the pore volume of pore diameters in the range of 2.5 nm or more and 3.0 nm or less to a specific range. It becomes possible.

本発明の製造方法において、活性炭前駆体の主原料としては、特に制限されない。例えば、不融化或いは炭素化した有機質材料、フェノール樹脂等の不融性樹脂等が挙げられ、該有機質材料としては、例えば、ポリアクリロニトリル、ピッチ、ポリビニルアルコール、セルロース等が挙げられる。炭素化時の理論炭素化収率の点で、ピッチが好ましく、ピッチの中でも特に石炭ピッチが好ましい。 In the production method of the present invention, the main raw material of the activated carbon precursor is not particularly limited. Examples thereof include infusible or carbonized organic materials, infusible resins such as phenolic resins, etc. Examples of the organic materials include polyacrylonitrile, pitch, polyvinyl alcohol, cellulose, and the like. From the viewpoint of the theoretical carbonization yield during carbonization, pitch is preferable, and among pitches, coal pitch is particularly preferable.

本発明の製造方法において、活性炭前駆体の前記モリブデンの含有量としては、0.1~1.5質量%が好ましく、0.4~1.2質量%がより好ましい。モリブデンは、モリブデン単体或いはモリブデン化合物を原料と混合することにより含有させることができる。モリブデン化合物としては、モリブデンを構成金属元素とする、金属酸化物、金属水酸化物、金属ハロゲン化物、金属硫酸塩等の無機金属化合物、酢酸等の有機酸と金属との塩、有機金属化合物などが挙げられる。有機金属化合物としては、金属アセチルアセトナート、芳香族金属化合物等が挙げられる。 In the production method of the present invention, the content of molybdenum in the activated carbon precursor is preferably 0.1 to 1.5% by mass, more preferably 0.4 to 1.2% by mass. Molybdenum can be contained by mixing molybdenum alone or molybdenum compounds with raw materials. Molybdenum compounds include inorganic metal compounds such as metal oxides, metal hydroxides, metal halides, and metal sulfates containing molybdenum as a constituent metal element, salts of organic acids such as acetic acid and metals, and organic metal compounds. is mentioned. Examples of organometallic compounds include metal acetylacetonates and aromatic metal compounds.

本発明の製造方法において、賦活のガス雰囲気は、CO2濃度が50容積%以上であり、好ましくは95容積%以上、より好ましくは99容積%以上である。前述のようにCO2を賦活ガスとするとゆるやかに反応が進むことから、CO2濃度が高くなるほど細孔径分布を調整しやすくなり、本発明の活性炭が得られやすくなる。 In the production method of the present invention, the gas atmosphere for activation has a CO 2 concentration of 50% by volume or more, preferably 95% by volume or more, more preferably 99% by volume or more. As described above, when CO 2 is used as the activating gas, the reaction progresses slowly. Therefore, the higher the CO 2 concentration, the easier it is to adjust the pore size distribution, and the easier to obtain the activated carbon of the present invention.

賦活のガス雰囲気において、CO2以外の他の成分としては、N2、O2、H2、H2O、COが挙げられる。 Components other than CO 2 in the activation gas atmosphere include N 2 , O 2 , H 2 , H 2 O, and CO.

本発明の製造方法において、賦活の雰囲気温度は通常800~1000℃程度であり、好ましくは900~980℃程度である。また、賦活時間としては、活性炭前駆体の主原料、モリブデンの含有量、賦活ガス中のCO2濃度等に応じ、所定の細孔径分布となるよう調整すればよい。例えば、活性炭前駆体の主原料として軟化点が275℃~288℃のピッチを用い、活性炭前駆体の前記モリブデン化合物の含有量として0.1~5.0質量部含有するものとして、CO2濃度を100容量%とした場合は、賦活の雰囲気温度は900~1000℃、賦活時間は10~50分、より好ましくは20~50分として賦活をすることが挙げられる。 In the production method of the present invention, the ambient temperature for activation is usually about 800 to 1000°C, preferably about 900 to 980°C. The activation time may be adjusted according to the main raw material of the activated carbon precursor, the content of molybdenum, the CO 2 concentration in the activation gas, etc., so as to obtain a predetermined pore size distribution. For example, pitch having a softening point of 275° C. to 288° C. is used as the main raw material of the activated carbon precursor , and the content of the molybdenum compound in the activated carbon precursor is 0.1 to 5.0 parts by mass. is 100% by volume, the activation is performed at an atmosphere temperature of 900 to 1000° C. for an activation time of 10 to 50 minutes, more preferably 20 to 50 minutes.

以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。 EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. However, the invention is not limited to the examples.

各実施例及び比較例につき、以下の方法により評価した。
(1)活性炭前駆体(不融化したピッチ繊維)のモリブデン含有量(質量%)
ピッチ繊維を灰化処理し、灰分を酸に溶解しICP発光分光分析装置(Varian社製型式715-ES)により測定されるモリブデン元素換算の割合をモリブデン含有量とした。
Each example and comparative example was evaluated by the following methods.
(1) Molybdenum content (% by mass) of activated carbon precursor (infusible pitch fiber)
Pitch fibers were ashed, the ash was dissolved in acid, and the molybdenum content was measured by an ICP emission spectrometer (Model 715-ES, manufactured by Varian) in terms of molybdenum element.

(2)活性炭の金属含有量(質量%)
繊維状活性炭を酸に溶解しICP発光分光分析装置(Varian社製型式715-ES)により測定されるモリブデン元素換算の割合をモリブデン含有量とした。
(2) Metal content of activated carbon (% by mass)
The molybdenum content was determined by dissolving fibrous activated carbon in acid and using an ICP emission spectrometer (Model 715-ES, manufactured by Varian) in terms of molybdenum element.

(3)細孔容積(cc/g)、比表面積(m2/g)、繊維状活性炭の繊維径(μm)
細孔物性値は、Quantachrome社製「AUTOSORB-1-MP」を用いて77Kにおける窒素吸着等温線より測定した。比表面積はBET法によって相対圧0.1の測定点から計算した。全細孔容積T及び表1に記載した各細孔径範囲における細孔容積は、測定した窒素脱着等温線に対し、Calculation modelとしてN2 at 77K on carbon[slit pore,QSDFT equilibrium model]を適用して細孔径分布を計算することで、解析した。結果を図1~5のグラフに示す。表1に記載した各細孔径範囲における細孔容積は、図1~5に示した細孔径分布を示すグラフの読み取り値又は該読み取り値から計算される値である。より具体的に、細孔径0.8nm以下の細孔容積Aは、細孔径分布図の横軸Pore Widthが0.8nmにおけるCumulative Pore Volume(cc/g)の読み取り値である。同様にして、細孔径1.0nm以下の細孔容積、細孔径2.0nm以下の細孔容積C、細孔径2.5nm以下の細孔容積、細孔径3.0nm以下の細孔容積を得た。細孔径2.5~3.0nmの範囲の細孔容積Bは、上記細孔径3.0nm以下の細孔容積から上記細孔径2.5nm以下の細孔容積を減ずることで計算した。細孔径2.0nm以上の細孔容積Dは、上記全細孔容積Tから上記細孔径2.0nm以下の細孔容積Cを減ずることで計算した。細孔径3.0nm以上の細孔容積Eは、上記全細孔容積から上記細孔径3.0nm以下の細孔容積を減ずることで計算した。細孔径2.0~2.5nmの範囲の細孔容積Fは、上記細孔径2.5nm以下の細孔容積から上記2.0nm以下の細孔容積を減ずることで計算した。
(3) Pore volume (cc/g), specific surface area (m 2 /g), fiber diameter of fibrous activated carbon (μm)
The pore physical properties were measured from the nitrogen adsorption isotherm at 77K using "AUTOSORB-1-MP" manufactured by Quantachrome. The specific surface area was calculated from the measurement point at a relative pressure of 0.1 by the BET method. The total pore volume T and the pore volume in each pore size range described in Table 1 were obtained by applying N at 77K on carbon [slit pore, QSDFT equilibrium model] as a calculation model to the measured nitrogen desorption isotherm. was analyzed by calculating the pore size distribution. The results are shown in the graphs of Figures 1-5. The pore volume in each pore size range shown in Table 1 is the reading of the graph showing the pore size distribution shown in FIGS. 1 to 5 or the value calculated from the reading. More specifically, the pore volume A with a pore diameter of 0.8 nm or less is the read value of Cumulative Pore Volume (cc/g) when the horizontal axis Pore Width of the pore diameter distribution diagram is 0.8 nm. Similarly, a pore volume with a pore diameter of 1.0 nm or less, a pore volume C with a pore diameter of 2.0 nm or less, a pore volume with a pore diameter of 2.5 nm or less, and a pore volume with a pore diameter of 3.0 nm or less were obtained. rice field. The pore volume B with a pore diameter in the range of 2.5 to 3.0 nm was calculated by subtracting the pore volume with a pore diameter of 2.5 nm or less from the pore volume with a pore diameter of 3.0 nm or less. The pore volume D with a pore diameter of 2.0 nm or more was calculated by subtracting the pore volume C with a pore diameter of 2.0 nm or less from the total pore volume T. The pore volume E with a pore diameter of 3.0 nm or more was calculated by subtracting the pore volume with a pore diameter of 3.0 nm or less from the total pore volume. The pore volume F in the pore diameter range of 2.0 to 2.5 nm was calculated by subtracting the pore volume of 2.0 nm or less from the pore volume of 2.5 nm or less.

(4)繊維状活性炭の繊維径(μm)
画像処理繊維径測定装置(JIS K 1477に準拠)により測定した。
(4) Fiber diameter of fibrous activated carbon (μm)
Measured with an image processing fiber diameter measuring device (according to JIS K 1477).

(5)総トリハロメタンろ過能力(L/g)
繊維状活性炭を105℃の乾燥機で2時間以上乾燥後、3.0gを採取し、ミキサーで叩解した後にガラスカラムに充填した。ガラスカラムは直径25mmのものを用い、高さ41mmになるように充填した。JIS-S-3201「家庭用浄水器試験方法」に基づいて総トリハロメタン(CHCl3:CHCl2Br:CHClBr2:CHBr3=45:30:20:5)濃度が100±20ppbの試料水を調製し、水温20℃±1℃に管理し、空塔速度3000h-1で活性炭カラムに通水した。試料水及び濾過水の濃度は、非放射線源式電子捕獲型検出器(GC7000EN、株式会社ジェイ・サイエンス・ラボ製)を使用しヘッドスペース法で測定した。濾過水の総トリハロメタン除去率が80%を下回るまで連続して試料水を通水し、除去率80%の通水量(L/g)を活性炭の総トリハロメタン吸着能力とした。
(5) Total trihalomethane filtration capacity (L/g)
After drying the fibrous activated carbon in a dryer at 105° C. for 2 hours or longer, 3.0 g of the dried carbon was sampled, beaten with a mixer, and filled in a glass column. A glass column with a diameter of 25 mm was used and packed to a height of 41 mm. Prepare sample water with a total trihalomethane (CHCl 3 :CHCl 2 Br:CHClBr 2 :CHBr 3 =45:30:20:5) concentration of 100±20 ppb based on JIS-S-3201 “Household water purifier test method”. Then, the water temperature was controlled at 20°C ± 1°C, and the water was passed through the activated carbon column at a superficial velocity of 3000 h -1 . The concentrations of sample water and filtered water were measured by a headspace method using a non-radiation source type electron capture detector (GC7000EN, manufactured by J Science Lab Co., Ltd.). The sample water was continuously passed until the total trihalomethane removal rate of the filtered water fell below 80%, and the water flow rate (L/g) at which the removal rate was 80% was taken as the total trihalomethane adsorption capacity of the activated carbon.

(実施例1)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してビス(2,4-ペンタンジオナト)モリブデン(IV)ジオキシド(金属種Mo)0.8質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、モリブデン(Mo)の含有量は0.23質量%であった。
(Example 1)
As an organic material, 0.8 parts by mass of bis(2,4-pentanedionato)molybdenum (IV) dioxide (metal species Mo) was mixed with 100 parts by mass of granular coal pitch having a softening point of 280°C. The mixture was supplied to a melt extruder, melt-mixed at a melting temperature of 320° C., and spun at a discharge rate of 16 g/min to obtain pitch fibers. The obtained pitch fibers were heated in the air from room temperature to 354° C. at a rate of 1 to 30° C./min for 54 minutes to perform an infusibilization treatment, thereby obtaining an activated carbon precursor as infusible pitch fibers. The content of molybdenum (Mo) in the activated carbon precursor was 0.23% by mass.

得られた活性炭前駆体を、CO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で34分間熱処理することにより賦活をおこない、実施例1の活性炭を得た。得られた活性炭は、QSDFT法によって算出される全細孔容積Tが0.43cc/g、0.8nm以下の範囲の細孔径の細孔容積Aが0.26cc/g、2.5~3.0nmの範囲の細孔径の細孔容積Bが0.01cc/g、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.60、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02、モリブデンの含有量は0.41質量%、平均繊維径は13.6μmであった。 The obtained activated carbon precursor was activated by continuously introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and heat-treating it at an atmospheric temperature of 950° C. for 34 minutes to obtain the activated carbon of Example 1. rice field. The obtained activated carbon has a total pore volume T calculated by the QSDFT method of 0.43 cc / g, a pore volume A of pore diameters in the range of 0.8 nm or less is 0.26 cc / g, 2.5 to 3 The pore volume B of the pore diameter in the range of .0 nm is 0.01 cc / g, and the pore diameter in the range of 0.8 nm or less among the pore volumes calculated by the QSDFT method for the total pore volume T (cc / g) The ratio (A / T) of the pore volume A (cc / g) is 0.60, and the pore volume calculated by the QSDFT method for the total pore volume T (cc / g) is 2.5 to 3. The pore volume B (cc/g) ratio (B/T) of pore diameters in the range of 0 nm was 0.02, the molybdenum content was 0.41% by mass, and the average fiber diameter was 13.6 μm.

(実施例2)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してビス(2,4-ペンタンジオナト)モリブデン(IV)ジオキシド(金属種Mo)0.8質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、モリブデン(Mo)の含有量は0.23質量%であった。
(Example 2)
As an organic material, 0.8 parts by mass of bis(2,4-pentanedionato)molybdenum (IV) dioxide (metal species Mo) was mixed with 100 parts by mass of granular coal pitch having a softening point of 280°C. The mixture was supplied to a melt extruder, melt-mixed at a melting temperature of 320° C., and spun at a discharge rate of 16 g/min to obtain pitch fibers. The obtained pitch fibers were heated in the air from room temperature to 354° C. at a rate of 1 to 30° C./min for 54 minutes to perform an infusibilization treatment, thereby obtaining an activated carbon precursor as infusible pitch fibers. The content of molybdenum (Mo) in the activated carbon precursor was 0.23% by mass.

得られた活性炭前駆体を、CO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で42分間熱処理することにより賦活をおこない、実施例2の活性炭を得た。得られた活性炭は、QSDFT法によって算出される全細孔容積Tが0.50cc/g、0.8nm以下の範囲の細孔径の細孔容積Aが0.28cc/g、2.5~3.0nmの範囲の細孔径の細孔容積Bが0.02cc/g、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.56、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.04、モリブデンの含有量は0.47質量%、平均繊維径は13.1μmであった。 The obtained activated carbon precursor was activated by continuously introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and heat-treating it at an atmospheric temperature of 950° C. for 42 minutes to obtain the activated carbon of Example 2. rice field. The obtained activated carbon has a total pore volume T calculated by the QSDFT method of 0.50 cc/g, a pore volume A of pore diameters in the range of 0.8 nm or less of 0.28 cc/g, and 2.5 to 3 The pore volume B of the pore diameter in the range of .0 nm is 0.02 cc / g, and the pore diameter in the range of 0.8 nm or less among the pore volumes calculated by the QSDFT method for the total pore volume T (cc / g) The ratio (A / T) of the pore volume A (cc / g) is 0.56, and the pore volume calculated by the QSDFT method for the total pore volume T (cc / g) is 2.5 to 3. The pore volume B (cc/g) ratio (B/T) of pore diameters in the range of 0 nm was 0.04, the molybdenum content was 0.47% by mass, and the average fiber diameter was 13.1 μm.

(比較例1)
特許文献2の実施例5を模擬した試験をおこなった。具体的に、有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してトリスアセチルアセトナトイットリウム1.3質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量20g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、イットリウムの含有量は0.25質量%であった。
(Comparative example 1)
A test simulating Example 5 of Patent Document 2 was conducted. Specifically, as an organic material, a mixture of 100 parts by mass of granular coal pitch having a softening point of 280 ° C. and 1.3 parts by mass of trisacetylacetonatoitrium was supplied to a melt extruder and melted at a temperature of 320 ° C. and spun at a discharge rate of 20 g/min to obtain pitch fibers. The obtained pitch fibers were heated in the air from room temperature to 354° C. at a rate of 1 to 30° C./min for 54 minutes to perform an infusibilization treatment, thereby obtaining an activated carbon precursor as infusible pitch fibers. The yttrium content in the activated carbon precursor was 0.25 mass %.

得られた活性炭前駆体を、H2O濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度900℃で20分間熱処理することにより賦活をおこない、比較例1の活性炭を得た。得られた活性炭は、QSDFT法によって算出される全細孔容積Tが0.57cc/g、0.8nm以下の範囲の細孔径の細孔容積Aが0.15cc/g、2.5~3.0nmの範囲の細孔径の細孔容積Bが0.05cc/g、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.26、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.09、イットリウムの含有量は0.66質量%、平均繊維径は16.5μmであった。 The obtained activated carbon precursor was continuously introduced into an activation furnace with a gas having an H 2 O concentration of 100% by volume, and was heat-treated at an atmospheric temperature of 900° C. for 20 minutes to activate the activated carbon of Comparative Example 1. Obtained. The obtained activated carbon has a total pore volume T calculated by the QSDFT method of 0.57 cc / g, a pore volume A of pore diameters in the range of 0.8 nm or less of 0.15 cc / g, 2.5 to 3 The pore volume B of the pore diameter in the range of .0 nm is 0.05 cc / g, and the pore diameter in the range of 0.8 nm or less among the pore volumes calculated by the QSDFT method for the total pore volume T (cc / g) The ratio (A / T) of the pore volume A (cc / g) is 0.26, and the pore volume calculated by the QSDFT method for the total pore volume T (cc / g) is 2.5 to 3. The pore volume B (cc/g) ratio (B/T) of pore diameters in the range of 0 nm was 0.09, the yttrium content was 0.66% by mass, and the average fiber diameter was 16.5 μm.

(比較例2)
有機質材料として、軟化点が280℃の粒状石炭ピッチを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量20g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、イットリウムの含有量は0質量%であった。
(Comparative example 2)
As an organic material, granular coal pitch having a softening point of 280° C. was supplied to a melt extruder, melt-mixed at a melting temperature of 320° C., and spun at a discharge rate of 20 g/min to obtain pitch fibers. The obtained pitch fibers were heated in the air from room temperature to 354° C. at a rate of 1 to 30° C./min for 54 minutes to perform an infusibilization treatment, thereby obtaining an activated carbon precursor as infusible pitch fibers. The yttrium content in the activated carbon precursor was 0% by mass.

得られた活性炭前駆体を、H2O濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度875℃で40分間熱処理することにより賦活をおこない、比較例2の活性炭を得た。得られた活性炭は、QSDFT法によって算出される全細孔容積Tが0.48cc/g、0.8nm以下の範囲の細孔径の細孔容積Aが0.33cc/g、2.5~3.0nmの範囲の細孔径の細孔容積Bが0.00cc/g、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.69、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.00、イットリウムの含有量は0質量%、平均繊維径は16.7μmであった。 The obtained activated carbon precursor was continuously introduced into an activation furnace with a gas having an H 2 O concentration of 100% by volume, and was heat-treated at an atmospheric temperature of 875° C. for 40 minutes to activate the activated carbon of Comparative Example 2. Obtained. The obtained activated carbon has a total pore volume T calculated by the QSDFT method of 0.48 cc / g, a pore volume A of pore diameters in the range of 0.8 nm or less is 0.33 cc / g, 2.5 to 3 The pore volume B of the pore diameter in the range of .0 nm is 0.00 cc / g, and the pore diameter in the range of 0.8 nm or less among the pore volumes calculated by the QSDFT method for the total pore volume T (cc / g) The ratio (A/T) of the pore volume A (cc/g) is 0.69, and the pore volume calculated by the QSDFT method for the total pore volume T (cc/g) is 2.5-3. The pore volume B (cc/g) ratio (B/T) of pore diameters in the range of 0 nm was 0.00, the yttrium content was 0% by mass, and the average fiber diameter was 16.7 μm.

(比較例3)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してトリスアセチルアセトナトイットリウム1.0質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、イットリウムの含有量は0.16質量%であった。
(Comparative Example 3)
As an organic material, a mixture of 100 parts by mass of granular coal pitch having a softening point of 280°C and 1.0 part by mass of trisacetylacetonatoitrium was supplied to a melt extruder and melt-mixed at a melting temperature of 320°C. , to obtain pitch fibers by spinning at a discharge rate of 16 g/min. The obtained pitch fibers were heated in the air from room temperature to 354° C. at a rate of 1 to 30° C./min for 54 minutes to perform an infusibilization treatment, thereby obtaining an activated carbon precursor as infusible pitch fibers. The yttrium content in the activated carbon precursor was 0.16% by mass.

得られた活性炭前駆体を、CO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で40分間熱処理することにより賦活をおこない、実施例3の活性炭を得た。得られた活性炭は、QSDFT法によって算出される全細孔容積Tが0.38cc/g、0.8nm以下の範囲の細孔径の細孔容積Aが0.21cc/g、2.5~3.0nmの範囲の細孔径の細孔容積Bが0.00cc/g、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.55、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.00、イットリウムの含有量は0.30質量%、平均繊維径は14.2μmであった。 The obtained activated carbon precursor was activated by continuously introducing a gas having a CO2 concentration of 100% by volume into an activation furnace and heat-treating it at an atmospheric temperature of 950° C. for 40 minutes to obtain activated carbon of Example 3. . The obtained activated carbon has a total pore volume T calculated by the QSDFT method of 0.38 cc / g, a pore volume A of pore diameters in the range of 0.8 nm or less is 0.21 cc / g, 2.5 to 3 The pore volume B of the pore diameter in the range of .0 nm is 0.00 cc / g, and the pore diameter in the range of 0.8 nm or less among the pore volumes calculated by the QSDFT method for the total pore volume T (cc / g) The ratio (A/T) of the pore volume A (cc/g) is 0.55, and the pore volume calculated by the QSDFT method for the total pore volume T (cc/g) is 2.5-3. The pore volume B (cc/g) ratio (B/T) of pore diameters in the range of 0 nm was 0.00, the yttrium content was 0.30% by mass, and the average fiber diameter was 14.2 μm.

得られた活性炭の物性を表1に示す。また、図1~5に、実施例1及び2、比較例1~3の活性炭のQSDFT法によって算出される細孔径分布図を示す。 Table 1 shows the physical properties of the obtained activated carbon. 1 to 5 show pore size distribution maps calculated by the QSDFT method for the activated carbons of Examples 1 and 2 and Comparative Examples 1 to 3.

Figure 2022132348000002
Figure 2022132348000002

実施例1及び2の活性炭は、QSDFT法によって算出される全細孔容積Tが0.3~1.5(cc/g)であって、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5~0.7であり、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02~0.06であることから、大きな空塔速度(SV)での通水処理においても、高い総トリハロメタンろ過能力を有する活性炭を得ることができるものであった。 The activated carbons of Examples 1 and 2 have a total pore volume T calculated by the QSDFT method of 0.3 to 1.5 (cc/g), and a total pore volume T calculated by the QSDFT method ( cc/g), the ratio (A/T) of the pore volume A (cc/g) with a pore diameter in the range of 0.8 nm or less in the pore volume calculated by the QSDFT method is 0.5 to 0. 7, and the pore volume with a pore diameter in the range of 2.5 to 3.0 nm among the pore volumes calculated by the QSDFT method with respect to the total pore volume T (cc/g) calculated by the QSDFT method. Since the ratio (B/T) of B (cc/g) is 0.02 to 0.06, activated carbon having a high total trihalomethane filtration capacity even in water treatment at a high superficial velocity (SV) can be used. it could be obtained.

特に、実施例2の活性炭は、QSDFT法によって算出される細孔容積のうち、QSDFT法によって算出される全細孔容積Tが0.48~0.53cc/gであって、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.54~0.58であり、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.03~0.05であることから、大きな空塔速度(SV)での通水処理においても、高い総トリハロメタンろ過能力を有する活性炭を得ることができるものであった。 In particular, the activated carbon of Example 2 has a total pore volume T calculated by the QSDFT method of the pore volume calculated by the QSDFT method of 0.48 to 0.53 cc / g, and The ratio of the pore volume A (cc/g) with a pore diameter in the range of 0.8 nm or less in the pore volume calculated by the QSDFT method to the total pore volume T (cc/g) calculated (A/ T) is 0.54 to 0.58, and the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc/g) calculated by the QSDFT method is 2.5 to 3.0 nm. Since the ratio (B/T) of the pore volume B (cc/g) of the pore diameter in the range is 0.03 to 0.05, even in the water passage treatment at a large superficial velocity (SV), It was possible to obtain activated carbon having a high total trihalomethane filtration capacity.

一方、比較例1の活性炭は、QSDFT法によって算出される細孔容積のうち、QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5未満であり、QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.06を超えるものであることから、上記総トリハロメタンろ過能力が劣るものであった。 On the other hand, in the activated carbon of Comparative Example 1, out of the pore volume calculated by the QSDFT method, the total pore volume T (cc/g) calculated by the QSDFT method is The ratio (A / T) of the pore volume A (cc / g) of the pore diameters in the range of 0.8 nm or less is less than 0.5, and the total pore volume T (cc / g) calculated by the QSDFT method , the ratio (B/T) of the pore volume B (cc/g) of the pore diameter in the range of 2.5 to 3.0 nm out of the pore volume calculated by the QSDFT method exceeds 0.06 For this reason, the total trihalomethane filtering capacity was inferior.

比較例2及び3の活性炭は、QSDFT法によって算出される細孔容積のうち、QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02未満であったことから、上記総トリハロメタンろ過能力が劣るものであった。 For the activated carbons of Comparative Examples 2 and 3, among the pore volumes calculated by the QSDFT method, the total pore volume T (cc/g) calculated by the QSDFT method is Since the ratio (B/T) of the pore volume B (cc/g) of the pore diameters in the range of 2.5 to 3.0 nm was less than 0.02, the total trihalomethane filtering ability was inferior. rice field.

Claims (6)

QSDFT法によって算出される全細孔容積Tが0.3~1.5(cc/g)であって、
前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5~0.7であり、
前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5~3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02~0.06である、活性炭。
The total pore volume T calculated by the QSDFT method is 0.3 to 1.5 (cc/g),
Pore volume A (cc/g) with a pore diameter in the range of 0.8 nm or less among the pore volumes calculated by the QSDFT method with respect to the total pore volume T (cc/g) calculated by the QSDFT method The ratio (A / T) is 0.5 to 0.7,
Pore volume B (cc / Activated carbon whose ratio (B/T) of g) is from 0.02 to 0.06.
QSDFT法によって算出される細孔容積のうち3.0nm以上の細孔径の細孔容積が0.02(cc/g)以下である、請求項1に記載の活性炭。 2. The activated carbon according to claim 1, wherein the pore volume of pores with a diameter of 3.0 nm or more in the pore volume calculated by the QSDFT method is 0.02 (cc/g) or less. 比表面積が700m2/g以上2500m2/g以下である、請求項1又は2に記載の活性炭。 The activated carbon according to claim 1 or 2, having a specific surface area of 700 m 2 /g or more and 2500 m 2 /g or less. 前記活性炭の内部に、モリブデン単体及び/又はモリブデン化合物を含む、請求項1~3のいずれか1項に記載の活性炭。 The activated carbon according to any one of claims 1 to 3, containing molybdenum alone and/or a molybdenum compound inside said activated carbon. 総トリハロメタンろ過能力が50L/g以上である、請求項1~4のいずれか1項に記載の活性炭。 The activated carbon according to any one of claims 1 to 4, which has a total trihalomethane filtration capacity of 50 L/g or more. モリブデンを0.1~1.0質量%含む活性炭前駆体を、CO2濃度が50容積%以上のガス雰囲気下、雰囲気温度900~1000℃で賦活する工程を含む、請求項1~5のいずれか1項に記載の活性炭の製造方法。 6. The method according to any one of claims 1 to 5, comprising activating an activated carbon precursor containing 0.1 to 1.0% by mass of molybdenum at an ambient temperature of 900 to 1000° C. in a gas atmosphere having a CO 2 concentration of 50% by volume or more. 1. A method for producing activated carbon according to claim 1.
JP2022109604A 2018-03-22 2022-07-07 Activated carbon and production method thereof Pending JP2022132348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022109604A JP2022132348A (en) 2018-03-22 2022-07-07 Activated carbon and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018054727A JP7223985B2 (en) 2018-03-22 2018-03-22 Activated carbon and its manufacturing method
JP2022109604A JP2022132348A (en) 2018-03-22 2022-07-07 Activated carbon and production method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018054727A Division JP7223985B2 (en) 2018-03-22 2018-03-22 Activated carbon and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2022132348A true JP2022132348A (en) 2022-09-08

Family

ID=68106203

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018054727A Active JP7223985B2 (en) 2018-03-22 2018-03-22 Activated carbon and its manufacturing method
JP2022109604A Pending JP2022132348A (en) 2018-03-22 2022-07-07 Activated carbon and production method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018054727A Active JP7223985B2 (en) 2018-03-22 2018-03-22 Activated carbon and its manufacturing method

Country Status (1)

Country Link
JP (2) JP7223985B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453463B1 (en) 2023-11-29 2024-03-19 大阪ガスケミカル株式会社 Carbonaceous material and its manufacturing method, and adsorption filter
JP7453462B1 (en) 2023-11-29 2024-03-19 大阪ガスケミカル株式会社 Carbonaceous materials and their manufacturing methods, adsorption filters, water purifier cartridges, water purifiers, and water purification equipment
JP7459365B1 (en) 2023-11-29 2024-04-01 大阪ガスケミカル株式会社 Carbonaceous material and its manufacturing method, and palladium complex adsorption method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151324A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Activated carbon and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453463B1 (en) 2023-11-29 2024-03-19 大阪ガスケミカル株式会社 Carbonaceous material and its manufacturing method, and adsorption filter
JP7453462B1 (en) 2023-11-29 2024-03-19 大阪ガスケミカル株式会社 Carbonaceous materials and their manufacturing methods, adsorption filters, water purifier cartridges, water purifiers, and water purification equipment
JP7459365B1 (en) 2023-11-29 2024-04-01 大阪ガスケミカル株式会社 Carbonaceous material and its manufacturing method, and palladium complex adsorption method

Also Published As

Publication number Publication date
JP2019167258A (en) 2019-10-03
JP7223985B2 (en) 2023-02-17

Similar Documents

Publication Publication Date Title
JP6379325B1 (en) Activated carbon and manufacturing method thereof
JP2022132348A (en) Activated carbon and production method thereof
JP6683968B1 (en) Activated carbon
Cheung et al. Characteristics of chemical modified activated carbons from bamboo scaffolding
JP6379324B1 (en) Activated carbon and manufacturing method thereof
US10105680B2 (en) Activated carbon with excellent adsorption performance and process for producing same
JP2023024708A (en) Method for producing activated carbon
JP2004182511A (en) Activated carbon and method of manufacturing the same
JP2006247527A (en) Adsorbent
JP6683969B1 (en) Activated carbon
JP6719709B2 (en) Activated carbon
WO2003033135A1 (en) Activated carbon fiber for the removal of organochlorine compounds
WO2020065930A1 (en) Activated carbon and method for producing said activated carbon
JP7300124B2 (en) Activated carbon for removing trihalomethane and method for producing the same
WO2023032633A1 (en) Activated carbon
JPH06100310A (en) Active carbon for removing organohalogen compound
JP2006315903A (en) Fibrous active carbon
JPWO2003026792A1 (en) Activated carbon fiber and method for producing the same
JP2020049451A (en) Activated carbon, and method for producing the activated carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240305