JP2019167258A - Activated carbon and production method thereof - Google Patents

Activated carbon and production method thereof Download PDF

Info

Publication number
JP2019167258A
JP2019167258A JP2018054727A JP2018054727A JP2019167258A JP 2019167258 A JP2019167258 A JP 2019167258A JP 2018054727 A JP2018054727 A JP 2018054727A JP 2018054727 A JP2018054727 A JP 2018054727A JP 2019167258 A JP2019167258 A JP 2019167258A
Authority
JP
Japan
Prior art keywords
pore volume
activated carbon
pore
calculated
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018054727A
Other languages
Japanese (ja)
Other versions
JP7223985B2 (en
Inventor
中野 智康
Tomoyasu Nakano
智康 中野
弘和 清水
Hirokazu Shimizu
弘和 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AD'ALL CO Ltd
Osaka Gas Chemicals Co Ltd
Unitika Ltd
Original Assignee
AD'ALL CO Ltd
Osaka Gas Chemicals Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AD'ALL CO Ltd, Osaka Gas Chemicals Co Ltd, Unitika Ltd filed Critical AD'ALL CO Ltd
Priority to JP2018054727A priority Critical patent/JP7223985B2/en
Publication of JP2019167258A publication Critical patent/JP2019167258A/en
Priority to JP2022109604A priority patent/JP2022132348A/en
Application granted granted Critical
Publication of JP7223985B2 publication Critical patent/JP7223985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

To provide an activated carbon that has a high total trihalomethane filtration ability even in a water passage treatment performed at a high superficial velocity (SV).SOLUTION: An activated carbon is provided which has a total pore volume T of 0.3 to 1.5 (cc/g) as calculated by QSDFT method. In the activated carbon, a ratio (A/T) of a pore volume A (cc/g) of pore diameters in the range not more than 0.8 nm of a pore volume as calculated by the QSDFT method with respect to the total pore volume T (cc/g) as calculated by the QSDFT method is 0.5 to 0.7; and a ratio (B/T) of a pore volume B (cc/g) of pore diameters in the range from 2.5 to 3.0 nm of a pore volume as calculated by the QSDFT method with respect to the total pore volume T (cc/g) as calculated by the QSDFT method is 0.02 to 0.06.SELECTED DRAWING: Figure 1

Description

本発明は、活性炭及びその製造方法に関し、特に、大きな空塔速度下におけるトリハロメタンのろ過能力に優れた、活性炭及びその製造方法に関する。   The present invention relates to activated carbon and a method for producing the same, and more particularly to activated carbon and a method for producing the same, which are excellent in the filtration ability of trihalomethanes under a large superficial velocity.

従来、飲料用に供される水道水などには、殺菌を目的として塩素が添加されている。しかしながら、水道水中に含まれる塩素は、水道水中に含まれる有機物と反応して、有機ハロゲン系化合物を生成する。例えば、天然有機物であるフミン質が水道水中において塩素と反応すると、発がん性物質であるトリハロメタンを生成することが知られている。そして、水道水中に含まれるこれらの有機ハロゲン系化合物のろ過能力に優れた活性炭が提案されている。   Conventionally, chlorine has been added to tap water or the like used for beverages for the purpose of sterilization. However, chlorine contained in tap water reacts with organic substances contained in tap water to produce an organic halogen compound. For example, it is known that when humic substances that are natural organic substances react with chlorine in tap water, trihalomethanes that are carcinogenic substances are produced. And the activated carbon excellent in the filtration capability of these organic halogen compounds contained in tap water is proposed.

有機ハロゲン系化合物のろ過能力に優れた活性炭として、例えば、細孔径が100Å(10nm)以下の細孔容積に対する、細孔径20Å〜100Å(2nm〜10nm)の細孔容積比率が5〜50%であり、細孔径10Å(1nm)以下の細孔容積比率が45%以上である多孔質炭素を含有する吸着剤が知られている(例えば、特許文献1参照。)。該吸着剤において、細孔径が100Å以下の細孔容積に対して、細孔径20Å〜100Åの細孔容積比率を5〜50%とするのは、比較的大きな細孔の割合を高めて、動的吸着力を高めるためである。一方、該吸着剤においては、静的吸着力である平衡吸着量を高める必要もあることから、静的平衡吸着量に有効な細孔径10Å以下の細孔容積比率を45%以上とすることが開示されている。そして、該吸着剤は、このような構成とすることによって、静的吸着力と動的吸着力とを両立することができるとされている。   For example, the activated carbon excellent in the filtration ability of the organic halogen compound may have a pore volume ratio of 5% to 50% of a pore diameter of 20 to 100% (2 nm to 10 nm) to a pore volume having a pore diameter of 100 mm (10 nm) or less. There is known an adsorbent containing porous carbon having a pore volume ratio of 45% or more with a pore diameter of 10 mm (1 nm) or less (see, for example, Patent Document 1). In the adsorbent, with respect to the pore volume having a pore diameter of 100 mm or less, setting the pore volume ratio of the pore diameter of 20 to 100 mm to 5 to 50% increases the ratio of relatively large pores, This is to increase the attractive adsorption force. On the other hand, in the adsorbent, since it is necessary to increase the equilibrium adsorption amount, which is a static adsorption force, the pore volume ratio with a pore diameter of 10 mm or less effective for the static equilibrium adsorption amount may be 45% or more. It is disclosed. And it is supposed that this adsorbent can make static adsorption force and dynamic adsorption force compatible by setting it as such a structure.

また、77.4Kにおける窒素吸着等温線よりBJH法で求めた細孔径分布において細孔直径30Å以上50Å未満の範囲のメソ細孔容積が0.02〜0.40cc/gであり、かつ、全細孔容積に対する上記範囲のメソ細孔容積の割合が5〜45%である活性炭が知られている(例えば、特許文献2参照)。該活性炭によれば、かかる範囲内に上記メソ細孔(直径2〜50nmの細孔)容積及び上記割合を制御することによって、各種の被吸着物質(特にトリハロメタン類)の吸着に適した材料とすることができるとされている。   The mesopore volume in the pore diameter range of 30 mm or more and less than 50 mm in the pore diameter distribution determined by the BJH method from the nitrogen adsorption isotherm at 77.4 K is 0.02 to 0.40 cc / g, and Activated carbon is known in which the ratio of the mesopore volume in the above range to the pore volume is 5 to 45% (see, for example, Patent Document 2). According to the activated carbon, by controlling the volume of the mesopores (pores having a diameter of 2 to 50 nm) and the ratio within such a range, a material suitable for adsorption of various substances to be adsorbed (particularly trihalomethanes) It is supposed to be possible.

特開2006−247527号公報JP 2006-247527 A 特開2004−182511号公報JP 2004-182511 A

近年、このような活性炭を含む浄水フィルターには、高い総トリハロメタンろ過能力が求められている。例えば、浄水フィルターには、JIS S3201の「揮発性有機化合物のろ過能力試験」における総トリハロメタンの総ろ過水量(総トリハロメタンの除去率が80%に低下するまでの水量)が多いことが要求されてきている。該総ろ過水量が多いほど、浄水フィルターの使用可能期間(取替え期間)が長くなる。   In recent years, high total trihalomethane filtration ability is required for water purification filters containing such activated carbon. For example, the water purification filter has been required to have a large amount of total trihalomethane filtrate (the amount of water until the total trihalomethane removal rate is reduced to 80%) in JIS S3201 “Volatile Organic Compound Filtration Capability Test”. ing. The larger the total amount of filtered water, the longer the usable period (replacement period) of the purified water filter.

加えて、浄水フィルターが水栓一体型浄水器用である場合などには、浄水フィルターは小型化する必要がある。浄水フィルターが小型になると、空塔速度(SV)が大きくなり、高い総トリハロメタンろ過能力を維持することが難しくなる。   In addition, when the water purification filter is for a faucet integrated water purifier, the water purification filter needs to be downsized. As the water filter becomes smaller, the superficial velocity (SV) increases and it becomes difficult to maintain a high total trihalomethane filtration capacity.

本発明者等が検討した結果、特許文献1及び2に開示された活性炭は、SVが1000h-1の条件で評価されているところ、大きな空塔速度(例えばSVが3000h-1程度)の条件下では、総トリハロメタンのろ過能力が十分発揮できないという問題があることが判明した。 The present inventors and others have examined, activated carbon disclosed in Patent Documents 1 and 2, where SV is evaluated in terms of 1000h -1, conditions of large superficial velocity (e.g., SV is 3000h about -1) Below, it was found that there was a problem that the filtration capacity of total trihalomethanes could not be fully demonstrated.

本発明は、上記問題を解決し、大きな空塔速度(SV)での通水処理においても、高い総トリハロメタンろ過能力を有する活性炭及びその製造方法を提供することを主な目的とする。   The main object of the present invention is to solve the above problems and to provide an activated carbon having a high total trihalomethane filtration capacity and a method for producing the same even in water flow treatment at a high superficial velocity (SV).

当初、本発明者等の検討によれば、トリハロメタン分子は1.5nm以下の細孔に吸着しやすいと考えられた。しかしながら、本発明者等は、大きなSV下において総トリハロメタン分子のろ過を検討する場合には、トリハロメタン分子が細孔内に拡散する速度も重要な要素であると考えた。そこで、本発明者らはこれらの観点から検討を重ね、活性炭の細孔径及びその細孔容積を制御し、全細孔容積に対する0.8nm以下の細孔容積の割合を特定のものとし、且つ全細孔容積に対する2.5nm以上3.0nm以下の細孔径の細孔容積の割合を特定範囲のものとすることで、大きなSV下においても高い総トリハロメタンろ過能力を有することを見出した。   Initially, according to the study by the present inventors, it was considered that trihalomethane molecules are likely to be adsorbed in pores of 1.5 nm or less. However, the present inventors considered that the rate at which trihalomethane molecules diffuse into the pores is also an important factor when considering the filtration of total trihalomethane molecules under large SVs. Therefore, the present inventors have repeatedly studied from these viewpoints, control the pore diameter of the activated carbon and its pore volume, make the ratio of the pore volume of 0.8 nm or less to the total pore volume specific, and It has been found that by setting the ratio of the pore volume having a pore diameter of 2.5 nm or more and 3.0 nm or less to the total pore volume within a specific range, it has a high total trihalomethane filtration ability even under a large SV.

例えば、特許文献1に開示された発明は、メソ孔のうちでも広範な細孔径範囲である2〜10nmの細孔容積を制御することにより動的吸着力を高めることを図っている。しかし、該発明では、例えば3000h-1のような高いSV下でのろ過能力を向上すること、及び、全細孔容積に対する2.5nm以上3.0nm以下の細孔径の細孔容積の割合を制御することは検討されていない。実際、同文献に実施例として具体的に開示された活性炭は、全細孔容積に対する2.5nm以上3.0nm以下の細孔径の細孔容積の割合が小さく、大きな空塔速度の条件下での総トリハロメタンのろ過能力が十分発揮できない。 For example, the invention disclosed in Patent Document 1 aims to increase the dynamic adsorption force by controlling the pore volume of 2 to 10 nm, which is a wide pore diameter range among mesopores. However, in the present invention, for example, the filtration capacity under high SV such as 3000 h −1 is improved, and the ratio of the pore volume of the pore diameter of 2.5 nm or more and 3.0 nm or less to the total pore volume is set. Control is not being considered. In fact, the activated carbon specifically disclosed as an example in the same document has a small ratio of the pore volume having a pore diameter of 2.5 nm or more and 3.0 nm or less to the total pore volume, under the condition of a large superficial velocity. The total trihalomethane filtration capacity cannot be fully demonstrated.

また、例えば、特許文献2に開示された発明は、比較的大きい細孔径3〜5nmの範囲の細孔容積を制御することが開示されている。また、制御する方法として、Mg、Mn、Fe、Y、Pt及びGdの少なくとも1種の金属成分を0.01〜5重量%含有するピッチを活性炭前駆体として用い、当該前駆体を不融化処理又は炭素化処理し、賦活処理する方法において、上記金属成分の種類を変えることによって、得られる活性炭のメソ細孔モード直径を制御すること、トリハロメタン類の吸着用活性炭を製造する場合には、Fe添加活性炭が水中の有機化合物除去の吸着材として最も優れた効果を発揮することが開示されている。さらに、具体的に実施可能な態様としては、活性炭前駆体にFeを含有させ、水蒸気賦活をおこなう方法が開示されている。しかし、該発明においても、例えば3000h-1のような高いSV下でのろ過能力を向上すること、及び、全細孔容積に対する2.5nm以上3.0nm以下の細孔径の細孔容積の割合を制御することは検討されていない。そして、本発明者等の検討によれば、特許文献2に実施例として具体的に開示された、活性炭前駆体にFeを含有させ水蒸気賦活をおこなう方法では、比較的大きい細孔径3〜5nmの範囲の細孔容積は大きくすることができるものの、細孔径0.8nm以下の範囲の細孔容積及び2.5nm以上3.0nm以下の範囲の細孔径の細孔容積を十分に大きいものとすることができず、大きな空塔速度の条件下での総トリハロメタンのろ過能力が十分発揮できないことが判明した。 Further, for example, the invention disclosed in Patent Document 2 discloses that the pore volume in the range of relatively large pore diameters of 3 to 5 nm is controlled. In addition, as a control method, a pitch containing 0.01 to 5% by weight of at least one metal component of Mg, Mn, Fe, Y, Pt and Gd is used as an activated carbon precursor, and the precursor is infusible. Alternatively, in the method of carbonization treatment and activation treatment, the mesopore mode diameter of the obtained activated carbon is controlled by changing the type of the metal component, and when producing activated carbon for adsorption of trihalomethanes, Fe It is disclosed that the added activated carbon exhibits the most excellent effect as an adsorbent for removing organic compounds in water. Furthermore, as a concretely feasible embodiment, a method is disclosed in which Fe is contained in an activated carbon precursor and steam activation is performed. However, even in the present invention, for example, the filtration capacity under high SV such as 3000 h −1 is improved, and the ratio of the pore volume having a pore diameter of 2.5 nm to 3.0 nm with respect to the total pore volume It is not considered to control. And, according to the study by the present inventors, in the method disclosed in Patent Document 2 as an example, the activated carbon precursor containing Fe is subjected to water vapor activation, with a relatively large pore diameter of 3 to 5 nm. Although the pore volume in the range can be increased, the pore volume in the range of the pore diameter of 0.8 nm or less and the pore volume in the range of 2.5 to 3.0 nm are sufficiently large. It was found that the total trihalomethane filtration capacity under high superficial velocity conditions could not be fully demonstrated.

本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。   The present invention has been completed by further studies based on these findings.

すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. QSDFT法によって算出される全細孔容積Tが0.3〜1.5(cc/g)であって、
前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5〜0.7であり、
前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02〜0.06である、活性炭。
項2. QSDFT法によって算出される細孔容積のうち3.0nm以上の細孔径の細孔容積が0.02(cc/g)以下である、項1に記載の活性炭。
項3. 比表面積が700m2/g以上2500m2/g以下である、請求項1又は2に記載の活性炭。
項4. 前記活性炭の内部に、モリブデン単体及び/又はモリブデン化合物を含む、項1〜3のいずれか1項に記載の活性炭。
項5. 総トリハロメタンろ過能力が50L/g以上である、項1〜4のいずれか1項に記載の活性炭。
項6. モリブデンを0.1〜1.0質量%含む活性炭前駆体を、CO2濃度が50容積%以上のガス雰囲気下、雰囲気温度900〜1000℃で賦活する工程を含む、項1〜5のいずれか1項に記載の活性炭の製造方法。
That is, this invention provides the invention of the aspect hung up below.
Item 1. The total pore volume T calculated by the QSDFT method is 0.3 to 1.5 (cc / g),
The pore volume A (cc / g) having a pore diameter in the range of 0.8 nm or less of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method. The ratio (A / T) is 0.5 to 0.7,
Of the pore volumes calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method, the pore volume B (cc / The activated carbon whose ratio (B / T) of g) is 0.02-0.06.
Item 2. Item 2. The activated carbon according to Item 1, wherein the pore volume having a pore diameter of 3.0 nm or more among the pore volumes calculated by the QSDFT method is 0.02 (cc / g) or less.
Item 3. The specific surface area is less than 700 meters 2 / g or more 2500 m 2 / g, the activated carbon according to claim 1 or 2.
Item 4. Item 4. The activated carbon according to any one of items 1 to 3, wherein the activated carbon contains molybdenum alone and / or a molybdenum compound.
Item 5. Item 5. The activated carbon according to any one of Items 1 to 4, wherein the total trihalomethane filtration capacity is 50 L / g or more.
Item 6. Item 5. The method according to any one of Items 1 to 5, comprising a step of activating an activated carbon precursor containing 0.1 to 1.0% by mass of molybdenum at an ambient temperature of 900 to 1000 ° C. in a gas atmosphere having a CO 2 concentration of 50% by volume or more. 2. A method for producing activated carbon according to item 1.

本発明の活性炭は、QSDFT法によって算出される全細孔容積Tが0.3〜1.5(cc/g)であって、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5〜0.7であり、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02〜0.06であることを特徴としている。本発明の活性炭は、このような構成を備えていることから、大きな空塔速度(SV)での通水処理においても、高い総トリハロメタンろ過能力を有する活性炭を得ることができる。   The activated carbon of the present invention has a total pore volume T calculated by the QSDFT method of 0.3 to 1.5 (cc / g), and the total pore volume T calculated by the QSDFT method (cc / g). The ratio (A / T) of the pore volume A (cc / g) having a pore diameter in the range of 0.8 nm or less of the pore volume calculated by the QSDFT method is 0.5 to 0.7 The pore volume B (cc) of the pore diameter in the range of 2.5 to 3.0 nm out of the pore volumes calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method / G) (B / T) is 0.02 to 0.06. Since the activated carbon of the present invention has such a configuration, activated carbon having a high total trihalomethane filtration ability can be obtained even in water flow treatment at a high superficial velocity (SV).

実施例1の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。2 is a graph showing the pore size distribution calculated by the QSDFT method for activated carbon of Example 1. FIG. 実施例2の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。It is a graph which shows the pore size distribution calculated by the QSDFT method of the activated carbon of Example 2. 比較例1の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。6 is a graph showing a pore size distribution calculated by the QSDFT method of activated carbon of Comparative Example 1. 比較例2の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。It is a graph which shows the pore size distribution calculated by the QSDFT method of the activated carbon of the comparative example 2. 比較例3の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。It is a graph which shows the pore size distribution computed by the QSDFT method of the activated carbon of the comparative example 3.

以下、本発明の活性炭について詳細に説明する。   Hereinafter, the activated carbon of the present invention will be described in detail.

本発明の活性炭は、QSDFT法によって算出される全細孔容積Tが0.3〜1.5(cc/g)であって、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5〜0.7であり、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02〜0.06である。   The activated carbon of the present invention has a total pore volume T calculated by the QSDFT method of 0.3 to 1.5 (cc / g), and the total pore volume T calculated by the QSDFT method (cc / g). The ratio (A / T) of the pore volume A (cc / g) having a pore diameter in the range of 0.8 nm or less of the pore volume calculated by the QSDFT method is 0.5 to 0.7 The pore volume B (cc) of the pore diameter in the range of 2.5 to 3.0 nm out of the pore volumes calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method / G) (B / T) is 0.02 to 0.06.

大きなSV下でも高い総トリハロメタンろ過能力を有するものとするには、全細孔容積Tに対する0.8nm以下の細孔容積Aの割合(A/T)を特定範囲とし、且つ全細孔容積Tに対する2.5nm以上3.0nm以下の細孔径の細孔容積Bの割合(B/T)を特定範囲とすることが重要である。本発明者等が検討したところ、0.8nm以下の細孔はトリハロメタン分子を吸着しやすく、2.5nm以上3.0nm以下の細孔はトリハロメタン分子の吸着の他にもトリハロメタン分子の細孔内への拡散にも寄与すると考えられる。そして、本発明者等が検討を重ねたところ、0.8nm以下の細孔容積A及び2.5nm以上3.0nm以下の細孔容積Bは、単に大きくすれば良いというのではなく、全細孔容積Tに対し特定範囲の割合とすることも重要であることが明らかとなった。従って、本発明の活性炭によれば、全細孔容積Tに対する0.8nm以下の細孔容積Aの割合(A/T)及び全細孔容積Tに対する2.5nm以上3.0nm以下の細孔径の細孔容積Bの割合(B/T)を特定の範囲に調整することにより、大きなSV下においても高い総トリハロメタンろ過能力を発揮できるのである。   In order to have a high total trihalomethane filtration capacity even under a large SV, the ratio (A / T) of the pore volume A of 0.8 nm or less to the total pore volume T is within a specific range, and the total pore volume T It is important to set the ratio (B / T) of the pore volume B having a pore diameter of 2.5 nm to 3.0 nm to a specific range. As a result of investigations by the present inventors, pores of 0.8 nm or less tend to adsorb trihalomethane molecules, and pores of 2.5 nm or more and 3.0 nm or less contain trihalomethane molecules in addition to trihalomethane molecule adsorption. It is thought that it also contributes to diffusion. As a result of repeated studies by the present inventors, the pore volume A of 0.8 nm or less and the pore volume B of 2.5 nm to 3.0 nm are not simply increased, It became clear that it is also important to set the ratio in a specific range with respect to the pore volume T. Therefore, according to the activated carbon of the present invention, the ratio (A / T) of the pore volume A of 0.8 nm or less to the total pore volume T and the pore diameter of 2.5 nm to 3.0 nm with respect to the total pore volume T. By adjusting the ratio (B / T) of the pore volume B to a specific range, a high total trihalomethane filtration capacity can be exhibited even under a large SV.

本発明において、特定の細孔径範囲の細孔容積は、QSDFT法によって算出されるものである。QSDFT法(急冷固体密度汎関数法)とは、幾何学的・化学的に不規則なミクロポーラス・メソポーラスな炭素の細孔径解析を対象とした、約0.5nm〜約40nmまでの細孔径分布の計算ができる解析手法である。QSDFT法では、細孔表面の粗さと不均一性による影響が明瞭に考慮されているため、細孔径分布解析の正確さが大幅に向上した手法である。本発明においては、Quantachrome社製「AUTOSORB−1−MP」を用いて窒素吸着等温線の測定、及びQSDFT法による細孔径分布解析をおこなう。77Kの温度において測定した窒素の脱着等温線に対し、Calculation modelとしてN2 at 77K on carbon[slit pore,QSDFT equilibrium model]を適用して細孔径分布を計算することで、特定の細孔径範囲の細孔容積を算出されることができる。 In the present invention, the pore volume in a specific pore diameter range is calculated by the QSDFT method. QSDFT method (quenched solid density functional method) is a pore size distribution from about 0.5 nm to about 40 nm for analysis of pore sizes of geometrically and chemically irregular microporous and mesoporous carbons. It is an analysis method that can calculate In the QSDFT method, the influence of the roughness and nonuniformity of the pore surface is clearly taken into account, so that the accuracy of the pore diameter distribution analysis is greatly improved. In the present invention, measurement of nitrogen adsorption isotherm and pore size distribution analysis by QSDFT method are performed using “AUTOSORB-1-MP” manufactured by Quantachrome. By calculating the pore size distribution by applying N 2 at 77K on carbon [slit pore, QSDFT equilibrium model] as a calibration model for the desorption isotherm of nitrogen measured at a temperature of 77 K, a specific pore size range is obtained. The pore volume can be calculated.

本発明の活性炭は、QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5〜0.7であり、大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、当該割合は0.52〜0.65が好ましく、0.54〜0.58が特に好ましい。   The activated carbon of the present invention has a pore volume A (with a pore diameter in the range of 0.8 nm or less of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method. cc / g) ratio (A / T) is 0.5 to 0.7, and from the viewpoint of making it easier to have higher total trihalomethane filtration capacity even in water flow treatment at a large superficial velocity (SV). The ratio is preferably 0.52 to 0.65, particularly preferably 0.54 to 0.58.

本発明の活性炭は、QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02〜0.06であり、大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、当該割合は0.03〜0.05が好ましい。   The activated carbon of the present invention has pore diameters in the range of 2.5 to 3.0 nm out of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method. The ratio (B / T) of the volume B (cc / g) is 0.02 to 0.06, and it is easy to have a higher total trihalomethane filtration capacity even in water treatment at a high superficial velocity (SV). From this viewpoint, the ratio is preferably 0.03 to 0.05.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)が0.15〜1.05cc/gであることが好ましく、0.15〜0.40cc/gであることがより好ましく、0.20〜0.35cc/gであることが特に好ましい。   From the viewpoint of facilitating a higher total trihalomethane filtration capacity even in water flow treatment at a large superficial velocity (SV), the activated carbon of the present invention is 0.8 nm or less of the pore volume calculated by the QSDFT method. The pore volume A (cc / g) having a pore diameter in the range of 0.15 to 1.05 cc / g is preferable, more preferably 0.15 to 0.40 cc / g, and 0.20. It is especially preferable that it is -0.35cc / g.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)が0.009〜0.09cc/gであることが好ましく、0.009〜0.04cc/gであることがより好ましく、0.01〜0.03cc/gであることが特に好ましい。   From the viewpoint of facilitating a higher total trihalomethane filtration capacity even in the water flow treatment at a large superficial velocity (SV), the activated carbon of the present invention is 2.5 to 2.5% of the pore volume calculated by the QSDFT method. The pore volume B (cc / g) having a pore diameter in the range of 3.0 nm is preferably 0.009 to 0.09 cc / g, more preferably 0.009 to 0.04 cc / g, Particularly preferred is 0.01 to 0.03 cc / g.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち2.0nm以下の範囲の細孔径の細孔容積C(cc/g)が0.3〜0.6cc/gであることが好ましく、0.35〜0.50cc/gであることがより好ましく、0.46〜0.50cc/gであることが特に好ましい。   From the viewpoint of easily having a higher total trihalomethane filtration capacity even in water flow treatment at a high superficial velocity (SV), the activated carbon of the present invention is 2.0 nm or less of the pore volume calculated by the QSDFT method. The pore volume C (cc / g) with a pore diameter in the range of 0.3 to 0.6 cc / g is preferable, 0.35 to 0.50 cc / g is more preferable, and 0.46 -0.50 cc / g is particularly preferred.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち2.0nm以上の細孔径の細孔容積D(cc/g)が0.01〜0.05cc/gであることが好ましく、0.01〜0.03であることがより好ましい。   From the viewpoint of facilitating a higher total trihalomethane filtration capacity even in water treatment at a high superficial velocity (SV), the activated carbon of the present invention is 2.0 nm or more of the pore volume calculated by the QSDFT method. The pore volume D (cc / g) of the pore diameter is preferably 0.01 to 0.05 cc / g, more preferably 0.01 to 0.03.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち3.0nm以上の細孔径の細孔容積E(cc/g)が0.02cc/g以下であることが好ましく、0.01cc/g以下であることがより好ましく、0.001cc以下であることが特に好ましい。   From the viewpoint of easily having a higher total trihalomethane filtration capacity even in water flow treatment at a large superficial velocity (SV), the activated carbon of the present invention is 3.0 nm or more of the pore volume calculated by the QSDFT method. The pore volume E (cc / g) of the pore diameter is preferably 0.02 cc / g or less, more preferably 0.01 cc / g or less, and particularly preferably 0.001 cc or less.

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち2.0〜2.5nmの範囲の細孔径の細孔容積F(cc/g)が0.01cc/g以下であることが好ましく、0.005cc/g以下であることがより好ましく、0.001cc/g以下であることが特に好ましい。   From the viewpoint of making it easier to have a higher total trihalomethane filtration capacity even in a water flow treatment at a large superficial velocity (SV), the activated carbon of the present invention has a pore volume calculated from 2.0 to The pore volume F (cc / g) having a pore diameter in the range of 2.5 nm is preferably 0.01 cc / g or less, more preferably 0.005 cc / g or less, and 0.001 cc / g or less. It is particularly preferred that

大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、本発明の活性炭は、QSDFT法によって算出される細孔容積のうち2.0nm以下の範囲の細孔径の細孔容積C(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/C)が0.5〜0.7であることが好ましく、0.54〜0.60であることがより好ましい。   From the viewpoint of easily having a higher total trihalomethane filtration capacity even in water flow treatment at a high superficial velocity (SV), the activated carbon of the present invention is 2.0 nm or less of the pore volume calculated by the QSDFT method. Ratio of pore volume A (cc / g) having a pore diameter in the range of 0.8 nm or less of pore volume calculated by the QSDFT method to pore volume C (cc / g) having a pore diameter in the range of A / C) is preferably 0.5 to 0.7, and more preferably 0.54 to 0.60.

本発明の活性炭は、QSDFT法によって算出される全細孔容積Tが0.3〜1.5(cc/g)であり、大きな空塔速度(SV)での通水処理においても、より高い総トリハロメタンろ過能力を有しやすくする観点から、上記全細孔容積Tが0.3〜0.8cc/gであることが好ましく、0.35〜0.60cc/gであることがより好ましく、0.40〜0.55cc/gであることが特に好ましく、0.48〜0.53cc/gであることが一層好ましい。   In the activated carbon of the present invention, the total pore volume T calculated by the QSDFT method is 0.3 to 1.5 (cc / g), which is higher even in water flow treatment at a large superficial velocity (SV). From the viewpoint of facilitating total trihalomethane filtration capacity, the total pore volume T is preferably 0.3 to 0.8 cc / g, more preferably 0.35 to 0.60 cc / g, It is particularly preferably 0.40 to 0.55 cc / g, and more preferably 0.48 to 0.53 cc / g.

本発明の活性炭において、活性炭の比表面積(窒素を被吸着物質として用いたBET法(1点法)により測定される値)としては、好ましくは700〜2500m2/g程度、より好ましくは1000〜2000m2/g程度、特に好ましくは1000〜1400m2/g程度が挙げられる。 In the activated carbon of the present invention, the specific surface area of the activated carbon (value measured by the BET method (one-point method) using nitrogen as an adsorbed substance) is preferably about 700 to 2500 m 2 / g, more preferably 1000 to 2000 m 2 / g approximately, and particularly preferably include about 1000~1400m 2 / g.

後述の通り、本発明の製造方法において、活性炭前駆体の主原料(すなわち、本発明の活性炭の由来となる原料)としては、特に制限されず、例えば、不融化或いは炭素化した有機質材料、フェノール樹脂等の不融性樹脂等が挙げられ、該有機質材料としては、例えば、ポリアクリロニトリル、ピッチ、ポリビニルアルコール、セルロース等が挙げられる。これらの中でも、本発明の活性炭は、ピッチに由来することが好ましく、石炭ピッチに由来することがより好ましい。   As will be described later, in the production method of the present invention, the main raw material for the activated carbon precursor (that is, the raw material from which the activated carbon of the present invention is derived) is not particularly limited. Examples of the organic material include polyacrylonitrile, pitch, polyvinyl alcohol, and cellulose. Among these, the activated carbon of the present invention is preferably derived from pitch, and more preferably derived from coal pitch.

本発明の活性炭は、上記特定の細孔径分布とするために、活性炭前駆体としてモリブデン化合物を含むものを用いる。そして、本発明の活性炭は、活性炭前駆体に含まれるモリブデン化合物に由来するモリブデン単体及び/又はモリブデン化合物を含むものであってもよい。本発明の活性炭の総質量における、該活性炭に含有されるモリブデン単体及びモリブデン化合物の質量の割合(合計)としては、例えば、0.2〜1.0質量%が挙げられ、0.3〜0.8質量%が好ましく挙げられる。上記割合は、ICP発光分光分析装置(Varian社製型式715−ES)により測定されるモリブデン元素換算の割合(すなわち、モリブデンの含有量)である。   In the activated carbon of the present invention, one containing a molybdenum compound as an activated carbon precursor is used in order to obtain the specific pore size distribution. And the activated carbon of this invention may contain the molybdenum simple substance derived from the molybdenum compound contained in an activated carbon precursor, and / or a molybdenum compound. As a ratio (total) of the mass of the molybdenum simple substance and the molybdenum compound contained in the activated carbon in the total mass of the activated carbon of the present invention, for example, 0.2 to 1.0 mass% may be mentioned, and 0.3 to 0 may be mentioned. .8% by mass is preferred. The said ratio is a molybdenum element conversion ratio (namely, molybdenum content) measured with an ICP emission spectroscopic analyzer (Varian model 715-ES).

本発明の活性炭の形態は特に限定されないが、フィルター加工して用いる場合の加工性や浄水器で使用する場合の吸着速度の観点から繊維状活性炭とすることが好ましい。繊維状活性炭の平均繊維径としては、好ましくは30μm以下、より好ましくは5〜20μm程度が挙げられる。なお、本発明の繊維状活性炭の平均繊維径は、画像処理繊維径測定装置(JIS K 1477に準拠)により測定した値である。   Although the form of the activated carbon of this invention is not specifically limited, It is preferable to set it as a fibrous activated carbon from a viewpoint of the workability in the case of using it by filter processing, and the adsorption rate in the case of using with a water purifier. As an average fiber diameter of fibrous activated carbon, Preferably it is 30 micrometers or less, More preferably, about 5-20 micrometers is mentioned. In addition, the average fiber diameter of the fibrous activated carbon of the present invention is a value measured by an image processing fiber diameter measuring device (based on JIS K 1477).

本発明の活性炭は、QSDFT法によって算出される全細孔容積Tが0.3〜1.5(cc/g)であって、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5〜0.7であり、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02〜0.06であることから、大きな空塔速度(SV)での通水処理においても、高い総トリハロメタンろ過能力を有する活性炭を得ることができる。本発明の活性炭が備える、大きな空塔速度(SV)での通水処理における総トリハロメタンろ過能力としては、例えば、SV3000h-1の場合50〜90L/gが挙げられ、50〜70L/gが好ましく挙げられる。 The activated carbon of the present invention has a total pore volume T calculated by the QSDFT method of 0.3 to 1.5 (cc / g), and the total pore volume T calculated by the QSDFT method (cc / g). The ratio (A / T) of the pore volume A (cc / g) having a pore diameter in the range of 0.8 nm or less of the pore volume calculated by the QSDFT method is 0.5 to 0.7 The pore volume B (cc) of the pore diameter in the range of 2.5 to 3.0 nm out of the pore volumes calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method / G) ratio (B / T) is 0.02 to 0.06, so that it is possible to obtain activated carbon having a high total trihalomethane filtration ability even in water flow treatment at a high superficial velocity (SV). it can. Examples of the total trihalomethane filtration capacity of the activated carbon of the present invention in water treatment at a high superficial velocity (SV) include 50 to 90 L / g in the case of SV3000h −1 , preferably 50 to 70 L / g. Can be mentioned.

上記総トリハロメタンろ過能力(L/g)の測定は、以下の方法によりおこなう。すなわち、活性炭を105℃の乾燥機で2時間以上乾燥後、3.0gを採取し、ミキサーで叩解した後にガラスカラムに充填する。ガラスカラムは直径25mmのものを用い、高さ41mmになるように充填する。JIS−S−3201「家庭用浄水器試験方法」に基づいて総トリハロメタン(CHCl3:CHCl2Br:CHClBr2:CHBr3=45:30:20:5)濃度が100±20ppbの試料水を調製し、水温20℃±1℃に管理し、空塔速度3000h-1で活性炭カラムに通水する。試料水及び濾過水の濃度は、非放射線源式電子捕獲型検出器(GC7000EN、株式会社ジェイ・サイエンス・ラボ製)を使用しヘッドスペース法で測定する。濾過水の総トリハロメタン除去率が80%を下回るまで連続して試料水を通水し、除去率80%の通水量(L/g)を活性炭の総トリハロメタン吸着能力とする。 The total trihalomethane filtration capacity (L / g) is measured by the following method. That is, the activated carbon is dried for 2 hours or longer with a dryer at 105 ° C., then 3.0 g is collected, beaten with a mixer and then packed into a glass column. A glass column having a diameter of 25 mm is used and packed so as to have a height of 41 mm. Prepare sample water with total trihalomethane (CHCl 3 : CHCl 2 Br: CHClBr 2 : CHBr 3 = 45: 30: 20: 5) concentration 100 ± 20 ppb based on JIS-S-3201 “Household water purifier test method” The water temperature is controlled at 20 ° C. ± 1 ° C., and water is passed through the activated carbon column at a superficial speed of 3000 h −1 . The concentration of sample water and filtered water is measured by a headspace method using a non-radiation source type electron capture detector (GC7000EN, manufactured by J Science Lab Co., Ltd.). The sample water is continuously passed until the total trihalomethane removal rate of the filtrate falls below 80%, and the water flow rate (L / g) with the removal rate of 80% is defined as the total trihalomethane adsorption capacity of the activated carbon.

次に、本発明の活性炭の製造方法について詳細に説明する。   Next, the manufacturing method of the activated carbon of this invention is demonstrated in detail.

本発明の活性炭の製造方法は、モリブデンを0.1〜1.0質量%含む活性炭前駆体を、CO2濃度が50容積%以上のガス雰囲気下、雰囲気温度900〜1000℃で賦活する工程を含むことが好ましい。 The method for producing activated carbon of the present invention comprises a step of activating an activated carbon precursor containing 0.1 to 1.0% by mass of molybdenum at an ambient temperature of 900 to 1000 ° C. in a gas atmosphere having a CO 2 concentration of 50% by volume or more. It is preferable to include.

従来、浄水用途、特にトリハロメタン等の低分子の有機ハロゲン系化合物を除去する活性炭においては、活性炭前駆体を、水蒸気を多く含む雰囲気下で賦活する方法が多くおこなわれている。例えば、特許文献1には、実施可能な方法として、フラーレンを活性炭前駆体とし、水蒸気/窒素=50/50(体積比)の雰囲気下で賦活をおこなうことが開示されている。しかし、前述のように、特許文献1で開示された活性炭は2.5nm以上3.0nm以下の範囲の細孔径の細孔容積の割合が小さい。そして、仮に、上記方法において、賦活時間をより長くする等によって、2.5nm以上3.0nm以下の範囲の細孔径の容積の割合を増加することを図ったとしても、0.8nm以下の範囲の細孔径の細孔容積の割合が減少してしまう。   Conventionally, activated carbon that removes low-molecular organic halogen compounds such as trihalomethane, for example, for water purification, has often been used to activate the activated carbon precursor in an atmosphere rich in water vapor. For example, Patent Document 1 discloses that, as a feasible method, activation is performed in an atmosphere of water vapor / nitrogen = 50/50 (volume ratio) using fullerene as an activated carbon precursor. However, as described above, the activated carbon disclosed in Patent Document 1 has a small proportion of pore volume having a pore diameter in the range of 2.5 nm to 3.0 nm. And even if it is intended to increase the volume ratio of pore diameters in the range of 2.5 nm to 3.0 nm by increasing the activation time in the above method, the range of 0.8 nm or less The ratio of the pore volume to the pore diameter of the particle diameter decreases.

また、特許文献2には、細孔直径30Å以上50Å未満の細孔の容積を特定範囲とするため、Mg、Mn、Fe、Y、Pt及びGdの少なくとも1種の金属成分を含有する活性炭前駆体を、窒素及び飽和水蒸気が存在する雰囲気下、賦活をおこなう方法が開示されている。しかし、該方法では、本発明者等の検討によれば、細孔径0.8nm以下の範囲の細孔容積及び2.5nm以上3.0nm以下の範囲の細孔径の細孔容積を十分に大きいものとすることができない。そして、仮に、上記方法において、賦活時間をより長くする等によって賦活をより進めたとしても、細孔直径30Å以上50Å未満よりも大きい範囲の細孔が発達するのみで2.5nm以上3.0nm以下の範囲の細孔径の細孔容積を大きくすることができない。   Patent Document 2 discloses an activated carbon precursor containing at least one metal component of Mg, Mn, Fe, Y, Pt, and Gd in order to make the volume of pores having a pore diameter of 30 mm or more and less than 50 mm within a specific range. A method for activating a body in an atmosphere containing nitrogen and saturated water vapor is disclosed. However, in the method, according to the study by the present inventors, the pore volume having a pore diameter in the range of 0.8 nm or less and the pore volume having a pore diameter in the range of 2.5 nm to 3.0 nm are sufficiently large. It cannot be assumed. And in the above method, even if the activation is further advanced by increasing the activation time or the like, only a pore having a pore diameter in the range of 30 mm or more and less than 50 mm develops, but only 2.5 nm or more and 3.0 nm. The pore volume of pore diameters in the following range cannot be increased.

一方、本発明の製造方法では、モリブデンを0.1〜1.0質量%含む活性炭前駆体を、水蒸気よりもゆるやかに反応するCO2を50容量%以上含む賦活ガスを用いて賦活させることにより、細孔径0.8nm以下の範囲の細孔容積の割合を維持しつつ、2.5nm以上3.0nm以下の範囲の細孔径の細孔容積の割合を制御し特定範囲のものとすることが可能となる。 On the other hand, in the production method of the present invention, the activated carbon precursor containing 0.1 to 1.0% by mass of molybdenum is activated using an activation gas containing 50% by volume or more of CO 2 that reacts more gently than water vapor. The ratio of the pore volume of the pore diameter in the range of 2.5 nm or more and 3.0 nm or less is controlled to be in the specific range while maintaining the ratio of the pore volume in the range of the pore diameter of 0.8 nm or less. It becomes possible.

本発明の製造方法において、活性炭前駆体の主原料としては、特に制限されない。例えば、不融化或いは炭素化した有機質材料、フェノール樹脂等の不融性樹脂等が挙げられ、該有機質材料としては、例えば、ポリアクリロニトリル、ピッチ、ポリビニルアルコール、セルロース等が挙げられる。炭素化時の理論炭素化収率の点で、ピッチが好ましく、ピッチの中でも特に石炭ピッチが好ましい。   In the production method of the present invention, the main raw material of the activated carbon precursor is not particularly limited. For example, an infusible or carbonized organic material, an infusible resin such as a phenol resin, and the like can be mentioned. Examples of the organic material include polyacrylonitrile, pitch, polyvinyl alcohol, and cellulose. From the viewpoint of theoretical carbonization yield at the time of carbonization, pitch is preferable, and coal pitch is particularly preferable among pitches.

本発明の製造方法において、活性炭前駆体の前記モリブデンの含有量としては、0.1〜1.5質量%が好ましく、0.4〜1.2質量%がより好ましい。モリブデンは、モリブデン単体或いはモリブデン化合物を原料と混合することにより含有させることができる。モリブデン化合物としては、モリブデンを構成金属元素とする、金属酸化物、金属水酸化物、金属ハロゲン化物、金属硫酸塩等の無機金属化合物、酢酸等の有機酸と金属との塩、有機金属化合物などが挙げられる。有機金属化合物としては、金属アセチルアセトナート、芳香族金属化合物等が挙げられる。   In the production method of the present invention, the molybdenum content in the activated carbon precursor is preferably 0.1 to 1.5 mass%, more preferably 0.4 to 1.2 mass%. Molybdenum can be contained by mixing molybdenum alone or a molybdenum compound with a raw material. Molybdenum compounds include molybdenum as a constituent metal element, inorganic metal compounds such as metal oxides, metal hydroxides, metal halides, and metal sulfates, salts of organic acids and metals such as acetic acid, organometallic compounds, etc. Is mentioned. Examples of the organometallic compound include metal acetylacetonate and aromatic metal compounds.

本発明の製造方法において、賦活のガス雰囲気は、CO2濃度が50容積%以上であり、好ましくは95容積%以上、より好ましくは99容積%以上である。前述のようにCO2を賦活ガスとするとゆるやかに反応が進むことから、CO2濃度が高くなるほど細孔径分布を調整しやすくなり、本発明の活性炭が得られやすくなる。 In the production method of the present invention, the activation gas atmosphere has a CO 2 concentration of 50% by volume or more, preferably 95% by volume or more, more preferably 99% by volume or more. As described above, when CO 2 is used as the activation gas, the reaction proceeds slowly. Therefore, the higher the CO 2 concentration, the easier the adjustment of the pore size distribution, and the easier it is to obtain the activated carbon of the present invention.

賦活のガス雰囲気において、CO2以外の他の成分としては、N2、O2、H2、H2O、COが挙げられる。 In the activation gas atmosphere, components other than CO 2 include N 2 , O 2 , H 2 , H 2 O, and CO.

本発明の製造方法において、賦活の雰囲気温度は通常800〜1000℃程度であり、好ましくは900〜980℃程度である。また、賦活時間としては、活性炭前駆体の主原料、モリブデンの含有量、賦活ガス中のCO2濃度等に応じ、所定の細孔径分布となるよう調整すればよい。例えば、活性炭前駆体の主原料として軟化点が275℃〜288℃のピッチを用い、活性炭前駆体の前記モリブデン化合物の含有量として0.1〜5.0質量部含有するものとして、CO2濃度を100容量%とした場合は、賦活の雰囲気温度は900〜1000℃、賦活時間は10〜50分、より好ましくは20〜50分として賦活をすることが挙げられる。 In the production method of the present invention, the activation ambient temperature is usually about 800 to 1000 ° C, preferably about 900 to 980 ° C. The activation time may be adjusted so as to have a predetermined pore size distribution according to the main raw material of the activated carbon precursor, the molybdenum content, the CO 2 concentration in the activation gas, and the like. For example, using a pitch with a softening point of 275 ° C. to 288 ° C. as the main raw material of the activated carbon precursor, and containing 0.1 to 5.0 parts by mass as the molybdenum compound content of the activated carbon precursor, CO 2 concentration When the volume is 100% by volume, the activation atmosphere temperature is 900 to 1000 ° C., the activation time is 10 to 50 minutes, more preferably 20 to 50 minutes.

以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.

各実施例及び比較例につき、以下の方法により評価した。
(1)活性炭前駆体(不融化したピッチ繊維)のモリブデン含有量(質量%)
ピッチ繊維を灰化処理し、灰分を酸に溶解しICP発光分光分析装置(Varian社製型式715−ES)により測定されるモリブデン元素換算の割合をモリブデン含有量とした。
Each Example and Comparative Example were evaluated by the following methods.
(1) Molybdenum content (mass%) of activated carbon precursor (infusible pitch fiber)
The pitch fiber was incinerated, the ash content was dissolved in an acid, and the ratio in terms of molybdenum element measured with an ICP emission spectroscopic analyzer (model 715-ES manufactured by Varian) was defined as the molybdenum content.

(2)活性炭の金属含有量(質量%)
繊維状活性炭を酸に溶解しICP発光分光分析装置(Varian社製型式715−ES)により測定されるモリブデン元素換算の割合をモリブデン含有量とした。
(2) Metal content of active carbon (mass%)
Molybdenum activated carbon was dissolved in acid, and the ratio in terms of molybdenum element measured by an ICP emission spectrophotometer (Varian model 715-ES) was defined as the molybdenum content.

(3)細孔容積(cc/g)、比表面積(m2/g)、繊維状活性炭の繊維径(μm)
細孔物性値は、Quantachrome社製「AUTOSORB−1−MP」を用いて77Kにおける窒素吸着等温線より測定した。比表面積はBET法によって相対圧0.1の測定点から計算した。全細孔容積T及び表1に記載した各細孔径範囲における細孔容積は、測定した窒素脱着等温線に対し、Calculation modelとしてN2 at 77K on carbon[slit pore,QSDFT equilibrium model]を適用して細孔径分布を計算することで、解析した。結果を図1〜5のグラフに示す。表1に記載した各細孔径範囲における細孔容積は、図1〜5に示した細孔径分布を示すグラフの読み取り値又は該読み取り値から計算される値である。より具体的に、細孔径0.8nm以下の細孔容積Aは、細孔径分布図の横軸Pore Widthが0.8nmにおけるCumulative Pore Volume(cc/g)の読み取り値である。同様にして、細孔径1.0nm以下の細孔容積、細孔径2.0nm以下の細孔容積C、細孔径2.5nm以下の細孔容積、細孔径3.0nm以下の細孔容積を得た。細孔径2.5〜3.0nmの範囲の細孔容積Bは、上記細孔径3.0nm以下の細孔容積から上記細孔径2.5nm以下の細孔容積を減ずることで計算した。細孔径2.0nm以上の細孔容積Dは、上記全細孔容積Tから上記細孔径2.0nm以下の細孔容積Cを減ずることで計算した。細孔径3.0nm以上の細孔容積Eは、上記全細孔容積から上記細孔径3.0nm以下の細孔容積を減ずることで計算した。細孔径2.0〜2.5nmの範囲の細孔容積Fは、上記細孔径2.5nm以下の細孔容積から上記2.0nm以下の細孔容積を減ずることで計算した。
(3) Pore volume (cc / g), specific surface area (m 2 / g), fiber diameter of fibrous activated carbon (μm)
The pore physical properties were measured from a nitrogen adsorption isotherm at 77K using “AUTOSORB-1-MP” manufactured by Quantachrome. The specific surface area was calculated from the measurement point at a relative pressure of 0.1 by the BET method. The total pore volume T and the pore volume in each pore diameter range described in Table 1 are obtained by applying N 2 at 77K on carbon [slit pore, QSDFT equilibrium model] as a calibration model for the measured nitrogen desorption isotherm. Thus, the pore size distribution was calculated and analyzed. The results are shown in the graphs of FIGS. The pore volume in each pore diameter range described in Table 1 is a reading value of a graph showing the pore diameter distribution shown in FIGS. 1 to 5 or a value calculated from the reading value. More specifically, the pore volume A having a pore diameter of 0.8 nm or less is a readout value of Cumulative Pore Volume (cc / g) when the horizontal axis Pore Width of the pore diameter distribution chart is 0.8 nm. Similarly, a pore volume having a pore diameter of 1.0 nm or less, a pore volume C having a pore diameter of 2.0 nm or less, a pore volume having a pore diameter of 2.5 nm or less, and a pore volume having a pore diameter of 3.0 nm or less are obtained. It was. The pore volume B in the range of 2.5 to 3.0 nm was calculated by subtracting the pore volume having a pore diameter of 2.5 nm or less from the pore volume having a pore diameter of 3.0 nm or less. The pore volume D having a pore diameter of 2.0 nm or more was calculated by subtracting the pore volume C having a pore diameter of 2.0 nm or less from the total pore volume T. The pore volume E having a pore diameter of 3.0 nm or more was calculated by subtracting the pore volume having a pore diameter of 3.0 nm or less from the total pore volume. The pore volume F in the pore diameter range of 2.0 to 2.5 nm was calculated by subtracting the pore volume of 2.0 nm or less from the pore volume of the pore diameter of 2.5 nm or less.

(4)繊維状活性炭の繊維径(μm)
画像処理繊維径測定装置(JIS K 1477に準拠)により測定した。
(4) Fiber diameter of fibrous activated carbon (μm)
It measured with the image processing fiber diameter measuring apparatus (based on JISK1477).

(5)総トリハロメタンろ過能力(L/g)
繊維状活性炭を105℃の乾燥機で2時間以上乾燥後、3.0gを採取し、ミキサーで叩解した後にガラスカラムに充填した。ガラスカラムは直径25mmのものを用い、高さ41mmになるように充填した。JIS−S−3201「家庭用浄水器試験方法」に基づいて総トリハロメタン(CHCl3:CHCl2Br:CHClBr2:CHBr3=45:30:20:5)濃度が100±20ppbの試料水を調製し、水温20℃±1℃に管理し、空塔速度3000h-1で活性炭カラムに通水した。試料水及び濾過水の濃度は、非放射線源式電子捕獲型検出器(GC7000EN、株式会社ジェイ・サイエンス・ラボ製)を使用しヘッドスペース法で測定した。濾過水の総トリハロメタン除去率が80%を下回るまで連続して試料水を通水し、除去率80%の通水量(L/g)を活性炭の総トリハロメタン吸着能力とした。
(5) Total trihalomethane filtration capacity (L / g)
The fibrous activated carbon was dried with a dryer at 105 ° C. for 2 hours or more, and 3.0 g was collected, beaten with a mixer, and then packed into a glass column. A glass column having a diameter of 25 mm was used and packed so as to have a height of 41 mm. Prepare sample water with total trihalomethane (CHCl 3 : CHCl 2 Br: CHClBr 2 : CHBr 3 = 45: 30: 20: 5) concentration 100 ± 20 ppb based on JIS-S-3201 “Household water purifier test method” The water temperature was controlled at 20 ° C. ± 1 ° C., and water was passed through the activated carbon column at a superficial speed of 3000 h −1 . The concentration of sample water and filtered water was measured by a headspace method using a non-radiation source type electron capture detector (GC7000EN, manufactured by J Science Lab Co., Ltd.). The sample water was continuously passed until the total trihalomethane removal rate of the filtered water was below 80%, and the water flow rate (L / g) at the removal rate of 80% was defined as the total trihalomethane adsorption capacity of the activated carbon.

(実施例1)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してビス(2,4−ペンタンジオナト)モリブデン(IV)ジオキシド(金属種Mo)0.8質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、モリブデン(Mo)の含有量は0.23質量%であった。
Example 1
What mixed 0.8 mass part of bis (2,4-pentanedionato) molybdenum (IV) dioxide (metal seed Mo) with respect to 100 mass parts of granular coal pitch whose softening point is 280 degreeC as an organic material, Pitch fibers were obtained by feeding to a melt extruder, melt mixing at a melting temperature of 320 ° C., and spinning at a discharge rate of 16 g / min. The pitch fiber thus obtained was heated in the air at a rate of 1 to 30 ° C./min for 54 minutes from room temperature to 354 ° C. to obtain an activated carbon precursor which was an infusible pitch fiber. In the activated carbon precursor, the molybdenum (Mo) content was 0.23% by mass.

得られた活性炭前駆体を、CO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で34分間熱処理することにより賦活をおこない、実施例1の活性炭を得た。得られた活性炭は、QSDFT法によって算出される全細孔容積Tが0.43cc/g、0.8nm以下の範囲の細孔径の細孔容積Aが0.26cc/g、2.5〜3.0nmの範囲の細孔径の細孔容積Bが0.01cc/g、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.60、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02、モリブデンの含有量は0.41質量%、平均繊維径は13.6μmであった。 The activated carbon precursor obtained was activated by continuously introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and heat-treating it at an ambient temperature of 950 ° C. for 34 minutes to obtain activated carbon of Example 1. It was. The obtained activated carbon has a total pore volume T calculated by the QSDFT method of 0.43 cc / g, a pore volume A having a pore diameter in the range of 0.8 nm or less of 0.26 cc / g, 2.5-3. A pore volume B having a pore diameter in the range of 0.0 nm is 0.01 cc / g, and a pore diameter in the range of 0.8 nm or less of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g). The ratio (A / T) of the pore volume A (cc / g) is 0.60, and 2.5-3 of the pore volume calculated by the QSDFT method for the total pore volume T (cc / g). The ratio (B / T) of the pore volume B (cc / g) with a pore diameter in the range of 0 nm was 0.02, the molybdenum content was 0.41% by mass, and the average fiber diameter was 13.6 μm.

(実施例2)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してビス(2,4−ペンタンジオナト)モリブデン(IV)ジオキシド(金属種Mo)0.8質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、モリブデン(Mo)の含有量は0.23質量%であった。
(Example 2)
What mixed 0.8 mass part of bis (2,4-pentanedionato) molybdenum (IV) dioxide (metal seed Mo) with respect to 100 mass parts of granular coal pitch whose softening point is 280 degreeC as an organic material, Pitch fibers were obtained by feeding to a melt extruder, melt mixing at a melting temperature of 320 ° C., and spinning at a discharge rate of 16 g / min. The pitch fiber thus obtained was heated in the air at a rate of 1 to 30 ° C./min for 54 minutes from room temperature to 354 ° C. to obtain an activated carbon precursor which was an infusible pitch fiber. In the activated carbon precursor, the molybdenum (Mo) content was 0.23% by mass.

得られた活性炭前駆体を、CO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で42分間熱処理することにより賦活をおこない、実施例2の活性炭を得た。得られた活性炭は、QSDFT法によって算出される全細孔容積Tが0.50cc/g、0.8nm以下の範囲の細孔径の細孔容積Aが0.28cc/g、2.5〜3.0nmの範囲の細孔径の細孔容積Bが0.02cc/g、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.56、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.04、モリブデンの含有量は0.47質量%、平均繊維径は13.1μmであった。 The activated carbon precursor thus obtained was activated by continuously introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and heat-treating it at an atmospheric temperature of 950 ° C. for 42 minutes to obtain activated carbon of Example 2. It was. The obtained activated carbon has a total pore volume T calculated by the QSDFT method of 0.50 cc / g, a pore volume A having a pore diameter in the range of 0.8 nm or less of 0.28 cc / g, 2.5-3. A pore volume B having a pore diameter in the range of 0.0 nm is 0.02 cc / g, and a pore diameter in the range of 0.8 nm or less of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g). The ratio (A / T) of the pore volume A (cc / g) of 0.56 is 0.56, and 2.5 to 3.3 of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g). The ratio (B / T) of the pore volume B (cc / g) with a pore diameter in the range of 0 nm was 0.04, the molybdenum content was 0.47% by mass, and the average fiber diameter was 13.1 μm.

(比較例1)
特許文献2の実施例5を模擬した試験をおこなった。具体的に、有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してトリスアセチルアセトナトイットリウム1.3質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量20g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、イットリウムの含有量は0.25質量%であった。
(Comparative Example 1)
A test simulating Example 5 of Patent Document 2 was conducted. Specifically, as an organic material, a mixture of 1.3 parts by mass of trisacetylacetonatoyttrium with 100 parts by mass of granular coal pitch having a softening point of 280 ° C. is supplied to a melt extruder, and a melting temperature of 320 ° C. And pitch fiber was obtained by spinning at a discharge rate of 20 g / min. The pitch fiber thus obtained was heated in the air at a rate of 1 to 30 ° C./min for 54 minutes from room temperature to 354 ° C. to obtain an activated carbon precursor which was an infusible pitch fiber. In the activated carbon precursor, the yttrium content was 0.25% by mass.

得られた活性炭前駆体を、H2O濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度900℃で20分間熱処理することにより賦活をおこない、比較例1の活性炭を得た。得られた活性炭は、QSDFT法によって算出される全細孔容積Tが0.57cc/g、0.8nm以下の範囲の細孔径の細孔容積Aが0.15cc/g、2.5〜3.0nmの範囲の細孔径の細孔容積Bが0.05cc/g、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.26、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.09、イットリウムの含有量は0.66質量%、平均繊維径は16.5μmであった。 The activated carbon precursor obtained was activated by continuously introducing a gas having an H 2 O concentration of 100% by volume into an activation furnace and heat-treating it at an ambient temperature of 900 ° C. for 20 minutes. Obtained. The obtained activated carbon has a total pore volume T calculated by the QSDFT method of 0.57 cc / g, a pore volume A having a pore diameter in the range of 0.8 nm or less of 0.15 cc / g, 2.5-3. A pore volume B having a pore diameter in the range of 0.0 nm is 0.05 cc / g, and a pore diameter in the range of 0.8 nm or less of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g). The ratio (A / T) of the pore volume A (cc / g) of 0.26 is 0.26, and 2.5 to 3.3 of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g). The ratio (B / T) of the pore volume B (cc / g) with a pore diameter in the range of 0 nm was 0.09, the yttrium content was 0.66% by mass, and the average fiber diameter was 16.5 μm.

(比較例2)
有機質材料として、軟化点が280℃の粒状石炭ピッチを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量20g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、イットリウムの含有量は0質量%であった。
(Comparative Example 2)
As an organic material, granular coal pitch having a softening point of 280 ° C. was supplied to a melt extruder, melted and mixed at a melting temperature of 320 ° C., and spun at a discharge rate of 20 g / min to obtain pitch fibers. The pitch fiber thus obtained was heated in the air at a rate of 1 to 30 ° C./min for 54 minutes from room temperature to 354 ° C. to obtain an activated carbon precursor which was an infusible pitch fiber. In the activated carbon precursor, the yttrium content was 0% by mass.

得られた活性炭前駆体を、H2O濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度875℃で40分間熱処理することにより賦活をおこない、比較例2の活性炭を得た。得られた活性炭は、QSDFT法によって算出される全細孔容積Tが0.48cc/g、0.8nm以下の範囲の細孔径の細孔容積Aが0.33cc/g、2.5〜3.0nmの範囲の細孔径の細孔容積Bが0.00cc/g、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.69、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.00、イットリウムの含有量は0質量%、平均繊維径は16.7μmであった。 The activated carbon precursor obtained was activated by continuously introducing a gas having an H 2 O concentration of 100% by volume into an activation furnace and heat treating it at an ambient temperature of 875 ° C. for 40 minutes. Obtained. The obtained activated carbon has a total pore volume T calculated by the QSDFT method of 0.48 cc / g, a pore volume A having a pore diameter in the range of 0.8 nm or less, 0.33 cc / g, 2.5-3. A pore volume having a pore diameter in the range of 0.0 nm is 0.00 cc / g, and a pore diameter in the range of 0.8 nm or less of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g). The pore volume A (cc / g) ratio (A / T) is 0.69, and 2.5 to 3.3 of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g). The ratio (B / T) of the pore volume B (cc / g) with a pore diameter in the range of 0 nm was 0.00, the yttrium content was 0% by mass, and the average fiber diameter was 16.7 μm.

(比較例3)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してトリスアセチルアセトナトイットリウム1.0質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、イットリウムの含有量は0.16質量%であった。
(Comparative Example 3)
As an organic material, a mixture of 1.0 part by mass of trisacetylacetonatoyttrium with 100 parts by mass of granular coal pitch having a softening point of 280 ° C. is supplied to a melt extruder and melt-mixed at a melting temperature of 320 ° C. A pitch fiber was obtained by spinning at a discharge rate of 16 g / min. The pitch fiber thus obtained was heated in the air at a rate of 1 to 30 ° C./min for 54 minutes from room temperature to 354 ° C. to obtain an activated carbon precursor which was an infusible pitch fiber. In the activated carbon precursor, the yttrium content was 0.16% by mass.

得られた活性炭前駆体を、CO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で40分間熱処理することにより賦活をおこない、実施例3の活性炭を得た。得られた活性炭は、QSDFT法によって算出される全細孔容積Tが0.38cc/g、0.8nm以下の範囲の細孔径の細孔容積Aが0.21cc/g、2.5〜3.0nmの範囲の細孔径の細孔容積Bが0.00cc/g、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.55、全細孔容積T(cc/g)に対するQSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.00、イットリウムの含有量は0.30質量%、平均繊維径は14.2μmであった。   The activated carbon precursor obtained was activated by continuously introducing a gas having a CO2 concentration of 100% by volume into an activation furnace and heat-treating it at an atmospheric temperature of 950 ° C. for 40 minutes to obtain activated carbon of Example 3. . The obtained activated carbon has a total pore volume T calculated by the QSDFT method of 0.38 cc / g, a pore volume A having a pore diameter in the range of 0.8 nm or less of 0.21 cc / g, 2.5-3. A pore volume having a pore diameter in the range of 0.0 nm is 0.00 cc / g, and a pore diameter in the range of 0.8 nm or less of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g). The ratio (A / T) of the pore volume A (cc / g) of 0.55 is 0.55, and the pore volume calculated by the QSDFT method for the total pore volume T (cc / g) is 2.5-3. The ratio (B / T) of the pore volume B (cc / g) with a pore diameter in the range of 0 nm was 0.00, the yttrium content was 0.30 mass%, and the average fiber diameter was 14.2 μm.

得られた活性炭の物性を表1に示す。また、図1〜5に、実施例1及び2、比較例1〜3の活性炭のQSDFT法によって算出される細孔径分布図を示す。   Table 1 shows the physical properties of the obtained activated carbon. Moreover, the pore diameter distribution map calculated by QSDFT method of the activated carbon of Examples 1 and 2 and Comparative Examples 1-3 is shown in FIGS.

実施例1及び2の活性炭は、QSDFT法によって算出される全細孔容積Tが0.3〜1.5(cc/g)であって、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5〜0.7であり、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02〜0.06であることから、大きな空塔速度(SV)での通水処理においても、高い総トリハロメタンろ過能力を有する活性炭を得ることができるものであった。   In the activated carbons of Examples 1 and 2, the total pore volume T calculated by the QSDFT method is 0.3 to 1.5 (cc / g), and the total pore volume T calculated by the QSDFT method ( The ratio (A / T) of the pore volume A (cc / g) having a pore diameter in the range of 0.8 nm or less to the pore volume calculated by the QSDFT method with respect to cc / g) is 0.5-0. 7 and the pore volume having a pore diameter in the range of 2.5 to 3.0 nm among the pore volumes calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method. Since the ratio (B / T) of B (cc / g) is 0.02 to 0.06, the activated carbon having a high total trihalomethane filtration capacity can be obtained even in water flow treatment at a large superficial velocity (SV). It was something that could be obtained.

特に、実施例2の活性炭は、QSDFT法によって算出される細孔容積のうち、QSDFT法によって算出される全細孔容積Tが0.48〜0.53cc/gであって、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.54〜0.58であり、前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.03〜0.05であることから、大きな空塔速度(SV)での通水処理においても、高い総トリハロメタンろ過能力を有する活性炭を得ることができるものであった。   In particular, the activated carbon of Example 2 has a total pore volume T calculated by the QSDFT method of 0.48 to 0.53 cc / g among the pore volumes calculated by the QSDFT method. Ratio of pore volume A (cc / g) having a pore diameter in the range of 0.8 nm or less of the pore volume calculated by the QSDFT method to the total pore volume T (cc / g) calculated (A / T) is 0.54 to 0.58, and 2.5 to 3.0 nm of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method. Since the ratio (B / T) of the pore volume B (cc / g) with a pore diameter in the range of 0.03 to 0.05, even in the water flow treatment at a large superficial velocity (SV), Activity with high total trihalomethane filtration capacity It was achieved can be obtained.

一方、比較例1の活性炭は、QSDFT法によって算出される細孔容積のうち、QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5未満であり、QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.06を超えるものであることから、上記総トリハロメタンろ過能力が劣るものであった。   On the other hand, the activated carbon of Comparative Example 1 is the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method among the pore volumes calculated by the QSDFT method. The ratio (A / T) of the pore volume A (cc / g) having a pore diameter in the range of 0.8 nm or less is less than 0.5, and the total pore volume T (cc / g) calculated by the QSDFT method The ratio (B / T) of the pore volume B (cc / g) having a pore diameter in the range of 2.5 to 3.0 nm in the pore volume calculated by the QSDFT method is more than 0.06. Therefore, the total trihalomethane filtration capacity was inferior.

比較例2及び3の活性炭は、QSDFT法によって算出される細孔容積のうち、QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02未満であったことから、上記総トリハロメタンろ過能力が劣るものであった。   In the activated carbons of Comparative Examples 2 and 3, among the pore volumes calculated by the QSDFT method, the pore volumes calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method. Since the ratio (B / T) of the pore volume B (cc / g) having a pore diameter in the range of 2.5 to 3.0 nm was less than 0.02, the total trihalomethane filtration ability was inferior. It was.

Claims (6)

QSDFT法によって算出される全細孔容積Tが0.3〜1.5(cc/g)であって、
前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち0.8nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(A/T)が0.5〜0.7であり、
前記QSDFT法によって算出される全細孔容積T(cc/g)に対する、QSDFT法によって算出される細孔容積のうち2.5〜3.0nmの範囲の細孔径の細孔容積B(cc/g)の割合(B/T)が0.02〜0.06である、活性炭。
The total pore volume T calculated by the QSDFT method is 0.3 to 1.5 (cc / g),
The pore volume A (cc / g) having a pore diameter in the range of 0.8 nm or less of the pore volume calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method. The ratio (A / T) is 0.5 to 0.7,
Of the pore volumes calculated by the QSDFT method with respect to the total pore volume T (cc / g) calculated by the QSDFT method, the pore volume B (cc / The activated carbon whose ratio (B / T) of g) is 0.02-0.06.
QSDFT法によって算出される細孔容積のうち3.0nm以上の細孔径の細孔容積が0.02(cc/g)以下である、請求項1に記載の活性炭。   The activated carbon according to claim 1, wherein a pore volume having a pore diameter of 3.0 nm or more among pore volumes calculated by the QSDFT method is 0.02 (cc / g) or less. 比表面積が700m2/g以上2500m2/g以下である、請求項1又は2に記載の活性炭。 The specific surface area is less than 700 meters 2 / g or more 2500 m 2 / g, the activated carbon according to claim 1 or 2. 前記活性炭の内部に、モリブデン単体及び/又はモリブデン化合物を含む、請求項1〜3のいずれか1項に記載の活性炭。   The activated carbon according to any one of claims 1 to 3, wherein the activated carbon contains molybdenum alone and / or a molybdenum compound. 総トリハロメタンろ過能力が50L/g以上である、請求項1〜4のいずれか1項に記載の活性炭。   The activated carbon according to any one of claims 1 to 4, wherein the total trihalomethane filtration capacity is 50 L / g or more. モリブデンを0.1〜1.0質量%含む活性炭前駆体を、CO2濃度が50容積%以上のガス雰囲気下、雰囲気温度900〜1000℃で賦活する工程を含む、請求項1〜5のいずれか1項に記載の活性炭の製造方法。 The activated carbon precursor containing 0.1 to 1.0% by mass of molybdenum includes a step of activating at an atmospheric temperature of 900 to 1000 ° C. in a gas atmosphere having a CO 2 concentration of 50% by volume or more. The method for producing activated carbon according to claim 1.
JP2018054727A 2018-03-22 2018-03-22 Activated carbon and its manufacturing method Active JP7223985B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018054727A JP7223985B2 (en) 2018-03-22 2018-03-22 Activated carbon and its manufacturing method
JP2022109604A JP2022132348A (en) 2018-03-22 2022-07-07 Activated carbon and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054727A JP7223985B2 (en) 2018-03-22 2018-03-22 Activated carbon and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022109604A Division JP2022132348A (en) 2018-03-22 2022-07-07 Activated carbon and production method thereof

Publications (2)

Publication Number Publication Date
JP2019167258A true JP2019167258A (en) 2019-10-03
JP7223985B2 JP7223985B2 (en) 2023-02-17

Family

ID=68106203

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018054727A Active JP7223985B2 (en) 2018-03-22 2018-03-22 Activated carbon and its manufacturing method
JP2022109604A Pending JP2022132348A (en) 2018-03-22 2022-07-07 Activated carbon and production method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022109604A Pending JP2022132348A (en) 2018-03-22 2022-07-07 Activated carbon and production method thereof

Country Status (1)

Country Link
JP (2) JP7223985B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453462B1 (en) 2023-11-29 2024-03-19 大阪ガスケミカル株式会社 Carbonaceous materials and their manufacturing methods, adsorption filters, water purifier cartridges, water purifiers, and water purification equipment
JP7459365B1 (en) 2023-11-29 2024-04-01 大阪ガスケミカル株式会社 Carbonaceous material and its manufacturing method, and palladium complex adsorption method
JP7453463B1 (en) 2023-11-29 2024-03-19 大阪ガスケミカル株式会社 Carbonaceous material and its manufacturing method, and adsorption filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151324A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Activated carbon and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151324A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Activated carbon and method for producing the same

Also Published As

Publication number Publication date
JP7223985B2 (en) 2023-02-17
JP2022132348A (en) 2022-09-08

Similar Documents

Publication Publication Date Title
JP6379325B1 (en) Activated carbon and manufacturing method thereof
JP6683968B1 (en) Activated carbon
JP2022132348A (en) Activated carbon and production method thereof
WO2018116858A1 (en) Active carbon and production method thereof
JP2004182511A (en) Activated carbon and method of manufacturing the same
WO2018181778A1 (en) Method for producing activated carbon
JP6683969B1 (en) Activated carbon
JP6719709B2 (en) Activated carbon
JP7300124B2 (en) Activated carbon for removing trihalomethane and method for producing the same
WO2003033135A1 (en) Activated carbon fiber for the removal of organochlorine compounds
WO2020065930A1 (en) Activated carbon and method for producing said activated carbon
Liu et al. Mechanisms on formation of hierarchically porous carbon and its adsorption behaviors
WO2023032633A1 (en) Activated carbon
JP7464963B2 (en) Visible light responsive titanium oxide supporting material, method for decomposing organic matter, and method for producing visible light responsive titanium oxide supporting material
JPWO2003026792A1 (en) Activated carbon fiber and method for producing the same
JP6471256B1 (en) Deodorizing material and deodorizing sheet
JP2006315903A (en) Fibrous active carbon
JP2020049451A (en) Activated carbon, and method for producing the activated carbon
JP2019198619A (en) Deodorant and deodorizing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220707

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220715

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220719

C876 Explanation why request for accelerated appeal examination is justified

Free format text: JAPANESE INTERMEDIATE CODE: C876

Effective date: 20220720

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220826

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220830

C305 Report on accelerated appeal examination

Free format text: JAPANESE INTERMEDIATE CODE: C305

Effective date: 20220902

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220906

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221125

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221213

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230110

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R150 Certificate of patent or registration of utility model

Ref document number: 7223985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150