WO2018181778A1 - Method for producing activated carbon - Google Patents

Method for producing activated carbon Download PDF

Info

Publication number
WO2018181778A1
WO2018181778A1 PCT/JP2018/013371 JP2018013371W WO2018181778A1 WO 2018181778 A1 WO2018181778 A1 WO 2018181778A1 JP 2018013371 W JP2018013371 W JP 2018013371W WO 2018181778 A1 WO2018181778 A1 WO 2018181778A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
pore volume
less
surface area
specific surface
Prior art date
Application number
PCT/JP2018/013371
Other languages
French (fr)
Japanese (ja)
Inventor
中野 智康
弘和 清水
Original Assignee
株式会社アドール
ユニチカ株式会社
大阪ガスケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドール, ユニチカ株式会社, 大阪ガスケミカル株式会社 filed Critical 株式会社アドール
Priority to JP2019510164A priority Critical patent/JP7202285B2/en
Priority to KR1020197028686A priority patent/KR102571710B1/en
Priority to CN201880021396.4A priority patent/CN110461767A/en
Publication of WO2018181778A1 publication Critical patent/WO2018181778A1/en
Priority to JP2022206816A priority patent/JP7441296B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/306Active carbon with molecular sieve properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/33Preparation characterised by the starting materials from distillation residues of coal or petroleum; from petroleum acid sludge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present invention relates to a method for producing activated carbon, and more particularly to a method for producing activated carbon for efficiently producing activated carbon having a high proportion of micropores.
  • gas activation methods and chemical activation methods are known as activation methods for producing activated carbon.
  • gas activation method a steam activation method, a carbon dioxide activation method, and an oxygen activation method are known.
  • a steam activation method having a high activation reaction rate and advantageous in terms of productivity is generally used as a gas activation method.
  • the activation reaction is advanced by an endothermic reaction between water vapor and carbon.
  • a method of obtaining activated carbon in an activation time of 120 minutes by activating phenol novolac fibers with water vapor at 950 ° C. is known (see Patent Document 1).
  • at least one metal component of Mg, Mn, Fe, Y, Pt and Gd is included in the pitch as the activated carbon precursor, so that the obtained activated carbon has a mesopore mode of 30 to 45 mm.
  • a method of opening mesopores having a diameter is known (see Patent Document 2).
  • the carbon dioxide activation method is known to have a very low activation reaction rate.
  • a method of obtaining activated carbon in an activation time of 24 hours is known by activating a coconut shell carbonized product with carbon dioxide at 1050 ° C. (see Patent Document 3). Therefore, the carbon dioxide activation method was not suitable for industrial production.
  • the inventors industrially produce activated carbon with an increased proportion of micropores having a diameter of 1 nm or less, which is suitable for, for example, adsorption of dichloromethane in the gas phase among micropores having a diameter of 2 nm or less. Focused on that.
  • the method of making activation temperature low normally is considered. However, if the activation temperature is lowered, the activation reaction takes time, the production cannot be performed efficiently, and it is not suitable for industrial production.
  • Patent Document 1 describes activated carbon in which the ratio of micropores having a diameter of 2 nm or less in Examples 1 to 18 is 0.44 to 0.67, whereas the minimum is 1 nm or less in diameter. No investigation has been made on activated carbon having an increased proportion of size micropores and a method for efficiently producing the activated carbon.
  • Patent Document 2 a method for controlling the distribution of mesopores (diameter 2 to 50 nm), which is much larger than the pore size noted by the present inventors, to a desired range, specifically, the type of a specific metal component Is described to control the mesopore mode diameter of the resulting activated carbon.
  • a method for controlling the distribution of mesopores to a desired range, examples shown as being practically possible are only examples of the steam activation method.
  • Patent Documents 1 to 3 do not disclose or suggest any industrial production of activated carbon with an increased proportion of micro pores having a diameter of 1 nm or less.
  • the main object of the present invention is to provide a method for efficiently producing activated carbon having an increased proportion of micropores having a diameter of 1 nm or less among micropores having a diameter of 2 nm or less.
  • the activated carbon precursor containing a metal component is activated with carbon dioxide gas as an introduction gas, and the ratio of the pore volume B with a diameter of 1.0 nm or less to the total pore volume A (pore volume B / total pore volume A) is 0.
  • Including an activation step of obtaining activated carbon that is 5 or more, and the metal elements constituting the metal component are Group 2 elements, Group 3 elements, Group 4 elements, Group 5 elements, Group 7 elements, and rare earth elements
  • a method for producing activated carbon selected from the group consisting of: Item 2.
  • the activated carbon precursor containing a metal component is activated with carbon dioxide gas as an introduction gas, and the ratio of the pore volume B with a diameter of 1.0 nm or less to the total pore volume A (pore volume B / total pore volume A) is 0.
  • the manufacturing method of activated carbon including the activation process which obtains the activated carbon which is 5 or more, and the metal element which comprises the said metal component is selected from the group which consists of a 6th group element and a 9th group element.
  • Item 5. The method for producing activated carbon according to Item 4, wherein the metal element is selected from the group consisting of Mo and Co.
  • Item 6. The method for producing activated carbon according to any one of Items 1 to 5, wherein the activated carbon has a specific surface area of 600 m 2 / g or more.
  • Item 7. Item 7. The method for producing activated carbon according to any one of Items 1 to 6, wherein the composition of the introduced gas is not changed in the activation step.
  • Item 8. Item 8.
  • Item 9. The method for producing activated carbon according to any one of Items 1 to 8, wherein the activation temperature in the activation step is 800 to 1000 ° C.
  • Item 10. The method for producing activated carbon according to any one of Items 1 to 9, wherein a content of the metal component is 0.05 to 1.0% by mass in the activated carbon precursor.
  • the method for producing activated carbon according to claim 1. Item 13.
  • Item 13 The method for producing activated carbon according to any one of Items 1 to 12, wherein in the activated carbon, a pore volume B having a diameter of 1.0 nm or less is 0.25 cc / g or more.
  • the method for producing activated carbon of the present invention there is provided a method for efficiently producing activated carbon with an increased proportion of micro pores having a diameter of 1 nm or less. Therefore, the time required for activation up to a predetermined activation level can be greatly shortened, and this makes it possible to industrialize activated carbon with high adsorption performance.
  • 4 is a graph showing, in a linear approximation, an increasing tendency of specific surface area with respect to activation time in the production methods of Examples 1 to 8 and Comparative Examples 1 to 3.
  • 5 is a graph showing, by linear approximation, an increasing tendency of specific surface area with respect to activation time in the production methods of Examples 9 to 15 and Comparative Examples 1 to 3.
  • 6 is a graph showing, in a linear approximation, an increasing tendency of specific surface area with respect to activation time in the production methods of Examples 16 to 20 and Comparative Examples 1 to 3. 6 is a graph showing, in a linear approximation, an increasing tendency of specific surface area with respect to activation time in the production methods of Examples 21 to 27 and Comparative Examples 1 to 3. 6 is a graph showing, by linear approximation, an increasing tendency of specific surface area with respect to activation time in the production methods of Comparative Examples 1 to 10.
  • the pore volume refers to the pore volume calculated by the QSDFT method (quenched solid density functional method).
  • the QSDFT method is an analysis method capable of calculating pore size distributions from about 0.5 nm to about 40 nm for geometrically and chemically irregular microporous and mesoporous carbon pore size analysis. .
  • the influence of the roughness and nonuniformity of the pore surface is clearly taken into account, so that the accuracy of the pore diameter distribution analysis is greatly improved.
  • measurement of nitrogen adsorption isotherm and pore size distribution analysis by QSDFT method are performed using “AUTOSORB-1-MP” manufactured by Quantachrome.
  • AUTOSORB-1-MP manufactured by Quantachrome.
  • the activated carbon produced by the production method of the present invention has a ratio of pore volume B (cc / g) having a diameter of 1.0 nm or less to total pore volume A (cc / g), that is, (pore volume B / total pores).
  • the volume A) ratio is 0.5 or more.
  • pores having a diameter of 2.0 nm or less are referred to as micropores.
  • the volume ratio of the extremely small pores having a diameter of 1.0 nm or less among the micropores is increased. Adsorption performance can be obtained satisfactorily.
  • the ratio (pore volume B / total pore volume A) is preferably 0.53 or more, more preferably 0.60 or more, and even more preferably 0.7. As described above, it may be particularly preferably 0.8 or more.
  • the adsorption performance can be evaluated by, for example, the adsorption performance of dichloromethane.
  • the upper limit value of (pore volume B / total pore volume A) ratio is not particularly limited, and examples thereof include 1.00 or less, and 0.95 or less.
  • the total pore volume A (cc / g) may be, for example, 0.45 cc / g or more, preferably 0.50 cc / g or more, from the viewpoint of securing a sufficient pore volume for adsorption. Further, the total pore volume A (cc / g) is, for example, 1.50 cc / g or less, preferably 0 from the viewpoint of favorably obtaining micropores having a diameter of 2 nm or less, preferably micropores having a minimum size of 1 nm or less. It may be 8 cc / g or less.
  • the specific surface area is, for example, 600 m 2 / g or more, preferably 1000 m 2 / g or more, more preferably 1300 m 2 / g or more, further preferably 1400 m 2 / g or more, particularly preferably 1600 m from the viewpoint of obtaining good adsorption performance. It may be 2 / g or more.
  • the upper limit of a specific surface area is not specifically limited, For example, 3000 m ⁇ 2 > / g or less is mentioned, 2500 m ⁇ 2 > / g or less is mentioned, 2000 m ⁇ 2 > / g or less is mentioned.
  • the specific surface area is a value measured by a BET method (one-point method) using nitrogen as an adsorbed substance.
  • the pore volume B (cc / g) having a diameter of 1.0 nm or less is, for example, 0.25 cc / g or more, preferably 0.35 cc / g or more from the viewpoint of obtaining good adsorption performance per unit specific surface area. Good. Further, the upper limit value of the pore volume B having a diameter of 1.0 nm or less is not particularly limited, and for example, 0.60 cc / g or less, preferably 0.50 cc / g or less.
  • the pore volume (cc / g) having a diameter of 1.5 nm or less is, for example, 0.45 cc / g or more from the viewpoint of obtaining good adsorption performance per unit specific surface area. Preferably it may be 0.5 cc / g or more.
  • the upper limit value of the pore volume (cc / g) having a diameter of 1.5 nm or less is not particularly limited, and examples thereof include 0.7 cc / g or less.
  • the pore volume C (cc / g) having a diameter of 2.0 nm or less is, for example, 0.35 cc / g or more from the viewpoint of obtaining good adsorption performance per unit specific surface area. , Preferably 0.45 cc / g or more.
  • the upper limit value of the pore volume C (cc / g) having a diameter of 2.0 nm or less is not particularly limited, and examples thereof include 0.8 cc / g or less.
  • the ratio of the pore volume C having a diameter of 2.0 nm or less to the total pore volume A ( ⁇ pore volume C / total pore volume A ⁇ ⁇ 100, that is, the micropore volume ratio (%)) per unit specific surface area
  • it may be, for example, 80% or more, preferably 85% or more, more preferably 90% or more.
  • the micropore volume ratio (%) is preferably 80 to 95%, more preferably 90 to 95%. Further, the micropore volume (%) may be more than 95% or 96% or more.
  • the ratio of the pore volume having a diameter of more than 2.0 nm and not more than 50 nm to the total pore volume A is not particularly limited.
  • the pore structure has micropores with a diameter of 1.0 nm or less that contribute effectively to adsorption and moderate mesopores that assist the diffusion of the adsorbate in the pores.
  • the mesopore volume ratio is preferably 5 to 20%, more preferably 5 to 10%. Further, the mesopore volume ratio may be less than 5% or 4% or less.
  • the total ratio (%) of the micropore volume and the mesopore volume to the total pore volume A is 98% to 100% (in the case of 100%, the macropore volume ratio (%) is 0%) It can be.
  • the ratio of the metal component contained in the activated carbon to the total mass of the activated carbon may be, for example, 0.15 to 0.60 mass%, preferably 0.15 to 0.45 mass%. More preferably, it may be 0.20 to 0.40% by mass.
  • the above ratio in the activated carbon is a ratio in terms of a metal element measured by an ICP emission spectroscopic analyzer (model 715-ES manufactured by Varian).
  • the form of the activated carbon manufactured by the manufacturing method of this invention is not specifically limited, For example, granular activated carbon, powdered activated carbon, fibrous activated carbon, etc. are mentioned. From the viewpoint of workability when used in filter processing or the like, or when used in a water purifier or the like, it is more preferable to use fibrous activated carbon that is fibrous.
  • the adsorption rate can be evaluated by, for example, a trihalomethane water adsorption test.
  • the average fiber diameter of the fibrous activated carbon is preferably 30 ⁇ m or less, more preferably about 5 to 20 ⁇ m.
  • the average fiber diameter in this invention is the value measured with the image processing fiber diameter measuring apparatus (based on JISK1477).
  • the particle sizes of the granular activated carbon and the powdered activated carbon include an integrated volume percentage D 50 measured by a laser diffraction / scattering method of 0.01 to 5 mm.
  • the activated carbon produced by the production method of the present invention can be used either in the gas phase or in the liquid phase, but is particularly preferably used for adsorbing dichloromethane in the gas phase.
  • Examples of the dichloromethane adsorption performance (equilibrium adsorption amount (% by mass)) that can be provided in the activated carbon produced by the production method of the present invention include 60% by mass or more, preferably 65% by mass or more, and more preferably 75% by mass. % Or more, and particularly preferably 80% by mass or more.
  • the dichloromethane adsorption performance is measured as follows. That is, the activated carbon sample is dried with a dryer at 110 ° C. for 12 hours, cooled with a desiccator, and 0.5 g is quickly measured and filled into a U-shaped tube.
  • the adsorption operation is performed by blowing dry air at a flow rate of 500 ml / min into dichloromethane (special grade reagent, containing 0.5% of methanol in the stabilizer) in a constant temperature bath at 28 ° C. and introducing it into the U-shaped tube. .
  • dichloromethane special grade reagent, containing 0.5% of methanol in the stabilizer
  • the equilibrium point is calculated when the mass increase of the activated carbon stops, and the equilibrium adsorption amount is calculated by the following equation.
  • Equilibrium adsorption amount (% by mass) mass increase / active carbon mass x 100
  • the dichloromethane adsorption performance per unit specific surface area that can be provided by the activated carbon produced by the production method of the present invention includes 0.045% by mass / g / m 2 or more, and 0.046% by mass / g / m. 2 or more are preferred, and specifically, 0.046 to 0.055 mass% ⁇ g / m 2 is mentioned.
  • the dichloromethane equilibrium adsorption amount per unit specific surface area of the activated carbon is calculated by dividing the dichloromethane adsorption performance determined as described above by the specific surface area (m 2 / g) of the activated carbon.
  • Activated carbon precursor In the production method of the present invention, a specific metal component is contained in the activated carbon precursor that is a raw material of the activated carbon.
  • raw material species of the activated carbon precursor include infusible or carbonized organic materials, curable resins such as phenol resins, and the like, for example, polyacrylonitrile, pitch, polyvinyl alcohol, cellulose, etc. Is mentioned.
  • Also sawdust, wood chips, wood, peat, charcoal, coconut husk, coal, oil, carbonaceous materials (petroleum coke, coal coke, petroleum pitch, coal pitch, coal tar pitch, and composites thereof), synthesis Examples thereof include resins (phenol resins, polyacrylonitrile (PAN), polyimides, furan resins, etc.), cellulosic fibers (paper, cotton fibers, etc.), and composites thereof (paper-phenol resin laminates, etc.), fullerenes, and the like.
  • resins phenol resins, polyacrylonitrile (PAN), polyimides, furan resins, etc.), cellulosic fibers (paper, cotton fibers, etc.), and composites thereof (paper-phenol resin laminates, etc.), fullerenes, and the like.
  • PAN polyacrylonitrile
  • PAN polyimides
  • cellulosic fibers paper, cotton fibers, etc.
  • composites thereof paper-phenol resin laminates, etc.
  • the softening point (° C.) of the activated carbon precursor is not particularly limited, but is preferably 275 ° C. to 288 ° C., more preferably 277 ° C. to 283 ° C., from the viewpoint of handleability during infusibilization.
  • the softening point (° C.) is measured by the Mettler method (measured according to ASTM-D3461).
  • the metal component promotes the reaction between carbon and carbon dioxide in the carbon dioxide activation by catalytic action.
  • the metal element constituting the metal component is a group consisting of a Group 2 element, a Group 3 element, a Group 4 element, a Group 5 element, a Group 6 element, a Group 7 element and a Group 9 element, and a rare earth element 1 type or multiple types are selected from.
  • the metal element constituting the metal component is selected from one or more kinds selected from the group consisting of Group 2 elements, Group 3 elements, Group 4 elements, Group 5 elements, Group 7 elements, and rare earth elements Good.
  • Examples of the Group 2 element include Be, Mg, Ca, Sr, Ba, and Ra.
  • Examples of the Group 3 element include Sc and Y.
  • Examples of Group 4 elements include Ti, Zr, and Hf.
  • Examples of Group 5 elements include V, Nb, and Ta.
  • Examples of the Group 7 element include Mn, Tc, and Re.
  • rare earth elements include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • Mg is preferable as the Group 2 element
  • Y is preferable as the Group 3 element
  • Zr and Ti are preferable as the Group 4 element, from the viewpoint of obtaining a large carbon dioxide activation promoting effect.
  • V is preferable as the group element
  • Mn is preferable as the Group 7 element
  • La and Ce are preferable as the rare earth element.
  • micropores having a diameter of 1.0 nm or less that contribute effectively to adsorption and fine mesopores that assist the diffusion of the adsorbate in the pores.
  • a pore structure is preferable, and Y, Mg, Ce, and Ti are preferable as the metal element from this viewpoint.
  • V is preferable as the metal element.
  • Mg, Y among the Group 2 element, Group 3 element, Group 4 element, Group 5 element, Group 7 element, and rare earth element are included. Elements other than Zr, V, Mn, La and Ce can also be selected.
  • Mg, Y, La, Zr, Ce and Ti can be used from the viewpoint of accompanying the generation of mesopores (pores having a diameter of more than 2.0 nm).
  • Mg and V can be used from the viewpoint of suppressing the formation of mesopores.
  • V can be used from a viewpoint which suppresses the production
  • a metal element can be appropriately selected according to the pore structure suitable for the use of the activated carbon to be produced.
  • the metal element constituting the metal component one or more kinds may be selected from the group consisting of Group 6 elements and Group 9 elements.
  • Group 6 elements include Cr, Mo, and W.
  • Group 9 elements include Co, Rh, and Ir.
  • Mo is preferable as the Group 6 element
  • Co is preferable as the Group 9 element from the viewpoint of obtaining a large carbon dioxide activation promoting effect.
  • a pore structure is preferable, and Co is preferable as the metal element from that viewpoint.
  • elements other than the above-described Mo and Co can be selected from Group 6 elements and Group 9 elements.
  • Mo and Co can be used from the viewpoint of accompanying the generation of mesopores (pores having a diameter of more than 2.0 nm).
  • Mo can be used from the viewpoint of suppressing the formation of mesopores.
  • steam is contained in introduction gas
  • Mo is used from a viewpoint which suppresses the production
  • a metal element can be appropriately selected according to the pore structure suitable for the use of the activated carbon to be produced.
  • the method for causing the activated carbon precursor to contain a metal component is not particularly limited.
  • a metal component may be added to the activated carbon precursor or kneaded.
  • the form of the metal component may be a single metal or a metal compound.
  • the metal compound include inorganic metal compounds such as metal oxides, metal hydroxides, metal halides, and metal sulfates, salts of organic acids and metals such as acetic acid and benzoic acid, and organic metal compounds.
  • the organometallic compound include metal complexes such as metal acetylacetonate and aromatic metal compounds (for example, metallocene). Metal complexes are preferred in that they are well melted or dispersed in the activated carbon precursor.
  • the content of the metal component in the activated carbon precursor may be, for example, 0.01 to 1.0% by mass, preferably 0.05 to 0.5% by mass. Further, the content of the metal component in the activated carbon precursor is more preferably 0.05 to 0.4% by mass, further preferably 0.1 to 0%, for example, when the metal element constituting the metal component is Mg.
  • the metal element When the metal element is Mn, it may be more preferably 0.1 to 0.4% by mass, and still more preferably 0.15 to 0.3% by mass; When Y is Y, it may be more preferably 0.05 to 0.4% by mass, and still more preferably 0.05 to 0.3% by mass; when the metal element is La, more preferably 0 0.1 to 0.4% by mass, more preferably 0.15 to 0.3% by mass; when the metal element is V, more preferably 0.05 to 0.4% by mass, still more preferably May be from 0.05 to 0.3% by weight; the metal element is Zr In this case, it may be more preferably 0.05 to 0.4% by mass, further preferably 0.1 to 0.3% by mass; when the metal element is Ce, more preferably 0.05 to 0%.
  • the metal element constituting the metal component is Mo, it may be more preferably 0.1 to 0.4% by mass, further preferably 0.15 to 0.3% by mass; the metal element is Co In this case, it may be more preferably 0.1 to 0.4% by mass, and still more preferably 0.15 to 0.3% by mass.
  • the content of the metal component in the activated carbon precursor is a ratio in terms of a metal element measured by an ICP emission spectroscopic analyzer (model 715-ES manufactured by Varian).
  • Carbon dioxide gas is used as the introduction gas (gas introduced into the activation furnace), and nitrogen, carbon monoxide, a rare gas, or the like can be contained within a range that does not impair the effects of the present application.
  • the activation step in one step without changing the composition of the introduced gas during the activation step.
  • composition of the introduced gas is a value measured according to JIS K 0301 5.1 Orsat analysis method.
  • the flow rate of the introduced gas may be 1.5 L / min or more per 1 g of the activated carbon precursor in terms of 1 atm at 0 ° C., and the activation is efficiently performed while avoiding excessive introduction. From the viewpoint, it may be 5.0 L / min or less. This flow rate may be, for example, an amount per about 0.044 m 3 as the activation furnace volume.
  • the atmospheric temperature (activation temperature) in the activation furnace in the activation step may be, for example, 800 to 1000 ° C., preferably 900 to 1000 ° C.
  • the activation time may be adjusted so as to have a predetermined pore distribution according to the main component of the activated carbon precursor, the added metal species, the content of the metal component, the carbon dioxide concentration in the introduced gas, and the like.
  • the activation time may be 10 to 80 minutes, preferably 10 to 70 minutes.
  • the activation time may be more preferably 15 to 50 minutes, and even more preferably 25 to 45 minutes; when the metal element is Mn, More preferably 15 to 60 minutes, even more preferably 20 to 50 minutes; when the metal element is Y, more preferably 15 to 70 minutes, even more preferably 20 to 65 minutes; When the element is La, it may be more preferably 15 to 40 minutes, even more preferably 20 to 35 minutes; when the metal element is V, more preferably 10 to 60 minutes, still more preferably 15 to 35 minutes.
  • the activation time may be more preferably 15 to 60 minutes, still more preferably 20 to 50 minutes; when the metal element is Co, More preferably, it may be 15 to 60 minutes, and further preferably 20 to 50 minutes.
  • activated carbon precursor containing a metal component is activated with carbon dioxide gas as an introduction gas, and the ratio of pore volume B having a diameter of 1.0 nm or less to total pore volume A (pore volume B / Including an activation step of obtaining activated carbon having a total pore volume A) of 0.5 or more, and the metal elements constituting the metal component are Group 2 elements, Group 3 elements, Group 4 elements, Group 5 elements Therefore, there is provided a method for efficiently producing activated carbon having an increased proportion of micropores having a minimum size of 1.0 nm or less in diameter, which is selected from the group consisting of Group 7 elements and rare earth elements.
  • the preferred specific surface area development rate is, for example, preferably 25 m 2 / g / min or more, more preferably 30 m 2 / g / min or more, until the specific surface area reaches 800 m 2 / g. 40 m 2 / g / min or more is preferable, and 50 m 2 / g / min or more is particularly preferable. Further, preferably at least 25m 2 / g / min developmental rate to reach a specific surface area of 1100 m 2 / g, more preferably at least 30m 2 / g / min, more 40m 2 / g / min is preferable, 50 m 2 / Particularly preferred is g / min or more.
  • the rate of development to reach the specific surface area of 871m 2 / g, rate of development until reaching the specific surface area of 1237m 2 / g, and / or a specific surface area The development rate until reaching 1603 m 2 / g is 25 m 2 / g / min or more, the development rate until reaching the specific surface area 917 m 2 / g, the development rate until reaching the specific surface area 1168 m 2 / g , and / or specific rate of development until reaching the surface area of 1338m 2 / g are mentioned it is 30 m 2 / g / min or more.
  • the development rate until reaching the specific surface area of 981 m 2 / g and / or the development rate until reaching the specific surface area of 1461 m 2 / g is 30 m 2 / g. g / min or more.
  • the rate of development to reach the development rate and / or a specific surface area of 1214m 2 / g to reach the specific surface area of 953m 2 / g is 28 m 2 / g / min or more.
  • the preferred specific surface area growth rate when the metal element is La includes a development rate until reaching a specific surface area of 675 m 2 / g, a development rate until reaching a specific surface area of 758 m 2 / g, and / or a specific surface area.
  • the development rate until reaching 916 m 2 / g is 28 m 2 / g / min or more.
  • the specific surface area 863M 2 / development to reach the g rate and / or a specific surface area of 1426m 2 / g rate of development until reaching the are 50 m 2 / g / min or more.
  • the specific surface area of 790m 2 / development to reach the g rate and / or a specific surface area of 1052m 2 / g rate of development until reaching the are 25 m 2 / g / min or more.
  • the rate of development to reach the specific surface area of 821m 2 / g, rate of development until reaching the specific surface area of 1078m 2 / g, and / or a specific surface area rate of development to reach 1249m 2 / g can be cited more 25m 2 / g / min.
  • the rate of development to reach the development rate and / or a specific surface area of 1170 m 2 / g to reach the specific surface area of 781m 2 / g is 28 m 2 / g / min or more.
  • the rate of development to reach the specific surface area of 871m 2 / g, rate of development until reaching the specific surface area of 1237m 2 / g, and specific surface area 1603M 2 The value of the slope (that is, the development rate of specific surface area per minute) when linearly approximating each of the development rates until reaching / g by the least square method is 25 m 2 / g / min or more.
  • the value of the slope when linear approximation is performed is 25 m 2 / g / min or more.
  • development rate of the preferred specific surface area of the case where the metal element is Mg the minimum respective development velocity to reach the development rate and a specific surface area of 1461m 2 / g to reach the specific surface area of 981m 2 / g 2 squares
  • the value of the slope when linear approximation is performed is 30 m 2 / g / min or more.
  • the preferred specific surface area growth rate when the metal element is Mn is the least square method for each of the growth rate until reaching the specific surface area of 953 m 2 / g and the growth rate until reaching the specific surface area of 1214 m 2 / g.
  • the value of the slope when linear approximation is performed is 15 m 2 / g / min or more.
  • the preferable development rate of the specific surface area when the metal element is La includes the development rate until reaching the specific surface area of 675 m 2 / g, the development rate until reaching the specific surface area of 758 m 2 / g, and the specific surface area of 916 m 2.
  • the value of the slope when linearly approximating each of the development rates until reaching / g by the least square method is 20 m 2 / g / min or more.
  • the minimum respective development velocity to reach the development rate and a specific surface area of 1426m 2 / g to reach the specific surface area of 863m 2 / g 2 squares The value of the slope when linear approximation is performed is 50 m 2 / g / min or more.
  • the preferred specific surface area growth rate when the metal element is Zr is the least square method for each of the growth rate until reaching the specific surface area of 790 m 2 / g and the growth rate until reaching the specific surface area of 1052 m 2 / g.
  • the value of the slope when linear approximation is performed is 15 m 2 / g / min or more.
  • the rate of development to reach the specific surface area of 821m 2 / g, rate of development until reaching the specific surface area of 1078m 2 / g, and specific surface area 1249M 2 The value of the slope when linearly approximating each of the development rates until reaching / g by the least square method is 18 m 2 / g / min or more.
  • the preferred specific surface area growth rate when the metal element is Ti is the least square method for the growth rate until reaching the specific surface area of 781 m 2 / g and the growth rate until reaching the specific surface area of 1170 m 2 / g.
  • the value of the slope when linear approximation is performed is 20 m 2 / g / min or more.
  • activated carbon precursor containing a metal component is activated with carbon dioxide gas as an introduction gas, and the ratio of pore volume B having a diameter of 1.0 nm or less to total pore volume A (pore volume B / Including an activation step of obtaining activated carbon having a total pore volume A) of 0.5 or more, and the metal element constituting the metal component is selected from the group consisting of Group 6 elements and Group 9 elements; Provided is a method for efficiently producing activated carbon having an increased proportion of micropores having an extremely small size of 1.0 nm or less.
  • the preferred specific surface area development rate is, for example, preferably 25 m 2 / g / min or more, more preferably 30 m 2 / g / min or more, until the specific surface area reaches 800 m 2 / g. 40 m 2 / g / min or more is preferable, and 50 m 2 / g / min or more is particularly preferable. Further, preferably at least 25m 2 / g / min developmental rate to reach a specific surface area of 1100 m 2 / g, more preferably at least 30m 2 / g / min, more 40m 2 / g / min is preferable, 50 m 2 / Particularly preferred is g / min or more.
  • the preferred specific surface area growth rate when the metal element is Mo includes a development rate until reaching a specific surface area of 784 m 2 / g, a development rate until reaching a specific surface area of 1171 m 2 / g, and / or a specific surface area.
  • the development rate until reaching 1684 m 2 / g is 25 m 2 / g / min or more.
  • the specific surface area 844M 2 / development to reach the g rate and / or a specific surface area of 1447m 2 / g rate of development until reaching the are 30 m 2 / g / min or more.
  • the preferable development rate of the specific surface area is a development rate until reaching the specific surface area of 784 m 2 / g, a development rate until reaching the specific surface area of 1171 m 2 / g, and a specific surface area of 1684 m 2.
  • the slope value that is, the development rate of the specific surface area per minute
  • the slope value is 20 m 2 / g / min or more when linearly approximating each of the development speeds until reaching / g by the least square method. It is done.
  • the value of the slope when linear approximation is performed is 35 m 2 / g / min or more.
  • the manufacturing method of the present invention may include other steps in addition to the activation step described above.
  • Examples of other processes include processes known in the method for producing activated carbon, such as a molding process (including a spinning process in the case of fibrous activated carbon) that molds an organic material into a predetermined shape before the activation process. It includes the infusibilization step.
  • cleaning the metal component adhering to the surface of the obtained activated carbon can be included after an activation process.
  • Example and Comparative Example were evaluated by the following methods.
  • Metal content (mass%) of infusible pitch fiber (activated carbon precursor) The pitch fiber was incinerated, the ash was dissolved in acid, and the ratio in terms of metal element measured by an ICP emission spectrophotometer (Varian model 715-ES) was defined as the metal content.
  • composition of introduced gas was measured according to JIS K 0301 5.1 Orsat analysis method.
  • the pore volume at each pore diameter described in the following tables is a reading of a pore diameter distribution chart obtained from a nitrogen adsorption / desorption isotherm. More specifically, the pore volume B having a pore diameter of 1.0 nm or less is a readout value of Cumulative Pore Volume (cc / g) when the horizontal axis Pore Width of the pore diameter distribution chart is 1.0 nm. Similarly, a pore volume having a pore diameter of 1.5 nm or less and a pore (that is, micropore) volume C having a pore diameter of 2.0 nm or less were obtained.
  • the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was calculated by dividing the pore volume B with a pore diameter of 1.0 nm or less by the total pore volume A obtained by QSDFT analysis.
  • the micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) was expressed as a percentage by dividing the pore volume C having a pore diameter of 2.0 nm or less by the total pore volume A given by the QSDFT analysis.
  • the mesopore volume ratio (%) was calculated by subtracting the micropore volume ratio (%) from 100%.
  • a pore growth rate of 1.0 nm or less and a pore development rate of 1.0 nm or less were calculated by dividing a pore volume B of 1.0 nm or less by an activation time.
  • the development rate of the specific surface area was calculated by dividing the BET specific surface area by the activation time.
  • Fiber diameter of fibrous activated carbon ( ⁇ m) It measured with the image processing fiber diameter measuring apparatus (based on JISK1477).
  • Example 1 As an organic material, a mixture obtained by adding 0.5 parts by mass of trisacetylacetonatoyttrium (CAS number: 15554-47-9) as a metal component to 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. and mixing them, Pitch fibers were obtained by feeding to a melt extruder, melt mixing at a melting temperature of 320 ° C., and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the yttrium content was 0.10% by mass.
  • the obtained activated carbon has a specific surface area of 871 m 2 / g, a total pore volume A of 0.336 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.305 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.907.
  • Example 2 Activated carbon of Example 2 was obtained in the same manner as in Example 1 except that the activation time was 44 minutes.
  • the obtained activated carbon has a specific surface area of 1237 m 2 / g, a total pore volume A of 0.491 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 99%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.383 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.779.
  • Example 3 Activated carbon of Example 3 was obtained in the same manner as Example 1 except that the activation time was 58 minutes.
  • the obtained activated carbon has a specific surface area of 1603 m 2 / g, a total pore volume A of 0.654 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 97%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.434 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.663.
  • Example 4 Example 1 except that the addition amount of the metal component (trisacetylacetonatoyttrium) was 1.0 part by mass (the metal content in the activated carbon precursor was 0.16% by mass) and the activation time was 25 minutes.
  • the activated carbon of Example 4 was obtained.
  • the obtained activated carbon has a specific surface area of 917 m 2 / g, a total pore volume A of 0.381 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 95%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.278 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.730.
  • Example 5 Activated carbon of Example 5 was obtained in the same manner as Example 4 except that the activation time was 32 minutes.
  • the obtained activated carbon has a specific surface area of 1168 m 2 / g, a total pore volume A of 0.502 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 92%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.302 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.602.
  • Example 6 Activated carbon of Example 6 was obtained in the same manner as in Example 4 except that the activation time was 40 minutes.
  • the obtained activated carbon has a specific surface area of 1338 m 2 / g, a total pore volume A of 0.592 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 90%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.352 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.595.
  • Example 7 As an organic material, a mixture of 2.3 parts by mass of acetylacetone magnesium (II) (CAS number: 14024-56-7) with 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. is supplied to a melt extruder. Then, melt mixing was performed at a melting temperature of 320 ° C., and spinning was performed at a discharge rate of 16 g / min to obtain pitch fibers. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the magnesium content was 0.18% by mass.
  • II acetylacetone magnesium
  • the obtained activated carbon has a specific surface area of 981 m 2 / g, a total pore volume A of 0.395 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 95%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.331 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.838.
  • Example 8 Activated carbon of Example 8 was obtained in the same manner as in Example 7 except that the activation time was 40 minutes.
  • the obtained activated carbon has a specific surface area of 1461 m 2 / g, a total pore volume A of 0.635 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 87%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.417 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.656.
  • Example 9 As an organic material, a mixture of 1.7 parts by mass of manganese benzoate (CAS number: 636-13-5) to 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. is supplied to a melt extruder, Pitch fibers were obtained by melt mixing at a melting temperature of 320 ° C. and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the manganese content was 0.20% by mass.
  • the obtained activated carbon has a specific surface area of 953 m 2 / g, a total pore volume A of 0.367 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.345 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.941.
  • Example 10 Activated carbon of Example 10 was obtained in the same manner as Example 9 except that the activation time was 40 minutes.
  • the obtained activated carbon has a specific surface area of 1214 m 2 / g, a total pore volume A of 0.484 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 98%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.348 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.720.
  • Example 11 As an organic material, a mixture of 1.3 parts by mass of acetylacetonatlantan (CAS number: 64424-12-0) to 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. is supplied to a melt extruder. Pitch fibers were obtained by melt mixing at a melting temperature of 320 ° C. and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the content of lanthanum was 0.21% by mass.
  • the obtained activated carbon has a specific surface area of 675 m 2 / g, a total pore volume A of 0.267 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 99%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.234 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.875.
  • Example 12 Activated carbon of Example 12 was obtained in the same manner as Example 11 except that the activation time was 25 minutes.
  • the obtained activated carbon has a specific surface area of 758 m 2 / g, a total pore volume A of 0.304 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 97%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.256 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.841.
  • Example 13 Activated carbon of Example 13 was obtained in the same manner as Example 11 except that the activation time was 30 minutes.
  • the obtained activated carbon has a specific surface area of 916 m 2 / g, a total pore volume A of 0.368 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 96%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.283 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.770.
  • Example 14 As an organic material, 1.3 parts by mass of bis (2,4-pentanedionato) vanadium (IV) oxide (CAS number: 3153-26-2) per 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. The mixture was supplied to a melt extruder, melted and mixed at a melting temperature of 320 ° C., and spun at a discharge rate of 16 g / min to obtain pitch fibers. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the vanadium content was 0.18% by mass.
  • the obtained activated carbon has a specific surface area of 863 m 2 / g, a total pore volume A of 0.332 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.305 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.918.
  • Example 15 Activated carbon of Example 15 was obtained in the same manner as Example 14 except that the activation time was 25 minutes.
  • the obtained activated carbon has a specific surface area of 1426 m 2 / g, a total pore volume A of 0.569 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 97%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.437 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.767.
  • Example 16 As an organic material, a mixture of 0.8 parts by mass of acetylacetonatozirconium (CAS number: 17501-44-9) to 100 parts by mass of granular coal pitch having a softening point of 280 ° C. is supplied to a melt extruder. Pitch fibers were obtained by melt mixing at a melting temperature of 320 ° C. and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the zirconium content was 0.19% by mass.
  • the obtained activated carbon has a specific surface area of 790 m 2 / g, a total pore volume A of 0.317 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 97%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.259 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.817.
  • Example 17 Activated carbon of Example 17 was obtained in the same manner as Example 16 except that the activation time was 40 minutes.
  • the obtained activated carbon has a specific surface area of 1052 m 2 / g, a total pore volume A of 0.445 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 91%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.315 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.707.
  • Example 18 As an organic material, a mixture of 0.8 parts by mass of acetylacetonatocerium (CAS number: 15653-01-7) to 100 parts by mass of a granular pitch having a softening point of 280 ° C. is supplied to a melt extruder, Pitch fibers were obtained by melt mixing at a melting temperature of 320 ° C. and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the cerium content was 0.14% by mass.
  • the obtained activated carbon has a specific surface area of 821 m 2 / g, a total pore volume A of 0.341 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 92%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.276 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.808.
  • Example 19 Activated carbon of Example 19 was obtained in the same manner as Example 18 except that the activation time was 35 minutes.
  • the obtained activated carbon has a specific surface area of 1078 m 2 / g, a total pore volume A of 0.464 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 89%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.337 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.726.
  • Example 20 Activated carbon of Example 20 was obtained in the same manner as in Example 18 except that the activation time was 45 minutes.
  • the obtained activated carbon has a specific surface area of 1249 m 2 / g, a total pore volume A of 0.550 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 88%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.352 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.641.
  • Example 21 As an organic material, 0.8 part by mass of (2,4-pentanedionato) molybdenum (VI) dioxide (CAS number: 17524-05-9) was mixed with 100 parts by mass of a granular pitch having a softening point of 280 ° C. The product was supplied to a melt extruder, melted and mixed at a melting temperature of 320 ° C., and spun at a discharge rate of 16 g / min to obtain pitch fibers. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the molybdenum content was 0.23% by mass.
  • the obtained activated carbon has a specific surface area of 784 m 2 / g, a total pore volume A of 0.313 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 98%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.269 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.861.
  • Example 22 Activated carbon of Example 22 was obtained in the same manner as Example 21 except that the activation time was 40 minutes.
  • the obtained activated carbon has a specific surface area of 1171 m 2 / g, a total pore volume A of 0.479 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 95%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.365 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.761.
  • Example 23 Activated carbon of Example 23 was obtained in the same manner as Example 21 except that the activation time was 60 minutes.
  • the obtained activated carbon had a specific surface area of 1684 m 2 / g, a total pore volume A of 0.714 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 92%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.427 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.598.
  • Example 24 As an organic material, a mixture of 1.5 parts by mass of acetylacetonatocobalt (CAS number: 21679-46-9) to 100 parts by mass of a granular pitch having a softening point of 280 ° C. is supplied to a melt extruder, Pitch fibers were obtained by melt mixing at a melting temperature of 320 ° C. and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the cobalt content was 0.21% by mass.
  • the obtained activated carbon has a specific surface area of 844 m 2 / g, a total pore volume A of 0.357 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 89%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.315 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.882.
  • Example 25 Activated carbon of Example 25 was obtained in the same manner as Example 24 except that the activation time was 40 minutes.
  • the obtained activated carbon has a specific surface area of 1447 m 2 / g, a total pore volume A of 0.616 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 89%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.431 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.700.
  • Example 26 As an organic material, 1.4 parts by mass of bis (2,4-pentanedionato) titanium (IV) oxide (CAS number: 14024-64-7) is mixed with 100 parts by mass of a granular pitch having a softening point of 280 ° C. The product was supplied to a melt extruder, melted and mixed at a melting temperature of 320 ° C., and spun at a discharge rate of 16 g / min to obtain pitch fibers. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the titanium content was 0.25% by mass.
  • the obtained activated carbon has a specific surface area of 781 m 2 / g, a total pore volume A of 0.335 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 89%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.240 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.717.
  • Example 27 Activated carbon of Example 27 was obtained in the same manner as in Example 26 except that the activation time was 40 minutes.
  • the obtained activated carbon has a specific surface area of 1170 m 2 / g, a total pore volume A of 0.557 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 80%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.320 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.575.
  • the obtained activated carbon has a specific surface area of 814 m 2 / g, a total pore volume A of 0.315 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.311 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.988.
  • Comparative Example 2 Activated carbon of Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that the activation time was 90 minutes.
  • the obtained activated carbon has a specific surface area of 1304 m 2 / g, a total pore volume A of 0.497 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.428 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.862.
  • Comparative Example 3 Activated carbon of Comparative Example 3 was obtained in the same manner as Comparative Example 1 except that the activation time was 125 minutes.
  • the obtained activated carbon has a specific surface area of 1741 m 2 / g, a total pore volume A of 0.692 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.462 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.667.
  • a mixture obtained by adding 1.3 parts by mass of zinc caprylate (CAS number: 557-09-5) as a metal component to 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. is melt-extruded.
  • Pitch fiber was obtained by feeding to a machine, melt mixing at a melting temperature of 320 ° C., and spinning at a discharge rate of 16 g / min.
  • the obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber.
  • the zinc content was 0.19% by mass.
  • the obtained activated carbon has a specific surface area of 1021 m 2 / g, a total pore volume A of 0.387 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.383 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.991.
  • Comparative Example 5 Activated carbon of Comparative Example 5 was obtained in the same manner as Comparative Example 4 except that the activation time was 100 minutes.
  • the obtained activated carbon has a specific surface area of 1484 m 2 / g, a total pore volume A of 0.577 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.467 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.809.
  • the obtained activated carbon has a specific surface area of 1125 m 2 / g, a total pore volume A of 0.427 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.416 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.974.
  • Comparative Example 7 Activated carbon of Comparative Example 7 was obtained in the same manner as Comparative Example 6 except that the activation time was 130 minutes.
  • the obtained activated carbon has a specific surface area of 1690 m 2 / g, a total pore volume A of 0.681 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.415 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.610.
  • the obtained activated carbon has a specific surface area of 389 m 2 / g, a total pore volume A of 0.156 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.156 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.999.
  • Comparative Example 9 Activated carbon of Comparative Example 9 was obtained in the same manner as Comparative Example 8 except that the activation time was 100 minutes.
  • the obtained activated carbon has a specific surface area of 1280 m 2 / g, a total pore volume A of 0.495 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.397 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.802.
  • Comparative Example 10 Activated carbon of Comparative Example 10 was obtained in the same manner as Comparative Example 8 except that the activation time was 130 minutes.
  • the obtained activated carbon has a specific surface area of 1730 m 2 / g, a total pore volume A of 0.700 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 100%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.420 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.600.
  • the obtained activated carbon has a specific surface area of 1078 m 2 / g, a total pore volume A of 0.572 cc / g, a micropore volume ratio ( ⁇ C / A ⁇ ⁇ 100) of 72%, and a pore diameter of 1.0 nm or less.
  • the pore volume B was 0.241 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.421.
  • Tables 1 to 5 show production conditions and physical property values of the activated carbon obtained by the production methods of Examples 1 to 27 and Comparative Examples 1 to 11. Further, graphs showing the increase tendency of the specific surface area with respect to the activation time in the production methods of Examples 1 to 27 and Comparative Examples 1 to 10 are shown in FIG. 1 to FIG.
  • Comparative Examples 1 to 10 the development rate of the specific surface area is small, and activated carbon cannot be produced efficiently. Further, as shown in Comparative Examples 4 to 10, even when the metal component is included in the activated carbon precursor and activated by carbon dioxide gas, if the metal component does not contain the specific metal element in the present invention, The development rate of specific surface area cannot be increased. Further, as shown in Table 5, Comparative Example 11 contained a specific metal component in the activated carbon precursor, but was activated by the water vapor activation method, so that the diameter with respect to the total pore volume A was 1.0 nm. The following ratio of pore volume B (pore volume B / total pore volume A) was less than 0.5.

Abstract

Provided is a method for efficiently producing activated carbon having an increased proportion of extremely small-sized micropores 1 nm or less in diameter even among micropores 2 nm or less in diameter. This method for producing activated carbon includes an activation step that activates an activated carbon precursor containing a metal component by carbon dioxide gas as an introduction gas and obtains activated carbon having a ratio (pore volume B/total pore volume A) of the pore volume B 1.0 nm or less in diameter to the total pore volume A of 0.5 or higher, and the metal element that constitutes the metal component is selected from the group consisting of group 2 elements, group 3 elements, group 4 elements, group 5 elements, group 6 elements, group 7 elements, group 9 elements, and rare earth elements.

Description

活性炭の製造方法Method for producing activated carbon
 本発明は、活性炭の製造方法に関し、特にミクロ細孔の割合が高い活性炭を効率良く製造する活性炭の製造方法に関する。 The present invention relates to a method for producing activated carbon, and more particularly to a method for producing activated carbon for efficiently producing activated carbon having a high proportion of micropores.
 従来より、活性炭を製造する際の賦活方法として、ガス賦活法と薬品賦活法とが知られている。このうち、ガス賦活法としては、水蒸気賦活法、炭酸ガス賦活法、及び酸素賦活法が知られている。 Conventionally, gas activation methods and chemical activation methods are known as activation methods for producing activated carbon. Among these, as the gas activation method, a steam activation method, a carbon dioxide activation method, and an oxygen activation method are known.
 工業的観点からは、賦活反応の速度が大きく生産性の面で有利な水蒸気賦活法が、ガス賦活法として利用されることが一般的である。水蒸気賦活法では、水蒸気と炭素との吸熱反応により賦活反応を進行させる。例えば、フェノールノボラック繊維を水蒸気により950℃で賦活することで、賦活時間120分で活性炭を得る方法が知られている(特許文献1参照)。
 さらに、水蒸気賦活においては、Mg、Mn、Fe、Y、Pt及びGdの少なくとも1種の金属成分を活性炭前駆体としてのピッチに含ませることで、得られる活性炭において30~45Åのメソ細孔モード直径を有するメソ細孔を開口する方法が知られている(特許文献2参照)。
From an industrial point of view, a steam activation method having a high activation reaction rate and advantageous in terms of productivity is generally used as a gas activation method. In the steam activation method, the activation reaction is advanced by an endothermic reaction between water vapor and carbon. For example, a method of obtaining activated carbon in an activation time of 120 minutes by activating phenol novolac fibers with water vapor at 950 ° C. is known (see Patent Document 1).
Furthermore, in the steam activation, at least one metal component of Mg, Mn, Fe, Y, Pt and Gd is included in the pitch as the activated carbon precursor, so that the obtained activated carbon has a mesopore mode of 30 to 45 mm. A method of opening mesopores having a diameter is known (see Patent Document 2).
 一方、炭酸ガス賦活法は、賦活反応の速度が非常に小さいことが知られている。例えば、ヤシ殻炭化品を二酸化炭素により1050℃で賦活することで、賦活時間24時間で活性炭を得る方法が知られている(特許文献3参照)。従って、炭酸ガス賦活法は工業生産には適さなかった。 On the other hand, the carbon dioxide activation method is known to have a very low activation reaction rate. For example, a method of obtaining activated carbon in an activation time of 24 hours is known by activating a coconut shell carbonized product with carbon dioxide at 1050 ° C. (see Patent Document 3). Therefore, the carbon dioxide activation method was not suitable for industrial production.
特許第5781164号明細書Japanese Patent No. 5781164 特開2004-182511号公報JP 2004-182511 A 特開2007-221108号公報JP 2007-221108 A
 本発明者らは、直径2nm以下のミクロ孔の中でも、例えば、気相中のジクロロメタンの吸着に適している、直径1nm以下の極小サイズのミクロ孔の割合を高めた活性炭を工業的に製造することに着目した。ここで、直径1nm以下の極小サイズのミクロ孔の割合を高めた活性炭を製造しようとする場合、通常、賦活温度を低くしたりする方法が考えられる。しかしながら、賦活温度を低くしたりすると、賦活反応に時間がかかり、効率よく生産をおこなえず、工業的な製造には適さない。すなわち、従来、直径1nm以下の極小サイズのミクロ孔の割合を高めた活性炭を、工業的に製造することは困難であるという問題があった。具体的に、例えば、特許文献1では、実施例1~18において、直径2nm以下のミクロ孔の割合が0.44~0.67である活性炭については記載されている一方、直径1nm以下の極小サイズのミクロ孔の割合を高めた活性炭、及び該活性炭を効率良く製造する方法については一切検討されていない。また、特許文献2では、上記本発明者等が着目した細孔サイズより遥かに大きい、メソ孔(直径2~50nm)の分布を所望の範囲に制御する方法、詳しくは特定の金属成分の種類を変えることによって、得られる活性炭のメソ細孔モード直径を制御することが記載されている。しかしながら、上記本発明者等が着目した直径1nm以下の極小サイズのミクロ孔の割合を高めた活性炭、及び該活性炭を効率良く製造する方法については一切検討されていない。そして、特許文献2では、メソ孔の分布を所望の範囲に制御する観点から、具体的に実施可能であるとして示されている実施例は、水蒸気賦活法の例のみである。また、特許文献3に開示されているヤシ殻炭化品を二酸化炭素により1050℃で賦活する方法では、賦活時間がかかりすぎ工業的に製造することは困難であるという問題がある。従って、特許文献1~3には、直径1nm以下の極小サイズのミクロ孔の割合を高めた活性炭を工業的に製造することについて一切開示、示唆されていない。 The inventors industrially produce activated carbon with an increased proportion of micropores having a diameter of 1 nm or less, which is suitable for, for example, adsorption of dichloromethane in the gas phase among micropores having a diameter of 2 nm or less. Focused on that. Here, when it is going to manufacture the activated carbon which raised the ratio of the micropore of the extremely small size 1 nm or less in diameter, the method of making activation temperature low normally is considered. However, if the activation temperature is lowered, the activation reaction takes time, the production cannot be performed efficiently, and it is not suitable for industrial production. That is, conventionally, there has been a problem that it is difficult to industrially manufacture activated carbon having an increased proportion of micro pores having a diameter of 1 nm or less. Specifically, for example, Patent Document 1 describes activated carbon in which the ratio of micropores having a diameter of 2 nm or less in Examples 1 to 18 is 0.44 to 0.67, whereas the minimum is 1 nm or less in diameter. No investigation has been made on activated carbon having an increased proportion of size micropores and a method for efficiently producing the activated carbon. In Patent Document 2, a method for controlling the distribution of mesopores (diameter 2 to 50 nm), which is much larger than the pore size noted by the present inventors, to a desired range, specifically, the type of a specific metal component Is described to control the mesopore mode diameter of the resulting activated carbon. However, no investigation has been made on activated carbon with a high proportion of micro pores having a diameter of 1 nm or less, which has been focused on by the present inventors, and a method for efficiently producing the activated carbon. And in patent document 2, from the viewpoint of controlling the distribution of mesopores to a desired range, examples shown as being practically possible are only examples of the steam activation method. Moreover, in the method of activating the coconut shell carbonized product disclosed in Patent Document 3 at 1050 ° C. with carbon dioxide, there is a problem that it takes too much activation time to be industrially produced. Therefore, Patent Documents 1 to 3 do not disclose or suggest any industrial production of activated carbon with an increased proportion of micro pores having a diameter of 1 nm or less.
 そこで本発明は、直径2nm以下のミクロ孔の中でも、直径1nm以下の極小サイズのミクロ孔の割合を高めた活性炭を効率良く製造する方法を提供することを主な目的とする。 Therefore, the main object of the present invention is to provide a method for efficiently producing activated carbon having an increased proportion of micropores having a diameter of 1 nm or less among micropores having a diameter of 2 nm or less.
 本発明者らは鋭意検討の結果、あえて、本発明者等が着目した細孔のサイズよりも遥かに大きいサイズの細孔であるメソ孔を制御するのに用いられてきた、活性炭前駆体に金属成分を含有させる技術要素、及び、賦活反応の速度が非常に小さいことで知られている炭酸ガス賦活法について着目した。そして、更に鋭意検討した結果、特定の金属を選択して炭酸ガス賦活法における活性炭前駆体に含ませることで、意外にも、直径1nm以下の極小サイズのミクロ孔の割合が高められた活性炭が短い賦活時間で得られることを見出した。
 本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。
As a result of intensive studies, the inventors of the present invention dared to use activated carbon precursors that have been used to control mesopores, which are pores having a size much larger than the size of the pores the inventors have focused on. Attention was paid to the technical elements containing metal components and the carbon dioxide activation method known to have a very low activation reaction rate. As a result of further intensive studies, it was surprising that activated carbon with an increased proportion of micro pores having a diameter of 1 nm or less was selected by adding a specific metal to the activated carbon precursor in the carbon dioxide activation method. It was found that it can be obtained with a short activation time.
The present invention has been completed by further studies based on these findings.
 すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1.金属成分を含む活性炭前駆体を導入ガスとして炭酸ガスで賦活し、全細孔容積Aに対する直径1.0nm以下の細孔容積Bの比(細孔容積B/全細孔容積A)が0.5以上である活性炭を得る賦活工程を含み、前記金属成分を構成する金属元素が、第2族元素、第3族元素、第4族元素、第5族元素、第7族元素、及び希土類元素からなる群から選択される、活性炭の製造方法。
項2.前記金属元素が、Y、Mg、Mn、La、V、Zr、Ti及びCeからなる群から選択される、項1に記載の活性炭の製造方法。
項3.前記金属元素が、Y、Mg、Ce、Ti及びVからなる群から選択される、項1又は2に記載の活性炭の製造方法。
項4.金属成分を含む活性炭前駆体を導入ガスとして炭酸ガスで賦活し、全細孔容積Aに対する直径1.0nm以下の細孔容積Bの比(細孔容積B/全細孔容積A)が0.5以上である活性炭を得る賦活工程を含み、前記金属成分を構成する金属元素が、第6族元素及び第9族元素からなる群から選択される、活性炭の製造方法。
項5.前記金属元素が、Mo及びCoからなる群から選択される、項4に記載の活性炭の製造方法。
項6.前記活性炭の比表面積が600m2/g以上である、項1から5のいずれか1項に記載の活性炭の製造方法。
項7.前記賦活工程において、前記導入ガスの組成を変更しない、項1から6のいずれか1項に記載の活性炭の製造方法。
項8.前記導入ガスの流量が、前記活性炭前駆体1g当たり、0℃1気圧換算で1.5L/分以上である、項1から7のいずれか1項に記載の活性炭の製造方法。
項9.前記賦活工程における賦活温度が800~1000℃である、項1から8のいずれか1項に記載の活性炭の製造方法。
項10.前記活性炭前駆体中、前記金属成分の含有量が0.05~1.0質量%である、項1から9のいずれか1項に記載の活性炭の製造方法。
項11.前記活性炭前駆体が、不融化したピッチである、項1から10のいずれか1項に記載の活性炭の製造方法。
項12.前記活性炭において、全細孔容積Aに対する直径2.0nm以下の細孔容積Cの割合({細孔容積C/細孔容積A}×100)が85%以上である、項1から11のいずれか1項に記載の活性炭の製造方法。
項13.前記活性炭において、直径1.0nm以下の細孔容積Bが0.25cc/g以上である、項1から12のいずれか1項に記載の活性炭の製造方法。
That is, this invention provides the invention of the aspect hung up below.
Item 1. The activated carbon precursor containing a metal component is activated with carbon dioxide gas as an introduction gas, and the ratio of the pore volume B with a diameter of 1.0 nm or less to the total pore volume A (pore volume B / total pore volume A) is 0. Including an activation step of obtaining activated carbon that is 5 or more, and the metal elements constituting the metal component are Group 2 elements, Group 3 elements, Group 4 elements, Group 5 elements, Group 7 elements, and rare earth elements A method for producing activated carbon, selected from the group consisting of:
Item 2. Item 2. The method for producing activated carbon according to Item 1, wherein the metal element is selected from the group consisting of Y, Mg, Mn, La, V, Zr, Ti, and Ce.
Item 3. Item 3. The method for producing activated carbon according to Item 1 or 2, wherein the metal element is selected from the group consisting of Y, Mg, Ce, Ti and V.
Item 4. The activated carbon precursor containing a metal component is activated with carbon dioxide gas as an introduction gas, and the ratio of the pore volume B with a diameter of 1.0 nm or less to the total pore volume A (pore volume B / total pore volume A) is 0. The manufacturing method of activated carbon including the activation process which obtains the activated carbon which is 5 or more, and the metal element which comprises the said metal component is selected from the group which consists of a 6th group element and a 9th group element.
Item 5. Item 5. The method for producing activated carbon according to Item 4, wherein the metal element is selected from the group consisting of Mo and Co.
Item 6. Item 6. The method for producing activated carbon according to any one of Items 1 to 5, wherein the activated carbon has a specific surface area of 600 m 2 / g or more.
Item 7. Item 7. The method for producing activated carbon according to any one of Items 1 to 6, wherein the composition of the introduced gas is not changed in the activation step.
Item 8. Item 8. The method for producing activated carbon according to any one of Items 1 to 7, wherein the flow rate of the introduced gas is 1.5 L / min or more in terms of 1 atm at 0 ° C per 1 g of the activated carbon precursor.
Item 9. Item 9. The method for producing activated carbon according to any one of Items 1 to 8, wherein the activation temperature in the activation step is 800 to 1000 ° C.
Item 10. Item 10. The method for producing activated carbon according to any one of Items 1 to 9, wherein a content of the metal component is 0.05 to 1.0% by mass in the activated carbon precursor.
Item 11. Item 11. The method for producing activated carbon according to any one of Items 1 to 10, wherein the activated carbon precursor is an infusible pitch.
Item 12. Any of the items 1 to 11, wherein in the activated carbon, a ratio of a pore volume C having a diameter of 2.0 nm or less to a total pore volume A ({pore volume C / pore volume A} × 100) is 85% or more. The method for producing activated carbon according to claim 1.
Item 13. Item 13. The method for producing activated carbon according to any one of Items 1 to 12, wherein in the activated carbon, a pore volume B having a diameter of 1.0 nm or less is 0.25 cc / g or more.
 本発明の活性炭の製造方法によれば、直径1nm以下の極小サイズのミクロ孔の割合を高めた活性炭を効率良く製造する方法が提供される。したがって、所定賦活度まで賦活するために必要な所要時間を大幅に短縮することができる、これにより、吸着性能の高い活性炭の工業化が可能となる。 According to the method for producing activated carbon of the present invention, there is provided a method for efficiently producing activated carbon with an increased proportion of micro pores having a diameter of 1 nm or less. Therefore, the time required for activation up to a predetermined activation level can be greatly shortened, and this makes it possible to industrialize activated carbon with high adsorption performance.
実施例1~8及び比較例1~3の製造方法における賦活時間に対する比表面積の増加傾向を線形近似で示したグラフである。4 is a graph showing, in a linear approximation, an increasing tendency of specific surface area with respect to activation time in the production methods of Examples 1 to 8 and Comparative Examples 1 to 3. 実施例9~15及び比較例1~3の製造方法における賦活時間に対する比表面積の増加傾向を線形近似で示したグラフである。5 is a graph showing, by linear approximation, an increasing tendency of specific surface area with respect to activation time in the production methods of Examples 9 to 15 and Comparative Examples 1 to 3. 実施例16~20及び比較例1~3の製造方法における賦活時間に対する比表面積の増加傾向を線形近似で示したグラフである。6 is a graph showing, in a linear approximation, an increasing tendency of specific surface area with respect to activation time in the production methods of Examples 16 to 20 and Comparative Examples 1 to 3. 実施例21~27及び比較例1~3の製造方法における賦活時間に対する比表面積の増加傾向を線形近似で示したグラフである。6 is a graph showing, in a linear approximation, an increasing tendency of specific surface area with respect to activation time in the production methods of Examples 21 to 27 and Comparative Examples 1 to 3. 比較例1~10の製造方法における賦活時間に対する比表面積の増加傾向を線形近似で示したグラフである。6 is a graph showing, by linear approximation, an increasing tendency of specific surface area with respect to activation time in the production methods of Comparative Examples 1 to 10.
 以下、本発明の活性炭の製造方法について詳細に説明する。 Hereinafter, the production method of the activated carbon of the present invention will be described in detail.
[1.製造対象(活性炭)]
[1-1.活性炭の表面構造]
 以下において、細孔容積とは、QSDFT法(急冷固体密度汎関数法)によって算出される細孔容積をいう。QSDFT法とは、幾何学的・化学的に不規則なミクロポーラス・メソポーラスな炭素の細孔径解析を対象とした、約0.5nm~約40nmまでの細孔径分布の計算ができる解析手法である。QSDFT法では、細孔表面の粗さと不均一性による影響が明瞭に考慮されているため、細孔径分布解析の正確さが大幅に向上した手法である。本発明においては、Quantachrome社製「AUTOSORB-1-MP」を用いて窒素吸着等温線の測定、及びQSDFT法による細孔径分布解析をおこなう。77Kの温度において測定した窒素の脱着等温線に対し、Calculation modelとしてN2 at 77K on carbon[slit pore,QSDFT equilibrium model]を適用して細孔径分布を計算することで、特定の細孔径範囲の細孔容積を算出することができる。
[1. Production target (activated carbon)]
[1-1. Activated carbon surface structure]
Hereinafter, the pore volume refers to the pore volume calculated by the QSDFT method (quenched solid density functional method). The QSDFT method is an analysis method capable of calculating pore size distributions from about 0.5 nm to about 40 nm for geometrically and chemically irregular microporous and mesoporous carbon pore size analysis. . In the QSDFT method, the influence of the roughness and nonuniformity of the pore surface is clearly taken into account, so that the accuracy of the pore diameter distribution analysis is greatly improved. In the present invention, measurement of nitrogen adsorption isotherm and pore size distribution analysis by QSDFT method are performed using “AUTOSORB-1-MP” manufactured by Quantachrome. By applying N2 at 77K on carbon [slit pore, QSDFT equilibrium model] as a calibration model to the nitrogen desorption isotherm measured at a temperature of 77 K, the pore size distribution is calculated to obtain a fine pore size range. The pore volume can be calculated.
 本発明の製造方法によって製造される活性炭は、全細孔容積A(cc/g)に対する直径1.0nm以下の細孔容積B(cc/g)の比つまり(細孔容積B/全細孔容積A)比が0.5以上である。通常、直径2.0nm以下の細孔をミクロ孔というが、本発明では、ミクロ孔の中でも直径1.0nm以下のさらに極小の細孔の容積割合が高められているため、単位比表面積あたりの吸着性能を良好に得ることができる。単位比表面積あたりの吸着性能をより良好に得る観点から、(細孔容積B/全細孔容積A)比は好ましくは0.53以上、より好ましくは0.60以上、更に好ましくは0.7以上、特に好ましくは0.8以上であってよい。なお、本発明において、吸着性能は、例えばジクロロメタンの吸着性能等により評価することができる。また、(細孔容積B/全細孔容積A)比の上限値については特に制限されないが、例えば、1.00以下が挙げられ、0.95以下が挙げられる。 The activated carbon produced by the production method of the present invention has a ratio of pore volume B (cc / g) having a diameter of 1.0 nm or less to total pore volume A (cc / g), that is, (pore volume B / total pores). The volume A) ratio is 0.5 or more. Usually, pores having a diameter of 2.0 nm or less are referred to as micropores. However, in the present invention, the volume ratio of the extremely small pores having a diameter of 1.0 nm or less among the micropores is increased. Adsorption performance can be obtained satisfactorily. From the viewpoint of obtaining better adsorption performance per unit specific surface area, the ratio (pore volume B / total pore volume A) is preferably 0.53 or more, more preferably 0.60 or more, and even more preferably 0.7. As described above, it may be particularly preferably 0.8 or more. In the present invention, the adsorption performance can be evaluated by, for example, the adsorption performance of dichloromethane. Further, the upper limit value of (pore volume B / total pore volume A) ratio is not particularly limited, and examples thereof include 1.00 or less, and 0.95 or less.
 全細孔容積A(cc/g)は、吸着のための充分な細孔容積を確保する観点から、例えば0.45cc/g以上、好ましくは0.50cc/g以上であってよい。
 また、全細孔容積A(cc/g)は、直径2nm以下のミクロ孔、好ましくは直径1nm以下の極小サイズのミクロ孔を良好に得る観点から、例えば1.50cc/g以下、好ましくは0.8cc/g以下であってよい。
The total pore volume A (cc / g) may be, for example, 0.45 cc / g or more, preferably 0.50 cc / g or more, from the viewpoint of securing a sufficient pore volume for adsorption.
Further, the total pore volume A (cc / g) is, for example, 1.50 cc / g or less, preferably 0 from the viewpoint of favorably obtaining micropores having a diameter of 2 nm or less, preferably micropores having a minimum size of 1 nm or less. It may be 8 cc / g or less.
 比表面積は、吸着性能を良好に得る観点から、例えば600m2/g以上、好ましくは1000m2/g以上、より好ましくは1300m2/g以上、さらに好ましくは1400m2/g以上、特に好ましくは1600m2/g以上であってよい。
 また、比表面積の上限値は特に制限されないが、例えば、3000m2/g以下が挙げられ、2500m2/g以下が挙げられ、2000m2/g以下が挙げられる。
 なお、本発明において比表面積とは、窒素を被吸着物質として用いたBET法(1点法)により測定される値である。
The specific surface area is, for example, 600 m 2 / g or more, preferably 1000 m 2 / g or more, more preferably 1300 m 2 / g or more, further preferably 1400 m 2 / g or more, particularly preferably 1600 m from the viewpoint of obtaining good adsorption performance. It may be 2 / g or more.
Moreover, although the upper limit of a specific surface area is not specifically limited, For example, 3000 m < 2 > / g or less is mentioned, 2500 m < 2 > / g or less is mentioned, 2000 m < 2 > / g or less is mentioned.
In the present invention, the specific surface area is a value measured by a BET method (one-point method) using nitrogen as an adsorbed substance.
 直径1.0nm以下の細孔容積B(cc/g)は、単位比表面積あたりの吸着性能を良好に得る観点から、例えば0.25cc/g以上、好ましくは0.35cc/g以上であってよい。
 また、直径1.0nm以下の細孔容積Bの上限値は特に制限されないが、例えば0.60cc/g以下、好ましくは0.50cc/g以下が挙げられる。
The pore volume B (cc / g) having a diameter of 1.0 nm or less is, for example, 0.25 cc / g or more, preferably 0.35 cc / g or more from the viewpoint of obtaining good adsorption performance per unit specific surface area. Good.
Further, the upper limit value of the pore volume B having a diameter of 1.0 nm or less is not particularly limited, and for example, 0.60 cc / g or less, preferably 0.50 cc / g or less.
 本発明の製造方法によって製造される活性炭において、直径1.5nm以下の細孔容積(cc/g)は、単位比表面積あたりの吸着性能を良好に得る観点から、例えば0.45cc/g以上、好ましくは0.5cc/g以上であってよい。
 また、直径1.5nm以下の細孔容積(cc/g)の上限値は特に制限されないが、例えば0.7cc/g以下が挙げられる。
In the activated carbon produced by the production method of the present invention, the pore volume (cc / g) having a diameter of 1.5 nm or less is, for example, 0.45 cc / g or more from the viewpoint of obtaining good adsorption performance per unit specific surface area. Preferably it may be 0.5 cc / g or more.
Moreover, the upper limit value of the pore volume (cc / g) having a diameter of 1.5 nm or less is not particularly limited, and examples thereof include 0.7 cc / g or less.
 本発明の製造方法によって製造される活性炭において、直径2.0nm以下の細孔容積C(cc/g)は、単位比表面積あたりの吸着性能を良好に得る観点から、例えば0.35cc/g以上、好ましくは0.45cc/g以上であってよい。
 また、直径2.0nm以下の細孔容積C(cc/g)の上限値は特に制限されないが、例えば0.8cc/g以下が挙げられる。
In the activated carbon produced by the production method of the present invention, the pore volume C (cc / g) having a diameter of 2.0 nm or less is, for example, 0.35 cc / g or more from the viewpoint of obtaining good adsorption performance per unit specific surface area. , Preferably 0.45 cc / g or more.
Further, the upper limit value of the pore volume C (cc / g) having a diameter of 2.0 nm or less is not particularly limited, and examples thereof include 0.8 cc / g or less.
 全細孔容積Aに対する直径2.0nm以下の細孔容積Cの割合({細孔容積C/全細孔容積A}×100、つまりミクロ細孔容積率(%))は、単位比表面積あたりの吸着性能を良好に得る観点から、例えば80%以上、好ましくは85%以上、より好ましくは90%以上であってよい。また、浄水器等での用途を想定した場合には、吸着に有効に寄与する直径1.0nm以下のミクロ孔と、被吸着質の細孔内拡散を補助する適度なメソ孔が存在する細孔構造とすることが好ましい場合があり、その観点で、ミクロ細孔容積率(%)は、好ましくは80~95%、より好ましくは90~95%が好ましい。また、ミクロ細孔容積(%)は、95%超、又は96%以上とすることもできる。 The ratio of the pore volume C having a diameter of 2.0 nm or less to the total pore volume A ({pore volume C / total pore volume A} × 100, that is, the micropore volume ratio (%)) per unit specific surface area From the viewpoint of obtaining a satisfactory adsorption performance, it may be, for example, 80% or more, preferably 85% or more, more preferably 90% or more. In addition, when intended for use in water purifiers, etc., there are micropores with a diameter of 1.0 nm or less that contribute effectively to adsorption and moderate mesopores that assist the diffusion of the adsorbate in the pores. In some cases, it is preferable to have a pore structure. From this viewpoint, the micropore volume ratio (%) is preferably 80 to 95%, more preferably 90 to 95%. Further, the micropore volume (%) may be more than 95% or 96% or more.
 本発明の製造方法によって製造される活性炭において、全細孔容積Aに対する直径2.0nm超50nm以下の細孔容積の割合、つまりメソ細孔容積率(%)は、特に制限されないが、浄水器等での用途を想定した場合には、吸着に有効に寄与する直径1.0nm以下のミクロ孔と、被吸着質の細孔内拡散を補助する適度なメソ孔が存在する細孔構造とすることが好ましい場合があり、その観点で、メソ細孔容積率は、好ましくは5~20%、より好ましくは5~10%が挙げられる。また、メソ細孔容積率は、5%未満、又は4%以下とすることもできる。また、全細孔容積Aに対するミクロ細孔容積とメソ細孔容積の合計の割合(%)としては、98%~100%(100%の場合、マクロ細孔容積率(%)が0%)とすることができる。 In the activated carbon produced by the production method of the present invention, the ratio of the pore volume having a diameter of more than 2.0 nm and not more than 50 nm to the total pore volume A, that is, the mesopore volume ratio (%) is not particularly limited. Assuming applications such as, the pore structure has micropores with a diameter of 1.0 nm or less that contribute effectively to adsorption and moderate mesopores that assist the diffusion of the adsorbate in the pores. In this respect, the mesopore volume ratio is preferably 5 to 20%, more preferably 5 to 10%. Further, the mesopore volume ratio may be less than 5% or 4% or less. The total ratio (%) of the micropore volume and the mesopore volume to the total pore volume A is 98% to 100% (in the case of 100%, the macropore volume ratio (%) is 0%) It can be.
[1-2.活性炭中の金属含有量]
 本発明の製造方法では後述のとおり金属成分を用いるため、得られる活性炭には当該金属成分が残存している。活性炭の総質量に対する、該活性炭に含有される金属成分の割合(金属元素換算)は、例えば、0.15~0.60質量%であってよく、好ましくは0.15~0.45質量%であってよく、より好ましくは0.20~0.40質量%であってよい。活性炭中の上記割合は、ICP発光分光分析装置(Varian社製型式715-ES)により測定される金属元素換算の割合である。
[1-2. Metal content in activated carbon]
Since the metal component is used in the production method of the present invention as described later, the metal component remains in the obtained activated carbon. The ratio of the metal component contained in the activated carbon to the total mass of the activated carbon (in terms of metal element) may be, for example, 0.15 to 0.60 mass%, preferably 0.15 to 0.45 mass%. More preferably, it may be 0.20 to 0.40% by mass. The above ratio in the activated carbon is a ratio in terms of a metal element measured by an ICP emission spectroscopic analyzer (model 715-ES manufactured by Varian).
[1-3.活性炭の形態]
 本発明の製造方法によって製造される活性炭の形態は特に限定されないが、例えば、粒状活性炭、粉末状活性炭、繊維状活性炭等が挙げられる。フィルター加工等して用いる場合の加工性、又は浄水器等で使用する場合吸着速度の観点から、繊維状である繊維状活性炭とすることがより好ましい。なお、本発明において、吸着速度は、例えばトリハロメタンの通水吸着試験等により評価することができる。繊維状活性炭の平均繊維径としては、好ましくは30μm以下、より好ましくは5~20μm程度が挙げられる。なお、本発明における平均繊維径は、画像処理繊維径測定装置(JIS K 1477に準拠)により測定した値である。また、粒状活性炭及び粉末状活性炭の粒径としては、レーザー回折/散乱式法で測定した積算体積百分率D50が0.01~5mmが挙げられる。
[1-3. Activated carbon form]
Although the form of the activated carbon manufactured by the manufacturing method of this invention is not specifically limited, For example, granular activated carbon, powdered activated carbon, fibrous activated carbon, etc. are mentioned. From the viewpoint of workability when used in filter processing or the like, or when used in a water purifier or the like, it is more preferable to use fibrous activated carbon that is fibrous. In the present invention, the adsorption rate can be evaluated by, for example, a trihalomethane water adsorption test. The average fiber diameter of the fibrous activated carbon is preferably 30 μm or less, more preferably about 5 to 20 μm. In addition, the average fiber diameter in this invention is the value measured with the image processing fiber diameter measuring apparatus (based on JISK1477). Examples of the particle sizes of the granular activated carbon and the powdered activated carbon include an integrated volume percentage D 50 measured by a laser diffraction / scattering method of 0.01 to 5 mm.
[1-4.活性炭の吸着性能]
 本発明の製造方法によって製造される活性炭は、気相中または液相中のいずれでも使用することができるが、特に、気相中のジクロロメタンを吸着させるために好適に用いられる。
[1-4. Activated carbon adsorption performance]
The activated carbon produced by the production method of the present invention can be used either in the gas phase or in the liquid phase, but is particularly preferably used for adsorbing dichloromethane in the gas phase.
 本発明の製造方法によって製造される活性炭が備えうるジクロロメタン吸着性能(平衡吸着量(質量%))としては、例えば、60質量%以上が挙げられ、好ましくは65質量%以上、より好ましくは75質量%以上、特に好ましくは80質量%以上が挙げられる。なお、ジクロロメタン吸着性能は、以下のように測定されるものである。すなわち、活性炭サンプルを110℃の乾燥機で12時間乾燥し、デシケーターで冷却後、速やかに0.5gを量りとりU字管に充填する。次に、28℃の恒温槽中でジクロロメタン(試薬特級、安定剤にメタノール0.5%を含む)に乾燥空気を500ml/minの流速で吹き込み、U字管に導入することで吸着操作を行う。活性炭の質量増加が止まった時点を平衡状態とし、平衡吸着量を下記式により算出される。
    平衡吸着量(質量%)=質量増加分/活性炭質量×100
Examples of the dichloromethane adsorption performance (equilibrium adsorption amount (% by mass)) that can be provided in the activated carbon produced by the production method of the present invention include 60% by mass or more, preferably 65% by mass or more, and more preferably 75% by mass. % Or more, and particularly preferably 80% by mass or more. The dichloromethane adsorption performance is measured as follows. That is, the activated carbon sample is dried with a dryer at 110 ° C. for 12 hours, cooled with a desiccator, and 0.5 g is quickly measured and filled into a U-shaped tube. Next, the adsorption operation is performed by blowing dry air at a flow rate of 500 ml / min into dichloromethane (special grade reagent, containing 0.5% of methanol in the stabilizer) in a constant temperature bath at 28 ° C. and introducing it into the U-shaped tube. . The equilibrium point is calculated when the mass increase of the activated carbon stops, and the equilibrium adsorption amount is calculated by the following equation.
Equilibrium adsorption amount (% by mass) = mass increase / active carbon mass x 100
 そして、本発明の製造方法によって製造される活性炭が備えうる単位比表面積あたりのジクロロメタン吸着性能としては、0.045質量%・g/m2以上が挙げられ、0.046質量%・g/m2以上が好ましく挙げられ、具体的には0.046~0.055質量%・g/m2が挙げられる。なお、活性炭の単位比表面積あたりのジクロロメタン平衡吸着量は、前記したように求めたジクロロメタン吸着性能を、当該活性炭の比表面積(m2/g)で除することにより算出される。 The dichloromethane adsorption performance per unit specific surface area that can be provided by the activated carbon produced by the production method of the present invention includes 0.045% by mass / g / m 2 or more, and 0.046% by mass / g / m. 2 or more are preferred, and specifically, 0.046 to 0.055 mass% · g / m 2 is mentioned. The dichloromethane equilibrium adsorption amount per unit specific surface area of the activated carbon is calculated by dividing the dichloromethane adsorption performance determined as described above by the specific surface area (m 2 / g) of the activated carbon.
[2.活性炭前駆体]
 本発明の製造方法において、活性炭の原料となる活性炭前駆体には、特定の金属成分が含まれている。
[2. Activated carbon precursor]
In the production method of the present invention, a specific metal component is contained in the activated carbon precursor that is a raw material of the activated carbon.
[2-1.活性炭前駆体の原料種]
 炭酸ガス賦活は、活性炭前駆体中の炭素と炭酸ガスとの反応(Cx+CO2→2CO+Cx-1)によって細孔が生成するものである。また、この炭素と炭酸ガスとの反応は、後述の金属成分による触媒的な作用により促進される。炭素と炭酸ガスとの反応及びその促進効果は、活性炭前駆体の原料種及び形態によらずに共通である。したがって、活性炭前駆体の原料種及び形態としては特に制限されるものではない。
[2-1. Raw material of activated carbon precursor]
In the carbon dioxide gas activation, pores are generated by the reaction (C x + CO 2 → 2CO + C x-1 ) between carbon in the activated carbon precursor and carbon dioxide gas. Further, the reaction between carbon and carbon dioxide gas is promoted by a catalytic action by a metal component described later. The reaction between carbon and carbon dioxide and the promoting effect thereof are common regardless of the raw material species and form of the activated carbon precursor. Therefore, the raw material species and form of the activated carbon precursor are not particularly limited.
 活性炭前駆体の原料種の例としては、不融化或いは炭素化した有機質材料、フェノール樹脂等の硬化性樹脂等が挙げられ、該有機質材料としては、例えば、ポリアクリロニトリル、ピッチ、ポリビニルアルコール、セルロース等が挙げられる。また、オガ屑、木材チップ、木材、ピート、木炭、ヤシ殻、石炭、オイル、炭素質物質(石油コークス、石炭コークス、石油ピッチ、石炭ピッチ、コールタールピッチ、及びこれらの複合物など)、合成樹脂(フェノール樹脂、ポリアクリロニトリル(PAN)、ポリイミド、フラン樹脂など)、セルロース系繊維(紙、綿繊維など)、及びこれらの複合物(紙-フェノール樹脂積層板など)、フラーレンなどが挙げられる。これらの中でも、炭素化時の理論炭素化収率の点で、ピッチであることが好ましく、石炭ピッチであることがより好ましい。活性炭前駆体の形態の例としては、粒状活性炭、粉末状活性炭、繊維状活性炭等が挙げられる。 Examples of the raw material species of the activated carbon precursor include infusible or carbonized organic materials, curable resins such as phenol resins, and the like, for example, polyacrylonitrile, pitch, polyvinyl alcohol, cellulose, etc. Is mentioned. Also sawdust, wood chips, wood, peat, charcoal, coconut husk, coal, oil, carbonaceous materials (petroleum coke, coal coke, petroleum pitch, coal pitch, coal tar pitch, and composites thereof), synthesis Examples thereof include resins (phenol resins, polyacrylonitrile (PAN), polyimides, furan resins, etc.), cellulosic fibers (paper, cotton fibers, etc.), and composites thereof (paper-phenol resin laminates, etc.), fullerenes, and the like. Among these, in terms of the theoretical carbonization yield at the time of carbonization, pitch is preferable, and coal pitch is more preferable. Examples of the form of the activated carbon precursor include granular activated carbon, powdered activated carbon, fibrous activated carbon and the like.
 活性炭前駆体の軟化点(℃)としては、特に制限されないが、不融化の際の取扱性などの観点から、275℃~288℃が好ましく、277℃~283℃がより好ましい。本発明において、軟化点(℃)は、メトラー法(ASTM-D3461に準じて測定)により測定されるものである。 The softening point (° C.) of the activated carbon precursor is not particularly limited, but is preferably 275 ° C. to 288 ° C., more preferably 277 ° C. to 283 ° C., from the viewpoint of handleability during infusibilization. In the present invention, the softening point (° C.) is measured by the Mettler method (measured according to ASTM-D3461).
[2-2.金属成分]
 金属成分は、炭酸ガス賦活における炭素と炭酸ガスとの反応を触媒的な作用により促進する。金属成分を構成する金属元素は、第2族元素、第3族元素、第4族元素、第5族元素、第6族元素、第7族元素及び第9族元素、並びに希土類元素からなる群から1種または複数種が選択される。
[2-2. Metal component]
The metal component promotes the reaction between carbon and carbon dioxide in the carbon dioxide activation by catalytic action. The metal element constituting the metal component is a group consisting of a Group 2 element, a Group 3 element, a Group 4 element, a Group 5 element, a Group 6 element, a Group 7 element and a Group 9 element, and a rare earth element 1 type or multiple types are selected from.
 金属成分を構成する金属元素は、第2族元素、第3族元素、第4族元素、第5族元素、第7族元素、及び希土類元素からなる群から1種または複数種が選択されてよい。第2族元素としては、Be、Mg、Ca、Sr、Ba、Raが挙げられる。第3族元素としては、Sc、Yが挙げられる。第4族元素としては、Ti、Zr、Hfが挙げられる。第5族元素としては、V、Nb、Taが挙げられる。第7族元素としては、Mn、Tc、Reが挙げられる。希土類元素としては、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luが挙げられる。これらの中でも、炭酸ガス賦活の促進効果を大きく得る観点から、第2族元素としてはMgが好ましく、第3族元素としてはYが好ましく、第4族元素としてはZr及びTiが好ましく、第5族元素としてはVが好ましく、第7族元素としてはMnが好ましく、希土類元素としてはLa及びCeが好ましい。さらに、浄水器等での用途を想定した場合には、吸着に有効に寄与する直径1.0nm以下のミクロ孔と、被吸着質の細孔内拡散を補助する適度なメソ孔が存在する細孔構造とすることが好ましく、その観点で、金属元素としてY、Mg、Ce及びTiが好ましい。また、ガス吸着用途を想定した場合には、直径1.0nm以下の細孔割合を高く保って高比表面積化することが好ましく、その観点で、金属元素としてVが好ましい。
 一方、炭酸ガス賦活促進効果を制御する観点からは、第2族元素、第3族元素、第4族元素、第5族元素、第7族元素、及び希土類元素のうち上述のMg、Y、Zr、V、Mn、La及びCe以外の元素を選択することもできる。
The metal element constituting the metal component is selected from one or more kinds selected from the group consisting of Group 2 elements, Group 3 elements, Group 4 elements, Group 5 elements, Group 7 elements, and rare earth elements Good. Examples of the Group 2 element include Be, Mg, Ca, Sr, Ba, and Ra. Examples of the Group 3 element include Sc and Y. Examples of Group 4 elements include Ti, Zr, and Hf. Examples of Group 5 elements include V, Nb, and Ta. Examples of the Group 7 element include Mn, Tc, and Re. Examples of rare earth elements include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Among these, Mg is preferable as the Group 2 element, Y is preferable as the Group 3 element, Zr and Ti are preferable as the Group 4 element, from the viewpoint of obtaining a large carbon dioxide activation promoting effect. V is preferable as the group element, Mn is preferable as the Group 7 element, and La and Ce are preferable as the rare earth element. Furthermore, when it is assumed to be used in a water purifier or the like, there are micropores having a diameter of 1.0 nm or less that contribute effectively to adsorption and fine mesopores that assist the diffusion of the adsorbate in the pores. A pore structure is preferable, and Y, Mg, Ce, and Ti are preferable as the metal element from this viewpoint. Moreover, when assuming a gas adsorption application, it is preferable to increase the specific surface area by keeping the ratio of pores having a diameter of 1.0 nm or less high, and from this viewpoint, V is preferable as the metal element.
On the other hand, from the viewpoint of controlling the carbon dioxide activation promoting effect, the above-mentioned Mg, Y, among the Group 2 element, Group 3 element, Group 4 element, Group 5 element, Group 7 element, and rare earth element are included. Elements other than Zr, V, Mn, La and Ce can also be selected.
 上述の金属元素の中でも、Mg、Y、La、Zr、Ce及びTiは、メソ孔(直径2.0nm超の細孔)の生成も伴わせる観点で用いることができる。また、上述の金属元素の中でも、Mg及びVは、メソ孔の生成を抑制する観点で用いることができる。なお、導入ガス中に水蒸気が含まれる場合、上述の金属元素の中でもVは、本来的に水蒸気がメソ孔を形成しやすい条件である割にメソ孔の生成を抑制する観点で用いることができる。このように、金属種により異なる活性炭の細孔構造を得ることができる。従って、製造すべき活性炭の用途に適した細孔構造に応じ、適宜金属元素を選択することができる。 Among the metal elements described above, Mg, Y, La, Zr, Ce and Ti can be used from the viewpoint of accompanying the generation of mesopores (pores having a diameter of more than 2.0 nm). Among the above metal elements, Mg and V can be used from the viewpoint of suppressing the formation of mesopores. In addition, when water vapor | steam is contained in introduction gas, V can be used from a viewpoint which suppresses the production | generation of a mesopore although it is the conditions which water vapor | steam inherently tends to form a mesopore among the above-mentioned metal elements. . In this way, different activated carbon pore structures can be obtained depending on the metal species. Therefore, a metal element can be appropriately selected according to the pore structure suitable for the use of the activated carbon to be produced.
 金属成分を構成する金属元素は、第6族元素及び第9族元素からなる群から1種又は複数種が選択されてもよい。第6族元素としては、Cr、Mo、Wが挙げられる。第9族元素としては、Co、Rh、Irが挙げられる。これらの中でも、炭酸ガス賦活の促進効果を大きく得る観点から、第6族元素としてはMoが好ましく、第9族元素としてはCoが好ましい。さらに、浄水器等での用途を想定した場合には、吸着に有効に寄与する直径1.0nm以下のミクロ孔と、被吸着質の細孔内拡散を補助する適度なメソ孔が存在する細孔構造とすることが好ましく、その観点で、金属元素としてCoが好ましい。一方、炭酸ガス賦活促進効果を制御する観点からは、第6族元素及び第9族元素のうち上述のMo及びCo以外の元素を選択することもできる。 As the metal element constituting the metal component, one or more kinds may be selected from the group consisting of Group 6 elements and Group 9 elements. Examples of Group 6 elements include Cr, Mo, and W. Examples of Group 9 elements include Co, Rh, and Ir. Among these, Mo is preferable as the Group 6 element and Co is preferable as the Group 9 element from the viewpoint of obtaining a large carbon dioxide activation promoting effect. Furthermore, when it is assumed to be used in a water purifier or the like, there are micropores having a diameter of 1.0 nm or less that contribute effectively to adsorption and fine mesopores that assist the diffusion of the adsorbate in the pores. A pore structure is preferable, and Co is preferable as the metal element from that viewpoint. On the other hand, from the viewpoint of controlling the carbon dioxide activation promoting effect, elements other than the above-described Mo and Co can be selected from Group 6 elements and Group 9 elements.
 上述の金属元素の中でも、Mo及びCoは、メソ孔(直径2.0nm超の細孔)の生成も伴わせる観点で用いることができる。また、上述の金属元素の中でも、Moは、メソ孔の生成を抑制する観点で用いることができる。なお、導入ガス中に水蒸気が含まれる場合、上述の金属元素の中でも、Moは、本来的に水蒸気がメソ孔を形成しやすい条件である割にメソ孔の生成を抑制する観点で用いることができる。このように、金属種により異なる活性炭の細孔構造を得ることができる。従って、製造すべき活性炭の用途に適した細孔構造に応じ、適宜金属元素を選択することができる。 Among the above-described metal elements, Mo and Co can be used from the viewpoint of accompanying the generation of mesopores (pores having a diameter of more than 2.0 nm). Of the metal elements described above, Mo can be used from the viewpoint of suppressing the formation of mesopores. In addition, when water vapor | steam is contained in introduction gas, Mo is used from a viewpoint which suppresses the production | generation of a mesopore among the above-mentioned metal elements, although water vapor | steam is a condition which is easy to form a mesopore intrinsically. it can. In this way, different activated carbon pore structures can be obtained depending on the metal species. Therefore, a metal element can be appropriately selected according to the pore structure suitable for the use of the activated carbon to be produced.
 本発明の製造方法において、活性炭前駆体に金属成分を含有させる方法としては特に限定されない。例えば、活性炭前駆体に金属成分を添着してもよいし、混練してもよい。 In the production method of the present invention, the method for causing the activated carbon precursor to contain a metal component is not particularly limited. For example, a metal component may be added to the activated carbon precursor or kneaded.
 金属成分の形態としては、金属単体であってもよいし、金属化合物であってもよい。金属化合物としては、金属酸化物、金属水酸化物、金属ハロゲン化物、金属硫酸塩等の無機金属化合物、酢酸、安息香酸等の有機酸と金属との塩、有機金属化合物などが挙げられる。有機金属化合物としては、金属アセチルアセトナート、芳香族金属化合物(例えばメタロセン等)等の金属錯体が挙げられる。金属錯体は、活性炭前駆体中で溶融又は分散が良好である点で好ましい。 The form of the metal component may be a single metal or a metal compound. Examples of the metal compound include inorganic metal compounds such as metal oxides, metal hydroxides, metal halides, and metal sulfates, salts of organic acids and metals such as acetic acid and benzoic acid, and organic metal compounds. Examples of the organometallic compound include metal complexes such as metal acetylacetonate and aromatic metal compounds (for example, metallocene). Metal complexes are preferred in that they are well melted or dispersed in the activated carbon precursor.
 活性炭前駆体中の金属成分の含有量(金属元素換算)は、例えば0.01~1.0質量%、好ましくは0.05~0.5質量%であってよい。さらに、活性炭前駆体中の金属成分の含有量は、例えば金属成分を構成する金属元素がMgである場合は、より好ましくは0.05~0.4質量%、さらに好ましくは0.1~0.3質量%であってよく;金属元素がMnである場合は、より好ましくは0.1~0.4質量%、さらに好ましくは0.15~0.3質量%であってよく;金属元素がYである場合は、より好ましくは0.05~0.4質量%、さらに好ましくは0.05~0.3質量%であってよく;金属元素がLaである場合は、より好ましくは0.1~0.4質量%、さらに好ましくは0.15~0.3質量%であってよく;金属元素がVである場合は、より好ましくは0.05~0.4質量%、さらに好ましくは0.05~0.3質量%であってよく;金属元素がZrである場合は、より好ましくは0.05~0.4質量%、さらに好ましくは0.1~0.3質量%であってよく;金属元素がCeである場合は、より好ましくは0.05~0.4質量%、さらに好ましくは0.1~0.3質量%であってよく;金属元素がTiである場合は、より好ましくは0.1~0.4質量%、さらに好ましくは0.15~0.3質量%であってよい。金属成分を構成する金属元素がMoである場合は、より好ましくは0.1~0.4質量%、さらに好ましくは0.15~0.3質量%であってよく;金属元素がCoである場合は、より好ましくは0.1~0.4質量%、さらに好ましくは0.15~0.3質量%であってよい。 The content of the metal component in the activated carbon precursor (in terms of metal element) may be, for example, 0.01 to 1.0% by mass, preferably 0.05 to 0.5% by mass. Further, the content of the metal component in the activated carbon precursor is more preferably 0.05 to 0.4% by mass, further preferably 0.1 to 0%, for example, when the metal element constituting the metal component is Mg. When the metal element is Mn, it may be more preferably 0.1 to 0.4% by mass, and still more preferably 0.15 to 0.3% by mass; When Y is Y, it may be more preferably 0.05 to 0.4% by mass, and still more preferably 0.05 to 0.3% by mass; when the metal element is La, more preferably 0 0.1 to 0.4% by mass, more preferably 0.15 to 0.3% by mass; when the metal element is V, more preferably 0.05 to 0.4% by mass, still more preferably May be from 0.05 to 0.3% by weight; the metal element is Zr In this case, it may be more preferably 0.05 to 0.4% by mass, further preferably 0.1 to 0.3% by mass; when the metal element is Ce, more preferably 0.05 to 0%. 4 mass%, more preferably 0.1 to 0.3 mass%; when the metal element is Ti, more preferably 0.1 to 0.4 mass%, still more preferably 0.15 It may be up to 0.3% by weight. When the metal element constituting the metal component is Mo, it may be more preferably 0.1 to 0.4% by mass, further preferably 0.15 to 0.3% by mass; the metal element is Co In this case, it may be more preferably 0.1 to 0.4% by mass, and still more preferably 0.15 to 0.3% by mass.
 なお、活性炭前駆体中の金属成分の含有量は、ICP発光分光分析装置(Varian社製型式715-ES)により測定される金属元素換算の割合である。 The content of the metal component in the activated carbon precursor is a ratio in terms of a metal element measured by an ICP emission spectroscopic analyzer (model 715-ES manufactured by Varian).
[2-3.導入ガス]
 導入ガス(賦活炉に導入するガス)は、炭酸ガス(二酸化炭素)を用い、本願効果の損なわない範囲で窒素、一酸化炭素、希ガス等を含有させることもできる。
[2-3. Introduced gas]
Carbon dioxide gas (carbon dioxide) is used as the introduction gas (gas introduced into the activation furnace), and nitrogen, carbon monoxide, a rare gas, or the like can be contained within a range that does not impair the effects of the present application.
 本発明においては、効率良く活性炭を製造する観点から、賦活工程中に導入ガスの組成を変更せず、賦活工程を一段階で行うことが好ましい。 In the present invention, from the viewpoint of efficiently producing activated carbon, it is preferable to perform the activation step in one step without changing the composition of the introduced gas during the activation step.
 導入ガスの組成は、JIS K 0301 5.1 オルザット式分析方法に従い測定される値である。 The composition of the introduced gas is a value measured according to JIS K 0301 5.1 Orsat analysis method.
 導入ガスの流量は、賦活効率を良好に得る観点から、活性炭前駆体1g当たり、0℃1気圧換算で1.5L/分以上であってよく、過剰な導入を避けて効率的に賦活を行う観点から、5.0L/分以下であってよい。この流量は、たとえば賦活炉容積として約0.044m3当たりの量であってよい。 From the viewpoint of obtaining good activation efficiency, the flow rate of the introduced gas may be 1.5 L / min or more per 1 g of the activated carbon precursor in terms of 1 atm at 0 ° C., and the activation is efficiently performed while avoiding excessive introduction. From the viewpoint, it may be 5.0 L / min or less. This flow rate may be, for example, an amount per about 0.044 m 3 as the activation furnace volume.
[2-4.賦活温度及び賦活時間]
 賦活工程における賦活炉内の雰囲気温度(賦活温度)は、例えば800~1000℃、好ましくは900~1000℃であってよい。
[2-4. Activation temperature and activation time]
The atmospheric temperature (activation temperature) in the activation furnace in the activation step may be, for example, 800 to 1000 ° C., preferably 900 to 1000 ° C.
 また、賦活時間は、活性炭前駆体の主成分、添加した金属種、金属成分の含有量、導入ガス中の二酸化炭素濃度等に応じ、所定の細孔分布となるよう調整すればよい。例えば、賦活時間は10~80分、好ましくは10~70分であってよい。あるいは、賦活時間は、例えば金属成分を構成する金属元素がMgである場合は、より好ましくは15~50分、さらに好ましくは25~45分であってよく;金属元素がMnである場合は、より好ましくは15~60分、さらに好ましくは20~50分であってよく;金属元素がYである場合は、より好ましくは15~70分、さらに好ましくは20~65分であってよく;金属元素がLaである場合は、より好ましくは15~40分、さらに好ましくは20~35分であってよく;金属元素がVである場合は、より好ましくは10~60分、さらに好ましくは15~50分であってよく;金属元素がZrである場合は、より好ましくは15~60分、さらに好ましくは20~50分であってよく;金属元素がCeである場合は、より好ましくは15~55分、さらに好ましくは20~50分であってよく;金属元素がTiである場合は、より好ましくは15~60分、さらに好ましくは20~50分であってよい。あるいは、賦活時間は、例えば金属成分を構成する金属元素がMoである場合は、より好ましくは15~60分、さらに好ましくは20~50分であってよく;金属元素がCoである場合は、より好ましくは15~60分、さらに好ましくは20~50分であってよい。 Further, the activation time may be adjusted so as to have a predetermined pore distribution according to the main component of the activated carbon precursor, the added metal species, the content of the metal component, the carbon dioxide concentration in the introduced gas, and the like. For example, the activation time may be 10 to 80 minutes, preferably 10 to 70 minutes. Alternatively, for example, when the metal element constituting the metal component is Mg, the activation time may be more preferably 15 to 50 minutes, and even more preferably 25 to 45 minutes; when the metal element is Mn, More preferably 15 to 60 minutes, even more preferably 20 to 50 minutes; when the metal element is Y, more preferably 15 to 70 minutes, even more preferably 20 to 65 minutes; When the element is La, it may be more preferably 15 to 40 minutes, even more preferably 20 to 35 minutes; when the metal element is V, more preferably 10 to 60 minutes, still more preferably 15 to 35 minutes. May be 50 minutes; more preferably 15 to 60 minutes, even more preferably 20 to 50 minutes when the metal element is Zr; more preferred when the metal element is Ce Ku is 15 to 55 minutes, more preferably may be 20 to 50 minutes; when it is a metal element Ti is more preferably 15 to 60 minutes, more preferably may be 20 to 50 minutes. Alternatively, for example, when the metal element constituting the metal component is Mo, the activation time may be more preferably 15 to 60 minutes, still more preferably 20 to 50 minutes; when the metal element is Co, More preferably, it may be 15 to 60 minutes, and further preferably 20 to 50 minutes.
[2-5.比表面積の発達速度]
 本発明の製造方法によれば、金属成分を含む活性炭前駆体を導入ガスとして炭酸ガスで賦活し、全細孔容積Aに対する直径1.0nm以下の細孔容積Bの比(細孔容積B/全細孔容積A)が0.5以上である活性炭を得る賦活工程を含み、前記金属成分を構成する金属元素が、第2族元素、第3族元素、第4族元素、第5族元素、第7族元素、及び希土類元素からなる群から選択されることから、直径1.0nm以下の極小サイズのミクロ孔の割合を高めた活性炭を効率良く製造する方法が提供される。本発明において、好ましい比表面積の発達速度としては、例えば、比表面積800m2/gに到達するまでの発達速度が25m2/g/min以上が好ましく、30m2/g/min以上がより好ましく、40m2/g/min以上が好ましく、50m2/g/min以上が特に好ましい。また、比表面積1100m2/gに到達するまでの発達速度が25m2/g/min以上が好ましく、30m2/g/min以上がより好ましく、40m2/g/min以上が好ましく、50m2/g/min以上が特に好ましい。
[2-5. Specific surface area development speed]
According to the production method of the present invention, activated carbon precursor containing a metal component is activated with carbon dioxide gas as an introduction gas, and the ratio of pore volume B having a diameter of 1.0 nm or less to total pore volume A (pore volume B / Including an activation step of obtaining activated carbon having a total pore volume A) of 0.5 or more, and the metal elements constituting the metal component are Group 2 elements, Group 3 elements, Group 4 elements, Group 5 elements Therefore, there is provided a method for efficiently producing activated carbon having an increased proportion of micropores having a minimum size of 1.0 nm or less in diameter, which is selected from the group consisting of Group 7 elements and rare earth elements. In the present invention, the preferred specific surface area development rate is, for example, preferably 25 m 2 / g / min or more, more preferably 30 m 2 / g / min or more, until the specific surface area reaches 800 m 2 / g. 40 m 2 / g / min or more is preferable, and 50 m 2 / g / min or more is particularly preferable. Further, preferably at least 25m 2 / g / min developmental rate to reach a specific surface area of 1100 m 2 / g, more preferably at least 30m 2 / g / min, more 40m 2 / g / min is preferable, 50 m 2 / Particularly preferred is g / min or more.
 金属元素がYである場合の好ましい比表面積の発達速度としては、比表面積871m2/gに到達するまでの発達速度、比表面積1237m2/gに到達するまでの発達速度、及び/又は比表面積1603m2/gに到達するまでの発達速度が25m2/g/min以上が挙げられ、比表面積917m2/gに到達するまでの発達速度、比表面積1168m2/gに到達するまでの発達速度、及び/又は比表面積1338m2/gに到達するまでの発達速度が30m2/g/min以上であることが挙げられる。金属元素がMgである場合の好ましい比表面積の発達速度としては、比表面積981m2/gに到達するまでの発達速度及び/又は比表面積1461m2/gに到達するまでの発達速度が30m2/g/min以上が挙げられる。金属元素がMnである場合の好ましい比表面積の発達速度としては、比表面積953m2/gに到達するまでの発達速度及び/又は比表面積1214m2/gに到達するまでの発達速度が28m2/g/min以上が挙げられる。金属元素がLaである場合の好ましい比表面積の発達速度としては、比表面積675m2/gに到達するまでの発達速度、比表面積758m2/gに到達するまでの発達速度、及び/又は比表面積916m2/gに到達するまでの発達速度が28m2/g/min以上が挙げられる。金属元素がVである場合の好ましい比表面積の発達速度としては、比表面積863m2/gに到達するまでの発達速度及び/又は比表面積1426m2/gに到達するまでの発達速度が50m2/g/min以上が挙げられる。金属元素がZrである場合の好ましい比表面積の発達速度としては、比表面積790m2/gに到達するまでの発達速度及び/又は比表面積1052m2/gに到達するまでの発達速度が25m2/g/min以上が挙げられる。金属元素がCeである場合の好ましい比表面積の発達速度としては、比表面積821m2/gに到達するまでの発達速度、比表面積1078m2/gに到達するまでの発達速度、及び/又は比表面積1249m2/gに到達するまでの発達速度が25m2/g/min以上が挙げられる。金属元素がTiである場合の好ましい比表面積の発達速度としては、比表面積781m2/gに到達するまでの発達速度及び/又は比表面積1170m2/gに到達するまでの発達速度が28m2/g/min以上が挙げられる。 As development rate of the preferred specific surface area of the case where the metal element is Y, the rate of development to reach the specific surface area of 871m 2 / g, rate of development until reaching the specific surface area of 1237m 2 / g, and / or a specific surface area The development rate until reaching 1603 m 2 / g is 25 m 2 / g / min or more, the development rate until reaching the specific surface area 917 m 2 / g, the development rate until reaching the specific surface area 1168 m 2 / g , and / or specific rate of development until reaching the surface area of 1338m 2 / g are mentioned it is 30 m 2 / g / min or more. As the preferred specific surface area growth rate when the metal element is Mg, the development rate until reaching the specific surface area of 981 m 2 / g and / or the development rate until reaching the specific surface area of 1461 m 2 / g is 30 m 2 / g. g / min or more. As development rate of the preferred specific surface area of the case where the metal element is Mn, the rate of development to reach the development rate and / or a specific surface area of 1214m 2 / g to reach the specific surface area of 953m 2 / g is 28 m 2 / g / min or more. The preferred specific surface area growth rate when the metal element is La includes a development rate until reaching a specific surface area of 675 m 2 / g, a development rate until reaching a specific surface area of 758 m 2 / g, and / or a specific surface area. The development rate until reaching 916 m 2 / g is 28 m 2 / g / min or more. As development rate of the preferred specific surface area of the case where the metal element is V, the specific surface area 863M 2 / development to reach the g rate and / or a specific surface area of 1426m 2 / g rate of development until reaching the are 50 m 2 / g / min or more. As development rate of the preferred specific surface area of the case where the metal element is Zr, the specific surface area of 790m 2 / development to reach the g rate and / or a specific surface area of 1052m 2 / g rate of development until reaching the are 25 m 2 / g / min or more. As development rate of the preferred specific surface area of the case where the metal element is Ce, the rate of development to reach the specific surface area of 821m 2 / g, rate of development until reaching the specific surface area of 1078m 2 / g, and / or a specific surface area rate of development to reach 1249m 2 / g can be cited more 25m 2 / g / min. As development rate of the preferred specific surface area of the case where the metal element is Ti, the rate of development to reach the development rate and / or a specific surface area of 1170 m 2 / g to reach the specific surface area of 781m 2 / g is 28 m 2 / g / min or more.
 金属元素がYである場合の好ましい比表面積の発達速度としては、比表面積871m2/gに到達するまでの発達速度、比表面積1237m2/gに到達するまでの発達速度、及び比表面積1603m2/gに到達するまでの発達速度のそれぞれを最小2乗法で線形近似したときの傾きの値(すなわち、1分あたりの比表面積の発達速度)が25m2/g/min以上であることが挙げられ、比表面積917m2/gに到達するまでの発達速度、比表面積1168m2/gに到達するまでの発達速度、及び比表面積1338m2/gに到達するまでの発達速度のそれぞれを最小2乗法で線形近似したときの傾きの値が25m2/g/min以上であることが挙げられる。金属元素がMgである場合の好ましい比表面積の発達速度としては、比表面積981m2/gに到達するまでの発達速度及び比表面積1461m2/gに到達するまでの発達速度のそれぞれを最小2乗法で線形近似したときの傾きの値が30m2/g/min以上が挙げられる。金属元素がMnである場合の好ましい比表面積の発達速度としては、比表面積953m2/gに到達するまでの発達速度及び比表面積1214m2/gに到達するまでの発達速度のそれぞれを最小2乗法で線形近似したときの傾きの値が15m2/g/min以上が挙げられる。金属元素がLaである場合の好ましい比表面積の発達速度としては、比表面積675m2/gに到達するまでの発達速度、比表面積758m2/gに到達するまでの発達速度、及び比表面積916m2/gに到達するまでの発達速度のそれぞれを最小2乗法で線形近似したときの傾きの値が20m2/g/min以上が挙げられる。金属元素がVである場合の好ましい比表面積の発達速度としては、比表面積863m2/gに到達するまでの発達速度及び比表面積1426m2/gに到達するまでの発達速度のそれぞれを最小2乗法で線形近似したときの傾きの値が50m2/g/min以上が挙げられる。金属元素がZrである場合の好ましい比表面積の発達速度としては、比表面積790m2/gに到達するまでの発達速度及び比表面積1052m2/gに到達するまでの発達速度のそれぞれを最小2乗法で線形近似したときの傾きの値が15m2/g/min以上が挙げられる。金属元素がCeである場合の好ましい比表面積の発達速度としては、比表面積821m2/gに到達するまでの発達速度、比表面積1078m2/gに到達するまでの発達速度、及び比表面積1249m2/gに到達するまでの発達速度のそれぞれを最小2乗法で線形近似したときの傾きの値が18m2/g/min以上が挙げられる。金属元素がTiである場合の好ましい比表面積の発達速度としては、比表面積781m2/gに到達するまでの発達速度及び比表面積1170m2/gに到達するまでの発達速度のそれぞれを最小2乗法で線形近似したときの傾きの値が20m2/g/min以上が挙げられる。 As development rate of the preferred specific surface area of the case where the metal element is Y, the rate of development to reach the specific surface area of 871m 2 / g, rate of development until reaching the specific surface area of 1237m 2 / g, and specific surface area 1603M 2 The value of the slope (that is, the development rate of specific surface area per minute) when linearly approximating each of the development rates until reaching / g by the least square method is 25 m 2 / g / min or more. is, rate of development until reaching the specific surface area of 917m 2 / g, the minimum respective development velocity until it reaches the rate of development, and a specific surface area of 1338m 2 / g to reach the specific surface area of 1168m 2 / g 2 squares It is mentioned that the value of the slope when linear approximation is performed is 25 m 2 / g / min or more. As development rate of the preferred specific surface area of the case where the metal element is Mg, the minimum respective development velocity to reach the development rate and a specific surface area of 1461m 2 / g to reach the specific surface area of 981m 2 / g 2 squares The value of the slope when linear approximation is performed is 30 m 2 / g / min or more. The preferred specific surface area growth rate when the metal element is Mn is the least square method for each of the growth rate until reaching the specific surface area of 953 m 2 / g and the growth rate until reaching the specific surface area of 1214 m 2 / g. The value of the slope when linear approximation is performed is 15 m 2 / g / min or more. The preferable development rate of the specific surface area when the metal element is La includes the development rate until reaching the specific surface area of 675 m 2 / g, the development rate until reaching the specific surface area of 758 m 2 / g, and the specific surface area of 916 m 2. The value of the slope when linearly approximating each of the development rates until reaching / g by the least square method is 20 m 2 / g / min or more. As development rate of the preferred specific surface area of the case where the metal element is V, the minimum respective development velocity to reach the development rate and a specific surface area of 1426m 2 / g to reach the specific surface area of 863m 2 / g 2 squares The value of the slope when linear approximation is performed is 50 m 2 / g / min or more. The preferred specific surface area growth rate when the metal element is Zr is the least square method for each of the growth rate until reaching the specific surface area of 790 m 2 / g and the growth rate until reaching the specific surface area of 1052 m 2 / g. The value of the slope when linear approximation is performed is 15 m 2 / g / min or more. As development rate of the preferred specific surface area of the case where the metal element is Ce, the rate of development to reach the specific surface area of 821m 2 / g, rate of development until reaching the specific surface area of 1078m 2 / g, and specific surface area 1249M 2 The value of the slope when linearly approximating each of the development rates until reaching / g by the least square method is 18 m 2 / g / min or more. The preferred specific surface area growth rate when the metal element is Ti is the least square method for the growth rate until reaching the specific surface area of 781 m 2 / g and the growth rate until reaching the specific surface area of 1170 m 2 / g. The value of the slope when linear approximation is performed is 20 m 2 / g / min or more.
 本発明の製造方法によれば、金属成分を含む活性炭前駆体を導入ガスとして炭酸ガスで賦活し、全細孔容積Aに対する直径1.0nm以下の細孔容積Bの比(細孔容積B/全細孔容積A)が0.5以上である活性炭を得る賦活工程を含み、前記金属成分を構成する金属元素が、第6族元素第9族元素からなる群から選択されることから、直径1.0nm以下の極小サイズのミクロ孔の割合を高めた活性炭を効率良く製造する方法が提供される。本発明において、好ましい比表面積の発達速度としては、例えば、比表面積800m2/gに到達するまでの発達速度が25m2/g/min以上が好ましく、30m2/g/min以上がより好ましく、40m2/g/min以上が好ましく、50m2/g/min以上が特に好ましい。また、比表面積1100m2/gに到達するまでの発達速度が25m2/g/min以上が好ましく、30m2/g/min以上がより好ましく、40m2/g/min以上が好ましく、50m2/g/min以上が特に好ましい。 According to the production method of the present invention, activated carbon precursor containing a metal component is activated with carbon dioxide gas as an introduction gas, and the ratio of pore volume B having a diameter of 1.0 nm or less to total pore volume A (pore volume B / Including an activation step of obtaining activated carbon having a total pore volume A) of 0.5 or more, and the metal element constituting the metal component is selected from the group consisting of Group 6 elements and Group 9 elements; Provided is a method for efficiently producing activated carbon having an increased proportion of micropores having an extremely small size of 1.0 nm or less. In the present invention, the preferred specific surface area development rate is, for example, preferably 25 m 2 / g / min or more, more preferably 30 m 2 / g / min or more, until the specific surface area reaches 800 m 2 / g. 40 m 2 / g / min or more is preferable, and 50 m 2 / g / min or more is particularly preferable. Further, preferably at least 25m 2 / g / min developmental rate to reach a specific surface area of 1100 m 2 / g, more preferably at least 30m 2 / g / min, more 40m 2 / g / min is preferable, 50 m 2 / Particularly preferred is g / min or more.
 金属元素がMoである場合の好ましい比表面積の発達速度としては、比表面積784m2/gに到達するまでの発達速度、比表面積1171m2/gに到達するまでの発達速度、及び/又は比表面積1684m2/gに到達するまでの発達速度が25m2/g/min以上が挙げられる。金属元素がCoである場合の好ましい比表面積の発達速度としては、比表面積844m2/gに到達するまでの発達速度及び/又は比表面積1447m2/gに到達するまでの発達速度が30m2/g/min以上が挙げられる。 The preferred specific surface area growth rate when the metal element is Mo includes a development rate until reaching a specific surface area of 784 m 2 / g, a development rate until reaching a specific surface area of 1171 m 2 / g, and / or a specific surface area. The development rate until reaching 1684 m 2 / g is 25 m 2 / g / min or more. As development rate of the preferred specific surface area of the case where the metal element is Co, the specific surface area 844M 2 / development to reach the g rate and / or a specific surface area of 1447m 2 / g rate of development until reaching the are 30 m 2 / g / min or more.
金属元素がMoである場合の好ましい比表面積の発達速度としては、比表面積784m2/gに到達するまでの発達速度、比表面積1171m2/gに到達するまでの発達速度、及び比表面積1684m2/gに到達するまでの発達速度のそれぞれを最小2乗法で線形近似したときの傾きの値(すなわち、1分あたりの比表面積の発達速度)が20m2/g/min以上であることが挙げられる。金属元素がCoである場合の好ましい比表面積の発達速度としては、比表面積844m2/gに到達するまでの発達速度及び比表面積1447m2/gに到達するまでの発達速度のそれぞれを最小2乗法で線形近似したときの傾きの値が35m2/g/min以上が挙げられる。 When the metal element is Mo, the preferable development rate of the specific surface area is a development rate until reaching the specific surface area of 784 m 2 / g, a development rate until reaching the specific surface area of 1171 m 2 / g, and a specific surface area of 1684 m 2. It is mentioned that the slope value (that is, the development rate of the specific surface area per minute) is 20 m 2 / g / min or more when linearly approximating each of the development speeds until reaching / g by the least square method. It is done. As development rate of the preferred specific surface area of the case where the metal element is Co, the minimum respective development velocity to reach the development rate and a specific surface area of 1447m 2 / g to reach the specific surface area of 844m 2 / g 2 squares The value of the slope when linear approximation is performed is 35 m 2 / g / min or more.
[2-6.他の工程]
 本発明の製造方法は、前述した賦活工程のほかに、他の工程を含むものであっても良い。他の工程としては、活性炭の製造方法で公知の工程が挙げられ、例えば、賦活工程の前に有機質材料を所定の形状に成形する成形工程(繊維状活性炭の場合は紡糸工程を含む。)や不融化工程を含むことが挙げられる。また、得られる活性炭が浄水器用途である場合は、賦活工程の後に、得られた活性炭の表面に付着している金属成分を洗浄する洗浄工程を含むことができる。
[2-6. Other processes]
The manufacturing method of the present invention may include other steps in addition to the activation step described above. Examples of other processes include processes known in the method for producing activated carbon, such as a molding process (including a spinning process in the case of fibrous activated carbon) that molds an organic material into a predetermined shape before the activation process. It includes the infusibilization step. Moreover, when the obtained activated carbon is a water purifier use, the washing | cleaning process of wash | cleaning the metal component adhering to the surface of the obtained activated carbon can be included after an activation process.
 以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
 各実施例及び比較例につき、以下の方法により評価した。
(1)不融化したピッチ繊維(活性炭前駆体)の金属含有量(質量%)
 ピッチ繊維を灰化処理し、灰分を酸に溶解しICP発光分光分析装置(Varian社製型式715-ES)により測定される金属元素換算の割合を金属含有量とした。
Each Example and Comparative Example were evaluated by the following methods.
(1) Metal content (mass%) of infusible pitch fiber (activated carbon precursor)
The pitch fiber was incinerated, the ash was dissolved in acid, and the ratio in terms of metal element measured by an ICP emission spectrophotometer (Varian model 715-ES) was defined as the metal content.
(2)導入ガスの組成
 導入ガスの組成は、JIS K 0301 5.1 オルザット式分析方法に従い測定した。
(2) Composition of introduced gas The composition of the introduced gas was measured according to JIS K 0301 5.1 Orsat analysis method.
(3)活性炭中の金属含有量
 繊維状活性炭を酸に溶解しICP発光分光分析装置(Varian社製型式715-ES)により測定される金属元素換算の割合を金属含有量とした。
(3) Metal content in activated carbon The fibrous elemental activated carbon was dissolved in an acid, and the ratio in terms of metal element measured by an ICP emission spectroscopic analyzer (model 715-ES manufactured by Varian) was defined as the metal content.
(4)比表面積(m2/g)及び細孔容積(cc/g)
 比表面積はBET法によって相対圧0.1の測定点から計算した。
 細孔物性値は、Quantachrome社製「AUTOSORB-1-MP」を用いて77Kにおける窒素吸着等温線より測定した。全細孔容積及び下記各表に記載した各細孔径範囲における細孔容積は、測定した窒素脱着等温線に対し、Calculation modelとしてN2 at 77K on carbon[slit pore,QSDFT equilibrium model]を適用して細孔径分布を計算することで、解析した。具体的に、下記各表に記載した各細孔径における細孔容積は、窒素吸脱着等温線から得られる細孔径分布図の読み取り値である。より具体的に、細孔径1.0nm以下の細孔容積Bは、細孔径分布図の横軸Pore Widthが1.0nmにおけるCumulative Pore Volume(cc/g)の読み取り値である。同様にして、細孔径1.5nm以下の細孔容積、細孔径2.0nm以下の細孔(つまりミクロ細孔)容積Cを得た。
 細孔径1.0nm以下の細孔容積比(B/A)は、細孔径1.0nm以下の細孔容積Bを、QSDFT解析により得られる全細孔容積Aで除することで計算した。ミクロ細孔容積率({C/A}×100)は、細孔径2.0nm以下の細孔容積Cを、QSDFT解析により与えられる全細孔容積Aで除し百分率で表した。メソ細孔容積率(%)は、100%からミクロ細孔容積率(%)を減ずることで計算した。
(4) Specific surface area (m 2 / g) and pore volume (cc / g)
The specific surface area was calculated from the measurement point of relative pressure 0.1 by the BET method.
The pore physical properties were measured from a nitrogen adsorption isotherm at 77K using “AUTOSORB-1-MP” manufactured by Quantachrome. For the total pore volume and the pore volume in each pore diameter range described in the following tables, N 2 at 77K on carbon [slit pore, QSDFT equilibrium model] is applied as a calibration model to the measured nitrogen desorption isotherm. Thus, the pore size distribution was calculated and analyzed. Specifically, the pore volume at each pore diameter described in the following tables is a reading of a pore diameter distribution chart obtained from a nitrogen adsorption / desorption isotherm. More specifically, the pore volume B having a pore diameter of 1.0 nm or less is a readout value of Cumulative Pore Volume (cc / g) when the horizontal axis Pore Width of the pore diameter distribution chart is 1.0 nm. Similarly, a pore volume having a pore diameter of 1.5 nm or less and a pore (that is, micropore) volume C having a pore diameter of 2.0 nm or less were obtained.
The pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was calculated by dividing the pore volume B with a pore diameter of 1.0 nm or less by the total pore volume A obtained by QSDFT analysis. The micropore volume ratio ({C / A} × 100) was expressed as a percentage by dividing the pore volume C having a pore diameter of 2.0 nm or less by the total pore volume A given by the QSDFT analysis. The mesopore volume ratio (%) was calculated by subtracting the micropore volume ratio (%) from 100%.
(5)1.0nm以下の細孔発達速度及び比表面積の発達速度
1.0nm以下の細孔発達速度は、1.0nm以下の細孔容積Bを賦活時間で除することで計算した。比表面積の発達速度は、BET比表面積を賦活時間で除することで計算した。
(5) A pore growth rate of 1.0 nm or less and a pore development rate of 1.0 nm or less were calculated by dividing a pore volume B of 1.0 nm or less by an activation time. The development rate of the specific surface area was calculated by dividing the BET specific surface area by the activation time.
(6)繊維状活性炭の繊維径(μm)
 画像処理繊維径測定装置(JIS K 1477に準拠)により測定した。
(6) Fiber diameter of fibrous activated carbon (μm)
It measured with the image processing fiber diameter measuring apparatus (based on JISK1477).
(実施例1)
 有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して金属成分としてトリスアセチルアセトナトイットリウム(CAS番号:15554-47-9)0.5質量部を添加し混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、イットリウムの含有量は0.10質量%であった。
Example 1
As an organic material, a mixture obtained by adding 0.5 parts by mass of trisacetylacetonatoyttrium (CAS number: 15554-47-9) as a metal component to 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. and mixing them, Pitch fibers were obtained by feeding to a melt extruder, melt mixing at a melting temperature of 320 ° C., and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the yttrium content was 0.10% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で32分間熱処理することにより賦活をおこない、実施例1の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積871m2/g、全細孔容積Aは0.336cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.305cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.907であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment for 32 minutes at an ambient temperature of 950 ° C. in the activation furnace, and activated carbon of Example 1 was obtained. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 871 m 2 / g, a total pore volume A of 0.336 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.305 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.907.
(実施例2)
 賦活時間を44分とした以外は実施例1と同様にし、実施例2の活性炭を得た。得られた活性炭は、比表面積1237m2/g、全細孔容積Aは0.491cc/g、ミクロ細孔容積率({C/A}×100)は99%、細孔径1.0nm以下の細孔容積Bは0.383cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.779であった。
(Example 2)
Activated carbon of Example 2 was obtained in the same manner as in Example 1 except that the activation time was 44 minutes. The obtained activated carbon has a specific surface area of 1237 m 2 / g, a total pore volume A of 0.491 cc / g, a micropore volume ratio ({C / A} × 100) of 99%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.383 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.779.
(実施例3)
 賦活時間を58分とした以外は実施例1と同様にし、実施例3の活性炭を得た。得られた活性炭は、比表面積1603m2/g、全細孔容積Aは0.654cc/g、ミクロ細孔容積率({C/A}×100)は97%、細孔径1.0nm以下の細孔容積Bは0.434cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.663であった。
(Example 3)
Activated carbon of Example 3 was obtained in the same manner as Example 1 except that the activation time was 58 minutes. The obtained activated carbon has a specific surface area of 1603 m 2 / g, a total pore volume A of 0.654 cc / g, a micropore volume ratio ({C / A} × 100) of 97%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.434 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.663.
(実施例4)
 金属成分(トリスアセチルアセトナトイットリウム)の添加量を1.0質量部(活性炭前駆体中の金属含有量は0.16質量%)とし、賦活時間を25分とした以外は実施例1と同様にし、実施例4の活性炭を得た。得られた活性炭は、比表面積917m2/g、全細孔容積Aは0.381cc/g、ミクロ細孔容積率({C/A}×100)は95%、細孔径1.0nm以下の細孔容積Bは0.278cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.730であった。
Example 4
Example 1 except that the addition amount of the metal component (trisacetylacetonatoyttrium) was 1.0 part by mass (the metal content in the activated carbon precursor was 0.16% by mass) and the activation time was 25 minutes. The activated carbon of Example 4 was obtained. The obtained activated carbon has a specific surface area of 917 m 2 / g, a total pore volume A of 0.381 cc / g, a micropore volume ratio ({C / A} × 100) of 95%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.278 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.730.
(実施例5)
 賦活時間を32分とした以外は実施例4と同様にし、実施例5の活性炭を得た。得られた活性炭は、比表面積1168m2/g、全細孔容積Aは0.502cc/g、ミクロ細孔容積率({C/A}×100)は92%、細孔径1.0nm以下の細孔容積Bは0.302cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.602であった。
(Example 5)
Activated carbon of Example 5 was obtained in the same manner as Example 4 except that the activation time was 32 minutes. The obtained activated carbon has a specific surface area of 1168 m 2 / g, a total pore volume A of 0.502 cc / g, a micropore volume ratio ({C / A} × 100) of 92%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.302 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.602.
(実施例6)
 賦活時間を40分とした以外は実施例4と同様にし、実施例6の活性炭を得た。得られた活性炭は、比表面積1338m2/g、全細孔容積Aは0.592cc/g、ミクロ細孔容積率({C/A}×100)は90%、細孔径1.0nm以下の細孔容積Bは0.352cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.595であった。
(Example 6)
Activated carbon of Example 6 was obtained in the same manner as in Example 4 except that the activation time was 40 minutes. The obtained activated carbon has a specific surface area of 1338 m 2 / g, a total pore volume A of 0.592 cc / g, a micropore volume ratio ({C / A} × 100) of 90%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.352 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.595.
(実施例7)
 有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してアセチルアセトンマグネシウム(II)(CAS番号:14024-56-7)2.3質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、マグネシウムの含有量は0.18質量%であった。
(Example 7)
As an organic material, a mixture of 2.3 parts by mass of acetylacetone magnesium (II) (CAS number: 14024-56-7) with 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. is supplied to a melt extruder. Then, melt mixing was performed at a melting temperature of 320 ° C., and spinning was performed at a discharge rate of 16 g / min to obtain pitch fibers. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the magnesium content was 0.18% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で25分間熱処理することにより賦活をおこない、実施例7の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積981m2/g、全細孔容積Aは0.395cc/g、ミクロ細孔容積率({C/A}×100)は95%、細孔径1.0nm以下の細孔容積Bは0.331cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.838であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment for 25 minutes at an ambient temperature of 950 ° C. in the activation furnace, and activated carbon of Example 7 was obtained. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 981 m 2 / g, a total pore volume A of 0.395 cc / g, a micropore volume ratio ({C / A} × 100) of 95%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.331 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.838.
(実施例8)
 賦活時間を40分とした以外は実施例7と同様にし、実施例8の活性炭を得た。得られた活性炭は、比表面積1461m2/g、全細孔容積Aは0.635cc/g、ミクロ細孔容積率({C/A}×100)は87%、細孔径1.0nm以下の細孔容積Bは0.417cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.656であった。
(Example 8)
Activated carbon of Example 8 was obtained in the same manner as in Example 7 except that the activation time was 40 minutes. The obtained activated carbon has a specific surface area of 1461 m 2 / g, a total pore volume A of 0.635 cc / g, a micropore volume ratio ({C / A} × 100) of 87%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.417 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.656.
(実施例9)
 有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して安息香酸マンガン(CAS番号:636-13-5)1.7質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、マンガンの含有量は0.20質量%であった。
Example 9
As an organic material, a mixture of 1.7 parts by mass of manganese benzoate (CAS number: 636-13-5) to 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. is supplied to a melt extruder, Pitch fibers were obtained by melt mixing at a melting temperature of 320 ° C. and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the manganese content was 0.20% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で25分間熱処理することにより賦活をおこない、実施例9の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積953m2/g、全細孔容積Aは0.367cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.345cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.941であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment for 25 minutes at an ambient temperature of 950 ° C. in the activation furnace, and activated carbon of Example 9 was obtained. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 953 m 2 / g, a total pore volume A of 0.367 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.345 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.941.
(実施例10)
 賦活時間を40分とした以外は実施例9と同様にし、実施例10の活性炭を得た。得られた活性炭は、比表面積1214m2/g、全細孔容積Aは0.484cc/g、ミクロ細孔容積率({C/A}×100)は98%、細孔径1.0nm以下の細孔容積Bは0.348cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.720であった。
(Example 10)
Activated carbon of Example 10 was obtained in the same manner as Example 9 except that the activation time was 40 minutes. The obtained activated carbon has a specific surface area of 1214 m 2 / g, a total pore volume A of 0.484 cc / g, a micropore volume ratio ({C / A} × 100) of 98%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.348 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.720.
(実施例11)
 有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してアセチルアセトナトランタン(CAS番号:64424-12-0)1.3質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、ランタンの含有量は0.21質量%であった。
(Example 11)
As an organic material, a mixture of 1.3 parts by mass of acetylacetonatlantan (CAS number: 64424-12-0) to 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. is supplied to a melt extruder. Pitch fibers were obtained by melt mixing at a melting temperature of 320 ° C. and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the content of lanthanum was 0.21% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で20分間熱処理することにより賦活をおこない、実施例11の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積675m2/g、全細孔容積Aは0.267cc/g、ミクロ細孔容積率({C/A}×100)は99%、細孔径1.0nm以下の細孔容積Bは0.234cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.875であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment at 950 ° C. in an activation furnace for 20 minutes to obtain activated carbon of Example 11. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 675 m 2 / g, a total pore volume A of 0.267 cc / g, a micropore volume ratio ({C / A} × 100) of 99%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.234 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.875.
(実施例12)
 賦活時間を25分とした以外は実施例11と同様にし、実施例12の活性炭を得た。得られた活性炭は、比表面積758m2/g、全細孔容積Aは0.304cc/g、ミクロ細孔容積率({C/A}×100)は97%、細孔径1.0nm以下の細孔容積Bは0.256cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.841であった。
(Example 12)
Activated carbon of Example 12 was obtained in the same manner as Example 11 except that the activation time was 25 minutes. The obtained activated carbon has a specific surface area of 758 m 2 / g, a total pore volume A of 0.304 cc / g, a micropore volume ratio ({C / A} × 100) of 97%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.256 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.841.
(実施例13)
 賦活時間を30分とした以外は実施例11と同様にし、実施例13の活性炭を得た。得られた活性炭は、比表面積916m2/g、全細孔容積Aは0.368cc/g、ミクロ細孔容積率({C/A}×100)は96%、細孔径1.0nm以下の細孔容積Bは0.283cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.770であった。
(Example 13)
Activated carbon of Example 13 was obtained in the same manner as Example 11 except that the activation time was 30 minutes. The obtained activated carbon has a specific surface area of 916 m 2 / g, a total pore volume A of 0.368 cc / g, a micropore volume ratio ({C / A} × 100) of 96%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.283 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.770.
(実施例14)
 有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してビス(2,4-ペンタンジオナト)バナジウム(IV)オキシド(CAS番号:3153-26-2)1.3質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、バナジウムの含有量は0.18質量%であった。
(Example 14)
As an organic material, 1.3 parts by mass of bis (2,4-pentanedionato) vanadium (IV) oxide (CAS number: 3153-26-2) per 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. The mixture was supplied to a melt extruder, melted and mixed at a melting temperature of 320 ° C., and spun at a discharge rate of 16 g / min to obtain pitch fibers. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the vanadium content was 0.18% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で15分間熱処理することにより賦活をおこない、実施例14の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積863m2/g、全細孔容積Aは0.332cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.305cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.918であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment at 950 ° C. in an activation furnace for 15 minutes to obtain activated carbon of Example 14. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 863 m 2 / g, a total pore volume A of 0.332 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.305 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.918.
(実施例15)
 賦活時間を25分とした以外は実施例14と同様にし、実施例15の活性炭を得た。得られた活性炭は、比表面積1426m2/g、全細孔容積Aは0.569cc/g、ミクロ細孔容積率({C/A}×100)は97%、細孔径1.0nm以下の細孔容積Bは0.437cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.767であった。
(Example 15)
Activated carbon of Example 15 was obtained in the same manner as Example 14 except that the activation time was 25 minutes. The obtained activated carbon has a specific surface area of 1426 m 2 / g, a total pore volume A of 0.569 cc / g, a micropore volume ratio ({C / A} × 100) of 97%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.437 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.767.
(実施例16)
 有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してアセチルアセトナトジルコニウム(CAS番号:17501-44-9)0.8質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、ジルコニウムの含有量は0.19質量%であった。
(Example 16)
As an organic material, a mixture of 0.8 parts by mass of acetylacetonatozirconium (CAS number: 17501-44-9) to 100 parts by mass of granular coal pitch having a softening point of 280 ° C. is supplied to a melt extruder. Pitch fibers were obtained by melt mixing at a melting temperature of 320 ° C. and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the zirconium content was 0.19% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で25分間熱処理することにより賦活をおこない、実施例16の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積790m2/g、全細孔容積Aは0.317cc/g、ミクロ細孔容積率({C/A}×100)は97%、細孔径1.0nm以下の細孔容積Bは0.259cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.817であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment for 25 minutes at an ambient temperature of 950 ° C. in the activation furnace to obtain activated carbon of Example 16. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 790 m 2 / g, a total pore volume A of 0.317 cc / g, a micropore volume ratio ({C / A} × 100) of 97%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.259 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.817.
(実施例17)
 賦活時間を40分とした以外は実施例16と同様にし、実施例17の活性炭を得た。得られた活性炭は、比表面積1052m2/g、全細孔容積Aは0.445cc/g、ミクロ細孔容積率({C/A}×100)は91%、細孔径1.0nm以下の細孔容積Bは0.315cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.707であった。
(Example 17)
Activated carbon of Example 17 was obtained in the same manner as Example 16 except that the activation time was 40 minutes. The obtained activated carbon has a specific surface area of 1052 m 2 / g, a total pore volume A of 0.445 cc / g, a micropore volume ratio ({C / A} × 100) of 91%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.315 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.707.
(実施例18)
 有機質材料として、軟化点が280℃の粒状ピッチ100質量部に対してアセチルアセトナトセリウム(CAS番号:15653-01-7)0.8質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、セリウムの含有量は0.14質量%であった。
(Example 18)
As an organic material, a mixture of 0.8 parts by mass of acetylacetonatocerium (CAS number: 15653-01-7) to 100 parts by mass of a granular pitch having a softening point of 280 ° C. is supplied to a melt extruder, Pitch fibers were obtained by melt mixing at a melting temperature of 320 ° C. and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the cerium content was 0.14% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で25分間熱処理することにより賦活をおこない、実施例18の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積821m2/g、全細孔容積Aは0.341cc/g、ミクロ細孔容積率({C/A}×100)は92%、細孔径1.0nm以下の細孔容積Bは0.276cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.808であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment for 25 minutes at an ambient temperature of 950 ° C. in the activation furnace, and activated carbon of Example 18 was obtained. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 821 m 2 / g, a total pore volume A of 0.341 cc / g, a micropore volume ratio ({C / A} × 100) of 92%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.276 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.808.
(実施例19)
 賦活時間を35分とした以外は実施例18と同様にし、実施例19の活性炭を得た。得られた活性炭は、比表面積1078m2/g、全細孔容積Aは0.464cc/g、ミクロ細孔容積率({C/A}×100)は89%、細孔径1.0nm以下の細孔容積Bは0.337cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.726であった。
(Example 19)
Activated carbon of Example 19 was obtained in the same manner as Example 18 except that the activation time was 35 minutes. The obtained activated carbon has a specific surface area of 1078 m 2 / g, a total pore volume A of 0.464 cc / g, a micropore volume ratio ({C / A} × 100) of 89%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.337 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.726.
(実施例20)
 賦活時間を45分とした以外は実施例18と同様にし、実施例20の活性炭を得た。得られた活性炭は、比表面積1249m2/g、全細孔容積Aは0.550cc/g、ミクロ細孔容積率({C/A}×100)は88%、細孔径1.0nm以下の細孔容積Bは0.352cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.641であった。
(Example 20)
Activated carbon of Example 20 was obtained in the same manner as in Example 18 except that the activation time was 45 minutes. The obtained activated carbon has a specific surface area of 1249 m 2 / g, a total pore volume A of 0.550 cc / g, a micropore volume ratio ({C / A} × 100) of 88%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.352 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.641.
(実施例21)
 有機質材料として、軟化点が280℃の粒状ピッチ100質量部に対して(2,4-ペンタンジオナト)モリブデン(VI)ジオキシド(CAS番号:17524-05-9)0.8質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、モリブデンの含有量は0.23質量%であった。
(Example 21)
As an organic material, 0.8 part by mass of (2,4-pentanedionato) molybdenum (VI) dioxide (CAS number: 17524-05-9) was mixed with 100 parts by mass of a granular pitch having a softening point of 280 ° C. The product was supplied to a melt extruder, melted and mixed at a melting temperature of 320 ° C., and spun at a discharge rate of 16 g / min to obtain pitch fibers. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the molybdenum content was 0.23% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で25分間熱処理することにより賦活をおこない、実施例21の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積784m2/g、全細孔容積Aは0.313cc/g、ミクロ細孔容積率({C/A}×100)は98%、細孔径1.0nm以下の細孔容積Bは0.269cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.861であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment for 25 minutes at an ambient temperature of 950 ° C. in the activation furnace, and activated carbon of Example 21 was obtained. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 784 m 2 / g, a total pore volume A of 0.313 cc / g, a micropore volume ratio ({C / A} × 100) of 98%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.269 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.861.
(実施例22)
 賦活時間を40分とした以外は実施例21と同様にし、実施例22の活性炭を得た。得られた活性炭は、比表面積1171m2/g、全細孔容積Aは0.479cc/g、ミクロ細孔容積率({C/A}×100)は95%、細孔径1.0nm以下の細孔容積Bは0.365cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.761であった。
(Example 22)
Activated carbon of Example 22 was obtained in the same manner as Example 21 except that the activation time was 40 minutes. The obtained activated carbon has a specific surface area of 1171 m 2 / g, a total pore volume A of 0.479 cc / g, a micropore volume ratio ({C / A} × 100) of 95%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.365 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.761.
(実施例23)
 賦活時間を60分とした以外は実施例21と同様にし、実施例23の活性炭を得た。得られた活性炭は、比表面積1684m2/g、全細孔容積Aは0.714cc/g、ミクロ細孔容積率({C/A}×100)は92%、細孔径1.0nm以下の細孔容積Bは0.427cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.598であった。
(Example 23)
Activated carbon of Example 23 was obtained in the same manner as Example 21 except that the activation time was 60 minutes. The obtained activated carbon had a specific surface area of 1684 m 2 / g, a total pore volume A of 0.714 cc / g, a micropore volume ratio ({C / A} × 100) of 92%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.427 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.598.
(実施例24)
 有機質材料として、軟化点が280℃の粒状ピッチ100質量部に対してアセチルアセトナトコバルト(CAS番号:21679-46-9)1.5質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、コバルトの含有量は0.21質量%であった。
(Example 24)
As an organic material, a mixture of 1.5 parts by mass of acetylacetonatocobalt (CAS number: 21679-46-9) to 100 parts by mass of a granular pitch having a softening point of 280 ° C. is supplied to a melt extruder, Pitch fibers were obtained by melt mixing at a melting temperature of 320 ° C. and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the cobalt content was 0.21% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で25分間熱処理することにより賦活をおこない、実施例25の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積844m2/g、全細孔容積Aは0.357cc/g、ミクロ細孔容積率({C/A}×100)は89%、細孔径1.0nm以下の細孔容積Bは0.315cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.882であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment for 25 minutes at an ambient temperature of 950 ° C. in the activation furnace, and activated carbon of Example 25 was obtained. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 844 m 2 / g, a total pore volume A of 0.357 cc / g, a micropore volume ratio ({C / A} × 100) of 89%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.315 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.882.
(実施例25)
 賦活時間を40分とした以外は実施例24と同様にし、実施例25の活性炭を得た。得られた活性炭は、比表面積1447m2/g、全細孔容積Aは0.616cc/g、ミクロ細孔容積率({C/A}×100)は89%、細孔径1.0nm以下の細孔容積Bは0.431cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.700であった。
(Example 25)
Activated carbon of Example 25 was obtained in the same manner as Example 24 except that the activation time was 40 minutes. The obtained activated carbon has a specific surface area of 1447 m 2 / g, a total pore volume A of 0.616 cc / g, a micropore volume ratio ({C / A} × 100) of 89%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.431 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.700.
(実施例26)
 有機質材料として、軟化点が280℃の粒状ピッチ100質量部に対してビス(2,4-ペンタンジオナト)チタン(IV)オキシド(CAS番号:14024-64-7)1.4質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、チタンの含有量は0.25質量%であった。
(Example 26)
As an organic material, 1.4 parts by mass of bis (2,4-pentanedionato) titanium (IV) oxide (CAS number: 14024-64-7) is mixed with 100 parts by mass of a granular pitch having a softening point of 280 ° C. The product was supplied to a melt extruder, melted and mixed at a melting temperature of 320 ° C., and spun at a discharge rate of 16 g / min to obtain pitch fibers. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the titanium content was 0.25% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で25分間熱処理することにより賦活をおこない、実施例26の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積781m2/g、全細孔容積Aは0.335cc/g、ミクロ細孔容積率({C/A}×100)は89%、細孔径1.0nm以下の細孔容積Bは0.240cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.717であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment for 25 minutes at an ambient temperature of 950 ° C. in the activation furnace, and activated carbon of Example 26 was obtained. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 781 m 2 / g, a total pore volume A of 0.335 cc / g, a micropore volume ratio ({C / A} × 100) of 89%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.240 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.717.
(実施例27)
 賦活時間を40分とした以外は実施例26と同様にし、実施例27の活性炭を得た。得られた活性炭は、比表面積1170m2/g、全細孔容積Aは0.557cc/g、ミクロ細孔容積率({C/A}×100)は80%、細孔径1.0nm以下の細孔容積Bは0.320cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.575であった。
(Example 27)
Activated carbon of Example 27 was obtained in the same manner as in Example 26 except that the activation time was 40 minutes. The obtained activated carbon has a specific surface area of 1170 m 2 / g, a total pore volume A of 0.557 cc / g, a micropore volume ratio ({C / A} × 100) of 80%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.320 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.575.
(比較例1)
 有機質材料として、軟化点が280℃の粒状石炭ピッチを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量20g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。金属成分は未添加であるため、該活性炭前駆体の金属含有量は0質量%である。
(Comparative Example 1)
As an organic material, granular coal pitch having a softening point of 280 ° C. was supplied to a melt extruder, melted and mixed at a melting temperature of 320 ° C., and spun at a discharge rate of 20 g / min to obtain pitch fibers. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. Since the metal component is not added, the metal content of the activated carbon precursor is 0% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で60分間熱処理することにより賦活をおこない、比較例1の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積814m2/g、全細孔容積Aは0.315cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.311cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.988であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment for 60 minutes at an ambient temperature of 950 ° C. in the activation furnace, and activated carbon of Comparative Example 1 was obtained. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 814 m 2 / g, a total pore volume A of 0.315 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.311 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.988.
(比較例2)
 賦活時間を90分とした以外は比較例1と同様にし、比較例2の活性炭を得た。得られた活性炭は、比表面積1304m2/g、全細孔容積Aは0.497cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.428cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.862であった。
(Comparative Example 2)
Activated carbon of Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that the activation time was 90 minutes. The obtained activated carbon has a specific surface area of 1304 m 2 / g, a total pore volume A of 0.497 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.428 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.862.
(比較例3)
 賦活時間を125分とした以外は比較例1と同様にし、比較例3の活性炭を得た。得られた活性炭は、比表面積1741m2/g、全細孔容積Aは0.692cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.462cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.667であった。
(Comparative Example 3)
Activated carbon of Comparative Example 3 was obtained in the same manner as Comparative Example 1 except that the activation time was 125 minutes. The obtained activated carbon has a specific surface area of 1741 m 2 / g, a total pore volume A of 0.692 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.462 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.667.
(比較例4)
 有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して金属成分としてカプリル酸亜鉛(CAS番号:557-09-5)1.3質量部を添加し混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、亜鉛の含有量は0.19質量%であった。
(Comparative Example 4)
As an organic material, a mixture obtained by adding 1.3 parts by mass of zinc caprylate (CAS number: 557-09-5) as a metal component to 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. is melt-extruded. Pitch fiber was obtained by feeding to a machine, melt mixing at a melting temperature of 320 ° C., and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the zinc content was 0.19% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で60分間熱処理することにより賦活をおこない、比較例4の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積1021m2/g、全細孔容積Aは0.387cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.383cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.991であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment for 60 minutes at an ambient temperature of 950 ° C. in the activation furnace, and activated carbon of Comparative Example 4 was obtained. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 1021 m 2 / g, a total pore volume A of 0.387 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.383 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.991.
(比較例5)
 賦活時間を100分とした以外は比較例4と同様にし、比較例5の活性炭を得た。得られた活性炭は、比表面積1484m2/g、全細孔容積Aは0.577cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.467cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.809であった。
(Comparative Example 5)
Activated carbon of Comparative Example 5 was obtained in the same manner as Comparative Example 4 except that the activation time was 100 minutes. The obtained activated carbon has a specific surface area of 1484 m 2 / g, a total pore volume A of 0.577 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.467 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.809.
(比較例6)
 有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して金属成分としてアセチルアセトナト銅(CAS番号:13395-16-9)1.0質量部を添加し混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、銅の含有量は0.18質量%であった。
(Comparative Example 6)
As an organic material, a mixture of 1.0 part by mass of acetylacetonato copper (CAS number: 13395-16-9) as a metal component and mixed with 100 parts by mass of a granular coal pitch having a softening point of 280 ° C. is melted. Pitch fibers were obtained by feeding to an extruder, melting and mixing at a melting temperature of 320 ° C., and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the copper content was 0.18% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で60分間熱処理することにより賦活をおこない、比較例6の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積1125m2/g、全細孔容積Aは0.427cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.416cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.974であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment for 60 minutes at an ambient temperature of 950 ° C. in the activation furnace, and activated carbon of Comparative Example 6 was obtained. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 1125 m 2 / g, a total pore volume A of 0.427 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.416 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.974.
(比較例7)
 賦活時間を130分とした以外は比較例6と同様にし、比較例7の活性炭を得た。得られた活性炭は、比表面積1690m2/g、全細孔容積Aは0.681cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.415cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.610であった。
(Comparative Example 7)
Activated carbon of Comparative Example 7 was obtained in the same manner as Comparative Example 6 except that the activation time was 130 minutes. The obtained activated carbon has a specific surface area of 1690 m 2 / g, a total pore volume A of 0.681 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.415 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.610.
(比較例8)
 有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して金属成分としてセバシン酸銀0.7質量部を添加し混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、銀の含有量は0.27質量%であった。
(Comparative Example 8)
As an organic material, 0.7 parts by mass of silver sebacate added as a metal component to 100 parts by mass of granular coal pitch having a softening point of 280 ° C. and mixed, are supplied to a melt extruder and melted at 320 ° C. Pitch fibers were obtained by melt mixing and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the silver content was 0.27% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、CO2濃度が100容量%、温度約20℃の導入ガスを約15L/min(0℃1気圧換算)の流量で賦活炉内へ導入した。賦活炉内の雰囲気温度950℃で25分間熱処理することにより賦活をおこない、比較例8の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積389m2/g、全細孔容積Aは0.156cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.156cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.999であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and the introduced gas having a CO 2 concentration of 100% by volume and a temperature of about 20 ° C. was flowed at a flow rate of about 15 L / min (converted to 0 ° C. and 1 atm). It was introduced into the activation furnace. Activation was performed by heat treatment at 950 ° C. atmosphere temperature in the activation furnace for 25 minutes to obtain activated carbon of Comparative Example 8. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 389 m 2 / g, a total pore volume A of 0.156 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.156 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.999.
(比較例9)
 賦活時間を100分とした以外は比較例8と同様にし、比較例9の活性炭を得た。得られた活性炭は、比表面積1280m2/g、全細孔容積Aは0.495cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.397cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.802であった。
(Comparative Example 9)
Activated carbon of Comparative Example 9 was obtained in the same manner as Comparative Example 8 except that the activation time was 100 minutes. The obtained activated carbon has a specific surface area of 1280 m 2 / g, a total pore volume A of 0.495 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.397 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.802.
(比較例10)
 賦活時間を130分とした以外は比較例8と同様にし、比較例10の活性炭を得た。得られた活性炭は、比表面積1730m2/g、全細孔容積Aは0.700cc/g、ミクロ細孔容積率({C/A}×100)は100%、細孔径1.0nm以下の細孔容積Bは0.420cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.600であった。
(Comparative Example 10)
Activated carbon of Comparative Example 10 was obtained in the same manner as Comparative Example 8 except that the activation time was 130 minutes. The obtained activated carbon has a specific surface area of 1730 m 2 / g, a total pore volume A of 0.700 cc / g, a micropore volume ratio ({C / A} × 100) of 100%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.420 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.600.
(比較例11)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して金属成分としてトリスアセチルアセトナトイットリウム(CAS番号:15554-47-9)1.3質量部を添加し混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1~30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、イットリウムの含有量は0.25質量%であった。
(Comparative Example 11)
As an organic material, a material obtained by adding 1.3 parts by weight of trisacetylacetonatoyttrium (CAS number: 15554-47-9) as a metal component to 100 parts by weight of a granular coal pitch having a softening point of 280 ° C. and mixing them, Pitch fibers were obtained by feeding to a melt extruder, melt mixing at a melting temperature of 320 ° C., and spinning at a discharge rate of 16 g / min. The obtained pitch fiber was heated from normal temperature to 354 ° C. in air at a rate of 1 to 30 ° C./min for 54 minutes to effect infusibilization to obtain an activated carbon precursor as an infusible pitch fiber. In the activated carbon precursor, the yttrium content was 0.25% by mass.
 得られた活性炭前駆体10gを賦活炉(容積0.044m3)に仕込み、H2O濃度が100容量%の導入ガスを約1.0kg/hrの流量で賦活炉内へ導入した。賦活炉内の雰囲気温度900℃で20分間熱処理することにより賦活をおこない、比較例11の活性炭を得た。賦活処理の間、導入ガスの組成は変更しなかった。得られた活性炭は、比表面積1078m2/g、全細孔容積Aは0.572cc/g、ミクロ細孔容積率({C/A}×100)は72%、細孔径1.0nm以下の細孔容積Bは0.241cc/g、細孔径1.0nm以下の細孔容積比(B/A)は0.421であった。 10 g of the obtained activated carbon precursor was charged into an activation furnace (volume 0.044 m 3 ), and an introduction gas having a H 2 O concentration of 100% by volume was introduced into the activation furnace at a flow rate of about 1.0 kg / hr. Activation was performed by heat treatment at an ambient temperature of 900 ° C. in the activation furnace for 20 minutes to obtain activated carbon of Comparative Example 11. During the activation process, the composition of the introduced gas was not changed. The obtained activated carbon has a specific surface area of 1078 m 2 / g, a total pore volume A of 0.572 cc / g, a micropore volume ratio ({C / A} × 100) of 72%, and a pore diameter of 1.0 nm or less. The pore volume B was 0.241 cc / g, and the pore volume ratio (B / A) with a pore diameter of 1.0 nm or less was 0.421.
 実施例1~27及び比較例1~11の製造方法で得られた活性炭の製造条件及び物性値を、表1~表5に示す。また、実施例1~27及び比較例1~10の製造方法における賦活時間に対する比表面積の増加傾向を線形近似で示したグラフを図1~図5に示す。 Tables 1 to 5 show production conditions and physical property values of the activated carbon obtained by the production methods of Examples 1 to 27 and Comparative Examples 1 to 11. Further, graphs showing the increase tendency of the specific surface area with respect to the activation time in the production methods of Examples 1 to 27 and Comparative Examples 1 to 10 are shown in FIG. 1 to FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~3に示されるように、実施例1~実施例27の製造方法では、特定の金属成分を活性炭前駆体に含ませて炭酸ガス賦活することで、全細孔容積Aに対する直径1.0nm以下の細孔容積Bの比(細孔容積B/全細孔容積A)が0.5以上である活性炭を得ることができた。さらに、図1~図4に示されるように、実施例1~実施例27の製造方法では、比較例1~10(図5参照)に比べて比表面積の発達速度が大きく、導入ガスが二酸化炭素100%である炭酸ガス賦活でありながら、活性炭を効率良く製造できることが示された。つまり、所定比表面積まで賦活するために必要な賦活時間が大幅に短縮された。特に、バナジウムを含む金属成分を用いた実施例14及び15は、比表面積の発達速度が顕著に大きい。 As shown in Tables 1 to 3, in the production methods of Examples 1 to 27, a specific metal component was included in the activated carbon precursor and activated by carbon dioxide gas, thereby increasing the diameter of the total pore volume A from 1. An activated carbon having a pore volume B ratio of 0 nm or less (pore volume B / total pore volume A) of 0.5 or more could be obtained. Further, as shown in FIGS. 1 to 4, in the manufacturing methods of Examples 1 to 27, the development rate of the specific surface area is larger than that of Comparative Examples 1 to 10 (see FIG. 5), and the introduced gas is made of carbon dioxide. It was shown that activated carbon can be produced efficiently while carbon dioxide is activated with 100% carbon. That is, the activation time required for activating up to a predetermined specific surface area was greatly shortened. In particular, Examples 14 and 15 using a metal component containing vanadium have a remarkably large development rate of specific surface area.
 一方、表4、5及び図5に示されるように、比較例1~10では、比表面積の発達速度が小さく、活性炭を効率良く製造することはできない。また、比較例4~10に示すように、金属成分を活性炭前駆体に含ませて炭酸ガス賦活した場合であっても、当該金属成分が本発明における特定の金属元素を含むものでなければ、比表面積の発達速度を上げることはできない。また、表5に示されるように、比較例11は、特定の金属成分を活性炭前駆体に含ませたものの、水蒸気賦活法により賦活をおこなったことから、全細孔容積Aに対する直径1.0nm以下の細孔容積Bの比(細孔容積B/全細孔容積A)が0.5未満となった。 On the other hand, as shown in Tables 4 and 5 and FIG. 5, in Comparative Examples 1 to 10, the development rate of the specific surface area is small, and activated carbon cannot be produced efficiently. Further, as shown in Comparative Examples 4 to 10, even when the metal component is included in the activated carbon precursor and activated by carbon dioxide gas, if the metal component does not contain the specific metal element in the present invention, The development rate of specific surface area cannot be increased. Further, as shown in Table 5, Comparative Example 11 contained a specific metal component in the activated carbon precursor, but was activated by the water vapor activation method, so that the diameter with respect to the total pore volume A was 1.0 nm. The following ratio of pore volume B (pore volume B / total pore volume A) was less than 0.5.

Claims (13)

  1.  金属成分を含む活性炭前駆体を導入ガスとして炭酸ガスで賦活し、全細孔容積Aに対する直径1.0nm以下の細孔容積Bの比(細孔容積B/全細孔容積A)が0.5以上である活性炭を得る賦活工程を含み、
     前記金属成分を構成する金属元素が、第2族元素、第3族元素、第4族元素、第5族元素、第7族元素、及び希土類元素からなる群から選択される、活性炭の製造方法。
    The activated carbon precursor containing a metal component is activated with carbon dioxide gas as an introduction gas, and the ratio of the pore volume B with a diameter of 1.0 nm or less to the total pore volume A (pore volume B / total pore volume A) is 0. Including an activation step to obtain activated carbon that is 5 or more,
    The method for producing activated carbon, wherein the metal element constituting the metal component is selected from the group consisting of Group 2 elements, Group 3 elements, Group 4 elements, Group 5 elements, Group 7 elements, and rare earth elements .
  2.  前記金属元素が、Y、Mg、Mn、La、V、Zr、Ti及びCeからなる群から選択される、請求項1に記載の活性炭の製造方法。 The method for producing activated carbon according to claim 1, wherein the metal element is selected from the group consisting of Y, Mg, Mn, La, V, Zr, Ti, and Ce.
  3.  前記金属元素が、Y、Mg、Ce、Ti及びVからなる群から選択される、請求項1又は2に記載の活性炭の製造方法。 The method for producing activated carbon according to claim 1 or 2, wherein the metal element is selected from the group consisting of Y, Mg, Ce, Ti and V.
  4.  金属成分を含む活性炭前駆体を導入ガスとして炭酸ガスで賦活し、全細孔容積Aに対する直径1.0nm以下の細孔容積Bの比(細孔容積B/全細孔容積A)が0.5以上である活性炭を得る賦活工程を含み、
     前記金属成分を構成する金属元素が、第6族元素及び第9族元素からなる群から選択される、活性炭の製造方法。
    The activated carbon precursor containing a metal component is activated with carbon dioxide gas as an introduction gas, and the ratio of the pore volume B with a diameter of 1.0 nm or less to the total pore volume A (pore volume B / total pore volume A) is 0. Including an activation step to obtain activated carbon that is 5 or more,
    The method for producing activated carbon, wherein the metal element constituting the metal component is selected from the group consisting of Group 6 elements and Group 9 elements.
  5.  前記金属元素が、Mo及びCoからなる群から選択される、請求項4に記載の活性炭の製造方法。 The method for producing activated carbon according to claim 4, wherein the metal element is selected from the group consisting of Mo and Co.
  6.  前記活性炭の比表面積が600m2/g以上である、請求項1から5のいずれか1項に記載の活性炭の製造方法。 The manufacturing method of the activated carbon of any one of Claim 1 to 5 whose specific surface area of the said activated carbon is 600 m < 2 > / g or more.
  7.  前記賦活工程において、前記導入ガスの組成を変更しない、請求項1から6のいずれか1項に記載の活性炭の製造方法。 The method for producing activated carbon according to any one of claims 1 to 6, wherein the composition of the introduced gas is not changed in the activation step.
  8.  前記導入ガスの流量が、前記活性炭前駆体1g当たり、0℃1気圧換算で1.5L/分以上である、請求項1から7のいずれか1項に記載の活性炭の製造方法。 The method for producing activated carbon according to any one of claims 1 to 7, wherein a flow rate of the introduced gas is 1.5 L / min or more in terms of 1 atm at 0 ° C per 1 g of the activated carbon precursor.
  9.  前記賦活工程における賦活温度が800~1000℃である、請求項1から8のいずれか1項に記載の活性炭の製造方法。 The method for producing activated carbon according to any one of claims 1 to 8, wherein an activation temperature in the activation step is 800 to 1000 ° C.
  10.  前記活性炭前駆体中、前記金属成分の含有量が0.05~1.0質量%である、請求項1から9のいずれか1項に記載の活性炭の製造方法。 The method for producing activated carbon according to any one of claims 1 to 9, wherein a content of the metal component is 0.05 to 1.0 mass% in the activated carbon precursor.
  11.  前記活性炭前駆体が、不融化したピッチである、請求項1から10のいずれか1項に記載の活性炭の製造方法。 The method for producing activated carbon according to any one of claims 1 to 10, wherein the activated carbon precursor is an infusible pitch.
  12.  前記活性炭において、全細孔容積Aに対する直径2.0nm以下の細孔容積Cの割合({細孔容積C/細孔容積A}×100)が85%以上である、請求項1から11のいずれか1項に記載の活性炭の製造方法。 In the activated carbon, the ratio of the pore volume C having a diameter of 2.0 nm or less to the total pore volume A ({pore volume C / pore volume A} × 100) is 85% or more. The manufacturing method of activated carbon of any one of Claims 1.
  13.  前記活性炭において、直径1.0nm以下の細孔容積Bが0.25cc/g以上である、請求項1から12のいずれか1項に記載の活性炭の製造方法。 The method for producing activated carbon according to any one of claims 1 to 12, wherein in the activated carbon, a pore volume B having a diameter of 1.0 nm or less is 0.25 cc / g or more.
PCT/JP2018/013371 2017-03-31 2018-03-29 Method for producing activated carbon WO2018181778A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019510164A JP7202285B2 (en) 2017-03-31 2018-03-29 Method for producing activated carbon
KR1020197028686A KR102571710B1 (en) 2017-03-31 2018-03-29 Method for producing activated carbon
CN201880021396.4A CN110461767A (en) 2017-03-31 2018-03-29 The manufacturing method of active carbon
JP2022206816A JP7441296B2 (en) 2017-03-31 2022-12-23 Activated carbon manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071832 2017-03-31
JP2017-071832 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181778A1 true WO2018181778A1 (en) 2018-10-04

Family

ID=63676198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013371 WO2018181778A1 (en) 2017-03-31 2018-03-29 Method for producing activated carbon

Country Status (5)

Country Link
JP (2) JP7202285B2 (en)
KR (1) KR102571710B1 (en)
CN (1) CN110461767A (en)
TW (1) TW201841831A (en)
WO (1) WO2018181778A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020121288A (en) * 2019-01-31 2020-08-13 株式会社タカギ Activated carbon for removing trihalomethane and manufacturing method thereof
US11795066B2 (en) 2020-06-30 2023-10-24 Kuraray Co., Ltd. Carbonaceous material and method for producing same, water purification filter, and water purifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149917A (en) * 1985-12-23 1987-07-03 Gunei Kagaku Kogyo Kk Production of active carbon yarn
JPH07155589A (en) * 1993-12-09 1995-06-20 Mitsubishi Gas Chem Co Inc Production of carbon material having large specific surface area
JP2007039289A (en) * 2005-08-04 2007-02-15 Toda Kogyo Corp Spherical porous carbon particle powder and method for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182511A (en) 2002-12-02 2004-07-02 Ad'all Co Ltd Activated carbon and method of manufacturing the same
US7964530B2 (en) * 2005-09-29 2011-06-21 Showa Denko K.K. Activated carbon and process of making the same
JP2007221108A (en) 2006-01-17 2007-08-30 Japan Enviro Chemicals Ltd Active carbon and method for fabrication thereof
CN101249956B (en) * 2007-07-09 2011-04-27 盐城市炭化工业有限公司 Preparation technique of carbon-based material having energy-storage property
CN102431992B (en) * 2011-09-22 2013-07-24 安徽工业大学 Method for preparing porous carbon material by using magnesium oxide template in cooperation with activation of potassium hydroxide
JP5781164B2 (en) 2011-10-07 2015-09-16 帝人ファーマ株式会社 Adsorbent for oral administration
KR101874086B1 (en) * 2012-12-28 2018-08-02 재단법인 포항산업과학연구원 Method for manufacturing activated carbon
KR101588768B1 (en) * 2014-10-27 2016-01-26 현대자동차 주식회사 Active carbon and method for preparation of the same
JP7155589B2 (en) 2017-06-22 2022-10-19 大日本印刷株式会社 dining table

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149917A (en) * 1985-12-23 1987-07-03 Gunei Kagaku Kogyo Kk Production of active carbon yarn
JPH07155589A (en) * 1993-12-09 1995-06-20 Mitsubishi Gas Chem Co Inc Production of carbon material having large specific surface area
JP2007039289A (en) * 2005-08-04 2007-02-15 Toda Kogyo Corp Spherical porous carbon particle powder and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020121288A (en) * 2019-01-31 2020-08-13 株式会社タカギ Activated carbon for removing trihalomethane and manufacturing method thereof
JP7300124B2 (en) 2019-01-31 2023-06-29 株式会社タカギ Activated carbon for removing trihalomethane and method for producing the same
US11795066B2 (en) 2020-06-30 2023-10-24 Kuraray Co., Ltd. Carbonaceous material and method for producing same, water purification filter, and water purifier

Also Published As

Publication number Publication date
CN110461767A (en) 2019-11-15
JP7202285B2 (en) 2023-01-11
KR20190135005A (en) 2019-12-05
KR102571710B1 (en) 2023-08-28
JP2023024708A (en) 2023-02-16
JP7441296B2 (en) 2024-02-29
TW201841831A (en) 2018-12-01
JPWO2018181778A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP7441296B2 (en) Activated carbon manufacturing method
CN104583120B (en) Activated carbon with high active surface area
JP6033396B2 (en) Granular activated carbon with many mesopores and method for producing the same
EP2407423A1 (en) Porous carbon and process for producing same
JP6683968B1 (en) Activated carbon
WO2018116859A1 (en) Active carbon and production method thereof
JP2006347864A (en) Method for producing mesoporous carbon, and mesoporous carbon
WO2018116858A1 (en) Active carbon and production method thereof
JP2022132348A (en) Activated carbon and production method thereof
JP6749117B2 (en) Method for producing activated carbon containing at least one of a simple metal and a metal compound
JP2004182511A (en) Activated carbon and method of manufacturing the same
CN112135794B (en) activated carbon
JP6719709B2 (en) Activated carbon
JPWO2003033135A1 (en) Activated carbon fiber for removing organochlorine compounds
CN111247097B (en) Activated carbon and preparation method thereof
WO2023032633A1 (en) Activated carbon
JPWO2020170985A1 (en) Activated carbon and its manufacturing method
JP5771065B2 (en) Photocatalyst composition, wall material, building material, and method for producing photocatalyst composition
JP2002138324A (en) Method for producing metal-containing active carbon fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510164

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197028686

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776270

Country of ref document: EP

Kind code of ref document: A1