JP2006315903A - Fibrous active carbon - Google Patents

Fibrous active carbon Download PDF

Info

Publication number
JP2006315903A
JP2006315903A JP2005139800A JP2005139800A JP2006315903A JP 2006315903 A JP2006315903 A JP 2006315903A JP 2005139800 A JP2005139800 A JP 2005139800A JP 2005139800 A JP2005139800 A JP 2005139800A JP 2006315903 A JP2006315903 A JP 2006315903A
Authority
JP
Japan
Prior art keywords
activated carbon
adsorption
organic halogen
fibrous
fibrous activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005139800A
Other languages
Japanese (ja)
Inventor
Takahiro Kamei
孝尋 亀井
Toshiya Motonami
利哉 本波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2005139800A priority Critical patent/JP2006315903A/en
Publication of JP2006315903A publication Critical patent/JP2006315903A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide fibrous active carbon which has excellent adsorption of an organic halogen-based compound even upon water passing, and having remarkably improved adsorption capacity per unit weight of the active carbon. <P>SOLUTION: Regarding the fibrous active carbon, the quantity of acidic functional groups on the whole oxygen-containing surface of the active carbon according to a Boehem process is 0.01 to 0.12 mmol/g, the specific surface area of mesopores with a pore size of 20 to <500 Å is 100 to 2,500 m<SP>2</SP>/g, and also, the specific surface area of micropores with a pore size of <20 Å is 600 to 2,500 m<SP>2</SP>/g. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、浄水処理において、水中の有害成分である有機ハロゲン系化合物の中でも特にトリハロメタン類などの吸着特性に優れた繊維状活性炭に関するものである。   TECHNICAL FIELD The present invention relates to a fibrous activated carbon excellent in adsorption characteristics such as trihalomethanes among organic halogen compounds which are harmful components in water in water purification treatment.

飲料用に供される水道水などについては、殺菌を目的に添加される残留塩素を一定濃度以上含有させることが、健康・公衆衛生の観点から水道法上に規定されている。
しかし、殺菌を目的として添加される残留塩素は、殺菌作用の他に無機物に対する酸化作用や有機物に対する酸化分解作用も有しており、例えば、天然有機物の一種であるフミン質などについては酸化分解作用によって、発ガン性物質である有機ハロゲン系化合物が生成することが知られている。
With regard to tap water used for beverages, it is stipulated in the Water Supply Law from the viewpoint of health and public health that residual chlorine added for the purpose of sterilization is contained at a certain concentration or more.
However, residual chlorine added for the purpose of sterilization has an oxidative action on inorganic substances and an oxidative decomposition action on organic substances in addition to the sterilizing action. For example, humic substances which are a kind of natural organic substances are oxidatively decomposed. It is known that an organic halogen compound which is a carcinogenic substance is produced by the above.

一方、近年河川における水質汚染の拡大により、水道水などに利用される原水の水質は劣化傾向にあり、これに伴い原水中に含まれるフミン質なども増加しており、これらの酸化分解に起因して発生する有機ハロゲン系化合物の濃度も増加傾向にある。
従来から、水道水に含まれる有機ハロゲン系化合物の除去手段としては、吸着作用を有する活性炭を用いた浄化処理が行われている。
しかし、従来の水処理用活性炭では、除去対象物に対する活性炭の単位容量当りの吸着量を高めるためとして、ヨウ素吸着性能やメチレンブルー吸着性能などに優れる高表面積の活性炭が使用されてきたが、有機ハロゲン系化合物に対する吸着除去能力については低いものであった。
On the other hand, due to the recent increase in water pollution in rivers, the quality of raw water used for tap water and the like has been deteriorating, and humic substances contained in raw water have also increased. The concentration of the organic halogen compound generated in this manner is also increasing.
Conventionally, as a means for removing organic halogen compounds contained in tap water, purification treatment using activated carbon having an adsorption action has been performed.
However, conventional activated carbons for water treatment have used high surface area activated carbons that are excellent in iodine adsorption performance and methylene blue adsorption performance in order to increase the adsorption amount per unit volume of activated carbon with respect to the removal target. The adsorptive removal ability with respect to the system compound was low.

そこで、有機ハロゲン系化合物の吸着除去能力を向上させる試みとして、比表面積1500m/g以上の活性炭に対して、活性炭表面の親水性を減少させるべく、活性炭の全表面酸性官能基量を0.1meq/g以下にして、有機ハロゲン系化合物の吸着性能を増加させる方法が開示されている。(例えば、特許文献1参照) また、トリハロメタンや各種臭気物質などの低分子化合物に対する効果的な吸着性能とフミン質などの高分子化合物に対する効果的な吸着除去性能とを兼ね備えた活性炭として、孔径が20Å以上の細孔の比表面積が30〜2,500m/gであり、かつ孔径が20Å未満の細孔の比表面積が600〜2,500m/gである繊維状活性炭が開示されている。(例えば、特許文献2参照)しかしながら、いずれの場合も有機ハロゲン系化合物の除去能力については、まだ十分ではなかった。 Therefore, as an attempt to improve the adsorption / removal ability of the organic halogen compound, the total surface acidic functional group amount of the activated carbon is reduced to about 0.1 to reduce the hydrophilicity of the activated carbon surface with respect to the activated carbon having a specific surface area of 1500 m 2 / g or more. A method for increasing the adsorption performance of an organic halogen compound at 1 meq / g or less is disclosed. (For example, refer to Patent Document 1) Further, as activated carbon having both effective adsorption performance for low molecular weight compounds such as trihalomethane and various odorous substances and effective adsorption removal performance for high molecular weight compounds such as humic substances, the pore size is A fibrous activated carbon is disclosed in which the specific surface area of pores having a diameter of 20 mm or more is 30 to 2,500 m 2 / g and the specific surface area of pores having a pore diameter of less than 20 mm is 600 to 2,500 m 2 / g. . (For example, refer to Patent Document 2) However, in any case, the removal ability of the organic halogen compound is not yet sufficient.

一方、活性炭の表面酸性官能基量と活性炭のPH値の積を特定領域に制御することで有機ハロゲン系化合物に対する吸着性能を改善させる方法が開示されている。(例えば、特許文献3参照)これは、親水性の表面酸性官能基による水の取り込みと、疎水性の活性炭表面によるトリハロメタン類の吸着バランスとを好適にすることで、通水中という動的状態においてもトリハロメタン類の吸着量を増大させることを目的としている。しかしこの場合では、活性炭の比較的表面では効果を見出しているが、被吸着物が効果的に活性炭内部にまで誘導されないため活性炭全体としての十分な効果を引き出すには至っていない。   On the other hand, a method for improving the adsorption performance for organic halogen compounds by controlling the product of the surface acidic functional group amount of activated carbon and the PH value of activated carbon in a specific region is disclosed. (For example, refer to Patent Document 3) This is because in a dynamic state of passing water by making water uptake by hydrophilic surface acidic functional group and adsorption balance of trihalomethanes by hydrophobic activated carbon surface suitable. Is also aimed at increasing the adsorption of trihalomethanes. However, in this case, although an effect is found on the relatively surface of the activated carbon, the adsorbent is not effectively guided to the inside of the activated carbon, so that a sufficient effect as the entire activated carbon has not been brought out.

また、トリハロメタンなどの吸着に効果を有するメソ細孔について、その容積割合を所定範囲に制御することを特徴とする活性炭ならびにその製造方法が開示されている。(例えば、特許文献4参照)これは、予め特定の金属成分を含有したピッチ系活性炭前駆体を不融化処理又は炭素化処理した後、賦活処理することで活性炭のメソ細孔モード直径を制御する手法である。しかし、この場合では水中に存在するトリハロメタンなどの低分子有機物質を吸着サイトに拡散させるように活性炭の構造を設計したことに留まるものであり、活性炭に存在する吸着サイト自体の有機ハロゲン系化合物に対する選択吸着性を高めるまでには至っていなかった。
すなわち、これらいずれの手法によっても、有機ハロゲン系化合物を十分な効率性を持って、かつ選択的に吸着・除去できる活性炭の設計仕様は未だ見出されていない。
Also disclosed is an activated carbon characterized by controlling the volume ratio of mesopores having an effect for adsorption of trihalomethane or the like within a predetermined range, and a method for producing the same. (For example, refer to Patent Document 4) This is to control the mesopore mode diameter of the activated carbon by inactivating or carbonizing a pitch-based activated carbon precursor containing a specific metal component in advance and then performing an activation treatment. It is a technique. However, in this case, the structure of the activated carbon is designed so that low-molecular organic substances such as trihalomethane existing in water are diffused to the adsorption site. However, the selective adsorption has not been improved.
That is, by any of these methods, there has not yet been found a design specification of activated carbon capable of selectively adsorbing and removing organic halogen compounds with sufficient efficiency.


特開平8−281099号公報JP-A-8-289999 特開平11−240707号公報Japanese Patent Laid-Open No. 11-240707 特開2002−29722号公報JP 2002-29722 A 特開2004−182511号公報JP 2004-182511 A

本発明は上記の問題点を解決し、浄水器に求められる残留塩素やカビ臭などの除去性能を保持しながら、有機ハロゲン系化合物に対する吸着性能に優れた繊維状活性炭を提供することを技術課題とする。   Technical Problem The present invention solves the above-mentioned problems and provides a fibrous activated carbon excellent in adsorption performance for organic halogen compounds while maintaining the removal performance of residual chlorine and musty odor required for water purifiers. And

活性炭において有機ハロゲン系化合物に対する吸着効果の向上を図るためには、1)吸着材の素材である活性炭の物性自体が最適化され、有機ハロゲン系化合物に対して選択吸着性を持つこと、2)有機ハロゲン系化合物の吸着に最適な細孔分布を持ち、有機ハロゲン系化合物が容易に吸着サイトに拡散しかつ脱離しにくい構造を持つこと、の2点を改善することが重要であると考え、鋭意検討を行った結果、本発明に至った。
すなわち、本発明は以下の構成を要旨とするものである。
(a)ボーヘム(Boehem)の方法による活性炭の全表面酸性官能基量が0.01〜0.12mmol/gであり、孔径が20Å以上500Å未満のメソ細孔の比表面積が100〜2,500m/gであり、かつ孔径が20Å未満のミクロ細孔の比表面積が600〜2,500m/gであることを特徴とする繊維状活性炭。
(b)全細孔容積に対するメソ細孔容積の比率が10〜40%である(a)記載の繊維状活性炭。
(c)有機ハロゲン系化合物除去用である(a)又は(b)記載の繊維状活性炭。
In order to improve the adsorption effect for organic halogen compounds in activated carbon, 1) The physical properties of activated carbon, which is the material of the adsorbent, are optimized and have selective adsorption properties for organic halogen compounds. 2) We believe it is important to improve the two points of having an optimal pore distribution for adsorption of organic halogen compounds, and having a structure in which organic halogen compounds easily diffuse to adsorption sites and are difficult to desorb, As a result of intensive studies, the present invention has been achieved.
That is, the gist of the present invention is as follows.
(A) The total surface acidic functional group amount of the activated carbon according to the method of Bohem is 0.01 to 0.12 mmol / g, and the specific surface area of mesopores having a pore diameter of 20 mm or more and less than 500 mm is 100 to 2,500 m. 2 / g, and the specific surface area of micropores having a pore diameter of less than 20 mm is 600 to 2,500 m 2 / g.
(B) The fibrous activated carbon according to (a), wherein the ratio of the mesopore volume to the total pore volume is 10 to 40%.
(C) The fibrous activated carbon according to (a) or (b), which is for removing organic halogen compounds.

本発明の繊維状活性炭は、活性炭表面の酸性官能基量を減少させ、かつ細孔分布を所定の範囲に制御することで、繊維状活性炭が持つ高表面積の吸着サイトを効果的に活用すると共に、水中の有機ハロゲン系化合物の細孔内拡散を向上させることができたものである。その結果、水中の有機ハロゲン系化合物の吸着効率が向上すると共に、繊維状活性炭としての吸着機能の寿命が大幅に改善されたものとなる。   The fibrous activated carbon of the present invention effectively utilizes the high surface area adsorption sites of the fibrous activated carbon by reducing the amount of acidic functional groups on the activated carbon surface and controlling the pore distribution within a predetermined range. In addition, diffusion within the pores of organic halogen compounds in water can be improved. As a result, the adsorption efficiency of the organic halogen compound in water is improved, and the lifetime of the adsorption function as the fibrous activated carbon is greatly improved.

以下、本発明について詳細に説明する。
本発明における繊維状活性炭としては、繊維状の形態を有し、活性炭表面および内部に所定量のミクロ細孔及びメソ細孔を内在させた活性炭をいう。本発明におけるミクロ細孔及びメソ細孔とは、孔径20Åを境界として、孔径20Å未満の細孔をミクロ細孔、孔径20Å以上500Å未満の細孔をメソ細孔という。
なお、本発明における有機ハロゲン系化合物としては、一般的にトリハロメタンと呼ばれるクロロホルム,ブロモジクロロメタン,ジブロモクロロメタン,ブロモホルムなどをさす。さらに、ジクロロエタン,トリクロロエタン,トリクロロエチレン、テトラクロロエチレン、クロロ酢酸、ジクロロ酢酸、トリクロロ酢酸などに代表される、炭素数2のハロゲン化合物も含まれる。
Hereinafter, the present invention will be described in detail.
The fibrous activated carbon in the present invention refers to activated carbon having a fibrous form and having a predetermined amount of micropores and mesopores inside and inside the activated carbon. The micropores and mesopores in the present invention are referred to as pores having a pore diameter of less than 20 mm with a pore diameter of 20 mm as a boundary, and pores having a pore diameter of from 20 mm to less than 500 mm are referred to as mesopores.
The organic halogen compound in the present invention refers to chloroform, bromodichloromethane, dibromochloromethane, bromoform or the like generally called trihalomethane. Further, halogen compounds having 2 carbon atoms, such as dichloroethane, trichloroethane, trichloroethylene, tetrachloroethylene, chloroacetic acid, dichloroacetic acid, trichloroacetic acid and the like are also included.

本発明の繊維状活性炭において、ボーヘムの方法による全表面酸性官能基量としては、0.01〜0.12mmol/gである。全表面酸性官能基量が0.12mmol/gを超える場合、活性炭表面全体の親水性が高くなりすぎるため、クロロホルムなどの疎水性の高い有機ハロゲン系化合物においては、その吸着サイトとなる細孔表面への拡散・到達が妨げられる傾向となり、その結果、有機ハロゲン系化合物に対する吸着能力が低下する。また、全表面酸性官能基量が0.01mmol/g未満の場合、活性炭表面全体の疎水性が高くなりすぎ、これにより濡れ特性が大幅に低下するため、水分子の細孔への浸透速度が低くなり、水中に溶存しているトリハロメタン類も細孔内へ取り込まれにくくなる。これに対し全表面酸性官能基の量が0.01〜0.12mmol/gの範囲にある活性炭であれば、有機ハロゲン系化合物の活性炭表面近傍への拡散が阻害されず、また同時に、吸着サイトとなる微細な細孔の表面に親水性基が過度に存在しないため、疎水性である有機ハロゲン系化合物分子が選択的かつ好適に吸着可能となる。   In the fibrous activated carbon of the present invention, the total surface acidic functional group amount by the Bohem method is 0.01 to 0.12 mmol / g. When the total surface acidic functional group amount exceeds 0.12 mmol / g, the hydrophilicity of the entire activated carbon surface becomes too high. Therefore, in the case of a highly hydrophobic organic halogen compound such as chloroform, the surface of the pores serving as the adsorption site As a result, the ability to adsorb organic halogen compounds decreases. In addition, when the total surface acidic functional group amount is less than 0.01 mmol / g, the hydrophobicity of the entire activated carbon surface becomes too high, and this greatly reduces the wetting characteristics. The trihalomethanes dissolved in the water are less likely to be taken into the pores. On the other hand, if the amount of the total surface acidic functional group is in the range of 0.01 to 0.12 mmol / g, the diffusion of the organic halogen compound to the vicinity of the activated carbon surface is not inhibited, and at the same time, the adsorption site Since the hydrophilic group is not excessively present on the surface of the fine pores, the hydrophobic organic halogen compound molecule can be selectively and suitably adsorbed.

一般に、繊維状活性炭の表面酸性官能基量は0.15〜0.8mmol/g程度である。これに対し、本発明の繊維状活性炭において、表面酸性官能基量は0.12mmol/g以下であるが、これは、上記した一般の繊維状活性炭を、真空雰囲気下又は不活性ガス雰囲気下で熱処理させることで達成される。ここで、熱処理させるための好ましい雰囲気としては真空雰囲気または窒素雰囲気が挙げられ、より好ましくは真空雰囲気である。
そのような真空雰囲気としては、267Pa(2Torr)以下であることが好ましく、26.7Pa(0.2Torr)以下であることがより好ましい。一方、不活性ガス雰囲気とした場合、不活性ガスは静止していること、あるいは流動していることとの制約を特に受けるものではないが、加熱処理の間、不活性ガスを流通させることで、キャリアガスとしての効果を持たせ、酸性官能基の分解により発生したガスを効率的に除去させることができるのでより好ましい。この場合の加熱温度としては、550〜1100℃の範囲が好ましく、800〜1000℃であることがより好ましい。
Generally, the surface acidic functional group amount of fibrous activated carbon is about 0.15 to 0.8 mmol / g. In contrast, in the fibrous activated carbon of the present invention, the surface acidic functional group amount is 0.12 mmol / g or less. This is because the above-mentioned general fibrous activated carbon is subjected to a vacuum atmosphere or an inert gas atmosphere. This is achieved by heat treatment. Here, a preferable atmosphere for the heat treatment includes a vacuum atmosphere or a nitrogen atmosphere, and a vacuum atmosphere is more preferable.
Such a vacuum atmosphere is preferably 267 Pa (2 Torr) or less, and more preferably 26.7 Pa (0.2 Torr) or less. On the other hand, in the case of an inert gas atmosphere, the inert gas is not particularly restricted by being stationary or flowing, but by passing the inert gas during the heat treatment, It is more preferable because it has an effect as a carrier gas, and the gas generated by the decomposition of the acidic functional group can be efficiently removed. As heating temperature in this case, the range of 550-1100 degreeC is preferable, and it is more preferable that it is 800-1000 degreeC.

また、本発明の繊維状活性炭において、孔径が20Å未満であるミクロ細孔の比表面積としては、600〜2,500m/gであり、好ましくは650〜2,000m/gであり、より好ましくは700〜1,500m/gである。この比表面積が600m/g未満の場合は、本発明の課題である有機ハロゲン系化合物などの低分子化合物を十分に吸着除去することが困難となる。逆に、2,500m/gを超える場合には、活性炭そのものの強度が低下するおそれがあり、また、活性炭としての収率も低く製造が困難になる。 In the fibrous activated carbon of the present invention, the specific surface area of the micropores having a pore diameter of less than 20 mm is 600 to 2,500 m 2 / g, preferably 650 to 2,000 m 2 / g, and more Preferably it is 700-1,500 m < 2 > / g. When the specific surface area is less than 600 m 2 / g, it is difficult to sufficiently adsorb and remove low molecular compounds such as organic halogen compounds which are the subject of the present invention. On the other hand, if it exceeds 2,500 m 2 / g, the strength of the activated carbon itself may be reduced, and the yield as activated carbon is low, making it difficult to produce.

さらに、本発明の繊維状活性炭において、孔径が20Å以上500Å未満であるメソ細孔の比表面積としては、100〜2500m/gである。また、好ましくは150〜2,000m/gであり、より好ましくは200〜1,500m/gである。このメソ細孔の比表面積が100m/g未満の場合は、有機ハロゲン系化合物を効果的に吸着除去することが困難となる。逆に、2,500m/gを超える場合には、活性炭そのものの強度が低下するおそれがあり、加えて、活性炭としての収率も低く製造が困難になる。 Furthermore, in the fibrous activated carbon of the present invention, the specific surface area of the mesopores having a pore diameter of 20 mm or more and less than 500 mm is 100 to 2500 m 2 / g. Moreover, Preferably it is 150-2,000 m < 2 > / g, More preferably, it is 200-1,500 m < 2 > / g. When the specific surface area of the mesopores is less than 100 m 2 / g, it is difficult to effectively adsorb and remove the organic halogen compound. On the other hand, when it exceeds 2,500 m 2 / g, the strength of the activated carbon itself may be lowered, and in addition, the yield as activated carbon is low and the production becomes difficult.

有機ハロゲン系化合物の吸着には、孔径が20Å未満のミクロ細孔が有効である。通常、多孔質の吸着材表面に分子が吸着されるとき、分子と吸着材表面との相互作用ポテンシャルは細孔が小さくなるほど大きくなり、分子は細孔の表面により強く吸着される。ここで、有機ハロゲン系化合物の典型的な分子であるクロロホルムの分子直径としては、約4.7Åである。この場合、クロロホルム分子に対し強い相互作用ポテンシャルが働くのは、吸着材の細孔壁からせいぜい2分子程度の距離までである。したがってクロロホルム分子の直径の4倍、約20Å程度までの細孔、即ち一般にミクロ細孔と呼ばれる範囲の細孔がクロロホルムの吸着に対して好適であると考えられる。   Micropores having a pore size of less than 20 mm are effective for the adsorption of organic halogen compounds. Usually, when a molecule is adsorbed on the surface of a porous adsorbent, the interaction potential between the molecule and the adsorbent surface increases as the pore becomes smaller, and the molecule is more strongly adsorbed on the surface of the pore. Here, the molecular diameter of chloroform, which is a typical molecule of an organic halogen compound, is about 4.7 mm. In this case, the strong interaction potential acts on the chloroform molecules only at a distance of about two molecules from the pore wall of the adsorbent. Accordingly, it is considered that pores up to about 20 times the diameter of the chloroform molecule, up to about 20 mm, that is, pores in a range generally called micropores are suitable for adsorption of chloroform.

しかし、このように小さな細孔内においては、分子の拡散速度がきわめて遅くなるという問題が生じる。この現象は、吸着材の性能評価として実験室で行われる平衡吸着量の測定(完全平衡になるまで閉鎖系で吸着させる測定法)では問題として現れにくいが、吸着材の層に水溶液を通液させる方式、つまり工業的規模で用いられている一般的な吸着方式においては、特に大きな問題となってくる。
したがって、被吸着体である有機ハロゲン系化合物と活性炭との接触時間が短い通液方式による吸着においては、吸着対象である有機ハロゲン系化合物を繊維状活性炭の内部に存在するミクロ細孔へ効果的に誘導させ、吸着効果の改善を図ることが重要となる。本発明では、相対的に孔径が大きいため有機ハロゲン系化合物の拡散が比較的自由に起こる20Å以上500Å未満のメソ細孔の比表面積を上記の所定範囲で制御した繊維状活性炭を用いることで、有機ハロゲン系化合物を繊維状活性炭内部のミクロ細孔へ効果的に誘導させることを可能にして、この問題を解決させている。
However, in such a small pore, there arises a problem that the diffusion rate of molecules becomes extremely slow. This phenomenon is unlikely to appear as a problem in the measurement of the equilibrium adsorption amount performed in the laboratory as a performance evaluation of the adsorbent (a measurement method in which adsorption is performed in a closed system until complete equilibrium), but an aqueous solution is passed through the adsorbent layer. This is a particularly serious problem in the general adsorption method used on an industrial scale.
Therefore, in the case of adsorption using a liquid passing method in which the contact time between the organic halogen compound that is the adsorbent and activated carbon is short, the organic halogen compound that is the object of adsorption is effectively applied to the micropores existing inside the fibrous activated carbon. It is important to improve the adsorption effect. In the present invention, by using a fibrous activated carbon in which the specific surface area of the mesopores of 20 to less than 500 mm in which the diffusion of the organic halogen compound occurs relatively freely due to the relatively large pore diameter is controlled within the above predetermined range, The organic halogen compounds can be effectively induced into the micropores inside the fibrous activated carbon, thereby solving this problem.

本発明の繊維状活性炭において、孔径20Å以上500Å未満のメソ細孔の比表面積を上記範囲に好適に制御する方法としては、例えば特許文献2に記されているように、特定の有機金属化合物と活性炭前駆体とを混合した後、紡糸、不融化処理、炭素化処理、賦活処理する方法が挙げられる。
ここで用いられる有機金属化合物としては、例えばイットリウム化合物、チタン化合物、ジルコニウム化合物、イッテルビウム化合物、サマリウム化合物、バナジウム化合物、マンガン化合物、鉄化合物、マグネシウム化合物およびネオジウム化合物を挙げることができる。
一方、ここで用いられる活性炭前駆体としては、炭素化や不融化などの手法により容易に活性炭にすることができ、しかも上述の有機金属化合物と溶媒を用いて混合可能なものであれば特に限定されるものではない。具体的には、アクリロニトリル、ポリビニルアルコール、フェノール樹脂などの合成樹脂および石炭、石炭系ピッチ、石油系ピッチなどの、活性炭を製造するために一般的に用いられているものが挙げられる。このうち、炭素化時における理論炭化収率が好適である点でピッチを用いるのが好ましい。
In the fibrous activated carbon of the present invention, as a method for suitably controlling the specific surface area of mesopores having a pore diameter of 20 mm or more and less than 500 mm, for example, as described in Patent Document 2, a specific organometallic compound and Examples thereof include a method of spinning, infusibilization treatment, carbonization treatment, and activation treatment after mixing with the activated carbon precursor.
Examples of the organometallic compound used here include yttrium compounds, titanium compounds, zirconium compounds, ytterbium compounds, samarium compounds, vanadium compounds, manganese compounds, iron compounds, magnesium compounds, and neodymium compounds.
On the other hand, the activated carbon precursor used here is particularly limited as long as it can be easily converted into activated carbon by a technique such as carbonization or infusibilization and can be mixed using the above-mentioned organometallic compound and a solvent. Is not to be done. Specific examples include synthetic resins such as acrylonitrile, polyvinyl alcohol, and phenolic resins, and those generally used for producing activated carbon such as coal, coal-based pitch, and petroleum-based pitch. Among these, it is preferable to use pitch in that the theoretical carbonization yield at the time of carbonization is suitable.

本発明の繊維状活性炭において、全細孔容積に対するメソ細孔容積の比率としては、10〜40%であることが好ましい。全細孔容積に対するメソ細孔容積の比率がこの範囲外であると、有機ハロゲン系化合物を効果的に吸着除去することが困難となるため好ましくない。例えば、当該比率が10%未満である場合では、被吸着体である有機ハロゲン系化合物を活性炭内部のミクロ細孔にまで誘導することが困難となるため、十分な吸着効果を引き出すことができない。また、当該比率が40%を超える場合では、有機ハロゲン系化合物の吸着にとって有効なミクロ細孔の割合が低くなりすぎ、吸着に直接関与する部位の絶対量が少なくなるため、同様に本発明の効果を十分に得られないこととなるため好ましくない。ここで、全細孔容積に対するメソ細孔容積の比率は、メソ細孔の形成に必要な有機金属化合物の活性炭前駆体への混合割合を調節することで制御することができる。すなわち、同一の有機金属化合物であっても、その混合割合を増加させることで、最終的に得られる繊維状活性炭のメソ細孔の容積比率は高まり、有機金属化合物の混合割合を減らすと逆にメソ細孔容積比率も低下することとなる。   In the fibrous activated carbon of the present invention, the ratio of the mesopore volume to the total pore volume is preferably 10 to 40%. If the ratio of the mesopore volume to the total pore volume is outside this range, it is difficult to effectively remove the organic halogen compound by adsorption, which is not preferable. For example, when the ratio is less than 10%, it is difficult to induce the organohalogen compound as the adsorbent to the micropores inside the activated carbon, so that a sufficient adsorption effect cannot be obtained. In addition, when the ratio exceeds 40%, the ratio of micropores effective for the adsorption of the organic halogen compound is too low, and the absolute amount of sites directly involved in the adsorption is reduced. Since the effect cannot be sufficiently obtained, it is not preferable. Here, the ratio of the mesopore volume to the total pore volume can be controlled by adjusting the mixing ratio of the organometallic compound necessary for forming the mesopores to the activated carbon precursor. That is, by increasing the mixing ratio of the same organometallic compound, the volume ratio of the mesopores of the finally obtained fibrous activated carbon increases, and conversely if the mixing ratio of the organometallic compound is decreased. The mesopore volume ratio will also decrease.

このように、本発明の繊維状活性炭は、その構造において、ミクロ細孔とマクロ細孔とを好適に内在しているため、動的使用形態(通液方式)並びに静的使用形態(閉鎖系方式)のいずれにおいても、効果的に有機ハロゲン系化合物を吸着除去できる。
したがって、本発明の繊維状活性炭は有機ハロゲン系化合物の除去材として好適に用いることができる。すなわち、本発明の繊維状活性炭をそのまま所定の容器に充填して、あるいはシート状等の所定の形状に成型して、有機ハロゲン系化合物除去材に用いることができる。本発明の繊維状活性炭を有機ハロゲン系化合物の除去材に利用した装置としては、例えば、浄水器、アルカリイオン整水器、純水製造装置、軟水器などの商品用途が挙げられ、多様な形態での利用が可能となる。
Thus, since the fibrous activated carbon of the present invention suitably has micropores and macropores in its structure, it can be used dynamically (liquid passing method) and static usage mode (closed system). In any of the methods, the organic halogen compound can be effectively removed by adsorption.
Therefore, the fibrous activated carbon of the present invention can be suitably used as an organic halogen compound removal material. That is, the fibrous activated carbon of the present invention can be filled in a predetermined container as it is or molded into a predetermined shape such as a sheet and used as an organic halogen compound removing material. Examples of the apparatus using the fibrous activated carbon of the present invention as an organic halogen compound removal material include commercial uses such as a water purifier, an alkali ion water conditioner, a pure water production apparatus, and a water softener. It becomes possible to use at.

本発明の繊維状活性炭としては、上記商品用途の構成部品において特に浄化フィルターに好適に用いることができる。その際、本発明の繊維状活性炭を単独で用いてもよいし、本発明の効果を損なわない限り、その他のろ材と組み合わせて用いることもできる。その他のろ材としては、例えば、粒状活性炭、粉末状活性炭、繊維状活性炭、イオン交換樹脂、イオン交換繊維、天然石、セラミック、亜硫酸カルシウム、中空糸、不織布、織布などが挙げられる。その他のろ材を用いる場合、1種類だけ用いてもよいし、2種類以上を用いても構わない。また、浄化フィルターに抗菌性を付与するために、銀あるいは銀化合物を含有させた繊維状活性炭、粒状活性炭、粉末状活性炭などを併用することもできる。さらに、フィルターの強度を向上させるためとして、紙力増強剤などを添加してもよい。   The fibrous activated carbon of the present invention can be suitably used particularly for a purification filter in the above-mentioned component parts for commercial use. In that case, the fibrous activated carbon of this invention may be used independently, and unless the effect of this invention is impaired, it can also be used in combination with another filter medium. Examples of other filter media include granular activated carbon, powdered activated carbon, fibrous activated carbon, ion exchange resin, ion exchange fiber, natural stone, ceramic, calcium sulfite, hollow fiber, non-woven fabric, and woven fabric. When using other filter media, only one type may be used, or two or more types may be used. Further, in order to impart antibacterial properties to the purification filter, fibrous activated carbon, granular activated carbon, powdered activated carbon or the like containing silver or a silver compound can be used in combination. Further, a paper strength enhancer or the like may be added to improve the strength of the filter.

本発明の繊維状活性炭を用いた浄化フィルターを得るための成型法としては、乾式不織布法、湿式不織布法、抄紙法などによって得られた繊維状活性炭、その他のろ材及びバインダーからなるシートを捲回し、熱処理して円柱状あるいは円筒状のフィルターとする方法、あるいは繊維状活性炭、その他のろ材及びバインダーからなるスラリーを任意の形状の金型に流し込み吸引脱水した後、乾燥して任意の形状のフィルターとする方法などが挙げられるが、これらに限定されるものではない。   As a molding method for obtaining a purification filter using the fibrous activated carbon of the present invention, a sheet made of fibrous activated carbon obtained by a dry nonwoven fabric method, a wet nonwoven fabric method, a papermaking method, or other filter medium and a binder is wound. , A method of heat treatment to form a columnar or cylindrical filter, or a slurry made of fibrous activated carbon, other filter media and a binder, poured into a mold of any shape, sucked and dehydrated, and dried to a filter of any shape However, it is not limited to these methods.

本発明の繊維状活性炭とその他のろ材を組み合わせて用いる場合の組み合わせ方法としては、上記したように本発明の繊維状活性炭とその他のろ材を混合したフィルターとして用いてもよいし、本発明の繊維状活性炭とその他のろ材を混合せずに各々別個に配置して用いてもよい。その他のろ材の配置については、本発明の繊維状活性炭を用いたフィルターの前段に配置する方法、後段に配置する方法、並列に配置する方法などが挙げられるが、特に限定されるものではない。   As a combination method when the fibrous activated carbon of the present invention is used in combination with other filter media, as described above, it may be used as a filter in which the fibrous activated carbon of the present invention and other filter media are mixed, or the fiber of the present invention. The activated carbon and other filter media may be separately arranged and used without mixing. Examples of the arrangement of other filter media include, but are not particularly limited to, a method of arranging the filter in front of the filter using the fibrous activated carbon of the present invention, a method of arranging in the latter stage, and a method of arranging in parallel.

以下実施例をあげて本発明を説明するが、本発明はこれら実施例により限定されるものではない。
なお、実施例における特性値などの測定、評価方法は、次のとおりである。
(a)全表面酸性官能基量(mmol/g)
ここで、全表面酸性官能基量はBoehemらの報告(下記 文献1)にある方法に従って測定した。具体的には、乾燥状態の吸着材1.0gを0.05mol/lの水酸化ナトリム水溶液100mlに浸漬し、24時間振とうした後、その溶液100mlを分取して1mol/l塩酸で滴定を行い、アルカリの消費量から全表面酸性官能基量を求めた。
(文献1)Angew.Chem.,Intern.Ed.Engl.,5,533(1966)
(b)比表面積(m/g)
本発明の活性炭の比表面積は、77.4Kにおいて窒素吸着等温線に基づいて算出される。具体的には、次のようにして窒素吸着等温線が作成される。活性炭を77.4K(窒素の沸点)に冷却し、窒素ガスを導入して容量法により窒素ガスの吸着量V[cc/g]を測定する。このとき、導入する窒素ガスの圧力P[hPa]を徐々に上げ、窒素ガスの飽和蒸気圧P[hPa]で除した値を相対圧力P/Pとして、各相対圧力に対する吸着量をプロットすることにより窒素吸着等温線が作成される。窒素ガスの吸着量は、市販の自動ガス吸着量測定装置(例えば、商品名「AUTOSORB−6」(QUANTCHROME社製)など)を用いて実施できる。本発明では、窒素吸着等温線に基づき、BET法に従って比表面積を求めることができる。この解析は、上記装置に付属する解析プログラムなどのような公知の手段を用いることでできる。
(c)全細孔容積(cc/g)
本発明の活性炭の全細孔容積は、上記の窒素ガスの吸着量の測定結果における窒素の最大吸着量から計算することができる。
(d)メソ細孔容積(cc/g)およびメソ細孔容積率(%)
本発明の活性炭のメソ細孔容積は、上記の細孔分布に基づきBJH法で計算する。BJH法自体は公知の方法であり、例えば(下記 文献2)に開示された方法に従って行うことができる。また、本発明の活性炭のメソ細孔容積率とは、全細孔容積に対するメソ細孔容積の割合をいう。
(文献2)J.Amer.Chem.Soc.,73,373(1951)

(e)有機ハロゲン系化合物除去性能(L/g)
有機ハロゲン系化合物の代表例としてトリハロメタンを用いて、以下のように行った。
繊維状活性炭1.3gを内径15mmの円筒形ガラスカラムに充填し、0.1μmフィルターにより浄化処理したイオン交換水に、JIS S 3201に準じて総トリハロメタン濃度が100±20ppbとなるようにトリハロメタン類を添加したものを調整原水とし、SV値1000で、カラム中に充填した活性炭層を通過させ、活性炭層の流入前後で総トリハロメタンの濃度を、(下記 文献3)に記載のヘッドスペース−ガスクロマトグラフ法にて定量測定した。この時、活性炭層通過前後で、流入水に対する流出水の総トリハロメタンの水中濃度が、20%以上になる点を破過点とし、活性炭の吸着材としての寿命とした。この時までに活性炭が吸着したトリハロメタンの総量を吸着容量とし、トリハロメタン除去性能の値(表1)とした。一般的な有機ハロゲン系化合物除去用活性炭のトリハロメタン除去性能としては、おおよそ40L/g程度である。
(文献3)「上水試験方法2001」(日本水道協会編)
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
In addition, the measurement and evaluation methods of characteristic values and the like in the examples are as follows.
(A) Total surface acidic functional group amount (mmol / g)
Here, the total surface acidic functional group amount was measured according to the method described in Boehem et al. Specifically, 1.0 g of a dried adsorbent is immersed in 100 ml of 0.05 mol / l aqueous sodium hydroxide solution, shaken for 24 hours, 100 ml of the solution is taken and titrated with 1 mol / l hydrochloric acid. The total surface acidic functional group amount was determined from the alkali consumption.
(Reference 1) Angew. Chem. , Intern. Ed. Engl. 5,533 (1966)
(B) Specific surface area (m 2 / g)
The specific surface area of the activated carbon of the present invention is calculated based on the nitrogen adsorption isotherm at 77.4K. Specifically, a nitrogen adsorption isotherm is created as follows. The activated carbon is cooled to 77.4K (the boiling point of nitrogen), nitrogen gas is introduced, and the adsorption amount V [cc / g] of nitrogen gas is measured by the volume method. At this time, the pressure P [hPa] of the introduced nitrogen gas is gradually increased, and the value obtained by dividing by the saturated vapor pressure P 0 [hPa] of the nitrogen gas is set as the relative pressure P / P 0 , and the adsorption amount with respect to each relative pressure is plotted. By doing so, a nitrogen adsorption isotherm is created. The adsorption amount of nitrogen gas can be carried out using a commercially available automatic gas adsorption amount measuring device (for example, trade name “AUTOSORB-6” (manufactured by QUANTCHROME)). In the present invention, the specific surface area can be determined according to the BET method based on the nitrogen adsorption isotherm. This analysis can be performed by using a known means such as an analysis program attached to the apparatus.
(C) Total pore volume (cc / g)
The total pore volume of the activated carbon of the present invention can be calculated from the maximum adsorption amount of nitrogen in the measurement result of the adsorption amount of nitrogen gas.
(D) Mesopore volume (cc / g) and mesopore volume ratio (%)
The mesopore volume of the activated carbon of the present invention is calculated by the BJH method based on the above pore distribution. The BJH method itself is a known method, and can be performed, for example, according to the method disclosed in (Reference 2). The mesopore volume ratio of the activated carbon of the present invention refers to the ratio of the mesopore volume to the total pore volume.
(Reference 2) J. Org. Amer. Chem. Soc. 73, 373 (1951)

(E) Organohalogen compound removal performance (L / g)
As a representative example of the organic halogen compound, trihalomethane was used and the following was performed.
Trihalomethanes are packed in ion-exchanged water that has been packed in a cylindrical glass column with an inner diameter of 15 mm and is purified by a 0.1 μm filter so that the total trihalomethane concentration becomes 100 ± 20 ppb according to JIS S 3201. Is added to the adjusted raw water, passed through the activated carbon layer packed in the column with an SV value of 1000, and the total trihalomethane concentration before and after the inflow of the activated carbon layer was determined by the headspace-gas chromatograph described in (Reference 3 below) Quantitatively measured by the method. At this time, before and after passing through the activated carbon layer, the point where the total trihalomethane concentration in the effluent with respect to the influent was 20% or more was defined as the breakthrough point, and the lifetime of the activated carbon as an adsorbent was defined. The total amount of trihalomethane adsorbed by the activated carbon up to this time was taken as the adsorption capacity, and the value of trihalomethane removal performance (Table 1). The general trihalomethane removal performance of activated carbon for removing organic halogen compounds is about 40 L / g.
(Reference 3) “Water Supply Test Method 2001” (Edited by Japan Water Works Association)

参考例1(ピッチ系繊維状活性炭の製造)
水分およびキノリン不溶分を除去したコールタール1100gを窒素雰囲気下で80℃に加温し、これにトリアセチルアセトナトジアコイットリウム〔Y(CHCOCHCOCH・2H0〕4.0gを溶解したキノリン100mlを徐々に滴下しながら5時間撹拌した。
次に、これを減圧蒸留し、その後5L/分の割合で空気を吹き込みながら330℃で3時間反応させ、活性炭前駆体混合物であるイットリウム含有コールタールピッチを得た。
このようにして得られた活性炭前駆体混合物をノズル径が0.3mmの紡糸器内に仕込み、ピッチの溶融温度に加熱しながら巻き取り速度を150m/秒に設定して紡糸することにより繊維状活性炭前駆体としてのピッチファイバーを得た。
該ピッチファイバーを空気雰囲気下で常温から2℃/分の割合で375℃まで加熱し、その温度で15分間保持することで不融化処理を施した。その後、不融化処理されたピッチファイバーに対し、水蒸気を含む窒素ガス雰囲気下において所定の条件(温度:850℃、時間:25分)で賦活処理を行った後、110℃で2時間乾燥処理を行い、ピッチ系繊維状活性炭(孔径20Å未満の細孔の比表面積が700m/g、孔径20Å以上500Å未満の細孔の比表面積が300m/g)を得た。
Reference Example 1 (Production of pitch-based fibrous activated carbon)
1100 g of coal tar from which moisture and quinoline-insoluble components were removed was heated to 80 ° C. in a nitrogen atmosphere, and 4.0 g of triacetylacetonatodiacoyttrium [Y (CH 3 COCHCOCH 3 ) 2 .2H 2 0] was added thereto. The solution was stirred for 5 hours while gradually adding 100 ml of dissolved quinoline dropwise.
Next, this was distilled under reduced pressure, and then reacted at 330 ° C. for 3 hours while blowing air at a rate of 5 L / min, to obtain an yttrium-containing coal tar pitch as an activated carbon precursor mixture.
The activated carbon precursor mixture thus obtained was charged into a spinning machine having a nozzle diameter of 0.3 mm and spun at a winding speed of 150 m / sec while heating to a pitch melting temperature. A pitch fiber as an activated carbon precursor was obtained.
The pitch fiber was heated from room temperature to 375 ° C. at a rate of 2 ° C./min in an air atmosphere, and held at that temperature for 15 minutes for infusibilization. Thereafter, the infusibilized pitch fiber is subjected to activation treatment under a predetermined condition (temperature: 850 ° C., time: 25 minutes) in a nitrogen gas atmosphere containing water vapor, and then dried at 110 ° C. for 2 hours. performed, pitch-based fibrous activated carbon (specific surface area of pores of less than a pore size 20Å is 700 meters 2 / g, the specific surface area of the pores less than a pore size of 20Å or 500Å 300m 2 / g) was obtained.

実施例1
参考例1で製造されたピッチ系繊維状活性炭のうち10gを、真空雰囲気下(25Pa)において、7時間で700℃まで昇温、さらに700℃で5時間保持した後、室温まで同様の雰囲気のままで放冷することで、本発明の繊維状活性炭を得た。
実施例2
実施例1において、真空雰囲気下、9.5時間で950℃まで昇温、さらに950℃で5時間保持することとした以外は実施例1と同様にして実施例2の繊維状活性炭を得た。
実施例3
実施例1において、真空雰囲気下、11時間で1100℃まで昇温、さらに1100℃で5時間保持することとした以外は実施例1と同様にして実施例3の繊維状活性炭を得た。
実施例4
実施例1において、真空雰囲気下、5.5時間で550℃まで昇温、さらに550℃で5時間保持することとした以外は実施例1と同様にして実施例4の繊維状活性炭を得た。
実施例5
実施例1において、窒素雰囲気下(流量:3L/min)において、7時間で700℃まで昇温、さらに700℃で5時間保持することとした以外は実施例1と同様にして実施例5の繊維状活性炭を得た。
実施例6
実施例1において、窒素雰囲気下(流量:3L/min)において、9.5時間で950℃まで昇温、さらに950℃で5時間保持することとした以外は実施例1と同様にして実施例6の繊維状活性炭を得た。
Example 1
10 g of the pitch-based fibrous activated carbon produced in Reference Example 1 was heated to 700 ° C. in 7 hours and further maintained at 700 ° C. for 5 hours in a vacuum atmosphere (25 Pa). The fibrous activated carbon of this invention was obtained by standing to cool.
Example 2
In Example 1, the fibrous activated carbon of Example 2 was obtained in the same manner as in Example 1 except that the temperature was raised to 950 ° C. in 9.5 hours and kept at 950 ° C. for 5 hours in a vacuum atmosphere. .
Example 3
In Example 1, fibrous activated carbon of Example 3 was obtained in the same manner as Example 1 except that the temperature was raised to 1100 ° C. in 11 hours in a vacuum atmosphere, and further maintained at 1100 ° C. for 5 hours.
Example 4
In Example 1, the fibrous activated carbon of Example 4 was obtained in the same manner as in Example 1 except that the temperature was raised to 550 ° C. in 5.5 hours in a vacuum atmosphere and further maintained at 550 ° C. for 5 hours. .
Example 5
In Example 1, in the same manner as in Example 1 except that the temperature was raised to 700 ° C. in 7 hours and maintained at 700 ° C. for 5 hours in a nitrogen atmosphere (flow rate: 3 L / min). Fibrous activated carbon was obtained.
Example 6
Example 1 Example 1 was carried out in the same manner as Example 1 except that the temperature was raised to 950 ° C. in 9.5 hours and kept at 950 ° C. for 5 hours in a nitrogen atmosphere (flow rate: 3 L / min). 6 fibrous activated carbon was obtained.

比較例1
参考例1で製造されたピッチ系繊維状活性炭そのものを、比較例1の繊維状活性炭とした。
比較例2
実施例1において、真空雰囲気下(25Pa)において、5時間で500℃まで昇温、さらに500℃で5時間保持することとした以外は実施例1と同様にして比較例2の繊維状活性炭を得た。
比較例3
実施例1において、真空雰囲気下(25Pa)において、5時間で1200℃まで昇温、さらに1200℃で5時間保持することとした以外は実施例1と同様にして比較例3の繊維状活性炭を得た。
比較例4
参考例1の製造方法の中で、イットリウム化合物を添加しないこととした以外は参考例1と同様の方法で製造したピッチ系繊維状活性炭を用いて、その他の操作は実施例1と同様にして比較例4の繊維状活性炭を得た。
Comparative Example 1
The pitch-type fibrous activated carbon itself produced in Reference Example 1 was used as the fibrous activated carbon of Comparative Example 1.
Comparative Example 2
In Example 1, in the vacuum atmosphere (25 Pa), the fibrous activated carbon of Comparative Example 2 was treated in the same manner as in Example 1 except that the temperature was raised to 500 ° C. in 5 hours and further maintained at 500 ° C. for 5 hours. Obtained.
Comparative Example 3
In Example 1, the fibrous activated carbon of Comparative Example 3 was used in the same manner as in Example 1 except that the temperature was raised to 1200 ° C. in 5 hours and maintained at 1200 ° C. for 5 hours in a vacuum atmosphere (25 Pa). Obtained.
Comparative Example 4
In the production method of Reference Example 1, except that the yttrium compound was not added, the pitch-based fibrous activated carbon produced by the same method as in Reference Example 1 was used, and the other operations were the same as in Example 1. A fibrous activated carbon of Comparative Example 4 was obtained.

実施例1〜6で得られた繊維状活性炭および比較例1〜4の繊維状活性炭について特性を評価した結果を表1に示した。
表1から明らかなように、実施例1〜6においては、全表面酸性官能基量、孔径が20Å未満のミクロ細孔および20Å以上500Å未満のマクロ細孔の比表面積、メソ細孔容積比率のいずれにおいても本発明の構成を具備したものであった。このためトリハロメタンの除去性能は特異的に優れたものであった。
一方、比較例1及び2では、全表面酸性官能基量が高いため、比較例3では、孔径20Å未満のミクロ細孔の比表面積が低いため、比較例4では、孔径20Å以上500Å未満のメソ細孔の比表面積が低くメソ細孔容積比率が低いため、トリハロメタン除去性能はいずれも一般的な活性炭の除去性能の範囲程度であり、本発明の繊維状活性炭における除去性能に比べ極めて低いものであった。
The results of evaluating the characteristics of the fibrous activated carbon obtained in Examples 1 to 6 and the fibrous activated carbon of Comparative Examples 1 to 4 are shown in Table 1.
As is apparent from Table 1, in Examples 1 to 6, the total surface acidic functional group amount, the specific surface area of the micropores having a pore diameter of less than 20 mm and the macropores having a diameter of 20 mm or more and less than 500 mm, and the mesopore volume ratio In any case, the configuration of the present invention was provided. For this reason, the removal performance of trihalomethane was specifically excellent.
On the other hand, in Comparative Examples 1 and 2, since the total surface acidic functional group amount is high, in Comparative Example 3, the specific surface area of the micropores having a pore diameter of less than 20 mm is low. Since the specific surface area of the pores is low and the mesopore volume ratio is low, the trihalomethane removal performance is almost in the range of the general activated carbon removal performance, which is extremely low compared to the removal performance of the fibrous activated carbon of the present invention. there were.












Claims (3)

ボーヘム(Boehem)の方法による活性炭の全表面酸性官能基量が0.01〜0.12mmol/gであり、孔径が20Å以上500Å未満のメソ細孔の比表面積が100〜2,500m/gであり、かつ孔径が20Å未満のミクロ細孔の比表面積が600〜2,500m/gであることを特徴とする繊維状活性炭。 The total surface acidic functional group amount of activated carbon by the method of Bohem is 0.01 to 0.12 mmol / g, and the specific surface area of mesopores having a pore diameter of 20 to less than 500 mm is 100 to 2,500 m 2 / g. And a specific surface area of micropores having a pore diameter of less than 20 mm is 600 to 2,500 m 2 / g. 全細孔容積に対するメソ細孔容積の比率が10〜40%である請求項1記載の繊維状活性炭。 The fibrous activated carbon according to claim 1, wherein the ratio of the mesopore volume to the total pore volume is 10 to 40%. 有機ハロゲン系化合物除去用である請求項1又は2記載の繊維状活性炭。
The fibrous activated carbon according to claim 1 or 2, which is used for removing an organic halogen compound.
JP2005139800A 2005-05-12 2005-05-12 Fibrous active carbon Pending JP2006315903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005139800A JP2006315903A (en) 2005-05-12 2005-05-12 Fibrous active carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139800A JP2006315903A (en) 2005-05-12 2005-05-12 Fibrous active carbon

Publications (1)

Publication Number Publication Date
JP2006315903A true JP2006315903A (en) 2006-11-24

Family

ID=37536898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139800A Pending JP2006315903A (en) 2005-05-12 2005-05-12 Fibrous active carbon

Country Status (1)

Country Link
JP (1) JP2006315903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149267A (en) * 2006-12-18 2008-07-03 Unitika Ltd Organic halide based compound removal filter
JP2009082765A (en) * 2007-09-27 2009-04-23 Osaka Industrial Promotion Organization Methane adsorbent or its producing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149267A (en) * 2006-12-18 2008-07-03 Unitika Ltd Organic halide based compound removal filter
JP2009082765A (en) * 2007-09-27 2009-04-23 Osaka Industrial Promotion Organization Methane adsorbent or its producing method

Similar Documents

Publication Publication Date Title
JP5886383B2 (en) Activated carbon with excellent adsorption performance and method for producing the same
JP6379325B1 (en) Activated carbon and manufacturing method thereof
JP6683968B1 (en) Activated carbon
KR20160142275A (en) Activated carbon for water purifier
Shou et al. Ordered mesoporous carbon preparation by the in situ radical polymerization of acrylamide and its application for resorcinol removal
Kragulj et al. Adsorption of chlorinated phenols on multiwalled carbon nanotubes
WO2021106364A1 (en) Molecular polar substance-adsorbing charcoal
JP2022132348A (en) Activated carbon and production method thereof
JP2011106051A (en) Activated carbon fiber
Shi et al. Effect of Na+ impregnated activated carbon on the adsorption of NH+ 4-N from aqueous solution
JP2008149267A (en) Organic halide based compound removal filter
JP2004182511A (en) Activated carbon and method of manufacturing the same
JP2006315903A (en) Fibrous active carbon
JP2967389B2 (en) Activated carbon fiber, method for producing the same, and water purifier using the activated carbon fiber as an adsorbent
JP3915597B2 (en) Water purification cartridge
JPH11240707A (en) Activated carbon
JP5482134B2 (en) Activated carbon fiber
JPWO2003033135A1 (en) Activated carbon fiber for removing organochlorine compounds
Park et al. Adsorption of acetaldehyde from air by activated carbon and carbon fibers
JP6616597B2 (en) 1,4-dioxane treatment method
KR102576958B1 (en) Activated carbon, and method for producing the activated carbon
JP7300124B2 (en) Activated carbon for removing trihalomethane and method for producing the same
JPH06106161A (en) Activated carbon water purifier
JP6719709B2 (en) Activated carbon
WO2003026792A1 (en) Activated carbon fiber and process for producing the same