WO2003025371A1 - Turbolader mit torsionsschwingungsdämpfer - Google Patents

Turbolader mit torsionsschwingungsdämpfer Download PDF

Info

Publication number
WO2003025371A1
WO2003025371A1 PCT/CH2002/000506 CH0200506W WO03025371A1 WO 2003025371 A1 WO2003025371 A1 WO 2003025371A1 CH 0200506 W CH0200506 W CH 0200506W WO 03025371 A1 WO03025371 A1 WO 03025371A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbocharger
torsional vibration
vibration damper
shaft
compressor
Prior art date
Application number
PCT/CH2002/000506
Other languages
English (en)
French (fr)
Inventor
Markus Loos
Original Assignee
Abb Turbo Systems Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Turbo Systems Ag filed Critical Abb Turbo Systems Ag
Priority to DE50207326T priority Critical patent/DE50207326D1/de
Priority to KR1020047003859A priority patent/KR100865649B1/ko
Priority to EP02760021A priority patent/EP1427927B1/de
Priority to JP2003528976A priority patent/JP2005502817A/ja
Priority to US10/489,663 priority patent/US20040241015A1/en
Publication of WO2003025371A1 publication Critical patent/WO2003025371A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/027Arrangements for balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • the invention relates to a turbocharger according to the features of the preamble of patent claim 1
  • Turbochargers are used to increase the performance of reciprocating engines. They have a fast rotating rotor unit, which comprises a turbine, a compressor and a shaft connecting the turbine and compressor.
  • a fast rotating rotor unit which comprises a turbine, a compressor and a shaft connecting the turbine and compressor.
  • the turbine of the turbocharger is operated with the exhaust gas from an internal combustion engine.
  • the turbine drives the compressor by means of the common shaft.
  • the gas compressed by the compressor is fed to the combustion chambers of the engine to charge it.
  • the pressure of the exhaust gas from the internal combustion engine acting on the turbine is not constant, which can excite the turbocharger shaft to vibrate.
  • the pressure pulsations depend on on the characteristic of opening and closing the exhaust valves of the engine and on the exhaust pipe design.
  • the dominant ignition frequency of the engine is clearly in the foreground, which depends on the number of cylinders, the working method (2-stroke / 4-stroke) and the engine speed.
  • State of the art is to dimension the shaft of the turbocharger in such a way that all the torsional natural frequencies of the turbocharger shaft are significantly above the maximum possible ignition frequency of the engine. So far, this has avoided resonance between the main excitation and the torsional natural frequencies and the turbochargers were designed to be reliable.
  • turbocharger according to the features of patent claim 1.
  • the arrangement of a torsional vibration damper on the turbocharger shaft reduces the load on the turbocharger shaft due to any torsional vibrations that occur and thus prevents critical load peaks. This ensures operational reliability even in constellations with steep camshaft flanks and / or increasing pressure conditions in the engine and turbocharger.
  • torsional vibration dampers such as oil displacement dampers, rubber dampers, viscous torsional vibration dampers, silicone oil rubber dampers come into question.
  • dampers known per se are described, for example, in “Calculation of the dynamic Behavior of viscous torsional vibration dampers ", thesis TU Berlin, 1982, Dipl. Ing. Rainer Hartmann, pp. 9-13.
  • the dampers are advantageously arranged on the compressor-side shaft end, in particular on the inlet side of the compressor wheel hub, since the oscillation deflections and thus the damping effect are greatest there. Another advantage is the good cooling effect at a relatively constant and low temperature, which is an advantage for all damper designs.
  • the outer diameter of the torsional vibration damper is selected so that it corresponds to approximately 80% -110%, ideally 90% to 100% of the hub diameter of the compressor at the inlet. This makes good use of the radial installation space and does not disrupt the inflow of the compressor.
  • a viscous torsional vibration damper has proven to be particularly advantageous.
  • An annular rotating mass is freely rotatably mounted inside a housing.
  • a viscous medium is filled into the gap between the ring and the housing, which creates a damping effect in the event of relative movements between the two parts due to the shear forces that occur. It is particularly important to stabilize the damper temperature.
  • the damper is therefore advantageously arranged at the inlet of the compressor wheel. The air flow with very high flow velocities in the inlet area of the compressor ensures optimal cooling of the damper and thus largely constant temperature of the damper.
  • torsional vibration dampers can be arrange several torsional vibration dampers on the turbocharger shaft instead of one torsional vibration damper.
  • identical or different torsional vibration dampers can be come and they can be provided directly next to each other or at different locations on the shaft.
  • FIG. 1 shows in section along its longitudinal axis a turbocharger with a torsional vibration damper in the region of the compressor inlet;
  • FIG. 2 shows the turbocharger from FIG. 1 with a torsional vibration damper in the area between the compressor wheel and the turbine wheel;
  • Fig. 3 shows the result of a measurement of the amplitude of the torsional vibration on a
  • Fig. 4 shows the result of a measurement of the amplitude of the torsional vibration on a
  • FIGS. 1 and 2 each show a turbocharger 10 with a fast-rotating rotor unit 11 in section along its longitudinal axes 18.
  • Each fast-rotating rotor unit 11 comprises a turbine 12 and a compressor 16, which are connected via a common turbocharger shaft 14 are interconnected.
  • the turbine 12 has a turbine wheel 22 with turbine blades 23 surrounded by a turbine housing 20.
  • the compressor wheel 26 has compressor blades 27 which are distributed regularly over the circumference of a compressor wheel hub 25.
  • the compressor wheel 26 is surrounded by a compressor housing 24 and can be driven by the turbine 12 by means of the common shaft 14.
  • the common turbocharger shaft 14 is mounted in a bearing housing 28 between the compressor wheel 26 and the turbine wheel 22.
  • the turbine housing 20 forms a flow channel 29, which is connected to the exhaust line of an internal combustion engine (not shown).
  • the flow channel 29 leads over the turbine wheel 22 and enables the exhaust gas of the internal combustion engine to be removed from the turbocharger 10 via a gas outlet housing 30 of the turbine housing 20.
  • the compressor housing forms a second flow channel 32, via the inlet 34 of which air or another combustible gas is sucked in, via which Compressor wheel 26 is guided and compressed.
  • the compressed gas is finally discharged out of the turbocharger 10 via an outlet of the compressor housing 24, which is not explicitly shown, and into a feed line of the internal combustion engine (not shown).
  • the pressure pulses which are transmitted from the exhaust gas of the internal combustion engine in accordance with its engine order when the turbine wheel 26 overflows onto the turbocharger shaft 14 are damped by a torsional vibration damper 36.
  • the example shown here is a viscous torsional vibration damper, which is fixed on the inlet side in front of a compressor hub 25 of the compressor wheel 26 in a rotationally fixed manner on the shaft 14. This positioning enables the viscous torsional vibration damper to be optimally cooled by the inflowing gas.
  • the torsional vibration damper is located in the region of the largest torsional vibration amplitudes of the shaft 14 and can thus exert its greatest effect.
  • the radial expansion of the torsional vibration damper 36 is 100% of the radial expansion of the compressor wheel hub 25 in its region adjoining the torsional vibration damper 36. In this way, the installation space is optimally used without the flow through the compressor wheel 26 being impeded.
  • the turbocharger 10 in FIG. 2 is identical to the turbocharger 10 from FIG. 1.
  • the torsional vibration damper 36 for reducing the torsional vibration load on the shaft 14 is, however, not connected in a rotationally fixed manner to the turbocharger shaft 14 between the compressor wheel 26 and the turbine wheel 22 in the region of the bearing housing 28 of the turbocharger 10.
  • the larger radial installation space can advantageously be used here, which gives the torsional vibration damper 36 a higher degree of efficiency.
  • this higher efficiency cannot always have a full impact on the damping efficiency due to the closer proximity to the node of the torsional vibration.
  • a rubber damper is used instead of a viscous torsional vibration damper.
  • FIGS. 3 and 4 show examples of results of two measurements of the torsional vibration amplitudes on a turbocharger shaft, one without a torsional vibration damper in FIG. 3 and one with a torsional vibration damper in FIG.
  • the vibration frequency of the torsional vibration in heart is plotted upwards and the speed in Revolutions Per Second to the right.
  • the engine orders 40 occurring are plotted diagonally.
  • the increased amplitudes 42 of the torsional vibrations 44 in the area of the associated stimulating motor arrangement 40 can be clearly seen.
  • the height of the amplitudes 42 in FIG. 4 measured on the turbocharger shaft with a torsional vibration damper is substantially lower than in FIG. 3, measured on the turbocharger shaft without a torsional vibration damper.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Gezeigt ist ein Abgasturbolader (10), der durch das Abgas eines Verbrennungsmotors betrieben wird, und mit einer schnelldrehenden Rotoreinheit (11) ausgestattet ist, die eine Turboladerwelle (14), ein mit der Welle (14) drehfest verbundenes Turbinenrad (22) sowie ein drehfest mit der Welle (14) verbundenes Verdichterrad (26) umfasst. Zur Erhöhung der Betriebssicherheit dieses Turboladers (10) ist ein Torsionsschwingungsdämpfer (36) an der Turboladerwelle (14) angeordnet. Der Torsionsschwingungsdämpfer (36) reduziert an der Welle (14) auftretende Torsionsschwingungsbelastungen, die durch höhere Motorordnungen des Verbrennungsmotors hervorgerufen werden.

Description

Turbolader mit Torsionsschwingungsdampfer
BESCHREIBUNG
Technisches Gebiet
Die Erfindung bezieht sich auf einen Turbolader gemäss den Merkmalen des Oberbegriffes des Patentanspruches 1
Stand der Technik
Turbolader werden zur Leistungssteigerung von Hubkolbenmotoren eingesetzt. Sie besitzen eine schnelldrehende Rotoreinheit, welche eine Turbine, einen Verdichter und eine Turbine und Verdichter verbindende Welle umfasst. Bei Abgasturboladern wird die Turbine des Turboladers mit dem Abgas eines Verbrennungsmotors betrieben. Mittels der gemeinsamen Welle treibt die Turbine den Verdichter an. Das vom Verdichter verdichtete Gas wird zur Aufladung des Motors dessen Verbrennungskammern zugeführt. Der die Turbine beaufschlagende Druck des Abgases aus dem Verbrennungsmotor ist nicht konstant, was die Turboladerwelle zu Schwingungen anregen kann. Die Druckpulsationen hängen u.a. von der Charakteristik des Öffnens und Schliessens der Auslassventile des Motors und von der Abgasleitungsgestaltung ab. Im Frequenzspektrum dieser Druckpulsationen steht klar die dominierende Zündfrequenz des Motors im Vordergrund, welche von der Zylinderzahl, dem Arbeitsverfahren (2-Takt/4-Takt) und der Motordrehzahl abhängt. Stand der Technik ist es, die Welle des Turboladers so zu dimensionieren, dass alle Torsionseigenfrequenzen der Turboladerwelle deutlich über der maximal möglichen Zündfrequenz des Motors liegen. Bisher konnte dadurch Resonanz zwischen der Hauptanregung und den Torsionseigenfrequenzen vermieden werden und die Turbolader konnten betriebssicher ausgelegt werden.
Neuere Untersuchungen und Messungen haben gezeigt, dass neben der Zündfrequenz auch höhere Motorordnungen im Druckpulsationsspektrum auftreten. Diese Druckpulsationen höherer Ordnung können, mit der Torsionseigenfrequenz der Turboladerwelle zusam- menfallen. Diese Resonanzschwingungen, die sich bei variabler Motordrehzahl nicht vermeiden lassen, führen zu Torsionsspannungen in der Turboladerwelle. In der Vergangenheit war jedoch die Höhe der Anregung so gering, dass die Resonanzschwingungen, aufgrund der Eigendämpfung der Turboladerwelle, nur zu geringen, dauerhaft ertragbaren Torsions- Spannungen geführt haben.
Durch steilere Nockenwellenflanken sowie steigende Druckverhältnisse in Motoren und Turboladern ist aber mit höheren Anregungen und damit mit höheren Torsionsspannungen in der Turboladerwelle zu rechnen. Die geforderte zunehmende Leistungsdichte der Turboladerwelle kommt problemverschärfend hinzu. Unzulässig hohe Belastungen der Turbolader- welle sind daher in Zukunft zu erwarten.
Die einzige bisher bekannte Massnahme den Belastungen durch Torsionsschwingungen in den Turbomaschinen selber entgegenzuwirken ist die Wahl grösserer Wellendurchmesser. Damit verbunden sind aber höhere Verlustleistungen in den Wellenlagern des Turboladers.
Darstellung der Erfindung
Es ist deshalb Aufgabe der Erfindung, einen kostengünstigen Turbolader mit schnelldrehender Rotoreinheit bereit zu stellen, dessen Betriebssicherheit ohne Effizienzeinbussen auch bei den in Zukunft zu erwartenden steigenden Anregungshöhen für Torsionsschwingungen der Turboladerwelle gewährleistet ist.
Diese Aufgabe wird gelöst durch einen Turbolader gemäss den Merkmalen des Patentan- Spruches 1. Die Anordnung eines Torsionsschwingungsdämpfers an der Turboladerwelle reduziert die Belastung der Turboladerwelle durch allfällig auftretende Torsionsschwingungen und verhindert so kritische Belastungsspitzen. Die Betriebssicherheit ist so auch bei Konstellationen mit steilen Nockenwellenflanken und/oder steigenden Druckverhältnisse in Motor und Turbolader gewährleistet.
In Frage kommen die bekannten Prinzipien von Torsionsschwingungsdämpfern wie Ölver- drängungsdämpfer, Gummidämpfer, Viskosedrehschwingungsdämpfer, Siliconölgummi- dämpfer. Solche an sich bekannten Dämpfer sind z.B. in „Berechnung des dynamischen Verhaltens von Viskosedrehschwingungsdämpfern", Dissertation TU Berlin, 1982, Dipl. Ing. Rainer Hartmann, S. 9-13 beschrieben.
Die Dämpfer werden vorteilhaft am verdichterseitigen Wellenende, insbesondere einlasssei- tig der Verdichterradnabe angeordnet, da die Schwingungsausschläge und damit die Dämpfungswirkung dort am grössten sind. Ein weiterer Vorteil ist auch die gute Kühlwirkung bei relativ konstanter und tiefer Temperatur, was für alle Dämpferbauformen von Vorteil ist.
Der Aussendurchmesser des Torsionsschwingungsdampfer ist bei einer Anordnung am Einlass des Verdichterrades ist so gewählt, dass er ca. 80%-110%, am besten 90% bis 100% des Nabendurchmessers des Verdichters am Eintritt entspricht. Dadurch wird der ra- diale Bauraum gut genützt und die Zuströmung des Verdichters nicht gestört.
Es ist auch denkbar den Dämpfer im Bereich der Turbine anzuordnen, wobei darauf zu achten ist, dass Materialien mit ausreichender Hitzebeständigkeit verwendet werden.
Ebenfalls vorteilhaft ist es, den Torsionsschwingungsdampfer zwischen dem Turbinenrad und dem Verdichterrad anzuordnen. Da dort ein vor allem in radialer Richtung grösserer Bauraum vorhanden ist, ist die Dimensionierung des Dämpfers einfacher.
Als besonders vorteilhaft hat sich der Einsatz eines Viskosedrehschwingungsdämpfers erwiesen. Eine ringförmige Drehmasse ist in einen Gehäuse frei drehbar innen gelagert. Im Spalt zwischen Ring und Gehäuse ist ein viskoses Medium eingefüllt, welches bei Relativbewegungen zwischen den beiden Teilen durch die auftretenden Scherkräfte eine Dämp- fungswirkung erzeugt. Hierbei ist es besonders wichtig die Dämpfertemperatur zu stabilisieren. Der Dämpfer wird deshalb vorteilhaft am Einlass des Verdichterrades angeordnet. Der Luftstrom mit sehr hohen Strömungsgeschwindigkeiten im Eintrittsbereich des Verdichters sorgt für eine optimale Kühlung des Dämpfers und damit weitgehend gleichbleibende Temperatur des Dämpfers.
Je nach Konstruktion des Turboladers und nach den auftretenden Torsionsschwingungsbe- lastungen kann es vorteilhaft sein statt einem Torsionsschwingungsdampfer mehrere Torsionsschwingungsdampfer an der Turboladerwelle anzuordnen. Dabei können abgestimmt auf die Belastung gleichartige oder verschiedene Torsionsschwingungsdampfer zum Ein- satz kommen und sie können unmittelbar nebeneinander oder an verschiedenen Orten der Welle vorgesehen sein.
Weitere bevorzugte Ausführungsformen sind Gegenstand weiterer abhängigen Patentansprüche.
Kurze Beschreibung der Zeichnungen
Im folgenden wird der Erfindungsgegenstand anhand von bevorzugten Ausführungsbeispielen, welche in den beiliegenden Zeichnungen dargestellt sind, näher erläutert. Es zeigen rein schematisch:
Fig. 1 im Schnitt entlang seiner Längsachse einen Turbolader mit einem Torsions- Schwingungsdämpfer im Bereich der Verdichtereinlasses;
Fig. 2 den Turbolader aus Fig. 1 mit einem Torsionsschwingungsdampfer im Bereich zwischen Verdichterrad und Turbinenrad;
Fig. 3 das Ergebnis einer Messung der Amplitude der Torsionsschwingung an einer
Turboladerwelle mit Torsionsschwingungsdampfer; und
Fig. 4 das Ergebnis einer Messung der Amplitude der Torsionsschwingung an einer
Turboladerwelle mit Torsionsschwingungsdampfer.
Die in den Zeichnungen verwendeten Bezugszeichen und deren Bedeutung sind in der Bezugszeichenliste zusammengefasst aufgelistet. Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen. Die beschriebene Ausführungsform steht bei- spielhaft für den Erfindungsgegenstand und hat keine beschränkende Wirkung.
Wege zur Ausführung der Erfindung
Die Figur 1 und 2 zeigen je einen Turbolader 10 mit einer schnelldrehenden Rotoreinheit 11 im Schnitt entlang ihrer Längsachsen 18. Jede schnelldrehende Rotoreinheit 11 umfasst eine Turbine 12 und einen Verdichter 16, die über eine gemeinsame Turboladerwelle 14 miteinander verbunden sind. Die Turbine 12 weist ein von einem Turbinengehäuse 20 umgebenes Turbinenrad 22 mit Turbinenschaufeln 23 auf. Das Verdichterrad 26 weist Verdichterschaufeln 27 auf, die regelmässig über den Umfang einer Verdichterradnabe 25 verteilt sind. Das Verdichterrad 26 ist von einem Verdichtergehäuse 24 umgeben und mittels der gemeinsamen Welle 14 von der Turbine 12 antreibbar. Die gemeinsame Turboladerwelle 14 ist zwischen dem Verdichterrad 26 und dem Turbinenrad 22 in einem Lagergehäuse 28 gelagert.
Das Turbinengehäuse 20 bildet einen Strömungskanal 29, der mit der Abgasleitung einer Brennkraftmaschine verbunden ist (nicht dargestellt). Der Strömungskanal 29 führt über das Turbinenrad 22 und ermöglicht über ein Gasaustrittsgehäuse 30 des Turbinengehäuses 20 ein Abführen des Abgas der Brennkraftmaschine aus dem Turbolader 10. Das Verdichtergehäuse bildet einen zweiten Strömungskanal 32, über dessen Einlass 34 Luft oder ein anderes brennbares Gas angesaugt, über das Verdichterrad 26 geführt und dabei verdichtet wird. Das verdichtete Gas wird schliesslich über einen nicht explizit dargestellten Auslass des Verdichtergehäuses 24 aus dem Turbolader 10 heraus und in eine Zuleitung des Verbrennungsmotors (nicht dargestellt), abgeführt.
Die Druckimpulse, die von dem Abgas des Verbrennungsmotors entsprechend seiner Motorordnung beim Überströmen des Turbinenrades 26 auf die Turboladerwelle 14 übertragen werden, werden durch einen Torsionsschwingungsdampfer 36 gedämpft. Im hier gezeigten Beispiel handelt es sich um einen Viskosedrehschwingungsdämpfer, der einlassseitig vor einer Verdichternabe 25 des Verdichterrades 26, drehfest an der Welle 14 fixiert ist. Durch diese Positionierung ist es möglich den Viskosedrehschwingungsdämpfer durch das einströmende Gas optimal zu kühlen. Ausserdem befindet sich der Torsionsschwingungsdampfer so im Bereich der grössten Torsionsschwingungsamplituden der Welle 14 und kann so seine grösste Wirkung entfalten. Die radiale Ausdehnung des Torsionsschwingungsdampfer 36 beträgt in diesem Beispiel 100% der radialen Ausdehnung der Verdichterradnabe 25 in ihrem sich an den Torsionsschwingungsdampfer 36 anschliessenden Bereich. Auf diese Weise ist der Bauraum optimal genutzt, ohne dass die Strömung über das Verdichterrad 26 behindert wird.
Der Turbolader 10 in Fig.2 ist identisch mit dem Turbolader 10 aus Fig. 1. Der Torsionsschwingungsdampfer 36 zur Verringerung der Torsionsschwingungsbelastung der Welle 14 ist allerdings nicht im Bereich des Verdichterrades 26 sondern zwischen Verdichterrad 26 und Turbinenrad 22 im Bereich des Lagergehäuses 28 des Turboladers 10 drehfest mit der Turboladerwelle 14 verbunden. Vorteilhaft kann hier der grössere radiale Bauraum genutzt werden, was dem Torsionsschwingungsdampfer 36 einen höheren Wirkungsgrad verleiht. Dieser höhere Wirkungsgrad kann sich freilich durch die grössere Nähe zum Knotenpunkt der Torsionsschwingung nicht immer voll auf die Dämpfungseffizienz auswirken. Wegen der schlechteren Kühlungsmöglichkeiten ist hier ein Gummidämpfer statt eines Viskosedrehschwingungdämpfers eingesetzt. -
Die Figuren 3 und 4 zeigen beispielhaft Ergebnisse von zwei Messungen der Torsions- Schwingungsamplituden an einer Turboladerwelle einmal ohne Torsionsschwingungsdampfer in Fig. 3 und einmal mit Torsionsschwingungsdampfer in Fig. 4. Bei den Messungen ist mit einem Vikosedrehschwingungsdämpfer im Bereich des Einlasses des Verdichters gearbeitet worden. Aufgetragen ist nach oben die Schwingungsfrequenz der Torsionsschwingung in Herz und nach rechts die Drehzahl in Revolutions Per Second. Diagonal sind die auftretenden Motorordnungen 40 aufgetragen. In beiden Figuren sind deutlich die erhöhten Amplituden 42 der Torsionsschwingungen 44 im Bereich der zugehörenden anregenden Motorordnung 40 zu erkennen. Die Höhe der Amplituden 42 ist jedoch in Fig. 4, gemessen an der Turboladerwelle mit Torsionsschwingungsdampfer, wesentlich geringer als in Fig. 3, gemessen an der Turboladerwelle ohne Torsionsschwingungsdampfer. Diese Ergebnisse zeigen, dass der Einsatz von Torsionsschwingungsdämpfern in Turboladern erheblich zur Betriebssicherheit der Turbolader beitragen kann.
Bezugszeichenliste
10 Turbolader
12 Turbine
14 Welle
5 16 Verdichter
18 Längsachse
20 Turbinengehäuse
22 Turbinenrad
23 Turbinenschaufeln
10 24 Verdichtergehäuse
25 Verdichterradnabe
26 Verdichterrad
27 Verdichterschaufeln
28 Strömungskanal
15 30 Gasaustrittsgehäuse
32 Strömungskanal
34 Einlass
36 Torsionsschwingungsdampfer
40 Motorordnung
20 42 Torsionsschwingungsamplitude
44 Torsionsschwingung

Claims

PATENTANSPRUECHE
1. Abgasturbolader mit einer schnelldrehenden Rotoreinheit (11), die eine Turboladerwelle (14), ein mit der Welle (14) drehfest verbundenes Turbinenrad (22) sowie ein drehfest mit der Welle (14) verbundenes Verdichterrad (26) umfasst, und die durch das Abgas eines Verbrennungsmotors betrieben ist dadurch gekennzeichnet, dass zur Dämpfung der durch höhere Motorordnungen des Verbrennungsmotors angeregten Torsionsschwingungen der Turboladerwelle (14) ein Torsionsschwingungsdampfer (36) an der Welle (14) angeordnet ist
2. Turbolader nach Anspruch 1 , dadurch gekennzeichnet, dass der Torsionsschwin- gungsdämpfer (36) ein Viskosedrehschwingungsdämpfer ist
3. Turbolader nach Anspruch 1 , dadurch gekennzeichnet, dass der Torsionsschwingungsdampfer (36) ein Ölverdrängungsdämpfer ist.
4. Turbolader nach Anspruch 1 , dadurch gekennzeichnet, dass der Torsionsschwingungsdampfer (36) ein Gummidämpfer ist.
5. Turbolader nach Anspruch 1 , dadurch gekennzeichnet, dass der Torsionsschwingungsdampfer (36) Silikonöl-Gummidämpfer ist.
6. Turbolader nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Torsionsschwingungsdampfer (36) im Bereich des Verdichters (16), und insbesondere einlassseitig vor einer Verdichternabe (25) des Verdichterrades (26), an der Turboladerwelle (14) fixiert ist.
7. Turbolader nach Anspruch 6, dadurch gekennzeichnet, dass der Aussendurchmesser des Torsionsschwingungsdämpfers (36) etwa 80% bis 110%, vorzugsweise 90% bis 100% des Aussendurchmessers der Verdichternabe (25) in dem sich an die Vorrichtung anschliessenden Bereich der Verdichternabe (25) ausmacht.
8. Turbolader nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Torsionsschwingungsdampfer (36) zwischen dem Verdichterrad (26) und dem Turbinenrad (22) oder im Bereich des Turbine (12) angeordnet ist.
9. Turbolader nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehr als ein Torsionsschwingungsdampfer (36) an der Turboladerwelle (14) angeordnet ist, wobei die Torsionsschwingungsdampfer (36) an verschiedenen Orten an der Welle (14) angeordnet und verschiedene Arten von Torsionsschwingungsdämpfern (36) vorgesehen sein können.
PCT/CH2002/000506 2001-09-17 2002-09-13 Turbolader mit torsionsschwingungsdämpfer WO2003025371A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50207326T DE50207326D1 (de) 2001-09-17 2002-09-13 Turbolader mit torsionsschwingungsdämpfer
KR1020047003859A KR100865649B1 (ko) 2001-09-17 2002-09-13 비틀림 진동 감쇄기를 포함하는 과급기
EP02760021A EP1427927B1 (de) 2001-09-17 2002-09-13 Turbolader mit torsionsschwingungsdämpfer
JP2003528976A JP2005502817A (ja) 2001-09-17 2002-09-13 ねじり振動ダンパを備えたターボ過給器
US10/489,663 US20040241015A1 (en) 2001-09-17 2002-09-13 Turbocharger comprising a torsional-vibration damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01810898.5 2001-09-17
EP01810898A EP1293657A1 (de) 2001-09-17 2001-09-17 Turbolader mit Torsionsschwingungsdämpfer

Publications (1)

Publication Number Publication Date
WO2003025371A1 true WO2003025371A1 (de) 2003-03-27

Family

ID=8184140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2002/000506 WO2003025371A1 (de) 2001-09-17 2002-09-13 Turbolader mit torsionsschwingungsdämpfer

Country Status (8)

Country Link
US (1) US20040241015A1 (de)
EP (2) EP1293657A1 (de)
JP (1) JP2005502817A (de)
KR (1) KR100865649B1 (de)
CN (1) CN1298977C (de)
DE (1) DE50207326D1 (de)
RU (1) RU2304223C2 (de)
WO (1) WO2003025371A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1602803A1 (de) * 2004-06-03 2005-12-07 ABB Turbo Systems AG Vorrichtung zum Reduzieren von Schwingungen eines Verbrennungsmotor und Abgasturbolader umfassenden Systems
US7150152B2 (en) * 2004-10-21 2006-12-19 Caterpillar Inc Vibration limiter for coaxial shafts and compound turbocharger using same
MX2008015663A (es) 2006-06-09 2009-02-11 Vestas Wind Sys As Turbina eolica que incluye un amortiguador.
WO2008074866A2 (en) * 2006-12-20 2008-06-26 Vestas Wind Systems A/S A wind turbine comprising a torsional vibration absorber
US9181855B2 (en) * 2013-01-31 2015-11-10 Electro-Motive Diesel, Inc. Turbocharger with axial turbine stage
JPWO2014167905A1 (ja) 2013-04-12 2017-02-16 株式会社Ihi インペラの締結検査方法、インペラの締結方法、インペラの締結検査装置、およびインペラの締結装置
EP3521632B1 (de) * 2016-11-08 2020-08-26 Mitsubishi Heavy Industries Compressor Corporation Drehmaschine
US10677312B2 (en) * 2018-02-15 2020-06-09 General Electric Company Friction shaft damper for axial vibration mode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632222A (en) * 1970-10-21 1972-01-04 Avco Corp Damping means for differential gas turbine engine
US3667214A (en) * 1970-03-11 1972-06-06 Gen Motors Corp Engine turbosupercharger with vibration reducing drive
US3814549A (en) * 1972-11-14 1974-06-04 Avco Corp Gas turbine engine with power shaft damper
DE3413388A1 (de) * 1984-04-10 1985-10-24 Aktiengesellschaft Kühnle, Kopp & Kausch, 6710 Frankenthal Abgasturbolader
JPH0842633A (ja) * 1994-07-29 1996-02-16 Bridgestone Corp トーショナルダンパー

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2573398A (en) * 1947-05-12 1951-10-30 George S Butenkoff Torsional vibration dampener
US3678782A (en) * 1969-11-15 1972-07-25 Hidemasa Aoki Viscous rubber dampers
US3734484A (en) * 1971-04-02 1973-05-22 Houdaille Industries Inc Torsional vibration damper
US3990324A (en) * 1974-03-07 1976-11-09 The Goodyear Tire & Rubber Company Vibration damper and method of making said damper
US4044628A (en) * 1976-03-24 1977-08-30 U.S. Manufacturing Corporation Torsional damper
US4254847A (en) * 1978-07-24 1981-03-10 Houdaille Industries, Inc. Rubber viscous torsional dampers and method of making same
US4378865A (en) * 1980-12-10 1983-04-05 Houdaille Industries, Inc. Rubber and viscous/rubber torsional dampers and method of making the same
DE8122473U1 (de) * 1981-07-31 1983-05-19 Sachs Systemtechnik Gmbh, 8720 Schweinfurt Torsionsschwingungsdämpfer mit seitenverschieblichem Dämpfelement
JPH0192526A (ja) * 1987-09-30 1989-04-11 Isuzu Motors Ltd 回転電機付ターボチャージャ
JPH0357541U (de) * 1989-07-31 1991-06-03
GB9403643D0 (en) * 1994-02-25 1994-04-13 Holset Engineering Co A torsional vibration damper
DE10011419C2 (de) * 2000-03-09 2002-01-17 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine
US6499969B1 (en) * 2000-05-10 2002-12-31 General Motors Corporation Conically jointed turbocharger rotor
US6863035B2 (en) * 2001-02-15 2005-03-08 Litens Automotive Internal combustion engine combination with direct camshaft driven coolant pump
CA2437597C (en) * 2001-02-15 2008-04-15 Litens Automotive Internal combustion engine combination with direct camshaft driven coolant pump
US7047914B2 (en) * 2001-02-15 2006-05-23 Litens Automotive Internal combustion engine combination with direct camshaft driven coolant pump
US6478553B1 (en) * 2001-04-24 2002-11-12 General Motors Corporation High thrust turbocharger rotor with ball bearings
JP3718147B2 (ja) * 2001-07-31 2005-11-16 株式会社日立製作所 内燃機関用のターボ式過給機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667214A (en) * 1970-03-11 1972-06-06 Gen Motors Corp Engine turbosupercharger with vibration reducing drive
US3632222A (en) * 1970-10-21 1972-01-04 Avco Corp Damping means for differential gas turbine engine
US3814549A (en) * 1972-11-14 1974-06-04 Avco Corp Gas turbine engine with power shaft damper
DE3413388A1 (de) * 1984-04-10 1985-10-24 Aktiengesellschaft Kühnle, Kopp & Kausch, 6710 Frankenthal Abgasturbolader
JPH0842633A (ja) * 1994-07-29 1996-02-16 Bridgestone Corp トーショナルダンパー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 06 28 June 1996 (1996-06-28) *

Also Published As

Publication number Publication date
EP1427927A1 (de) 2004-06-16
EP1427927B1 (de) 2006-06-21
CN1298977C (zh) 2007-02-07
KR20040035796A (ko) 2004-04-29
US20040241015A1 (en) 2004-12-02
DE50207326D1 (de) 2006-08-03
JP2005502817A (ja) 2005-01-27
CN1555457A (zh) 2004-12-15
RU2004111682A (ru) 2005-05-20
EP1293657A1 (de) 2003-03-19
KR100865649B1 (ko) 2008-10-29
RU2304223C2 (ru) 2007-08-10

Similar Documents

Publication Publication Date Title
WO2008025749A1 (de) Abdichtung verstellbarer leitschaufeln
EP1538304A2 (de) Dämpfungsanordnung für eine Schaufel einer Axialturbine
EP1427927B1 (de) Turbolader mit torsionsschwingungsdämpfer
EP2140119A1 (de) Verdichter für einen abgasturbolader
WO2009090149A1 (de) Leitvorrichtung für schaufelverstellung
DE19618313A1 (de) Axialturbine eines Abgasturboladers
WO2009068473A1 (de) Verfahren und vorrichtung zum dynamischen messen der unwucht eines turbinenrotors
EP3682092A1 (de) Diffusor einer abgasturbine
EP1970528A1 (de) Läufer einer thermischen Strömungsmaschine
DE102012001571A1 (de) Triebwerksgehäuse einer Fluggasturbine mit Schalldämpfungselementen im Fan-Einströmbereich
CH716356B9 (de) Turbolader-Turbinenrotor und Turbolader.
DE102010017933A1 (de) Geräuschdämpfer für variable Frequenzen für rotierende Einrichtungen
DE10239941A1 (de) Torsionsschwingungsdämpfer für einen Turbolader
EP4031752B1 (de) Konzentrische einleitung des waste-gate-massenstroms in einen strömungsoptimierten axialdiffusor
WO2006037242A1 (de) Leitvorrichtung einer strömungsmaschine mit verstellbaren federbelasteten leitschaufeln
DE102018221161B4 (de) Abgasturbine eines Abgasturboladers sowie Abgasturbolader mit einem strömungstechnischen Störelement im Turbinengehäuse
DE102020113433A1 (de) Radialverdichter für eine Antriebseinrichtung eines Kraftfahrzeugs sowie Verfahren zum Betreiben eines Radialverdichters
DE102019125823B4 (de) Turbinengehäuse und Abgasturbolader mit Vorleitbeschaufelung und eine Brennkraftmaschine mit einem Abgasturbolader
DE2230718B2 (de) Abgasturbolader mit Doppelstrom-Turbinengehäuse
DE102008061235B4 (de) Schwingungsreduzierung in einem Abgasturbolader
DE102016015296A1 (de) Turbine für einen Abgasturbolader
DE102022123273A1 (de) Turbine eines Turboladers und Turbolader
DE102022124126A1 (de) Verdichter eines Turboladers und Turbolader
DE102019101868A1 (de) Turbolader
DE102005047942A1 (de) Abgasturbolader für eine Brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002760021

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003528976

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 521/CHENP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10489663

Country of ref document: US

Ref document number: 1020047003859

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20028182006

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002760021

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002760021

Country of ref document: EP