WO2003019756A1 - Unipolar-transversalflussmaschine - Google Patents

Unipolar-transversalflussmaschine Download PDF

Info

Publication number
WO2003019756A1
WO2003019756A1 PCT/DE2002/002825 DE0202825W WO03019756A1 WO 2003019756 A1 WO2003019756 A1 WO 2003019756A1 DE 0202825 W DE0202825 W DE 0202825W WO 03019756 A1 WO03019756 A1 WO 03019756A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
modules
rings
machine according
Prior art date
Application number
PCT/DE2002/002825
Other languages
English (en)
French (fr)
Other versions
WO2003019756A8 (de
Inventor
Guenter Kastinger
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP02754468A priority Critical patent/EP1421668A1/de
Priority to JP2003524094A priority patent/JP4085059B2/ja
Priority to US10/486,578 priority patent/US6888272B2/en
Publication of WO2003019756A1 publication Critical patent/WO2003019756A1/de
Publication of WO2003019756A8 publication Critical patent/WO2003019756A8/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/20Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar machine
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/028Electrical or electro-magnetic connections
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/08Devices for easy attachment to any desired place, e.g. clip, clamp, magnet
    • F21V21/096Magnetic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines

Definitions

  • the invention is based on a unipolar transverse flux machine according to the preamble of claim 1.
  • each rotor ring has a row of teeth with the same tooth pitch that extends on the outer circumference of the rotor ring facing away from the rotor axis and one row of teeth on the inner circumference of the rotor ring that faces the rotor axis.
  • Rows of teeth on each rotor ring are shifted from each other by one tooth pitch.
  • the yoke pitch on the stator corresponds to the tooth pitch of an inner or outer row of teeth, so that i mer an outer tooth of one rotor ring and an inner tooth of the other rotor ring lie simultaneously under a stator yoke.
  • Rotor rings and a permanent magnetic member for generating a radial magnetic flux existing in opposite directions in the rotor rings are fixed to the sides of a rotor body which are turned away from each other in the axial direction of the rotor and which is supported on the housing via rotary bearings.
  • the permanent magnetic member is in each case formed by a permanent magnet ring clamped between the rotor rings, which is unipolarly magnetized in the direction of the rotor axis.
  • the stator yokes of each stator module received by the housing are U-shaped and, with their yoke legs aligned parallel to the rotor axis, overlap the inner and outer rows of teeth of the two rotor rings of the rotor modules.
  • each stator module which is arranged concentrically to the rotor axis, passes through the stator yokes in the base of the yoke, that is to say in the area between the ring surface of the outer rotor ring pointing away from the rotor body and the crossbar of the stator yokes.
  • Platelets facing the poles of a stator yoke have opposite polarity.
  • yoke elements are arranged in the stator.
  • the permanent magnetic member for generating a magnetic flux running in opposite directions in the rotor rings is formed by a permanent magnet ring which is clamped between the two rotor rings and is magnetized unipolar in the axial direction of the rotor.
  • a unipolar transverse flux machine has the advantage of a simple modular construction, with which any desired stringency of the machine by adding or Elimination of identically designed stator and rotor modules can be realized, that is, modularly constructed.
  • module units each consisting of a stator module and a rotor module, the concentricity of the machine improves and an initially step-like behavior of the machine changes to a continuous concentricity without ripples in the torque curve. Since the total torque of the machine is the sum of the torque components of the module units, the total torque of the machine can be easily adapted to existing requirements.
  • the unipolar transverse flux machine according to the invention with the features of claim 1 has the advantage of a higher static torque with the same magnet volume of the permanent magnetic member. With unchanged dimensions and the same design of the unipolar transverse flux machine compared to the known unipolar transverse flux machine described last in the previous section, the averaged torque thus increases.
  • Flow guide from a hollow cylinder made of ferromagnetic Formed material that sits on the rotor shaft in a rotationally fixed manner and receives the two permanent magnet rings in a rotationally fixed manner.
  • the rotor shaft is made of magnetically non-conductive material.
  • the flux guide element is formed directly by the rotor shaft itself, on which the two permanent magnet rings are fixed.
  • the elimination of the separate flow guide element reduces the outlay on components, although the
  • the unipolar in a multi-strand embodiment, the unipolar
  • Transverse flux machine in which several rotor modules are seated on the ferromagnetic rotor shaft, the rotor shaft is divided into shaft sections each extending over a rotor module, and solid disks made of magnetically non-conductive material are arranged between the shaft sections. Shaft sections and solid disks result in a torsionally rigid shaft.
  • the rotor modules of the individual module units or strands of the unipolar transverse flux machine are magnetically decoupled by these magnetically insulating solid disks, so that no mutual magnetic reaction can occur.
  • the axial distances between the Rotor modules are made larger than the axial width of the rotor modules.
  • the optimum of the axial distances is reached when the magnetic influence between the rotor modules becomes negligible.
  • FIG. 1 is a partial perspective view of a two-strand, 32-pole unipolar transverse flux machine, shown partially schematically,
  • FIG. 2 shows a perspective view of a detail of a unipolar transverse flux machine modified with respect to FIG. 1, FIG.
  • Fig. 3 is a diagram of the torque curve of the
  • FIG. 1 The perspective view, partially cut away, of the unipolar transverse flux machine shown in FIG. 1 has a machine housing 10 with one held thereon
  • the rotor 12 has a plurality of rotor modules 15 and the stator 11 has the same number of stator modules 14.
  • the rotor modules 15 are mounted axially one behind the other directly on the rotor shaft 13 in a rotationally fixed manner, and the stator modules 14 are fastened axially one behind the other in a radial alignment with the associated rotor module 15 on the machine housing 10.
  • the number of module units each comprising a stator module 14 and a rotor module 15 is determined by the selected stranding of the unipolar transverse flux machine, which in the exemplary embodiment in FIG.
  • stator modules 14 and the rotor modules 15 and thus the individual module units are of identical design, so that the unipolar transverse flux machine has a modular design and can easily be adapted to existing requirements in terms of power and torque by adding or reducing module units.
  • Module units aligned with each other and the two stator modules 14 of the two module units arranged axially next to one another in the machine housing 10 are rotated electrically by 90 °, which means half a pole pitch, i.e. in the 32-pole version of the machine a spatial offset angle in the direction of rotation of 5.625 °, o -
  • the stator modules 14 arranged axially one behind the other on the stator 11 are to be electrically shifted relative to one another by an angle of 360 ° / m, in a three-strand machine with three module units, this means electrical by 120 °.
  • Each rotor module 15 has two coaxial, toothed, ferromagnetic rotor rings 16, 17 and a permanent magnetic member 18 which generates a magnetic flux which runs radially in opposite directions in the rotor rings 16, 17, as indicated in FIG. 2 by the arrows 19, 20 is.
  • the permanent magnetic member 18 consists of two permanent magnet rings 26, 27, each of which is surrounded on the outside by a rotor ring 16 or 17, and a flux guide element 29 which connects the two permanent magnet rings 26, 27 to one another.
  • the flux guide element 29 is formed by the rotor shaft 13 made of ferromagnetic material, on which the two permanent magnet rings 26, 27 are fixed axially spaced apart.
  • Each permanent magnet ring 26, 27 is radially magnetized, the direction of magnetization in the two permanent magnet rings 26, 27 being in opposite directions, as shown in FIG. 2 by specifying the north poles N and South poles S of the two permanent magnet rings 26, 27 is illustrated.
  • the distance between the rotor modules 15 seated on the one-piece rotor shaft 13 can be increased to such an extent that the magnetic influence of the individual strands on one another is negligible.
  • Each rotor ring 16, 17 is toothed on its outer circumference facing away from the rotor shaft 13 with a constant tooth pitch, so that the teeth 22 of the row of teeth that result from each other, each separated by a tooth gap 21, have the same angular distance from one another.
  • the teeth 22 on the rotor ring 16 and on the rotor ring 17 are aligned with one another in the axial direction.
  • the rotor rings 16, 17 with the teeth 22 formed thereon in one piece are laminated and are preferably composed of the same sheet-metal punched cuts which abut one another in the axial direction.
  • the stator yokes 24 are arranged here such that the one yoke leg with the one rotor ring 16 and the other yoke leg with the other rotor ring 17 of the associated rotor module 15 are radially aligned, the free end faces of the yoke legs forming the pole faces of the rotor ring 16 and 17 respectively face each other with a radial gap.
  • the end faces of the yoke legs have the same axial width as the rotor rings 16, 17.
  • end faces of the yoke legs projecting axially or on both sides via the rotor rings 16, 17 are also advantageous.
  • the yoke elements 25 are each arranged between two stator yokes 24 in the direction of rotation of the rotor 12 and are offset from the stator yokes 24 by half a yoke or yoke element pitch or a pole pitch.
  • the yoke elements 25 extend parallel to the rotor shaft 13 to over both rotor rings 16, 17 and face them with the same radial gap distance as the stator yokes 24.
  • the yoke elements 25 have, for example, a C-shape, each with two short limbs radially opposite one another from a rotor ring 16, 17 and a transverse web connecting them to one another, which is located on the inside of the rotor shaft 13 facing circular ring coil 23 extends parallel to the rotor shaft 13.
  • alternative shapes for the yoke elements 25 can be selected, for example rectangular or trapezoidal.
  • the circular toroidal coil 23 passes through the atortator yokes 24 on the base of the yoke legs and runs in between each via a yoke element 25.
  • the axial width of the end faces of the legs of the yoke elements 25 is here equal to the axial width of the rotor rings 16, 17.
  • the legs of the yoke elements 25 can also axially protrude beyond the rotor rings 16, 17.
  • 3 is, for example, a diagram with four
  • Curve a shows the profile of the static torque of the unipolar transverse flux machine according to FIG. 1
  • curve b shows the profile of the static torque of a unipolar transverse flux machine as it is in the unipolar transverse flux machine according to DE 100 39 466, in which the permanent magnetic member 18th not formed by two radially oppositely magnetized permanent magnet rings 26, 27 but by a permanent magnet ring arranged between the rotor rings 16, 17 and magnetized in the axial direction of the rotor 12, with the same design.
  • Curves c and d represent the course of the cogging torque of the unipolar transverse flux machine according to FIG. 1 (curve c) and according to the known unipolar transverse flux machine (curve d).
  • an increase in the cogging torque can be seen.
  • the two permanent magnet rings 26, 27 are not placed directly on the rotor shaft 13, but are rotatably fixed with the same axial distance from one another on a hollow cylinder 28 made of ferromagnetic material, which in turn is of the rotor shaft 13 is rotatably received.
  • This hollow cylinder 28, which forms the flux guide element 29 of the permanent magnetic member 18 between the two radially oppositely magnetized permanent magnet rings 26, 27, makes it possible to dispense with a magnetically conductive design of the rotor shaft 13.
  • the individual rotor modules 15, which are seated on the one-piece rotor shaft 13 made of magnetically non-conductive material, are magnetically decoupled and can be arranged closely adjacent to one another in order to achieve a small axial depth of the unipolar transverse flux machine.

Abstract

Bei einer Unipolar-Transversalflussmaschine weist zur Erzielung eines fertigungstechnisch günstigen modularen Aufbaus der Stator (11) und der Rotor (12) eine gleiche Anzahl jeweils identischer Statormodule (14) und Rotormodule (15) auf. Jedes Statormodul (14) umfasst eine koaxial zur Rotorwelle (13) angeordnete Ringspule (23) und diese übergreifende U-förmige Statorjoche (24). Zur Erzielung eines großen statischen Drehmoments besteht jedes Rotormodul (15) aus zwei Rotorringen (16, 17) mit Aussenverzahnung, die zwei radial gegensinnig magnetisierte Permanentmagnetringe (26, 27) umschließen, die wiederum auf einem gemeinsamen Flussleitelement (29), das z.B. von der aus ferromagnetischem Werkstoff hergestellten Rotorwelle (13) gebildet ist, sitzen.

Description

Unipolar-Transversalflußmaschine
Stand der Technik
Die Erfindung geht aus von einer Unipolar-Transversalfluß- maschine nach dem Oberbegriff des Anspruchs 1.
Bei einer bekannten Unipolar-Transversalflußmaschine (EP 0 544 200 AI), dort als Hybrid-Synchron aschine mit Transversalmagnetfluß (Hybrid Synchronous Machine with
Transverse Magnetic Flux) bezeichnet, weist die Zahnung eines jeden Rotorrings eine auf dem von der Rotorachse abgekehrten Außenumfang des Rotorrings sich erstreckende und eine auf dem der Rotorachse zugekehrten Innenumfang des Rotorrings sich erstreckende Zahnreihe mit gleicher Zahnteilung auf. Die
Zahnreihen auf jedem Rotorring sind dabei um eine Zahnteilung gegeneinander verschoben. Die Jochteilung am Stator entspricht der Zahnteilung einer inneren oder äußeren Zahnreihe, so daß i mer ein äußerer Zahn des einen Rotorri gs und ein innerer Zahn des anderen Rotorrings gleichzeitig unter einem Statorjoch liegen. Die beiden aus jeweils zwei ? -
Rotorringen und einem permanentmagnetischen Glied zur Erzeugung eines in den Rotorringen gegensinnigen radialen Magnetflusses bestehenden Rotormodule sind an den in Achsrichtung des Rotors voneinander abgekehrten Seiten eines Rotorkörpers festgespan.nt, der am Gehäuse über Drehlager abgestützt ist. Das permanentmagnetische Glied wird dabei jeweils von einem zwischen den Rotorringen eingespannten Permanentmagnetring gebildet, der in Richtung der Rotorachse unipolar magnetisiert ist. Die vom Gehäuse aufgenommenen Statorjoche eines jeden Statormoduls sind U-förmig ausgebildet und übergreifen mit ihren parallel zur Rotorachse ausgerichteten Jochschenkeln die inneren und äußeren Zahnreihen der beiden Rotorringe der Rotormodule. Die konzentrisch zur Rotorachse angeordnete kreisförmige Ringspule in jedem Statormodul durchläuft die Statorjoche im Jochgrund, liegt also im Bereich zwischen der vom Rotorkörper wegweisenden Ringfiäche des äußeren Rotorrings und dem Quersteg der Statorjoche.
Transversalflußmaschinen mit Permantentmagenterregung sind aus der Literatur bekannt, so "Michael Bork, Entwicklung und Optimierung einer fertigungsgerechten
Transversalflußmaschine, Diss. 82, RWTH Aachen, Shaker Verlag Aachen, 1997, Seite 8 ff.". Die kreisförmig gewickelte Statorwicklung wird von U-förmigen Jochen aus Weicheisen umschlossen, die in Drehrichtung im Abstand doppelter Polteilung angeordnet sind. Die offenen Enden dieser U-joche sind auf den Luftspalt zwischen Stator und Rotor gerichtet und bilden die Pole des Stators. Ihnen gegenüber sind Permanentmagnetplättchen so angeordnet, daß die beiden
Plättchen, die den Polen eines Statorjoches gegenüberliegen, entgegengesetzte Polarität besitzen. Um die Permanentmagnete, die bei der Rotordrehung sich zeitweise zwischen den Polen des Stators befinden und keinen ferromagnetischen Rückschluß haben, kurzzuschließen, sind im Stator Rückschlußelemente angeordnet. Diese verhindern, daß der Fluß der
Permanentmagnete über die Jochschenkel und die Ringspule einstreut und durch Schwächung des Statorflusses die Wirksamkeit der Statorflußverkettung vermindert. Die Rückschlußelemente führen damit zu einer deutlichen Leistungssteigerung der Maschine.
Es ist bereits vorgeschlagen worden, bei einer Unipolar-
Transversalflußmaschine der eingangs genannten Art
(DE 100 39 466) die Zahnung der Rotorringe ausschließlich an dem von der Rotorachse abgekehrten Außenumfang der Rotorringe vorzunehmen und in dem Statormodul die Statorjoche so anzuordnen, daß der eine Jochschenkel der Statorjoche dem einen Rotorring und der andere Jochschenkel der Statorjoche dem anderen Rotorring jeweils mit radialem Spaltabstand gegenübersteht. Zwischen in Drehrichtung des Rotors aufeinanderfolgenden Statorjochen ist jeweils ein Rückschlußelement angeordnet, das sich axial über beide Rotorringe erstreckt und diesen mit gleichem radialen Spaltabstand gegenübersteht. Das Permanentmagnetische Glied zur Erzeugung eines in den Rotorringen gegensinnig radial verlaufenden Magnetflusses wird von einem Permanentmagnetring gebildet, der zwischen den beiden Rotorringen eingespannt ist und in Achsrichtung des Rotors unipolar magnetisiert ist. Eine solche Unipolar-Transversalflußmaschine hat den Vorteil einer einfachen Konstruktion in Modulbauweise, mit der jede gewünschte Strängigkeit der Maschine durch Hinzunahme oder Wegfall identisch ausgebildeter Stator- und Rotormodule realisiert, d.h. modular aufgebaut, werden kann. Mit zunehmender Zahl der aus jeweils einem Statormodul und einem Rotormodul sich zusammensetzenden Moduleinheiten verbessert sich der Rundlauf der Maschine und ein zunächst schrittschaltähnliches Verhalten der Maschine geht in einen kontinuierlichen Rundlauf ohne Rippel im Momentenverlauf über. Da das Gesamtmoment der Maschine die Summe der Momentenanteile der Moduleinheiten ist, kann das Gesamtmoment der Maschine in einfacher Weise an bestehende Anforderungen angepaßt werden.
Vorteile der Erfindung
Die erfindungsgemäße Unipolar-Transversalflußmaschine mit den Merkmalen des Anspruchs 1 hat den Vorteil eines höheren statischen Drehmoments bei gleichem Magnetvolumen des permanentmagnetischen Glieds. Bei unveränderten Abmessungen und gleicher Auslegung der Unipolar-Transversalflußmaschine gegenüber der im vorherigen Abschnitt zuletzt beschriebenen bekannten Unipolar-Transversalflußmaschine erhöht sich damit das gemittelte Drehmoment.
Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Unipolar-Transversalflußmaschine möglich.
Bei einer vorteilhaften Ausführungsform der Erfindung ist das die beiden Permanentmagnetringe miteinander verbindende
Flußleitelement von einem Hohlzylinder aus ferromagnetischem Material gebildet, der drehfest auf der Rotorwelle sitzt und die beiden Permanentmagnetringe drehfest aufnimmt. Die Rotorwelle ist dabei aus magnetisch nichtleitfähigem Werkstoff gefertigt.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist das Flußleitelement unmittelbar von der Rotorwelle selbst gebildet, auf der die beiden Permanentmagnetringe festgelegt sind. Durch Wegfall des separaten Flußleitelements verringert sich der Bauteileaufwand, wobei sich allerdings die
Notwendigkeit ergibt, die Rotorwelle aus ferromagnetischem Material zu fertigen
Gemäß einer vorteilhaften Ausführungsform der Erfindung wird bei einer mehrsträngigen Ausführungsform der Unipolar-
Transversalflußmaschine, bei der also mehrere Rotormodule auf der ferromagnetischen Rotorwelle sitzen, die Rotorwelle in über jeweils einen Rotormodul sich erstreckende Wellenabschnitte unterteilt, und zwischen den Wellenabschnitten werden Vollscheiben aus magnetisch nichtleitendem Werkstoff angeordnet. Wellenabschnitte uns Vollscheiben ergeben eine drehsteife Welle. Durch diese magnetisch isolierenden Vollscheiben werden die Rotormodule der einzelnen Moduleinheiten oder Stränge der Unipolar- Transversalflußmaschine magnetisch entkoppelt, so daß keine gegenseitige magnetische Rückwirkung auftreten kann.
Eine gleiche Wirkung wird bei einer mehrsträngigen Ausführung der Unipolar-Transversalflußmaschine mit ferromagnetischer Rotorwelle erzielt, wenn gemäß einer alternativen
Ausführungsform der Erfindung die Axialabstände zwischen den Rotormodulen größer gemacht werden als die axiale Breite der Rotormodule. Das Optimum der Axialabstände ist dabei erreicht, wenn die magnetische Beeinflussung zwischen den Rotormodulen vernachlässigbar klein wird.
Zeichnung
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 ausschnittweise eine perspektivische Ansicht einer zweisträngigen, 32-poligen Unipolar- Transversalflußmaschine, teilweise schematisiert dargestellt,
Fig. 2 eine perspektivische Ansicht eines Ausschnitts einer gegenüber Fig. 1 modifizierten Unipolar- Transversalflußmaschine,
Fig. 3 ein Diagramm des Drehmomentverlaufs der
Unipolar-Transversalflußmaschine in Fig. 1 oder 2 im Vergleich zu einer bekannten Maschine.
Beschreibung des Ausführungsbeispiels
Die in Fig. 1 in perspektivischer Ansicht, teilweise aufgeschnitten dargestellte Unipolar-Transversalflußmaschine weist ein Maschinengehäuse 10 mit einem daran gehaltenen
Stator 11 sowie einen im Stator 11 umlaufenden Rotor 12 auf, der drehfest auf einer im Maschinengehäuse 10 gelagerten Rotorwelle 13 sitzt. Der Rotor 12 weist mehrere Rotormodule 15 und der Stator 11 eine gleiche Anzahl von Statormodulen 14 auf. Die Rotormodule 15 sind axial hintereinander unmittelbar auf die Rotorwelle 13 drehfest aufgesetzt, und die Statormodule 14 sind axial hintereinander in radialer Ausrichtung zum zugehörigen Rotormodul 15 am Maschinengehäuse 10 befestigt. Die Anzahl der jeweils ein Statormodul 14 und ein Rotormodul 15 umfassenden Moduleinheiten ist bestimmt durch die gewählte Strängigkeit der Unipolar- Transversalflußmaschine, die in den Ausführungsbeispiel der Fig. 1 zweisträngig ist und demzufolge zwei Moduleinheiten besitzt. Sie kann aber auch einsträngig oder drei- oder mehrsträngig ausgeführt werden. Die Statormodule 14 und die Rotormodule 15 und damit die einzelnen Moduleinheiten sind identisch ausgebildet, so daß die Unipolar- Transversalflußmaschine eine modulare Bauweise aufweist und durch Hinzufügen oder Verringern von Moduleinheiten problemlos an bestehende Anforderungen bezüglich der Leistung und des Drehmoments angepaßt werden kann.
Wie in Fig. 1 perspektivisch dargestellt ist, sind bei der zweisträngigen Ausführung der Unipolar- Transversalflußmaschine die beiden axial nebeneinander auf der Rotorwelle 13 sitzenden Rotormodule 15 der beiden
Moduleinheiten miteinander fluchtend ausgerichtet und die beiden im Maschinengehäuse 10 axial nebeneinander angeordneten Statormodule 14 der beiden Moduleinheiten um 90° elektrisch gegeneinander verdreht, was einer halben Polteilung, also bei der 32-poligen Ausführung der Maschine einem räumlichen Versatzwinkel in Drehrichtung von 5,625°, o -
entspricht. Alternativ ist es möglich, die beiden Statormodule 14 in Achsrichtung miteinander fluchtend auszurichten und die auf der Rotorwelle 13 sitzenden Rotormodule 15 um den genannten Winkel von 90° elektrisch gegeneinander zu verdrehen.
Ist die Unipolar-Transversalflußmaschine mit mehr als zwei Strängen ausgeführt, allgemein mit Strängen, wobei m eine ganze Zahl größer als Zwei ist, so sind die am Stator 11 axial hintereinander angeordneten Statormodule 14 um einen Winkel von 360°/m elektrisch gegeneinander zu verschieben, bei einer dreisträngigen Maschine mit drei Moduleinheiten also um 120° elektrisch.
Jedes Rotormodul 15 weist zwei koaxiale, gezahnte, ferromagnetische Rotorringen 16, 17 und ein permanentmagnetisches Glied 18 auf, das einen Magnetfluß erzeugt, der in den Rotorringen 16, 17 gegensinnig radial verläuft, wie dies in Fig. 2 durch die Pfeile 19, 20 angedeutet ist. Das permanentmagnetische Glied 18 besteht aus zwei Permanentmagnetringen 26, 27, die jeweils von einem Rotorring 16 bzw. 17 außen umschlossen sind, und einem Flußleitelement 29, das die beiden Permanentmagnetringe 26, 27 miteinander verbindet. Das Flußleitelement 29 wird im Ausführungsbeispiel der Fig. 1 von der aus ferromagnetischem Material gefertigten Rotorwelle 13 gebildet, auf der die beiden Permanentmagnetringe 26, 27 axial voneinander beabstandet festgelegt sind. Jeder Permanentmangnetring 26, 27 ist radial magnetisiert, wobei die Magnetisierungsrichtung in den beiden Permanentmagnetringen 26, 27 gegensinnig ist, wie dies in Fig. 2 durch die Angabe der Nordpole N und Südpole S der beiden Permanentmagnetringe 26, 27 verdeutlicht ist. Sitzen mehr als ein Rotormodul 15 auf der Rotorwelle 13, ist also die Unipolar-Transversalflußmaschine zweisträngig wie in Fig. 1 oder mehrsträngig ausgeführt, so ist es vorteilhaft, die einzelnen Rotormodule 15 durch in der Rotorwelle 13 angeordnete Vollscheiben aus magnetisch nichtleitfähigem Material zu entkoppeln. In Fig. 1 ist eine solche magnetisch isolierende Vollscheibe 30 zwischen den jeweils einen Rotormodul 15 tragenden Abschnitten der Rotorwelle 13 eingesetzt. Alternativ kann der Abstand zwischen den auf der einstückigen Rotorwelle 13 sitzenden Rotormodulen 15 soweit vergrößert werden, daß die magnetische Beeinflussung der einzelnen Stränge zueinander vernachlässigbar ist.
Jeder Rotorring 16, 17 ist an seinem von der Rotorwelle 13 abgekehrten Außenumfang mit konstanter Zahnteilung gezahnt, so daß die durch jeweils eine Zahnlücke 21 voneinander getrennten Zähne 22 der sich jeweils ergebenden Zahnreihe einen gleichen Drehwinkelabstand voneinander haben. Die Zähne 22 am Rotorring 16 und am Rotorring 17 fluchten in Axialrichtung miteinander. Die Rotorringe 16, 17 mit den daran einstückig angeformten Zähnen 22 sind lamelliert und werden bevorzugt aus gleichen Blechstanzschnitten, die in Achsrichtung aneinanderliegen, zusammengesetzt.
Jedes jeweils ein Rotormodul 15 mit Radialabstand konzentrisch umschließende Statormodul 14 weist eine koaxial zur Rotorwelle 13 angeordnete Ringspule 23 sowie die Ringspule 23 übergreifende U-förmige Statorjoche 24 und unterhalb der Ringspule 23 liegende Rückschlußelemente 25 auf. Die ebenfalls lamellierten, aus Stanzblechen zu Blechpaketen zusammengesetzten Statorjoche 24 und Rückschlußelemente 25 sind am Maschinengehäuse 10 mit einer der Zahnteilung am Rotormodul 15 entsprechenden Joch- bzw. Rückschlußelementteilung festgelegt, so daß sie den gleichen Drehwinkelabstand voneinander haben, wie die Zähne 22 der Rotorringe 16, 17. Die Statorjoche 24 sind hier so angeordnet, daß jeweils der eine Jochschenkel mit dem einen Rotorring 16 und der aridere Jochschenke mit dem anderen Rotorring 17 des zugeordneten Rotormoduls 15 radial fluchtet, wobei die Polflächen bildenden freien Stirnflächen der Jochschenkel dem Rotorring 16 bzw. 17 mit radialem Spaltabstand gegenüberstehen. Im Ausführungsbeispiel weisen die Stirnflächen der Jochschenkel eine gleiche axiale Breite wie die Rotorringe 16, 17 auf. Vorteilhaft sind aber auch über die Rotorringe 16, 17 ein- oder beidseitig axial überstehende Stirnflächen der Jochschenkel. Die Rückschlußelemente 25 sind in Drehrichtung des Rotors 12 jeweils zwischen zwei Statorjochen 24 angeordnet und sind gegenüber den Statorjochen 24 um eine halbe Joch- oder Rückschlußelementteilung bzw. eine Polteilung versetzt angeordnet. Die Rückschlußelemente 25 erstrecken sich parallel zur Rotorwelle 13 bis über beide Rotorringe 16, 17 und stehen diesen mit dem gleichen radialen Spaltabstand gegenüber wie die Statorjoche 24.
In dem Ausführungsbeispiel gemäß Fig. 1 haben die Rückschlußelemente 25 beispielsweise C-Form mit zwei jeweils einem Rotorring 16, 17 radial gegenüberliegenden kurzen Schenkeln und einem diese miteinander verbindenden Quersteg, der sich auf der der Rotorwelle 13 zugekehrten Innenseite der kreisförmig ausgebildeten Ringspule 23 parallel zur Rotorwelle 13 erstreckt. Um Material zu sparen oder Spielraum zu gewinnen können alternative Formen für die Rückschlußelemente 25 gewählt werden, z.B. rechteckig oder trapezförmig. Durch diese Ausbildung der Rückschlußelemente 25 und der Statorjoche 24 durchläuft die kreisförmige Ringspule 23 die Ξtatorjoche 24 am Jochschenkelgrund und läuft dazwischen über jeweils ein Rückschlußelement 25 hinweg. Die axiale Breite der Stirnflächen der Schenkel der Rückschlußelemente 25 ist hier gleich der axialen Breite der Rotorringe 16, 17 ausgeführt. Die Schenkel der Rückschlußelemente 25 können aber auch axial über die Rotorringe 16, 17 überstehen.
In Fig. 3 ist beispielsweise ein Diagramm mit vier
Momentenverläufe über einen elektrischen Winkel von 180° dargestellt. Dabei zeigt die Kurve a den Verlauf des statischen Drehmoments der Unipolar-Transversalflußmaschine gemäß Fig. 1 und die Kurve b den Verlauf des statischen Drehmoments einer Unipolar-Transversalflußmaschine wie er bei der Unipolar-Transversalflußmaschine gemäß DE 100 39 466, bei der das permanentmagnetische Glied 18 nicht durch zwei radial gegensinnig magnetisierte Permanentmagnetringe 26, 27 sondern durch einen zwischen den Rotorringen 16, 17 angeordneten, in Achsrichtung des Rotors 12 magnetisierten Permanentmagnetring gebildet ist, bei gleicher Auslegung auftritt. Deutlich ist zu sehen, daß das gemittelte Drehmoment der hier beschriebenen Maschine vergrößert wird. Die Kurven c und d stellen den Verlauf des Rastmoments der Unipolar-Transversalflußmaschine gemäß Fig. 1 (Kurve c) bzw. gemäß der genannten bekannten Unipolar- Transversalflußmaschine (Kurve d) dar. Auch hier ist eine Vergrößerung des Rastmoments zu sehen.
Bei der in Fig. 2 nur im Ausschnitt dargestellten modifizierten 32-poligen Unipolar-Transversalflußmaschine sind die beiden Permanentmagnetringen 26, 27 nicht unmittelbar auf die Rotorwelle 13 aufgesetzt, sondern mit gleichem Axialabstand voneinander auf einem Hohlzylinder 28 aus ferromagnetischem Material drehfest aufgesetzt, der seinerseits von der Rotorwelle 13 drehfest aufgenommen ist. Durch diesen Hohlzylinder 28, der das Flußleitelement 29 des permanentmagnetischen Glieds 18 zwischen den beiden radial gegensinnig magnetisierten Permanentmagnetringen 26, 27 bildet, kann auf eine magnetisch leitfähige Ausbildung der Rotorwelle 13 verzichtet werden. Bei einer mehrsträngigen Ausführung der Unipolar-Transversalflußmaschine sind die einzelnen auf der einstückigen Rotorwelle 13 aus magnetisch nichtleitfähigem Material sitzenden Rotormodule 15 magnetisch gut entkoppelt und können eng benachbart angeordnet werden, um eine geringe axiale Bautiefe der Unipolar- Transversalflußmaschine zu erzielen.

Claims

Ansprüche
1. Unipolar-Transversalflußmaschine mit einem um eine Rotorachse drehbaren Rotor (12), der mindestens ein Rotormodul (15) aufweist, das aus jeweils zwei koaxialen, gezahnten, ferromagnetischen Rotorringen (16,17) und einem permanentmagnetischen Glied (18) zur Erzeugung eines in den Rotorringen (16, 17) gegensinnig radial verlaufenden Magnetflusses besteht, und mit einem zur Rotorachse konzentrischen Stator (11), der mindestens ein dem Rotormodul (15) zugeordnetes Statormodul (14) aufweist, das aus einer koaxial zur Rotorachse angeordneten Ringspule (23) und diese übergreifenden U- förmigen Statorjochen (24) besteht, dadurch gekennzeichnet, daß eine Zahnung der Rotorringe (16,17) ausschließlich an dem von der Rotorachse abgekehrten Außenumfang der Rotorringe (16,17) vorgenommen ist, daß in dem Statormodul (14) die Statorjoche (24) so angeordnet sind, daß ihre Jochschenkel (241) jeweils einem der Rotorringe (16) mit radialem Spaltabstand gegenüberstehen, und daß das permanentmagnetische Glied (18) von zwei radial gegensinnig magnetisierten Permanentmagnetringen (26, 27) gebildet ist, die jeweils von einem Rotorring (16, 17) drehfest umschlossen sind und auf einem gemeinsamen Flußleitelement (29) sitzen.
2. Maschine nach' Anspruch 1, dadurch gekennzeichnet, daß zwischen in Drehrichtung des Rotors (12) aufeinanderfolgenden Statorjochen (24) jeweils ein Rückschlußelement (25) angeordnet ist, das sich axial über beide Rotorringe (16, 17) erstreckt und diesen mit radialem Spaltabstand gegenübersteht.
3. Maschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Zahnung der Rotorringe (16, 17) eine konstante Zahnteilung aufweist und die Jochschenkel mit einer der Zahnteilung entsprechenden Teilung an einem Gehäuse festgelegt sind.
4. Maschine nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß das Flußleitelement (29) von einer Rotorwelle (13) aus ferromagnetischem Material gebildet ist, auf der die beiden Permanentmagnetringe (26, 27) drehfest festgelegt sind.
5. Maschine nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß das Flußleitelement (29) von einem Hohlzylinder (28) aus ferromagnetischem Material gebildet ist, der beide Permanentmagnetringe (26, 27) drehfest aufnimmt und seinerseits drehfest auf einer Rotorwelle (13) sitzt.
6. Maschine nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Rotor (12) zwei gleiche Rotormodule (15) und der Stator (11) zwei gleiche Statormodule (14) aufweist und daß die Statormodule (14) axial nebeneinander in einem Gehäuse (10) und die Rotormodule (15) axial nebeneinander auf der Rotorwelle (13) in gegenseitiger Zuordnung jeweils so festgesetzt sind, daß die Statormodule (14) oder die Rotormodule (15) jeweils um 90° elektrisch gegeneinander verdreht sind.
7. Maschine nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Rotor (12) m Rotormodule (15) und der Stator (11) m Statormodule (14) aufweist und daß die Statormodule (14) axial nebeneinander in einem Gehäuse (10) und die Rotormodule (15) axial nebeneinander auf der Rotorwelle (13) in gegenseitiger Zuordnung jeweils so festgesetzt sind, daß die Statormodule (14) oder die Rotormodule (15) jeweils um 360°/m elektrisch gegeneinander verdreht sind, wobei m eine ganze Zahl und größer als 2 ist.
8. Maschine nach Anspruch 4 und Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Rotorwelle (13) in über jeweils einen Rotormodul (15) sich erstreckende Wellenabschnitte unterteilt ist und daß zwischen den Wellenabschnitten Vollscheiben (30) aus magnetisch nichtleitendem Werkstoff angeordnet sind.
9. Maschine nach Anspruch 4 und Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Axialabstände zwischen den Rotormodulen so groß gemacht sind, daß eine magnetische Beeinflussung zwischen den Rotormodulen (15) vernachlässigbar ist.
10.Maschine nach einem der Ansprüche 2 - 9, dadurch gekennzeichnet, daß die Rückschlußelemente (25) um eine Polteilung zu den Statorjochen (24) versetzt angeordnet sind.
11.Maschine nach einem der Ansprüche 2 — 10, dadurch gekennzeichnet, daß der radiale Spaltabstand zwischen den Statorjochen (24) und den Rotorringen (16, 17) einerseits und zwischen den Rückschlußelementen (25) und den Rotorringen (16, 17) andererseits gleich groß bemessen ist.
12.Maschine nach einem der Ansprüche 1 - 11, dadurch gekennzeichnet, daß die freie Stirnflächen (244) der Jochschenkel der Statorjoche (24) mindestens die gleiche axiale Breite wie die Rotorringe (16, 17) aufweisen, vorzugsweise über diese ein- oder beidseitig vorstehen.
PCT/DE2002/002825 2001-08-16 2002-08-01 Unipolar-transversalflussmaschine WO2003019756A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02754468A EP1421668A1 (de) 2001-08-16 2002-08-01 Unipolar-transversalflussmaschine
JP2003524094A JP4085059B2 (ja) 2001-08-16 2002-08-01 ユニポーラ横磁束電動機
US10/486,578 US6888272B2 (en) 2001-08-16 2002-08-01 Unipolar transverse magnetic flux machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10140303A DE10140303A1 (de) 2001-08-16 2001-08-16 Unipolar-Transversalflußmaschine
DE10140303.8 2001-08-16

Publications (2)

Publication Number Publication Date
WO2003019756A1 true WO2003019756A1 (de) 2003-03-06
WO2003019756A8 WO2003019756A8 (de) 2003-08-21

Family

ID=7695706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002825 WO2003019756A1 (de) 2001-08-16 2002-08-01 Unipolar-transversalflussmaschine

Country Status (6)

Country Link
US (1) US6888272B2 (de)
EP (1) EP1421668A1 (de)
JP (1) JP4085059B2 (de)
CN (1) CN100367637C (de)
DE (1) DE10140303A1 (de)
WO (1) WO2003019756A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543792B2 (en) 2013-09-20 2017-01-10 Kabushiki Kaisha Toshiba Rotary electric machine, electric motor, machine, electric generator, and electric generating machine

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080211336A1 (en) * 2004-11-11 2008-09-04 Abb Research Ltd. Rotating Transverse Flux Machine
US20080309171A1 (en) * 2004-11-11 2008-12-18 Abb Research Ltd. Linear Transverse Flux Machine
US7375449B2 (en) * 2006-08-17 2008-05-20 Butterfield Paul D Optimized modular electrical machine using permanent magnets
US8232695B2 (en) 2007-07-09 2012-07-31 Clearwater Holdings, Ltd Electromagnetic machine with independent removable coils, modular parts and self sustained passive magnetic bearing
FR2930689B1 (fr) * 2008-04-28 2010-04-16 Schneider Electric Ind Sas Machine tournante a flux transverse et dispositif de commutation equipe d'une telle machine
JP2010029022A (ja) * 2008-07-23 2010-02-04 Univ Of Fukui 横磁束型同期機及びその設計方法
US7830057B2 (en) * 2008-08-29 2010-11-09 Hamilton Sundstrand Corporation Transverse flux machine
US10230292B2 (en) 2008-09-26 2019-03-12 Clearwater Holdings, Ltd Permanent magnet operating machine
JP2012507983A (ja) 2008-11-03 2012-03-29 モーター エクセレンス, エルエルシー 多相の横方向および/またはコンミュテート式磁束システム
JP2010213509A (ja) * 2009-03-11 2010-09-24 Univ Of Fukui 横磁束型同期機
KR100969682B1 (ko) * 2009-09-18 2010-07-14 방덕제 직접구동식 전기기기
EP2548288A1 (de) 2010-03-15 2013-01-23 Motor Excellence, LLC Quer- und/oder mischflusssysteme für verringerte flusslecks, verringerten hysteresverlust und phasenabgleich
CN102986115A (zh) 2010-03-15 2013-03-20 电扭矩机器股份有限公司 用于电动自行车的横向和/或换向通量系统
EP2548289B1 (de) * 2010-03-15 2019-11-27 Motor Excellence, LLC Quer- und/oder mischflusssysteme mit phasenversatz
WO2011142653A1 (en) * 2010-05-10 2011-11-17 De Archimedes B.V. Windmill, rotor blade and method
WO2012067896A2 (en) 2010-11-17 2012-05-24 Motor Excellence, Llc Transverse and/or commutated flux systems having laminated and powdered metal portions
EP2641316B1 (de) 2010-11-17 2019-02-13 Motor Excellence, LLC Quer- oder mischflusssysteme mit segmentierten statorlamellen
WO2012067895A2 (en) 2010-11-17 2012-05-24 Motor Excellence, Llc Transverse and/or commutated flux system coil concepts
CN103155368B (zh) * 2011-03-07 2015-07-01 松下电器产业株式会社 电动机以及具有该电动机的电气设备
JP5592848B2 (ja) * 2011-03-30 2014-09-17 株式会社東芝 横方向磁束型回転電機及び車輌
KR101255951B1 (ko) * 2011-07-14 2013-05-02 삼성전기주식회사 횡방향 스위치드 릴럭턴스 모터
KR101255934B1 (ko) * 2011-07-29 2013-04-23 삼성전기주식회사 횡방향 스위치드 릴럭턴스 모터
JP5703168B2 (ja) 2011-08-09 2015-04-15 株式会社東芝 モータ
CN102420515B (zh) * 2011-11-30 2013-08-21 哈尔滨工业大学 磁场调制式横向磁通多相永磁电机
CN102842974B (zh) 2012-08-03 2015-06-03 埃塞克科技有限公司 横向磁通发电机
AU2012216654B2 (en) * 2012-09-05 2015-03-26 Ngentec Limited Modular Electrical Machine
JP5743988B2 (ja) * 2012-09-18 2015-07-01 株式会社東芝 横方向磁束型モータ
US9559559B2 (en) 2012-09-24 2017-01-31 Eocycle Technologies Inc. Transverse flux electrical machine stator with stator skew and assembly thereof
CA2829812A1 (en) 2012-10-17 2014-04-17 Eocycle Technologies Inc. Transverse flux electrical machine rotor
US9112386B2 (en) * 2013-01-15 2015-08-18 Roopnarine Electric motor with improved flux path and power density
US10505412B2 (en) 2013-01-24 2019-12-10 Clearwater Holdings, Ltd. Flux machine
JP6081304B2 (ja) 2013-07-10 2017-02-15 株式会社東芝 横方向磁束型回転電機及び車輌
JP6253520B2 (ja) 2014-05-30 2017-12-27 株式会社東芝 回転電機
JP6567304B2 (ja) 2015-03-20 2019-08-28 株式会社東芝 回転電機及び巻上機
JP5913684B2 (ja) * 2015-04-27 2016-04-27 株式会社東芝 横方向磁束型モータ
DE102015210032A1 (de) * 2015-06-01 2016-12-01 Siemens Aktiengesellschaft Mehrphasige Transversalflussmaschine
JP2017169343A (ja) * 2016-03-16 2017-09-21 株式会社東芝 回転電機、巻上機、およびエレベータ
KR101777957B1 (ko) * 2016-04-01 2017-09-12 한양대학교 에리카산학협력단 에너지 변환 장치
JP6649238B2 (ja) 2016-12-13 2020-02-19 株式会社東芝 回転電機およびロボット装置
JP7052017B2 (ja) 2017-09-08 2022-04-11 クリアウォーター ホールディングス,リミテッド 蓄電を改善するシステム及び方法
JP7433223B2 (ja) 2017-10-29 2024-02-19 クリアウォーター ホールディングス,リミテッド モジュール化された電磁機械及び製造方法
CN115065178A (zh) * 2022-06-06 2022-09-16 河北工业大学 一种车载充电机一体化双模块磁通反向电机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2091565A5 (de) * 1970-05-15 1972-01-14 Hayasaka Enakichi
US5436518A (en) * 1992-01-03 1995-07-25 Nihon Riken Co., Ltd. Motive power generating device
WO1997042699A1 (fr) * 1996-05-06 1997-11-13 Taixun Han Moteur a courant alternatif synchrone basse vitesse, du type a toles inserees

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2519097A (en) * 1946-06-05 1950-08-15 Rolls Royce Dynamoelectrical machine
GB667300A (en) * 1949-03-21 1952-02-27 Johannes Bouwe Geale Ringnalda Improvements in or relating to dough moulding machines
US4255696A (en) * 1976-11-17 1981-03-10 Sigma Instruments, Inc. Synchronous motor system
US4127802A (en) * 1977-04-06 1978-11-28 Johnson Milton H High torque stepping motor
JPS5484207A (en) * 1977-12-19 1979-07-05 Oki Electric Ind Co Ltd Pulse motor
US4423343A (en) * 1981-04-01 1983-12-27 Sigma Instruments, Inc. Synchronous motor system
CH653493A5 (en) * 1981-12-04 1985-12-31 Portescap Electric stepper motor
CH653189A5 (fr) * 1983-04-08 1985-12-13 Portescap Moteur pas a pas electrique.
JPS6169364A (ja) * 1984-09-11 1986-04-09 Toshiba Corp ステツプモ−タ
DE3602687A1 (de) * 1986-01-30 1987-08-06 Weh Herbert Permanenterregte synchronmaschine mit transversalflusspfaden
IT8505253A0 (it) * 1985-11-15 1985-11-15 Copan Srl Tampone con serbatoio di terreno di trasporto per il prelievo e il trasferimento in provetta di campioni di sostenze da analizzare.
US4703243A (en) * 1986-04-17 1987-10-27 Kollmorgen Technologies Corporation Stepping motor harmonic suppression
US5006748A (en) * 1989-08-17 1991-04-09 Rem Technologies, Inc. Stator mounting arrangement
DE3927454A1 (de) * 1989-08-19 1991-02-21 Weh Herbert Elektrisch errregte transversalflussmaschine
SI9100008A (en) * 1991-11-22 1993-06-30 Andrej Detela Hibridic synchronous electric motor with trassfersal magnetic field
US5747898A (en) * 1993-02-01 1998-05-05 Minebea Co., Ltd. Method for driving stepping motor of multiphase hybrid type
JP3084220B2 (ja) * 1995-12-21 2000-09-04 多摩川精機株式会社 ハイブリッド型ステップモータ
DE19614862A1 (de) * 1996-04-16 1997-11-06 Abb Daimler Benz Transp Transversalflußmaschine mit Permanenterregung
JPH10126982A (ja) * 1996-10-24 1998-05-15 Matsushita Electric Ind Co Ltd 永久磁石モータ
AT504016A1 (de) * 1998-03-03 2008-02-15 Bombardier Transp Gmbh Transversalflussmaschine
JP4091197B2 (ja) * 1999-02-15 2008-05-28 三菱電機株式会社 回転電機
EP1290774B1 (de) * 2000-05-05 2005-05-04 Robert Bosch Gmbh Unipolar-transversalflussmaschine
DE10036288A1 (de) * 2000-07-26 2002-02-07 Bosch Gmbh Robert Unipolar-Transversalflußmaschine
DE10062073A1 (de) * 2000-12-13 2002-06-20 Bosch Gmbh Robert Unipolar-Transversalflußmaschine
DE10225156A1 (de) * 2002-06-06 2003-12-18 Bosch Gmbh Robert Transversalflussmaschine, insbesondere Unipolar-Transversalflussmasschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2091565A5 (de) * 1970-05-15 1972-01-14 Hayasaka Enakichi
US5436518A (en) * 1992-01-03 1995-07-25 Nihon Riken Co., Ltd. Motive power generating device
WO1997042699A1 (fr) * 1996-05-06 1997-11-13 Taixun Han Moteur a courant alternatif synchrone basse vitesse, du type a toles inserees

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543792B2 (en) 2013-09-20 2017-01-10 Kabushiki Kaisha Toshiba Rotary electric machine, electric motor, machine, electric generator, and electric generating machine

Also Published As

Publication number Publication date
EP1421668A1 (de) 2004-05-26
DE10140303A1 (de) 2003-02-27
JP4085059B2 (ja) 2008-04-30
US20050062352A1 (en) 2005-03-24
CN1572053A (zh) 2005-01-26
JP2005500799A (ja) 2005-01-06
US6888272B2 (en) 2005-05-03
CN100367637C (zh) 2008-02-06
WO2003019756A8 (de) 2003-08-21

Similar Documents

Publication Publication Date Title
WO2003019756A1 (de) Unipolar-transversalflussmaschine
EP1290774B1 (de) Unipolar-transversalflussmaschine
EP1208631B1 (de) Unipolar-transversalflussmaschine
DE102006026719B4 (de) Klauenpolstator für einen Schrittmotor und Klauenpol-Schrittmotor
EP0954087A1 (de) Elektrodynamisches Getriebe und Kreiselpumpe mit einem derartigen Getriebe
WO1996019861A1 (de) Transversalflussmaschine
DE102008019734A1 (de) Elektrische Maschine und Rotor für dieselbe
DE10062073A1 (de) Unipolar-Transversalflußmaschine
WO2018166977A1 (de) Elektrische maschine
DE102020113905A1 (de) Axial-Fluss-Maschine
WO2000003469A2 (de) Elektrische maschine, insbesondere reluktanzmotor
EP3262740A1 (de) Rotierende elektrische maschine in scheibenläufer- und axilaflussbauweise
DE102012111930A1 (de) Permanentmagnetläufer und mit dem Läufer versehener Elektromotor
EP1018206A1 (de) Statorbaueinheit für eine elektrische maschine
DE3933790C2 (de) Elektrische Maschine mit einem Rotor und einem Stator
DE102011084425A1 (de) Rotorblechpaket, Rotor und Verfahren zur Herstellung eines Rotorblechpakets
EP1610446B1 (de) Bürstenloser Gleichstrommotor
DE102011081035A1 (de) Elektrische Maschine
DE10039466A1 (de) Unipolar-Transversalflußmaschine
WO2005104339A1 (de) Hysteresebremse mit einer hystereseeirichtung, insbesondere für eine ventilsteuervorrichtung einer brennkraftmaschine
DE3208720A1 (de) Elektrischer kleinmotor oder generator, insbesondere lichtmaschine fuer fahrraeder
DE2913691C2 (de) Ständer für einen bürstenlosen Elektromotor
DE10138211A1 (de) Magnetischer Zentrierdrehmomentenmotor
DE10056875A1 (de) Rotor für eine elektrische Maschine
EP1233497A2 (de) Permanentmagneterregte Gleichstrommaschine, insbesondere Gleichstrommotor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

Kind code of ref document: A1

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 10/2003 UNDER (30) REPLACE "101 40 308.8" BY "101 40 303.8"

WWE Wipo information: entry into national phase

Ref document number: 2002754468

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003524094

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028205448

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002754468

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10486578

Country of ref document: US