WO2003013849A1 - Kunststoffkörper mit niedriger wärmeleitfähigkeit, hoher lichttransmission und absorption im nahen infrarotbereich - Google Patents

Kunststoffkörper mit niedriger wärmeleitfähigkeit, hoher lichttransmission und absorption im nahen infrarotbereich Download PDF

Info

Publication number
WO2003013849A1
WO2003013849A1 PCT/EP2002/007932 EP0207932W WO03013849A1 WO 2003013849 A1 WO2003013849 A1 WO 2003013849A1 EP 0207932 W EP0207932 W EP 0207932W WO 03013849 A1 WO03013849 A1 WO 03013849A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic
plastic body
layer
body according
absorber
Prior art date
Application number
PCT/EP2002/007932
Other languages
English (en)
French (fr)
Inventor
Herbert Groothues
Volker Mende
Hans Lorenz
Wolfgang Scharnke
Günther Ittmann
Thomas Hasskerl
Norbert Brand
Bernhard Schäfer
Original Assignee
Röhm GmbH & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Röhm GmbH & Co. KG filed Critical Röhm GmbH & Co. KG
Priority to EP02764711A priority Critical patent/EP1414645B1/de
Priority to AU2002328911A priority patent/AU2002328911B8/en
Priority to DE50213174T priority patent/DE50213174D1/de
Priority to NZ530544A priority patent/NZ530544A/en
Priority to JP2003518822A priority patent/JP2004536733A/ja
Priority to IL15908202A priority patent/IL159082A0/xx
Priority to MXPA04001095A priority patent/MXPA04001095A/es
Publication of WO2003013849A1 publication Critical patent/WO2003013849A1/de
Priority to US10/485,257 priority patent/US20040191485A1/en
Priority to IL159082A priority patent/IL159082A/en
Priority to HK05100309A priority patent/HK1068308A1/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/54Slab-like translucent elements
    • E04C2/543Hollow multi-walled panels with integrated webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2325/00Polymers of vinyl-aromatic compounds, e.g. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2355/00Specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of index codes B32B2323/00 - B32B2333/00
    • B32B2355/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24562Interlaminar spaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24744Longitudinal or transverse tubular cavity or cell

Definitions

  • Plastic body with low thermal conductivity, high light transmission and absorption in the near infrared range
  • the invention relates to a plastic body with low thermal conductivity, high light transmission and absorption in the near infrared region on one side of the body and its use as a heat-insulating and sun-protecting roofing and glazing material.
  • the patent specification EP 0 548 822 B1 describes a translucent, IR-reflecting body, comprising an amorphous base material made of translucent plastic and IR-reflecting particles aligned parallel to the surface, which are in a 5 to 40 ⁇ m thick coating layer made of an adherent to the base material Transparent binders are arranged and the selectivity index according to DIN 67507 is greater than 1.15.
  • plastic bodies with coextruded layers that contain IR-reflecting pearlescent pigments are, for. B. in the form of multi-wall sheets made of polymethyl methacrylate commercially available.
  • Correspondingly coated polycarbonate sheets are also known, which are designed as double-wall sheets or two-layer truss sheets.
  • EP 927741 Thermoplastic plastics, the one
  • JP 10157023 Thermoplastic, the IR-absorbent
  • EP 607031, JP 06240146 Thermoplastic plastics that absorb IR
  • JP 61008113 IR-absorbing adhesive films that can be applied to glazing
  • JP 56129243, EP 19097 Plastic plates made of methyl methacrylate, which are used as IR
  • Absorbers contain organic copper phosphate complexes.
  • WO 01/18101 describes molding compositions containing IR-absorbing dyes.
  • the molding compounds are u. a. also for the production of cavity panels, double-wall sheets or multi-wall sheets, which can optionally also be provided with one or more coextruded layers.
  • the entire molded body contains the IR-absorbing pigment. This has the disadvantage that the absorbed heat heats the entire plastic body and the heat is released non-specifically on all sides.
  • the object of the present invention is to provide a plastic body which can be produced in a simple manner and which can be used as glazing, roofing and / or as an insulation element and which enables improved protection against heating from sunlight as compared to the prior art. It should preferably be possible to provide a clearly transparent plastic body.
  • Plastic body consisting of a base molded body, which is made of a transparent thermoplastic base material, and the Consists of at least two opposite flat layers (1a, 1b), which are connected to one another by vertical or diagonally arranged webs (2), one of the flat layers (1a) with an additional layer (3) made of a plastic matrix made of transparent plastic - base material is provided,
  • the additional layer (3) is an IR-absorbing layer which contains an IR absorber which does not impair the transparency of the plastic body and which has an average transmission of less than 80% in the region of near infrared radiation (780 nm to 1100 nm), the plastic body has a light transmission (D65) of 15 to 86%, a thermal transmittance of 4 W / m 2 K or less and an SK number of 1, 15 or greater.
  • the known IR-reflecting pigments of the pearlescent type are replaced by IR-absorbing compounds. Since the latter are virtually soluble in the plastic matrix, they do not impair the transparency of the plastic body per se. Instead of a translucent plastic body, a transparent plastic body is obtained. In contrast to the IR-reflecting pigments, which reflect the heat to the outside, the problem arises when using the IR absorber that the heat is absorbed into the plastic matrix. There is therefore basically a risk of the plastic overheating when exposed to sunlight.
  • the IR absorber with a plastic body consisting of two or more flat layers (1a, 1b, possibly 1c, 1d etc.) arranged in parallel by means of vertically or diagonally arranged webs ( 2) with each other are connected.
  • the heat generated in the IR-absorbing layer is mainly released upwards due to convection. This allows little heat to enter the chambers of the plates, e.g. B. the chambers in a double-walled sheet.
  • the result is a plastic body that simultaneously combines a heat transfer coefficient of 4 W / m 2 K or less with an SK number of at least 1.15.
  • the synergistic effect decreases again.
  • the light transmission T decreases more than the total energy transmittance g, so that the selectivity index T / g undesirably decreases. This adverse effect occurs with plates with six or more layers.
  • Fig. 1 Schematic cross-section through a multi-wall plate with
  • the invention relates to a
  • Plastic body consisting of a base molding, which is made of a transparent thermoplastic base material, and which consists of at least two opposite planar layers (1a, 1 b), which are connected by vertical or diagonally arranged webs (2), wherein one of the flat layers (1a) is provided with an additional layer (3) made of a plastic matrix made of transparent plastic base material,
  • the additional layer (3) is an IR-absorbing layer which contains one or more IR absorbers which do not impair the transparency of the plastic body and which have an average transmission of less than 80, preferably less, in the region of near infrared radiation (780 nm to 1100 nm) than 65%, the plastic body has a light transmission (D65, DIN 67 507) from 15 to 86, preferably from 25 to 70, in particular from 35 to 65%, a heat transfer coefficient (according to DIN 52612) of 4 or less, preferably of? up to 3 W / m2K and a selectivity index (SK number, T / g according to DIN 67 507) of 1.15 or greater, preferably 1.2 to 1.8, in particular 1.3 to 1.6.
  • a light transmission D65, DIN 67 507
  • a heat transfer coefficient accordinging to DIN 52612
  • SK number, T / g according to DIN 67 507 selectivity index
  • the basic molded body consists of at least two opposite flat layers (1a, 1b) which are connected to one another by vertical or diagonally arranged webs (2).
  • the flat layers are preferably parallel to one another.
  • B. are two parallel opposite belt layers, namely the upper belt (1a) and lower belt (1b), with corresponding webs (2) in front.
  • a triple-walled panel additionally has an intermediate belt (1c) arranged parallel to the upper and lower belt. In the case of a truss web plate, the webs can be arranged at least partially diagonally.
  • the base molding can accordingly be a double-walled panel, in particular a multi-walled panel, preferably a triple-walled panel or particularly preferably a four-gang multi-walled panel or a trussed multiwall panel.
  • Thickness of the plates in the range of 10 to 60 mm.
  • Thickness of the upper and lower straps approx. 1 to 3 mm
  • Thickness of the intermediate straps and webs approx. 0.3 to 2 mm.
  • Lengths up to approx. 6000 mm or more (cut to length if necessary)
  • the base molding consists essentially of a transparent thermoplastic base material, which, for. B. a polymethyl methacrylate plastic, an impact modified polymethyl methacrylate (see, for example, EP-A 0 733 754), a polycarbonate plastic (branched or linear polycarbonate), a polystyrene plastic, styrene-acrylic-nitrile plastic Polyethylene terephthalate plastic, a glycol-modified polyethylene terephthalate plastic, a polyvinyl chloride plastic, a transparent polyolefin plastic (eg producible by metallocene-catalyzed polymerization) or an acrylonitrile-butadiene-stryrene (ABS) plastic can be. Mixtures (blends) of different thermoplastic materials can also exist.
  • a polymethyl methacrylate plastic an impact modified polymethyl methacrylate (see, for example, EP-A 0 733 754)
  • a polycarbonate plastic branched or linear polycarbonate
  • a transparent thermoplastic base material has e.g. B. a light transmission (D65) of 15 to 92, preferably 65 to 90%.
  • the transparent thermoplastic base material can also be a scattering agent, for. B. BaS0 4 , e.g. B. in amounts of 0.5 to 5 wt .-%, or another light scattering agent, for. B. light scattering beads can be added, which makes the originally transparent plastic light-scattering, translucent.
  • Light scattering beads can e.g. B. in concentrations of 0.1 to 30 wt .-%, preferably 0.5 to 10 wt .-% are added.
  • Crosslinked light scattering beads made from copolymers of methymethacrylate and styrene or benzyl methacrylate, which are particularly suitable for base moldings made from polymethyl methacrylate, are e.g. B. known z. B. from DE 35 28 165 C2, EP 570782 B1 or EP 656 548 A2.
  • the additional layer (3) can be a coextruded layer, a lacquer layer or a laminated film layer.
  • the layer thickness of the additional layer (3) is, for. B. in the range of 2 to
  • the layer thicknesses of coextruded layers (3) are preferably in the range of
  • 5 to 250 preferably from 20 to 150, in particular 50 to 125 ⁇ m.
  • the layer thicknesses of laminated layers (3) are preferably in the range from 10 to 250, preferably from 10 to 100 ⁇ m.
  • the layer thicknesses of lacquered layers (3) after drying are preferably in the range from 2 to 50, preferably from 5 to 25 ⁇ m.
  • the additional layer (3) cannot be firmly connected to the base molding.
  • the additional layer (3) can be produced as a separate plate or film in the extrusion or casting process and in combination with base moldings, for. B. with the help of a frame, or be connected with the help of an adhesion promoter.
  • the layer thicknesses can then, for. B. 10 to 250, preferably from 10 to 100 microns for placed films or 250 microns to 5 mm, preferably 1 to 4 mm for plates.
  • the IR-absorbing layer (3) can additionally have a UV absorber in conventional concentrations, e.g. B. 0.1 to 15 wt .-%, to protect the IR absorber and the plastic matrix from degradation by UV radiation.
  • the UV absorber can be a volatile, low molecular weight, a little volatile, high molecular weight or a polymerizable UV absorber (see e.g. EP 0 359 622 B1).
  • the plastic matrix of the IR absorbing layer (3) consists of transparent plastic base material, which can be thermoplastic, thermoelastic or cross-linked.
  • the plastic base material preferably consists of the IR Absorbent layer (3) made of the same type of transparent, thermoplastic base material from which the base molding is made, so z. B. from a polymethyl methacrylate plastic, an impact modified polymethyl methacrylate plastic, a polycarbonate plastic (branched or linear polycarbonate), a polystyrene plastic, a polyethylene terephthalate plastic or an acrylonitrile butadiene stryrene (ABS) plastic.
  • ABS acrylonitrile butadiene stryrene
  • the base molding z. B. consist of a more viscous variant of a plastic type, for. B. polymethyl methacrylate, and the plastic matrix from a lower viscous variant of the same type, for. B. a low viscosity polymethyl methacrylate, which z. B. particularly well suited for coextrusion.
  • a light-scattering pigment e.g. B. a white pigment, e.g. B. barium sulfate, in amounts of 0.5 to 5 wt .-%. This has the technical advantage that the glare is reduced when the sun shines through by scattering the light. If necessary, the color impression can be compensated for by adding dyes.
  • the transparent plastic base material of the additional layer (3) can also be a scattering agent, for. B. BaS0 4 or another light scattering agent, for. B. light scattering pearls are added, which makes the originally transparent plastic light-scattering, translucent.
  • the additional layer (3) made of transparent plastic which is an IR-absorbing layer
  • the IR-absorbing layer is not on the outside but inside the outer layer of the plastic body.
  • the further or the further layers can have different functions, e.g. B. mechanical protection of the IR absorbing layer, for. B. as a scratch-resistant coating, anti-graffiti coating, UV absorber layer, pigment-containing layer in order to produce a color impression, etc.
  • the layer thicknesses of the further layers are preferably in the range from 2 to 200, preferably from 5 to 60 microns.
  • the UV absorber can be a volatile, low molecular weight, a little volatile, high molecular weight or a polymerizable UV absorber and in a layer with a layer thickness z. B. in the range 2 to 100 microns in a concentration of z. B. 2 to 15 wt .-% may be included.
  • the additional layer (3) contains an IR absorber which does not impair the transparency of the plastic body. This means that the plastic body remains clearly transparent in the presence of the IR absorber it contains. This is possible because the IR absorber is quasi soluble or co-polymerized in the plastic matrix of the additional layer. Since soluble IR absorbers are relatively high molecular weight, there is generally no migration into or below plastic layers.
  • the IR absorber can be an organic Cu (II) phosphate compound.
  • z. B an organic Cu (II) phosphate compounds, which can be obtained from 4 parts by weight of phosphoric acid methacryloyloxyethyl ester (PMOE) and one part by weight of copper (II) carbonate (KCB) (see example
  • B. organic Cu (II) phosphate complexes such as. B. described in patents JP 56129243 and EP 19097.
  • These connections can e.g. B. can be used as co-monomers in polymerizing lacquer layers made of polymethyl methacrylate plastic. Thanks to their cross-linking effect, they also impart increased scratch resistance to the plastic surface.
  • the IR absorber can be a phthalocyanine derivative. Phthalocyanine derivatives such as. B. as described in patents EP 607031 and JP 06240146.
  • the IR absorber can be a perylene derivative or e.g. B. be a quaterrylenetetracarboximide compound, such as. B. described in EP 596 292.
  • the non-crosslinking compounds are preferred since they are e.g. B. are suitable for the coextrusion process or for application in non-polymerizing lacquers which cure by themselves after the evaporation of a solvent.
  • the application of an IR-absorbing layer by lamination with prefabricated films has the advantage that the film production generally allows a more uniform layer thickness distribution.
  • Laminated film layers that contain the IR absorber are usually more uniform than corresponding coextruded layers.
  • IR absorbers with high molecular weight or polymerizing IR absorbers have the advantage of being particularly stable to migration, i.e. at high manufacturing or use temperatures or in the course of the useful life, they practically do not migrate into the plastic layers below or possibly above them.
  • the IR absorber is present in a coextruded or laminated plastic matrix in a concentration of 0.01 to 5, preferably 0.05 to 2, in particular 0.1 to 0.5% by weight.
  • the concentration can e.g. B. 0.1 to 5 wt .-% based on the paint dry substance.
  • the concentration can e.g. B. 0.2 to 5 wt .-% based on the paint dry substance.
  • Selectivity index (SK number, T / g according to DIN 67 507)
  • the ratio between light transmittance (T) and total energy transmittance (g) should be greater than 1.15, preferably 1.2 to 1.8, in particular 1.3 to 1.6.
  • the total energy transmittance (g) describes the proportion of the energy of solar radiation that passes through the body. It is composed of directly transmitted radiation and a heat component generated by absorption.
  • the high level of thermal insulation is achieved in that the body consists of at least two solid layers, each of which is thermally decoupled by air chambers. The layers are connected by thin webs.
  • the IR-absorbing layer consists of a coating layer made of a transparent plastic that adheres to the base material and contains one or more IR-absorbing compounds. Concentration of the IR absorbing compound and layer thickness of the coating layer are preferably e.g. B.
  • the geometry of the multi-wall sheet is to be selected so that the heat transfer coefficient according to DIN 52612 is less than or equal to 4, preferably 3 to 1.5 W / m 2 K.
  • the plastic body according to the invention can be used as a glazing, roofing or thermal insulation element.
  • the energy share of light in solar radiation is approx. 50%, the UV radiation share is approx. 5% and approx. 45% is accounted for by NIR radiation. All three types of radiation contribute to the heating of glazed rooms.
  • State-of-the-art heat protection glazing is based either on reflection or on absorption of solar radiation. Simple systems reduce the total energy transmittance by reducing the radiation transmission in the entire range of solar radiation (from 300 nm to 2500 nm). Soot pigments absorb the radiation in this area and thus reduce the overall energy transmittance depending on the layer thickness or concentration. However, this also reduces the light transmission.
  • the selectivity index which describes the ratio of light transmission to the total energy transmittance, is therefore not greater in these systems than with standard glazing, or even worse in the case of carbon black pigments.
  • a high selectivity index can be achieved by selective, high transmission in the visible wavelength range between 380 nm and 780 nm and shielding against IR radiation (> 780 nm) and UV radiation ( ⁇ 380 nm).
  • This selectivity is generated by interference in reflective systems. Either one evaporates the surfaces with layers of different refractive indices with layer thicknesses in the submicrometer range, or one uses pigments that already contain such interference layers.
  • the light transmittance and the total energy transmittance depend on the type, concentration and layer thickness of the IR absorber in the cover layer, as well as on the base body.
  • the appropriate light transmittance depends on the application. It should be very high in greenhouses because it has a direct impact on the yield. at Covering pedestrian passages or large glazing in air-conditioned buildings is rather a very low total energy transmittance important.
  • the minimum light transmission should be 30%; with double-skin sheets as the base body, the max. Light transmission can be up to 86%.
  • the selectivity index is approximately 1, and SK numbers of more than 1.4 were determined on systems coated on one side in the sense of the invention.
  • the plastic body has z. B. the shape of a multi-wall sheet consisting of at least two parallel plastic layers, which are connected by perpendicular or diagonally arranged webs.
  • Typical thicknesses for the two outer plates are between 0.2 mm and 5 mm, preferably between 0.5 mm and 3 mm.
  • Typical thicknesses for any inner plates present are between 0.05 and 2 mm, preferably between 0.1 mm and 1 mm.
  • the distance between the panels should be at least 1 mm, preferably more than 4 mm.
  • the web thickness should be between 0.2 mm and 5 mm, preferably between 0.5 mm and 3 mm.
  • the suitable web spacing is between 5 mm and 150 mm, preferably between 10 mm and 80 mm.
  • the body as a whole should be designed so that the heat transfer coefficient k according to DIN 52619 is less than 4 W / m 2 K, preferably less than 3 W / m 2 K.
  • the base material consists of a transparent plastic, suitable for this are, for example, a polymethyl methacrylate plastic, an impact modified polymethyl methacrylate (see e.g. EP-A 0 733 754), a polycarbonate plastic (branched or linear polycarbonate), a polystyrene plastic .
  • Styrene-acrylic-nitrile plastic a polyethylene terephthalate plastic, a glycol-modified polyethylene terephthalate plastic, a polyvinyl chloride plastic, a transparent polyolefin plastic (e.g. producible by metallocene-catalyzed polymerization) or an acrylonitrile-butadiene-stryrene (ABS )-Plastic. It can also consist of mixtures (blends) of different thermoplastic materials.
  • polymethyl methacrylate means stiff amorphous plastics which are composed of at least 60% by weight, preferably at least 80% by weight, of methyl methacrylate.
  • the polycarbonate plastics are predominantly aromatic polycarbonates of bisphenols, especially bisphenol A.
  • the coating layer consists of a transparent, adhesive binder.
  • the adhesion should be so high that the coating does not come off when the body is bent in the cold or in the thermoplastic heated state.
  • the selection of the plastics used depends on the requirements of the coating process and the properties of use. From the point of view of good adhesion to many plastics, high weathering, yellowing and aging resistance, binders based on polacrylate and polymethacrylate plastics are particularly suitable.
  • the coating layer is produced from a liquid coating agent which, in addition to the binder and the IR-absorbing substance, contains a carrier liquid for the binder.
  • the binder can also be present in the coating composition in dispersed form, preferably in the form of an aqueous plastic dispersion. It can - as is common in painting technology - be equipped with leveling agents. This means - mainly high-boiling organic solvents or swelling agents for the dispersed plastic.
  • This IR absorber layer contains one or more compounds which have a low absorption in the visible wavelength range between 380 nm and 780 nm, in particular in the range between 450 nm and 650 nm and a high absorption in the range 780 nm to 2000 nm, in particular in the range has between 780 nm and 1100 nm.
  • These IR absorbers can be mixed with the plastic material of the additional layer (3) or can also be copolymerized with it.
  • the concentration of the IR absorber in the top layer depends on its extinction coefficient and the layer thickness of the top layer.
  • the mean value of the transmission of the additional layer (3) in the wavelength range between 780 nm and 1100 nm is less than 80%, preferably less than 65%.
  • the additional layer (3) can contain UV absorbers, which on the one hand protect the base material and also the IR absorber from UV radiation and also increase the selectivity index, since the energy transmission of UV radiation (approx. 5% of the Total energy of solar radiation) is prevented.
  • a copper phosphate complex was used as the IR absorber. This was prepared by stirring 20 g of phosphoric acid methacryloyloxyethyl ester (PMOE) with 5 g of copper (II) carbonate (KCB) and 1 g of H 2 O in 260 g of methyl methacrylate for 30 min at 50 ° C. to 60 ° C. and then for 4 h at room temperature and filtering off has been. Thereafter, 0.05% 2,2 'azobis (isobutyronitrile) (AIBN) was added and polymerized for 17 hours at 40 ° C between 2 glass plates with 10 mm distance. The finished polymethyl methacrylate (PMMA) plate is transparent and has a light blue color.
  • the selectivity index increases because the absorbed energy is increasingly released to the outside, ie the side facing the radiation source.
  • a four-skin multi-wall sheet (32 mm thick) made of impact-modified polymethyl methacrylate (PMMA) with a 100 ⁇ m thick coextrusion layer was extruded on the upper flange.
  • the coextrusion layer made of PMMA contains 0.26% of the IR absorber of the type quaterrylene tetracarboximide compound (Uvinul® 7790 IR).
  • the table below lists the light transmittance, total energy transmittance and selectivity index for the individual upper chord, upper chord and lower chord, upper chord, one intermediate chord and lower chord, upper chord two intermediate chords and lower chord.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Building Environments (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

Die Erfindung betrifft einen Kunststoffkörper, bestehend aus einem Basisformkörper, der aus einem transparentem thermoplastischen Kunststoff-Basismaterial gefertigt ist, und der aus mindestens zwei gegenüber liegenden flächigen Schichten (1a, 1b) besteht, die durch senkrechte oder diagonal angeordnete Stege (2) miteinander verbunden sind, wobei eine der flächigen Schichten (1a) mit einer zusätzlichen Schicht (3) aus einer Kunststoffmatrix aus transparentem Kunststoff-Basismaterial versehen ist, dadurch gekennzeichnet, dass die zusätzliche Schicht (3) eine IR-absorbierende Schicht ist, die einen oder mehrere die Transparenz des Kunststoffkörpers nicht beeinträchtigenden IR-Absorber enthält, der im Bereich der nahen Infrarotstrahlung (780 nm bis 1100 nm) eine mittlere Transmission von weniger als 80% aufweist, der Kunststoffkörper eine Lichttransmission (D65) von 15 bis 86%, eine Wärmedurchgangszahl von 4 W/m2K oder kleiner und eine SK-Zahl von 1,15 oder Grösser aufweist. Die Erfindung betrifft weiterhin die Verwendung des Kunststoffkörpers als Verglasungs-, Überdachungs- oder Wärmedämmelement.

Description

Kunststoffkorper mit niedriger Wärmeleitfähigkeit, hoher Lichttransmission und Absorption im nahen Infrarotbereich
Die Erfindung betrifft einen Kunststoffkorper mit niedriger Wärmeleitfähigkeit, hoher Lichttransmission und Absorption im nahen Infrarotbereich auf einer Seite des Körpers und dessen Verwendung als wärmedämmendes und sonnenschützendes Bedachungs- und Verglasungsmaterial.
Stand der Technik
Die Patentschrift EP 0 548 822 B1 beschreibt einen lichtdurchlässigen, IR- reflektierenden Körper, enthaltend ein amorphes Basismaterial aus lichtdurchlässigem Kunststoff und IR-reflektierenden, parallel zur Oberfläche ausgerichteten Teilchen, die in einer 5 bis 40 μm dicken, and dem Basismaterial haftenden Überzugsschicht aus einem transparenten Bindemittel angeordnet sind und dessen Selektivitätskennzahl nach DIN 67507 größer als 1 ,15 ist.
Derartige Kunststoffkorper mit coextrudierten Schichten, die IR-reflektierende Perlglanzpigmente enthalten, sind z. B. in Form von Stegvierfachplatten aus Polymethylmethacrylat handelsüblich. Bekannt sind auch entsprechend beschichtete Polycarbonat-Platten, die als Stegdoppelplatten oder zweischichtige Fachwerkplatten ausgeführt sind.
Transparente, IR-absorbierende Körper aus Kunststoffen werden beschrieben in:
EP 927741 : Thermoplastische Kunststoffe, die eine
Kupferdithiocarbamatverbindung enthalten und spritzgegossen werden können.
JP 10157023: Thermoplastische Kunststoffe, die IR-absorbierende
Dithiolmetallkomplexe enthalten. EP 607031 , JP 06240146:Thermoplastische Kunststoffe, die IR-absorbierende
Phthalocyaninmetallkomplexe enthalten
JP 61008113: IR-absorbierende Klebefolien, die auf Verglasungen aufgebracht werden können
JP 56129243, EP 19097: Kunststoff platten aus Methylmethacrylat, die als IR-
Absorber organische Kupferphosphatkomplexe enthalten.
WO 01/18101 beschreibt Formmassen, enthaltend IR-absorbierende Farbstoffe. Die Formmassen eignen sich u. a. auch zur Herstellung von Hohlraumplatten, Doppelstegplatten oder Multistegplatten, die optional auch zusätzlich mit einer oder mehreren coextrudierten Schicht versehen sein können. Bei einer solchen Ausführung enthält der gesamte Formkörper das IR- absorbierende Pigment. Dies hat den Nachteil, daß die absorbierte Wärme den gesamten Kunststoffkorper erwärmt und die Wärme unspezifisch nach allen Seiten abgegeben wird.
Aufgabe und Lösung
Aufgabe der vorliegenden Erfindung ist es einen auf einfache Weise herstellbaren Kunststoffkorper bereitzustellen, der als Verglasungs-, Bedachungs- und/oder als Dämmelement verwendet werden kann und der eine gegenüber dem Stand der Technik verbesserter Schutz gegenüber der Aufheizung durch Sonnenlicht ermöglicht. Bevorzugt soll es möglich sein einen klar transparenten Kunststoffkorper bereitzustellen.
Die Aufgabe wird gelöst durch einen
Kunststoffkorper, bestehend aus einem Basisformkörper, der aus einem transparentem thermoplastischen Kunststoff-Basismaterial gefertigt ist, und der aus mindestens zwei gegenüber liegenden flächigen Schichten (1a, 1 b) besteht, die durch senkrechte oder diagonal angeordnete Stege (2) miteinander verbunden sind, wobei eine der flächigen Schichten (1a) mit einer zusätzlichen Schicht (3) aus einer Kunststoffmatrix aus transparentem Kunststoff- Basismaterial versehen ist,
dadurch gekennzeichnet, dass
die zusätzliche Schicht (3) eine IR-absorbierende Schicht ist, die einen die Transparenz des Kunststoffkorpers nicht beeinträchtigenden IR-Absorber enthält, der im Bereich der nahen Infrarotstrahlung (780nm bis 1100 nm) eine mittlere Transmission von weniger als 80% aufweist, der Kunststoffkorper eine Lichttransmission (D65) von 15 bis 86%, eine Wärmedurchgangszahl von 4 W/m2K oder kleiner und eine SK-Zahl von 1 ,15 oder größer aufweist.
Gegenüber den bekannten IR-reflektierenden Kunststoffkörpern sind die bekannten IR-reflektierenden Pigmente vom Perlglanztyp ersetzt durch IR- absorbierende Verbindungen. Da letzte quasi in der Kunststoffmatrix löslich sind, beeinträchtigen sie die Transparenz des Kunststoffkorpers per se nicht. Man erhält statt eines transluzenten Kunststoffkorpers einen transparenten Kunststoffkorper. Im Gegensatz zu den IR-reflektierenden Pigmenten, welche die Wärme nach außen zurückstrahlen, ergibt sich bei der Verwendung des IR- Absorbers das Problem, daß die Wärme in die Kunststoffmatrix aufgenommen wird. Es besteht daher grundsätzlich die Gefahr einer Überhitzung des Kunststoffs bei Exposition mit Sonneneinstrahlung. Überraschenderweise kann dieser Effekt jedoch ausgeglichen werden, indem der IR-Absorber in Kombination mit einem Kunststoffkorper, der aus zwei oder mehr parallel angeordneten flächige Schichten (1a, 1b, gegebenenfalls 1c, 1d etc.) besteht, die durch senkrecht oder diagonal angeordnete Stege (2) miteinander verbunden sind. Die in der IR-absorbierenden Schicht entstehende Wärme wird aufgrund der Konvektion hauptsächlich nach oben abgegeben. Dadurch kann nur wenig Wärme in die Kammern der Platten, z. B. den Kammern in einer Stegdoppelplatte, gelangen. Das Resultat ist ein Kunststoffkorper der gleichzeitig eine Wärmedurchgangszahl von 4 W/m2K oder kleiner mit einer SK- Zahl von mindestens 1 ,15 verbindet. Dieser synergistische Effekt von IR- Absorber und darunter liegenden Luftkammern verstärkt sich bei einer mehrschichtigen Platten, z. B. mit zwei bis fünf Schichten bzw. Gurten, also bei Stegmehrfachplatten, insbesondere bei Stegdreifachplatten oder Stegvierfachplatten oder mehrschichtigen Fachwerkstegplatten nochmals, da die unteren Luftschichten eine zusätzlich wärmedämmende Wirkung entfalten.
Übersteigt die Anzahl der Schichten ein Optimum nimmt der synergistische Effekt wieder ab. In diesem Fall vermindert sich die Lichttransmission T stärker als der Gesamtenergiedurchlassgrad g, so daß die Selektivitätskennzahl T/g in unerwünschter Weise abnimmt. Dieser nachteilige Effekt tritt bei Platten mit sechs oder mehr Schichten auf.
Die Erfindung wird durch die Figur 1 beispielhaft erläutert, ist aber nicht auf diese Darstellung beschränkt.
Fig 1 : Schematischer Querschnitt durch eine Stegvierfachplatte mit
(1a) Obergurt, (1b) Untergurt, Zwischengurten (1c) und (1d), Stegen (2) und äußerer Schicht (3), die den IR-Absorber enthält. Ausführung der Erfindung
Die Erfindung betrifft einen
Kunststoffkorper, bestehend aus einem Basisformkörper, der aus einem transparentem thermoplastischen Kunststoff-Basismaterial gefertigt ist, und der aus mindestens zwei gegenüber liegenden flächigen Schichten (1a, 1 b) besteht, die durch senkrechte oder diagonal angeordnete Stege (2) miteinander verbunden sind, wobei eine der flächigen Schichten (1a) mit einer zusätzlichen Schicht (3) aus einer Kunststoff matrix aus transparentem Kunststoff- Basismaterial versehen ist,
dadurch gekennzeichnet, dass
die zusätzliche Schicht (3) eine IR-absorbierende Schicht ist, die einen oder mehrere die Transparenz des Kunststoffkorpers nicht beeinträchtigenden IR- Absorber enthält, der im Bereich der nahen Infrarotstrahlung (780nm bis 1100 nm) eine mittlere Transmission von weniger als 80, bevorzugt weniger als 65%, aufweist, der Kunststoffkorper eine Lichttransmission (D65, DIN 67 507) von 15 bis 86, bevorzugt von 25 bis 70, insbesondere von 35 bis 65 %, eine Wärmedurchgangszahl (nach DIN 52612) von 4 oder kleiner, bevorzugt von ? bis 3 W/m2K und eine Selektivitätskennzahl (SK-Zahl, T/g nach DIN 67 507) von 1 ,15 oder größer, bevorzugt 1 ,2 bis 1 ,8, insbesondere 1 ,3 bis 1 ,6 aufweist.
Der Basisformkörper
Der Basisformkörper besteht aus mindestens zwei gegenüber liegenden flächigen Schichten (1a, 1b), die durch senkrechte oder diagonal angeordnete Stege (2) miteinander verbunden sind. Die flächigen Schichten liegen bevorzugt parallel zueinander gegenüber. Bei einer Stegdoppelplatte z. B. liegen zwei parallel gegenüberliegende Gurtschichten, nämlich der Obergurt (1a) und Untergurt (1b), mit entsprechenden Stegen (2) vor. Eine Stegdreifachplatte weist zusätzlich einen parallel zu Ober- und Untergurt angeordneten Zwischengurt (1c) auf. Bei einer Fachwerkstegplatte können die Stege zumindest teilweise diagonal angeordnet sein.
Der Basisformkörper kann demnach eine Stegdoppelplatte, insbesondere eine Stegmehrfachplatte, bevorzugt eine Stegdreifachplatte oder besonders bevorzugt eine Stegvierfachplatte oder eine Fachwerkstegplatte sein.
Übliche Abmessungen sind:
Dicke der Platten im Bereich von 10 bis 60 mm.
Breite 300 bis 3000 mm.
Dicke der Ober- und Untergurte: ca. 1 bis 3 mm
Dicke der Zwischengurte und Stege: ca. 0,3 bis 2 mm.
Längen: bis ca. 6000 mm oder mehr (bei Bedarf entsprechend abgelängt)
Materialien
Der Basisformkörper besteht im wesentlichen aus einem transparenten thermoplastischen Kunststoff-Basismaterial, das ein z. B. ein Polymethylmethacrylat-Kunststoff, ein schlagzäh modifiziertes Polymethylmethacrylat (siehe z. B. EP-A 0 733 754), ein Polycarbonat- Kunststoff (verzweigtes oder lineares Polycarbonat), ein Polystyrol-Kunststoff, Styrol-Acryl-Nitril-Kunststoff, ein Polyethylentherephthalat-Kunststoff, ein glykolmodifizierter Polyethylentherephthalat-Kunststoff, ein Polyvinylchlorid- Kunststoff, ein transparenter Polyolefin-Kunststoff (z. B. durch metallocen- katalysierte Polymerisation herstellbar) oder ein Acrylnitril-Butadien-Stryrol (ABS)-Kunststoff sein kann. Es kann auch auch Mischungen (Blends) verschiedener thermoplastischer Kunststoffe bestehen.
Ein transparentes thermoplastisches Kunststoff-Basismaterial hat z. B. eine Lichttransmission (D65) von 15 bis 92, bevorzugt 65 bis 90 %.
Bei bestimmten Anwendungen, z. B. wenn eine Blendung durch sehr intensive Sonnenstrahlung vermeiden werden soll, kann dem transparenten thermoplastischen Kunststoff-Basismaterial auch ein Streumittel, z. B. BaS04, z. B. in Mengen von 0,5 bis 5 Gew.-%, oder ein anderes Lichtstreumittel, z. B. Lichtstreuperlen zugesetzt werden, wodurch der ursprünglich transparente Kunststoff lichtstreuend, transluzent wird.
Lichtstreuperlen können z. B. in Konzentrationen von 0,1 bis 30 Gew.-%, bevorzugt 0,5 bis 10 Gew.-% zugesetzt werden. Vernetzte Lichtstreuperlen aus Copolymeren aus Methymethacrylat und Styrol oder Benzylmethacrylat, die insbesondere für Basisformkörper aus Polymethylmethacrylat geeignet sind, sind z. B. bekannt z. B. aus DE 35 28 165 C2, EP 570782 B1 oder EP 656 548 A2.
Die IR-absorbierende Schicht
Die außen liegende Schicht des Kunststoffkorpers (1a), bei einer Stegplatte als Obergurt bezeichnet, weist bevorzugt auf ihrer Außenseite eine zusätzliche Schicht (3) aus Kunststoff, die eine IR-absorbierende Schicht ist, die einen oder mehrere IR-Absorber enthält. Die zusätzliche Schicht (3) kann eine coextrudierte Schicht, eine Lackschicht oder eine auf laminierte Folienschicht sein. Die Schichtdicke der zusätzlichen Schicht (3) liegt z. B. im Bereich von 2 bis
250 μm.
Die Schichtdicken coextrudierter Schichten (3) liegen bevorzugt im Bereich von
5 bis 250, bevorzugt von 20 bis 150, insbesondere 50 bis 125 μm.
Die Schichtdicken laminierter Schichten (3) liegen bevorzugt im Bereich von 10 bis 250, bevorzugt von 10 bis 100 μm.
Die Schichtdicken lackierter Schichten (3) liegen nach der Trocknung bevorzugt im Bereich von 2 bis 50, bevorzugt von 5 bis 25 μm.
Weniger bevorzugt, jedoch auch möglich kann die zusätzliche Schicht (3) mit dem Basisformkörper nicht fest verbunden sein. Die zusätzliche Schicht (3) kann als separate Platte oder Folie im Extrusions- oder Gussverfahren hergestellt und im Verbund mit Basisformkörper, z. B. mit Hilfe eines Rahmens, montiert werden oder mit Hilfe eines Haftvermittlers verbunden werden. Die Schichtdicken können dann z. B. 10 bis 250, bevorzugt von 10 bis 100 μm für aufgelegte Folien oder 250 μm bis 5 mm, bevorzugt 1 bis 4 mm für Platten betragen.
Die IR-absorbierende Schicht (3) kann zusätzlich einen UV-Absorber in üblichen Konzentrationen, z. B. 0,1 bis 15 Gew.-%, enthalten, um den IR- Absorber und die Kunststoff-Matrix vor Abbau durch UV-Strahlung zu schützen. Der UV Absorber kann ein flüchtiger, niedermolekularer, ein wenig flüchtiger, hochmolekularer oder ein einpolymerisierbarer UV-Absorber sein (s. z.B. EP 0 359 622 B1).
Die Kunststoff matrix der IR absorbierenden Schicht (3) besteht aus transparentem Kunststoff-Basismaterial, das thermoplastisch, thermoelastisch oder vernetzt sein kann. Bevorzugt besteht das Kunststoff-Basismaterial der IR absorbierenden Schicht (3) aus demselben Typ von transparenten, thermoplastischen Kunststoff-Basismaterial, aus dem auch der Basisformkörper besteht, also z. B. aus einem Polymethylmethacrylat-Kunststoff, einem schlagzäh modifizierten Polymethylmethacrylat-Kunststoff, einem Polycarbonat- Kunststoff (verzweigtes oder lineares Polycarbonat), einem Polystyrol- Kunststoff, einem Polyethylentherephthalat-Kunststoff oder einem Acrylnitril- Butadien-Stryrol (ABS)-Kunststoff.
Dabei kann der Basisformkörper z. B. aus einer höher viskoseren Variante eines Kunststoff-Typs bestehen, z. B. Polymethylmethacrylat, und die Kunststoffmatrix aus einer niedriger viskosen Variante des gleichen Typs, z. B. einem niedrigviskoseren Polymethylmethacrylat, das sich z. B. besonders gut für die Coextrusion eignet.
Durch die Anwesenheit des IR-Absorbers erscheint die äußere Schicht (3) und dadurch der gesamte Kunststoffkorper, je nach eingesetztem IR-Absorber grünlich bis bläulich türkis. In Fällen, in denen man dieser Farbeindruck vermeiden oder mildern möchte, kann man ein lichtstreuendes Pigment, z. B. ein Weißpigment, z. B. Bariumsulfat, in Mengen von 0,5 bis 5 Gew.-% zusetzen. Die hat den technischen Vorteil, daß der Blendeffekt bei durchscheinender Sonne gemildert wird, indem das Licht gestreut wird. Gegebenenfalls kann durch Zugabe von Farbstoffen eine Kompensation des Farbeindrucks erreicht werden.
Bei bestimmten Anwendungen, z. B. wenn eine Blendung durch sehr intensive Sonnenstrahlung vermeiden werden soll, kann dem transparenten Kunststoff- Basismaterial der zusätzlichen Schicht (3) auch ein Streumittel, z. B. BaS04 oder ein anderes Lichtstreumittel, z. B. Lichtstreuperlen zugesetzt werden, wodurch der ursprünglich transparente Kunststoff lichtstreuend, transluzent, wird.
Gegebenenfalls kann sich auf der zusätzliche Schicht (3) aus transparentem Kunststoff, die eine IR-absorbierende Schicht, noch eine oder mehrere weitere z. B. coextrudierte, lackierte oder laminierte Schicht aus Kunststoff, bevorzugt transparentem Kunststoff befinden. In diesem Fall liegt die IR-absorbierende Schicht nicht außen sondern innerhalb der äußeren Schicht des Kunststoffkorpers. Die weitere oder die weiteren Schichten können verschiedene Funktionen haben, z. B. mechanischer Schutz der IR- absorbierenden Schicht, z. B. als kratzfeste Beschichtung, Anti-Graffity- Beschichtung, UV-Absorber-Schicht, Pigment-haltige Schicht, um einen Farbeindruck zu bewirken etc.. bevorzugt liegen die Schichtdicken der weiteren Schichten im Bereich von 2 bis 200, bevorzugt von 5 bis 60 μm.
Es kann z. B. sinnvoll sein im Falle einer Stegplatte aus Polycarbonat auf die IR-Absorber-Schicht noch eine zusätzliche z. B. coextrudierte Schicht aufzubringen, die einen UV-Absorber enthält und das Polycarbonat vor vorzeitiger Verwitterung schützt (Stegplatten aus Polycarbonat mit zusätzlicher UV-Absorber-Schicht sind z. B. aus EP 0 359 622 B1 bekannt). Der UV Absorber kann ein flüchtiger, niedermolekularer, ein wenig flüchtiger, hochmolekularer oder ein einpolymerisierbarer UV-Absorber sein und in einer Schicht mit einer Schichtdicke z. B. im Bereich 2 bis 100 μm in einer Konzentration von z. B. 2 bis 15 Gew.-% enthalten sein. Der IR-Absorber
Die Verwendung der zur Ausführung der Erfindung geeigneten IR- absorbierenden Verbindungen als Zusatz zu verschiedenen thermoplastischen Kunststoffen ist im Prinzip bekannt (siehe Stand der Technik).
Die zusätzliche Schicht (3) enthält einen die Transparenz des Kunststoffkorpers nicht beeinträchtigenden IR-Absorber. Dies bedeutet, daß der Kunststoffkorper in Gegenwart des enthaltenen IR-Absorbers klar durchsichtig bleibt. Dies ist möglich, da der IR-Absorber in der Kunststoffmatrix der zusätzlichen Schicht quasi löslich oder mit einpolymerisiert ist. Da lösliche IR-Absorber relativ hochmolekular sind, kommt es in der Regel nicht zu einer Migration in darunter oder gegebenenfalls darüber liegende Kunststoffschichten.
Der IR-Absorber kann eine organische Cu(ll)-Phosphat- Verbindungen sein. Bevorzugt ist z. B. eine organische Cu(ll)-Phosphat-Verbindungen, die aus 4 Gewichts-Teilen Phosphorsäuremethacryloyloxyethylester (PMOE) und einem Gewichts-Teil Kupfer-(ll)-carbonat (KCB) erhalten werden kann (siehe Beispiel
1).
Geeignet sind weiterhin z. B. organische Cu(ll)-phosphat-Komplexe, wie z. B. in den Patenten JP 56129243 und EP 19097 beschrieben. Diese Verbindungen können z. B. als Co-Monomere in polymerisierenden Lackschichten aus Polymethylmethacrylat-Kunststoff eingesetzt werden. Durch ihre vernetzende Wirkung vermitteln sie zugleich eine erhöhte Kratzfestigkeit der Kunststoff- Oberfläche.
Der IR-Absorber kann ein Phthalocyaninderivat sein. Bevorzugt sind Phthalocyaninderivate wie z. B. wie in den Patenten EP 607031 und JP 06240146 beschrieben. Der IR-Absorber kann ein Perylen-Derivat sein oder z. B. eine Quaterrylentetracarbonsäureimid-Verbindung sein, wie z. B. in EP 596 292 beschrieben.
Bevorzugt sind die nicht vernetzende Verbindungen, da sich diese z. B. für das Coextrusionsverfahren oder für das Aufbringen in nicht polymerisierenden Lacken eignen, die nach dem Abdampfen eines Lösungsmittels von selbst aushärten. Der Auftrag einer IR-absorbierenden Schicht durch Laminieren mit vorgefertigten Folien hat den Vorteil, das die Folienherstellung in der Regel eine gleichmäßigere Schichtdickenverteilung erlaubt. Auflaminierte Folienschichten, die den IR-Absorber enthalten sind meist gleichmäßiger als entsprechende coextrudierte Schichten. IR-Absorber mit hohem Molekulargewicht oder einpolymerisierend IR-Absorber haben den Vorteil besonders migrationsstabil zu sein, d.h. sie wandern bei hohen Herstellungs- oder Gebrauchstemperaturen oder in Zuge der Nutzungsdauer praktisch nicht in die darunter oder gegebenenfalls darüber liegenden Kunststoff-Schichten.
Der IR-Absorber liegt in einer coextrudierten oder laminierten Kunststoff-Matrix in einer Konzentration von 0,01 bis 5, bevorzugt von 0,05 bis 2, insbesondere 0,1 bis 0,5 Gew.-% vor.
In polymerisierenden Lacksystemen kann die Konzentration z. B. 0,1 bis 5 Gew.-% bezogen auf die Lacktrockensubstanz betragen.
In nicht polymerisierenden Lacksystemen kann die Konzentration z. B. 0,2 bis 5 Gew.-% bezogen auf die Lacktrockensubstanz betragen. Selektivitätskennzahl (SK-Zahl, T/g nach DIN 67 507)
Das Verhältnis zwischen Lichttransmissionsgrad (T) und Gesamtenergiedurchlassgrad (g) soll größer als 1 ,15 bevorzugt 1 ,2 bis 1 ,8, insbesondere 1 ,3 bis 1 ,6 sein. Der Gesamtenergiedurchlassgrad (g) beschreibt den Anteil der Energie der Sonnenstrahlung, der durch den Körper hindurchgeht. Er setzt sich zusammen aus direkt transmittierter Strahlung und einen durch Absorption erzeugten Wärmeanteil. Die hohe Wärmedämmung wird dadurch erreicht, dass der Körper aus mindestens zwei massiven Schichten besteht, die jeweils durch Luftkammern thermisch entkoppelt sind. Die Schichten sind durch dünnen Stege miteinander verbunden. Die IR- absorbierende Schicht besteht aus einer am Basismaterial haftenden Überzugsschicht aus einem transparenten Kunststoff, die eine oder mehrere IR- absorbierende Verbindungen enthält. Konzentration der IR-absorbierenden Verbindung und Schichtdicke der Überzugsschicht sind bevorzugt z. B. so zu wählen, dass das Maximum der Absorption im Bereich zwischen 780 und 1100 nm mindestens 25%, insbesondere mindestens 50 % beträgt. Die mittlere Absorption im Bereich zwischen 780 und 1100 nm kann z. B. bevorzugt mindestens 5, besonders bevorzugt mindestens 10, insbesondere mindestens 15 % betragen. Die Geometrie der Mehrfachstegplatte ist so zu wählen, dass die Wärmedurchgangszahl nach DIN 52612 kleiner oder gleich 4, bevorzugt 3 bis 1 ,5 W/m2 K ist.
Verwendung
Der erfindungsgemäße Kunststoffkorper kann als Verglasungs-, Überdachungsoder Wärmedämmelement verwendet werden. Vorteile der Erfindung
Der Energieanteil des Lichts an der Sonnenstrahlung beträgt ca. 50%, der UV- Strahlungsanteil beträgt ca. 5% und ca. 45% entfällt auf die NIR-Strahlung. Alle drei Strahlungsarten tragen zur Aufheizung von verglasten Räumen bei. Wärmeschutzverglasungen nach dem Stand der Technik basieren entweder auf Reflexion oder auf Absorption der Sonnenstrahlung. Einfache Systeme reduzieren den Gesamtenergiedurchlassgrad durch Reduktion der Strahlungstransmission im gesamten Bereich der Sonnenstrahlung (von 300 nm bis 2500 nm). Rußpigmente absorbieren in diesem Bereich die Strahlung und reduzieren so je nach Schichtdicke bzw. Konzentration den Gesamtenergiedurchlassgrad. Dadurch wird die Lichttransmission jedoch ebenfalls reduziert. Die Selektivitätskennzahl, die das Verhältnis der Lichttransmission zum Gesamtenergiedurchlassgrad beschreibt, ist in diesen Systemen daher nicht größer als bei Standardverglasungen, oder im Fall von Rußpigmenten sogar noch schlechter. Es gibt jedoch Anwendungen wie z.B. Gewächshäuser, bei denen eine hohe Selektivitätskennzahl von Vorteil ist. Eine hohe Selektivitätskennzahl erreicht man durch selektive, hohe Transmission im sichtbaren Wellenlängenbereich zwischen 380 nm und 780 nm und Abschirmung gegen IR-Strahlung (> 780 nm) als auch UV-Strahlung (< 380 nm). Diese Selektivität wird bei reflektierenden Systemen durch Interferenz erzeugt. Entweder man bedampft die Oberflächen mit Schichten unterschiedlicher Brechungsindizes bei Schichtdicken im Submikrometerbereich, oder man verwendet Pigmente, die solche Interferenzschichten bereits enthalten. Die Bedampfung der Oberfläche ist technisch sehr aufwendig und der Einsatz der Pigmente führt zu einer starken Streuung der Strahlung, wodurch die Transparenz verloren geht. Absorbierende Systeme verwenden Substanzen, die im sichtbaren Bereich eine nur geringe und im NIR-Bereich eine hohe Absorption aufweisen. Ein Nachteil dieser Systeme liegt darin, dass die absorbierte Strahlung zu einer Erwärmung des Verglasungskörpers führt. Zeichnung 1 verdeutlicht den Sachverhalt. Die Sonnenstrahlung, bestehend aus UV-, VIS- und NIR-Strahlung trifft auf die Verglasung. Der wesentliche Teil der Strahlung im sichtbaren Bereich wird transmittiert. Der Anteil der Strahlung, der durch die Verglasung absorbiert wird, wird als langwellige Wärmestrahlung nach außen (qa) und in geringem Maße nach innen (qι) abgegeben. Durch das erfindungsgemäße Ausnutzen der Konvektionsverhältnisse wird wesentlich mehr Wärme nach außen als nach innen abgegeben.
Der Teil der langwelligen Wärmestrahlung, der nach innen in den Raum abgegeben wird, trägt zum Gesamtenergiedurchlassgrad bei. Findet die Absorption der IR-Strahlung nur an der Außenseite des transparenten Körpers statt, dann wird der Anteil qi um so kleiner, je niedriger die Wärmedurchgangszahl (k-Wert) des Verglasungskörpers ist. Dies führt zu einer deutlichen Erhöhung der Selektivitätskennzahl. Ein weiterer Vorteil liegt in der leichten Herstellbarkeit. Im Coextrusionsverfahren können in einem kontinuierlichen Prozess Mehrfachstegplatten mit niedrigem k-Wert direkt mit einer Deckschicht, die den IR-Absorber enthält, ausgestattet werden.
Lichttransmissionsqrad. Gesamtenergiedurchlassgrad und Selektivitätskennzahl
Der Lichtransmissionsgrad und der Gesamtenergiedurchlassgrad sind abhängig von der Art, Konzentration und Schichtdicke des IR-Absorbers in der Deckschicht, als auch von dem Basiskörper. Der geeignete Lichttransmissionsgrad ist abhängig von der Anwendung. In Gewächshäusern sollte er sehr hoch sein, da er direkt Einfluss auf den Ertrag hat. Bei Überdachungen von Fußgängerpassagen oder großflächigen Verglasungen in klimatisierten Gebäuden ist eher ein sehr niedriger Gesamtenergiedurchlassgrad wichtig. Durch weiteren Zusatz von Rußpigmenten oder anderen Farbmitteln in die Deckschicht, die sowohl im sichtbaren als auch im NIR-Bereich absorbieren, kann die Lichttransmission und gleichermaßen der Gesamtenergiedurchlassgrad noch weiter reduziert werden. Die Mindestlichttransmission sollte 30% betragen, bei Stegdoppelplatten als Basiskörper kann die max. Lichttransmission bis zu 86% betragen . Bei unbeschichteten Stegplatten beträgt die Selektivitätskennzahl ca. 1 , an einseitig im Sinne der Erfindung beschichteten Systemen wurden SK- Zahlen bis über 1 ,4 ermittelt.
Der Kunststoffkorper hat z. B. die Gestalt einer Stegmehrfachplatte, bestehend aus mindestens zwei parallelen Kunststoffschichten, die durch senkrecht oder diagonal angeordnete Stege miteinander verbunden sind. Typische Dicken für die beiden äußeren Platten liegen zwischen 0,2 mm und 5 mm, vorzugsweise zwischen 0,5 mm und 3 mm. Typische Dicken für eventuell vorhandene innere Platten liegen zwischen 0.05 und 2 mm, vorzugsweise zwischen 0,1 mm und 1 mm. Um eine effektive Wärmedämmung zu erreichen, sollte der Abstand zwischen den Platten mindestens 1 mm, vorzugsweise mehr als 4 mm betragen. Die Stegdicke sollte zwischen 0,2 mm und 5 mm, vorzugsweise zwischen 0.5 mm und 3 mm liegen. Der geeignete Stegabstand liegt zwischen 5 mm und 150 mm, vorzugsweise zwischen 10 mm und 80 mm. Der Körper sollte in seiner Gesamtheit so gestaltet sein, dass die Wärmedurchgangszahl k nach DIN 52619 kleiner als 4 W/m2K, vorzugsweise kleiner als 3 W/m2K ist. Das Basismaterial besteht aus einem transparenten Kunststoff, geeignet sind hierfür z.B. ein Polymethylmethacrylat-Kunststoff, ein schlagzäh modifiziertes Polymethylmethacrylat (siehe z. B. EP-A 0 733 754), ein Polycarbonat- Kunststoff (verzweigtes oder lineares Polycarbonat), ein Polystyrol-Kunststoff, Styrol-Acryl-Nitril-Kunststoff, ein Polyethylentherephthalat-Kunststoff, ein glykolmodifizierter Polyethylentherephthalat-Kunststoff, ein Polyvinylchlorid- Kunststoff, ein transparenter Polyolefin-Kunststoff (z. B. durch metallocen- katalysierte Polymerisation herstellbar) oder ein Acrylnitril-Butadien-Stryrol (ABS)-Kunststoff. Es kann auch aus Mischungen (Blends) verschiedener thermoplastischer Kunststoffe bestehen. Unter Polymethylmethacrylat werden im Sinne der Erfindung steife amorphe Kunststoffe verstanden, die zu wenigstens 60 Gew.%, vorzugsweise zu wenigstens 80 Gew.% aus Methylmethacrylat aufgebaut sind. Die Polycarbonat- Kunststoffe sind vorwiegend aromatische Polycarbonate von Bisphenolen, insbesondere von Bisphenol A.
Die IR-absorbierende Überzugsschicht
Die Überzugsschicht besteht aus einem transparenten, haftenden Bindemittel. Die Haftung soll so hoch sein, dass die Beschichtung beim Biegen des Körpers im kalten oder im thermoplastisch erwärmten Zustand nicht abspringt. Im Einzelfall richtet sich die Auswahl der verwendeten Kunststoffe nach den Erfordernissen des Beschichtungsverfahrens und den Gebrauchseigenschaften. Unter den Gesichtspunkten einer guten Haftung an vielen Kunststoffen, einer hohen Witterungs-, Vergilbungs- und Alterungsbeständigkeit sind Bindemittel auf Basis von Polacrylat- und Polymethacrylat-Kunststoffen besonders gut geeignet. Bei der Lackbeschichtung wird die Überzugsschicht aus einem flüssigen Überzugsmittel erzeugt, das neben dem Bindemittel und der IR-absorbierenden Substanz eine Trägerflüssigkeit für das Bindemittel enthält. Es kann sich um übliche Lacklösemittel handeln, wie Ester, Alkohole, Ether, Ketone, Aromaten, Chlorkohlenwasserstoffe oder deren Gemische. Bei Reaktivharzen übernehmen die mehrfunktionellen Acrylester diese Funktion. Die Menge der Trägerflüssigkeit richtet sich nach dem Verarbeitungsverfahren; sie kann z.B. 30% bis 85% des Überzugsmaterials ausmachen. Das Bindemittel kann in dem Überzugsmittel auch in dispergierter Form vorliegen, vorzugsweise in Form einer wässrigen Kunststoffdispersion. Sie kann - wie in der Anstrichtechnik geläufig - mit Verlaufshilfmitteln ausgerüstet sein. Darunter versteht man - vorwiegend hochsiedende- organische Löse- bzw. Quellmittel für den dispergierten Kunststoff.
Diese IR-Absorber-Schicht enthält eine oder mehrere Verbindungen, die eine geringe Absorption im sichtbaren Wellenlängenbereich zwischen 380 nm und 780 nm, insbesondere im Bereich zwischen 450 nm und 650 nm und eine hohe Absorption im Bereich 780 nm bis 2000 nm, insbesondere im Bereich zwischen 780 nm und 1100 nm aufweist. Diese IR-Absorber können dem Kunststoffmaterial der zusätzlichen Schicht (3) zugemischt oder auch mit diesem copolymerisiert werden. Die Konzentration des IR-Absorbers in der Deckschicht ist abhängig von seinem Extinktionskoeffizienten und der Schichtdicke der Deckschicht. Sie sollte so gewählt werden, dass der Mittelwert der Transmission der zusätzliche Schicht (3) im Wellenlängenbereich zwischen 780 nm und 1100 nm weniger als 80%, vorzugsweise weniger als 65 % beträgt. Zusätzlich kann die zusätzliche Schicht (3) UV-Absorber enthalten, die zum einen das Basismaterial und auch den IR-Absorber vor UV-Strahlung schützen und außerdem auch die Selektivitätskennzahl erhöhen, da auch der Energiedurchlaß der UV-Strahlung (ca. 5% der Gesamtenergie der Sonnenstrahlung) unterbunden wird. BEISPIELE
Beispiel 1 :
Als IR-Absorber wurde ein Kupferphosphatkomplex verwendet. Dieser wurde hergestellt, indem 20g Phosphorsäuremethacryloyloxyethylester (PMOE) mit 5 g Kupfer-(ll)-carbonat (KCB) und 1 g H20 in 260g Methylmethacrylat 30 min bei 50°C bis 60°C und anschließend 4h bei Raumtemperatur gerührt und abfiltriert wurde. Danach wurde 0.05% 2,2'-Azobis-(isobutyronitril) (AIBN) zugesetzt und 17 Stunden bei 40°C zwischen 2 Glasplatten mit 10 mm Abstand polymerisiert. Die fertige Polymethylmethacrylat (PMMA)-Platte ist transparent und hat eine hellblaue Farbe. Für diese Platte wurde die Lichttransmission [T(D65)], Gesamtenergiedurchlassgrad [g] und Selektivitätskennzahl [T/g] nach DIN 67 507 ermittelt. Weiterhin wurden aus dieser Platte und 3 mm dicken IR- absorberfreien Polymethylmethacrylat-Verbundsysteme hergestellt, bei denen der Plattenabstand 16mm beträgt und von diesen Verbundsystemen ebenfalls die o.g. Werte ermittelt. Diese Daten sind in Tabelle 1 dargestellt:
Tabelle 1 :
Figure imgf000021_0001
Mit ansteigender Plattenanzahl wird die Selektivitätskennzahl größer, da die absorbierte Energie zunehmend nach außen, d.h. der Strahlungsquelle zugewandten Seite abgegeben wird.
Beispiel 2:
Es wurde ein Stegvierfachplatte (Dicke 32 mm) aus schlagzähmodifiziertem Polymethylmethacrylat (PMMA) mit einer 100 μm dicken Coextrusionsschicht auf dem Obergurt extrudiert. Der Coextrusionschicht aus PMMA enthält 0.26% des IR-Absorbers vom Typ Quaterrylentetracarbonsäureimid-Verbindung (Uvinul® 7790 IR). In der unten aufgeführten Tabelle sind Lichttransmissionsgrad, Gesamtenergiedurchlassgrad und Selektivitätskennzahl für den einzelnen Obergurt, Obergurt und Untergurt, Obergurt, ein Zwischengurt und Untergurt, Obergurt zwei Zwischengurte und Untergurt aufgelistet.
Figure imgf000022_0001

Claims

PATENTANSPRÜCHE
1. Kunststoffkorper, bestehend aus einem Basisformkörper, der aus einem transparentem thermoplastischen Kunststoff-Basismaterial gefertigt ist, und der aus mindestens zwei gegenüber liegenden flächigen Schichten (1a, 1b) besteht, die durch senkrechte oder diagonal angeordnete Stege (2) miteinander verbunden sind, wobei eine der flächigen Schichten (1a) mit einer zusätzlichen Schicht (3) aus einer Kunststoffmatrix aus transparentem Kunststoff-Basismaterial versehen ist,
dadurch gekennzeichnet, dass
die zusätzliche Schicht (3) eine IR-absorbierende Schicht ist, die einen oder mehrere, die Transparenz des Kunststoffkorpers nicht beeinträchtigenden IR-Absorber enthält, der im Bereich der nahen Infrarotstrahlung (780nm bis 1100 nm) eine mittlere Transmission von weniger als 80% aufweist, der Kunststoffkorper eine Lichttransmission (D65) von 15 bis 86%, eine Wärmedurchgangszahl von 4 W/m2K oder kleiner und eine SK-Zahl von 1 ,15 oder größer aufweist.
2. Kunststoffkorper nach Anspruch 1 , dadurch gekennzeichnet, daß es sich um eine Stegdoppelplatte, eine Stegmehrfachplatte, insbesondere eine Stegdreifachplatte oder eine Stegvierfachplatte oder um eine Fachwerkstegplatte handelt.
3. Kunststoffkorper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Basisformkörper im wesentlichen aus einem Polymethylmethacrylat- Kunststoff, einem schlagzäh modifiziertes Polymethylmethacrylat, einem Polycarbonat- Kunststoff, einem Polystyrol-Kunststoff, einem Styrol-Acryl- Nitril-Kunststoff, einem Polyethylentherephthalat-Kunststoff, einem glykolmodifizierten Polyethylentherephthalat-Kunststoff, einem Polyvinylchlorid-Kunststoff, einem transparenten Polyolefin-Kunststoff, einem Acrylnitril-Butadien-Stryrol (ABS)-Kunststoff oder Mischungen (Blends) verschiedener thermoplastischer Kunststoffe bestehen.
4. Kunststoffkorper nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die zusätzliche Schicht (3) des Kunststoffkorpers eine auf den Basisformkörper aufgebrachte coextrudierte Schicht, eine Lackschicht oder eine auflaminierte Folienschicht ist.
5. Kunststoffkorper nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die zusätzliche Schicht (3) mit dem Basisformkörper nicht fest verbunden ist.
6. Kunststoffkorper nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die zusätzliche Schicht (3) aus einer Kunststoffmatrix aus einem transparenten Kunststoff-Basismaterial besteht, das ein thermoplastischer, ein thermoelastischer oder vernetzter Kunststoff ist und/oder mit dem Kunststofftyp des Basisformkörpers übereinstimmt.
7. Kunststoffkorper nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet , dass die IR-absorbierende Schicht zusätzlich einen UV-Absorber enthält.
8. Kunststoffkorper nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet , dass auf der zusätzlichen Schicht (3) eine oder auch mehrere weitere Schichten aus Kunststoff aufgebracht sind.
9. Kunststoffkorper nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet , dass der IR-Absorber eine organische Cu(ll)- Phosphat-Verbindungen ist.
10. Kunststoffkorper nach Anspruch 9, dadurch gekennzeichnet , dass die organische Cu(ll)-Phosphat-Verbindung ein Phosphorsäuremethacryloyloxyethylester/Kupfer-(ll)-Komplex ist.
11. Kunststoffkorper nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet , dass der IR-Absorber ein Phthalocyaninderivat ist.
12. Kunststoffkorper nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet , dass der IR-Absorber eine Quaterrylentetracarbonsäureimid-Verbindung ist.
13. Verwendung eines Kunststoffkorper nach einem oder mehreren der Ansprüche 1 bis 12 als Verglasungs-, Überdachungs- oder Wärmedämmelement.
PCT/EP2002/007932 2001-08-09 2002-07-17 Kunststoffkörper mit niedriger wärmeleitfähigkeit, hoher lichttransmission und absorption im nahen infrarotbereich WO2003013849A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP02764711A EP1414645B1 (de) 2001-08-09 2002-07-17 Kunststoffkörper mit niedriger wärmeleitfähigkeit, hoher lichttransmission und absorption im nahen infrarotbereich
AU2002328911A AU2002328911B8 (en) 2001-08-09 2002-07-17 Plastic body having low thermal conductivity, high light transmission and a capacity for absorption in the near-infrared region
DE50213174T DE50213174D1 (de) 2001-08-09 2002-07-17 Kunststoffkörper mit niedriger wärmeleitfähigkeit, hoher lichttransmission und absorption im nahen infrarotbereich
NZ530544A NZ530544A (en) 2001-08-09 2002-07-17 Plastics article with low thermal conductivity, high light transmittance and absorption in the near infrared region
JP2003518822A JP2004536733A (ja) 2001-08-09 2002-07-17 低い熱伝導性、高い光透過率および近赤外線領域における吸収を有するプラスチック製品
IL15908202A IL159082A0 (en) 2001-08-09 2002-07-17 Plastics article with low thermal conductivity, high light transmittance, and absorption in the near infrared region
MXPA04001095A MXPA04001095A (es) 2001-08-09 2002-07-17 Articulos plasticos con baja conductividad termica, alta transmision de luz y absorcion en la region infrarroja.
US10/485,257 US20040191485A1 (en) 2001-08-09 2003-07-17 Plastic body having low thermal conductivity, high light transmission and a capacity for absorption in the near-infrared region
IL159082A IL159082A (en) 2001-08-09 2003-11-27 A plastic object with low heat conductivity, high light transmission and absorption in a nearby infrared region
HK05100309A HK1068308A1 (en) 2001-08-09 2005-01-13 Plastic body having low thermal conductivity, highlight transmission and a capacity for absorption in the near-infrared region

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10138134 2001-08-09
DE10138134.4 2001-08-09
DE10141314.9 2001-08-28
DE10141314A DE10141314A1 (de) 2001-08-09 2001-08-28 Kunststoffkörper mit niedriger Wärmeleitfähigkeit, hoher Lichttransmission und Absorption im nahen Infrarotbereich

Publications (1)

Publication Number Publication Date
WO2003013849A1 true WO2003013849A1 (de) 2003-02-20

Family

ID=26009866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/007932 WO2003013849A1 (de) 2001-08-09 2002-07-17 Kunststoffkörper mit niedriger wärmeleitfähigkeit, hoher lichttransmission und absorption im nahen infrarotbereich

Country Status (13)

Country Link
US (1) US20040191485A1 (de)
EP (1) EP1414645B1 (de)
JP (1) JP2004536733A (de)
CN (1) CN1243642C (de)
AT (1) ATE419114T1 (de)
DE (2) DE10141314A1 (de)
ES (1) ES2320635T3 (de)
HK (1) HK1068308A1 (de)
IL (2) IL159082A0 (de)
MX (1) MXPA04001095A (de)
NZ (1) NZ530544A (de)
PT (1) PT1414645E (de)
WO (1) WO2003013849A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007040258A1 (de) 2007-08-24 2009-02-26 Evonik Röhm Gmbh Lichtdurchlässiger Sonnenenergiekollektor
WO2009103375A1 (de) * 2008-02-22 2009-08-27 Evonik Röhm Gmbh Stegplatten mit photosynthetisch aktiver strahlung
WO2010012664A1 (en) * 2008-07-28 2010-02-04 Mecaplex Ag Heat-absorbing pmma pane
GB2471706A (en) * 2009-07-09 2011-01-12 David John Anderson Multilayer plastic glazing panel
GB2471703A (en) * 2009-07-09 2011-01-12 David John Anderson Multilayer plastic glazing panel
CN111108954A (zh) * 2020-01-07 2020-05-08 河北融兴塑胶科技有限公司 一种亮光仿瓷双色花盆

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129374A1 (de) * 2001-06-20 2003-01-02 Roehm Gmbh Verfahren zur Herstellung von Formkörpern mit elektrisch-leitfähiger Beschichtung und Formkörper mit entsprechender Beschichtung
DE10212458A1 (de) * 2002-03-20 2003-10-02 Roehm Gmbh Hagelbeständiges Verbund-Acrylglas und Verfahren zu seiner Herstellung
DE10224895A1 (de) * 2002-06-04 2003-12-18 Roehm Gmbh Selbstreinigender Kunststoffkörper und Verfahren zu dessen Herstellung
DE10243062A1 (de) * 2002-09-16 2004-03-25 Röhm GmbH & Co. KG Heißwasserwechseltestbeständiges Sanitärmaterial aus PMMA-Formmasse oder schlagzäher PMMA-Formmasse
DE10259238A1 (de) * 2002-12-17 2004-07-01 Röhm GmbH & Co. KG Wasserspreitende Kunststoffkörper und Verfahren zu dessen Herstellung
DE10259240A1 (de) * 2002-12-17 2004-07-08 Röhm GmbH & Co. KG Umformbare wasserspreitende Kunststoffkörper und Verfahren zu dessen Herstellung
DE10260067A1 (de) * 2002-12-19 2004-07-01 Röhm GmbH & Co. KG Beschichtungsmittel zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung, kratzfeste umformbare schmutzabweisende Formkörper sowie Verfahrn zu deren Herstellung
DE10311639A1 (de) * 2003-03-14 2004-09-23 Röhm GmbH & Co. KG Antistatisch beschichteter Formkörper und Verfahren zu seiner Herstellung
PL1722984T3 (pl) * 2004-03-04 2009-05-29 Evonik Degussa Gmbh Środkami barwiącymi przezroczyście, przeświecająco lub kryjąco zabarwione, zgrzewalne laserem materiały z tworzywa sztucznego
DE102004010504B4 (de) * 2004-03-04 2006-05-04 Degussa Ag Hochtransparente lasermarkierbare und laserschweißbare Kunststoffmaterialien, deren Verwendung und Herstellung sowie Verwendung von Metallmischoxiden und Verfahren zur Kennzeichnung von Produktionsgütern
US7704586B2 (en) * 2005-03-09 2010-04-27 Degussa Ag Plastic molded bodies having two-dimensional and three-dimensional image structures produced through laser subsurface engraving
US7992361B2 (en) * 2006-04-13 2011-08-09 Sabic Innovative Plastics Ip B.V. Polymer panels and methods of making the same
US8590271B2 (en) * 2006-04-13 2013-11-26 Sabic Innovative Plastics Ip B.V. Multi-wall structural components having enhanced radiatransmission capability
DE102007021199B4 (de) * 2006-07-17 2016-02-11 Evonik Degussa Gmbh Zusammensetzungen aus organischem Polymer als Matrix und anorganischen Partikeln als Füllstoff, Verfahren zu deren Herstellung sowie deren Verwendung und damit hergestellte Formkörper
US20080038519A1 (en) * 2006-08-11 2008-02-14 Hoolhorst Frederik W B Polymer Sheeting
US7846548B2 (en) * 2006-10-27 2010-12-07 Certainteed Corporation Fence or decking materials with enhanced solar reflectance
US9963879B2 (en) * 2007-01-30 2018-05-08 Sabic Global Technologies B.V. Multiwall polymer sheet, and methods for making and articles using the same
DE102007041267B4 (de) * 2007-08-31 2012-07-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermischer Kunststoffkollektor mit eingeschobenem Absorberkörper
EP2193020A1 (de) * 2007-09-27 2010-06-09 Sabic Innovative Plastics IP B.V. Polymerfolie
US8568860B2 (en) * 2007-11-12 2013-10-29 Sabic Innovative Plastics Ip B.V. Multiwall polymer sheet comprising branched polycarbonate
GB2464331A (en) * 2008-07-03 2010-04-21 David John Anderson Glazing
US8889248B2 (en) * 2008-10-31 2014-11-18 Sabic Global Technologies B.V. Multiwall sheet, an article, a method of making a multiwall sheet
AU2010100089B4 (en) * 2010-01-28 2011-08-18 Fornells Sa A plastic running rail
GB2480494B (en) * 2010-05-21 2017-03-15 Gm Global Tech Operations Llc Heat protection for load bearing component
US10061403B2 (en) * 2014-11-04 2018-08-28 Mimio, Llc Light pen
WO2016084008A1 (en) 2014-11-25 2016-06-02 Sabic Global Technologies B.V. Method and device for heating a surface
EP3247763B1 (de) 2014-11-25 2019-03-13 SABIC Global Technologies B.V. Verfahren und artikel zur strahlungsemission von einer oberfläche
CN109476531A (zh) * 2016-07-29 2019-03-15 Agc株式会社 近红外线截止滤光片玻璃
KR20200095923A (ko) 2019-02-01 2020-08-11 삼성전자주식회사 근적외선 흡수 조성물, 근적외선 흡수 필름, 및 이를 포함하는 카메라 모듈 및 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993002853A1 (en) * 1991-08-08 1993-02-18 The Regents Of The University Of California Gas filled panel insulation
EP0569878A2 (de) * 1992-05-15 1993-11-18 Röhm Gmbh Folie-geschützter Polycarbonatkunststoffkörper
EP0679614A1 (de) * 1994-04-28 1995-11-02 Central Glass Company, Limited Glasscheibe mit ultravioletten und infraroten Strahlen absorbierendem Film
JPH10157023A (ja) * 1996-11-28 1998-06-16 Asahi Chem Ind Co Ltd 積層シート
WO2001018101A1 (de) * 1999-09-06 2001-03-15 Bayer Aktiengesellschaft Formmassen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3291746A (en) * 1963-08-26 1966-12-13 American Cyanamid Co Metal phthalocyanines as infrared absorbers
US4189520A (en) * 1972-09-22 1980-02-19 Dynamit Nobel Aktiengesellschaft Shaped structural members having improved lightfastness and weatherproofness
US5712332A (en) * 1993-01-13 1998-01-27 Nippon Shokubai Co. Method for absorbing heat radiation
US5580620A (en) * 1994-09-02 1996-12-03 21St Century Ltd. Multiple void layer synthetic resin panels
DE19501182C2 (de) * 1995-01-17 2000-02-03 Agomer Gmbh Copolymere zur Herstellung von Gußglas, Verfahren zur Herstellung wärmeformstabiler Gußglaskörper und Verwendung
DE29504997U1 (de) * 1995-03-24 1995-06-01 Röhm GmbH & Co. KG, 64293 Darmstadt Hagelschlagbeständige Stegmehrfachplatte aus Polymethylmethacrylat
DE10129374A1 (de) * 2001-06-20 2003-01-02 Roehm Gmbh Verfahren zur Herstellung von Formkörpern mit elektrisch-leitfähiger Beschichtung und Formkörper mit entsprechender Beschichtung
DE10129702A1 (de) * 2001-06-22 2003-01-02 Roehm Gmbh Extrusionswerkzeug zur Herstellung von Hohlkammerprofilplatten aus thermoplastischem Kunststoff mit innen liegender coextrudierter Schicht
DE10212458A1 (de) * 2002-03-20 2003-10-02 Roehm Gmbh Hagelbeständiges Verbund-Acrylglas und Verfahren zu seiner Herstellung
DE10224895A1 (de) * 2002-06-04 2003-12-18 Roehm Gmbh Selbstreinigender Kunststoffkörper und Verfahren zu dessen Herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993002853A1 (en) * 1991-08-08 1993-02-18 The Regents Of The University Of California Gas filled panel insulation
EP0569878A2 (de) * 1992-05-15 1993-11-18 Röhm Gmbh Folie-geschützter Polycarbonatkunststoffkörper
EP0679614A1 (de) * 1994-04-28 1995-11-02 Central Glass Company, Limited Glasscheibe mit ultravioletten und infraroten Strahlen absorbierendem Film
JPH10157023A (ja) * 1996-11-28 1998-06-16 Asahi Chem Ind Co Ltd 積層シート
WO2001018101A1 (de) * 1999-09-06 2001-03-15 Bayer Aktiengesellschaft Formmassen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 11 30 September 1998 (1998-09-30) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007040258A1 (de) 2007-08-24 2009-02-26 Evonik Röhm Gmbh Lichtdurchlässiger Sonnenenergiekollektor
WO2009027218A1 (de) * 2007-08-24 2009-03-05 Evonik Röhm Gmbh Lichtdurchlässiger sonnenenergiekollektor
WO2009103375A1 (de) * 2008-02-22 2009-08-27 Evonik Röhm Gmbh Stegplatten mit photosynthetisch aktiver strahlung
WO2010012664A1 (en) * 2008-07-28 2010-02-04 Mecaplex Ag Heat-absorbing pmma pane
GB2471706A (en) * 2009-07-09 2011-01-12 David John Anderson Multilayer plastic glazing panel
GB2471703A (en) * 2009-07-09 2011-01-12 David John Anderson Multilayer plastic glazing panel
CN111108954A (zh) * 2020-01-07 2020-05-08 河北融兴塑胶科技有限公司 一种亮光仿瓷双色花盆
CN111108954B (zh) * 2020-01-07 2021-08-20 河北融兴塑胶科技有限公司 一种亮光仿瓷双色花盆

Also Published As

Publication number Publication date
HK1068308A1 (en) 2005-04-29
ES2320635T3 (es) 2009-05-27
ATE419114T1 (de) 2009-01-15
IL159082A0 (en) 2004-05-12
EP1414645B1 (de) 2008-12-31
MXPA04001095A (es) 2004-05-20
PT1414645E (pt) 2009-03-31
CN1243642C (zh) 2006-03-01
DE50213174D1 (de) 2009-02-12
JP2004536733A (ja) 2004-12-09
CN1525914A (zh) 2004-09-01
EP1414645A1 (de) 2004-05-06
AU2002328911B2 (en) 2007-02-15
NZ530544A (en) 2005-11-25
DE10141314A1 (de) 2003-02-27
US20040191485A1 (en) 2004-09-30
IL159082A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
EP1414645B1 (de) Kunststoffkörper mit niedriger wärmeleitfähigkeit, hoher lichttransmission und absorption im nahen infrarotbereich
EP0110221B1 (de) Polycarbonat-Kunststofftafel
EP0548822B1 (de) IR-reflektierender Körper
EP0243912B1 (de) Wand-; Fenster- und/oder Brüstungselement
EP1817383B1 (de) Dunkles, flächiges element mit geringer wärmeleitfähigkeit, verringerter dichte und niedriger solarer absorption
DE10221518A1 (de) Infrarot reflektierendes Material
DE1301022B (de) Durchsichtiger, ein waermereflektierendes und ein lichtabsorbierendes Medium enthaltender Schichtkoerper
DE1950668A1 (de) Kunststoff-Verbundmaterial fuer Leuchtkoerper
EP1256437B1 (de) Verfahren zur Herstellung IR-reflektierender Körper aus schlagzähem Kunststoff
DE102010029169A1 (de) Formmasse oder Beschichtungssystem (PMMA-frei) mit IR reflektierenden Eigenschaften in Kombination mit einer PMMA-haltigen Deckschicht oder Folie
EP1831614A1 (de) Strahlungskollektor
DE60020861T2 (de) Transparente honigwaben-wärmedämmung mit verbesserten isolationswerten
DE102010053611A1 (de) Wärmedämmplatte, Verfahren zur Herstellung einer Wärmedämmplatte
DE4216103A1 (de) Folie-geschützter Polycarbonatkunststoffkörper
DE2314622A1 (de) Lichtdurchlaessiges baumaterial
WO2009027218A1 (de) Lichtdurchlässiger sonnenenergiekollektor
WO2009103375A1 (de) Stegplatten mit photosynthetisch aktiver strahlung
DE4444104C1 (de) Wärmeschutz mit passiver Solarenergienutzung
CH455271A (de) Kunststoff-Folie mit reversibel veränderlicher Lichtdurchlässigkeit sowie Verfahren zu deren Herstellung
DE2502594C2 (de) Sonnenkollektor mit einem aus Metallblechen bestehenden Absorber mit Kanälen für eine die absorbierte Wärme abführende Flüssigkeit
EP0030246B1 (de) Lichtdurchlässiges wärmedämmendes Verbundelement
EP3814436B1 (de) Bauelement mit witterungsbeständiger beschichtung und beschichtungsanlage
DE3008850C2 (de) Bahnförmiges Material zur Herstellung von Isolierrollos
DE3235963A1 (de) Verfahren zum herstellen einer kunststoffscheibe mit einer strahlen reflektierenden und/oder absorbierenden schicht
DE3632533A1 (de) Flaechenverbund aus einem gewebe, einer transparentfolie und einer schichtfolie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DK DZ EC EE ES FI GB GD GE GH GM HR ID IL IN IS JP KE KG KP KR KZ LC LK LS LT LU LV MA MD MG MK MN MW MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 159082

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2002764711

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002328911

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002813706X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 530544

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/001095

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2004/00967

Country of ref document: ZA

Ref document number: 200400967

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 10485257

Country of ref document: US

Ref document number: 2003518822

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002764711

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 530544

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 530544

Country of ref document: NZ