WO2003011951A1 - Organic polymer film, method for producing the same and semiconductor device using the same - Google Patents

Organic polymer film, method for producing the same and semiconductor device using the same Download PDF

Info

Publication number
WO2003011951A1
WO2003011951A1 PCT/JP2002/007388 JP0207388W WO03011951A1 WO 2003011951 A1 WO2003011951 A1 WO 2003011951A1 JP 0207388 W JP0207388 W JP 0207388W WO 03011951 A1 WO03011951 A1 WO 03011951A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heat treatment
organic polymer
polymer film
film
Prior art date
Application number
PCT/JP2002/007388
Other languages
English (en)
French (fr)
Inventor
Akio Takahashi
Yuichi Satsu
Harukazu Nakai
Kardash Igor Yefimovich
Pebalk Andrei Vladimirovich
Chvalun Sergei Nicolaevich
Mailyan Karen Andranikovich
Original Assignee
Hitachi, Ltd.
Karpov Institute Of Physical Chemistry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Karpov Institute Of Physical Chemistry filed Critical Hitachi, Ltd.
Priority to JP2003517136A priority Critical patent/JPWO2003011951A1/ja
Priority to US10/484,893 priority patent/US20050156287A1/en
Publication of WO2003011951A1 publication Critical patent/WO2003011951A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3127Layers comprising fluoro (hydro)carbon compounds, e.g. polytetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • C08J2365/04Polyxylylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an insulating film used in the field of electronic and electric devices, a method of manufacturing the same, and a semiconductor device using the same.
  • the wiring width has become finer and the spacing between wirings has been reduced along with higher integration, and as a result, the parasitic capacitance generated between the wirings has increased, and this has been an obstacle to improving the processing speed of semiconductor integrated circuits.
  • a polyparaxylylene film having a low dielectric constant has been proposed as a wiring insulating film.
  • the method of forming the polyparaxylylene film is, for example, [2.2] After sublimating paracyclophane at 120 ° C, heat the sublimate to ⁇ xylene Decompose. Then, a polymer is deposited on a substrate at 20 ° C. in a polymerization vessel to obtain a polyparaxylylene film.
  • FIG. 1 shows a manufacturing method when polyparaxylylene is used as an insulating layer of a semiconductor device.
  • a first-layer aluminum wiring 11 is formed on a semiconductor substrate 10, and a polyparaxylylene insulating film 12 is formed on the semiconductor substrate on which the aluminum wiring 11 is formed by the above-described method.
  • a silicon oxide film 13 is formed thereon by chemical vapor deposition: Step (b).
  • the silicon oxide film 13 is polished by a chemical mechanical polishing method, and the via holes are buried with stainless steel 14: step (c).
  • a second-layer aluminum wiring 15 is formed: Step (d).
  • the above-mentioned para-xylene film is inevitably reduced in physical properties by a heat treatment at 400 ° C., and cannot be applied to an insulating thin film of a semiconductor integrated circuit which requires fine wiring and a reduction in wiring interval.
  • An object of the present invention is to provide a low dielectric constant and high heat resistant organic polymer film applicable to an insulating layer of a semiconductor device, a method for producing the same, and a semiconductor device using the same. To provide.
  • the gist of the present invention for solving these problems is as follows.
  • the above-mentioned fluorine atom-containing cyclophane compound is 1,1,2,2,9,9,10,10-octafluoro [2.2] cyclophane, and after sublimating the compound in a sublimation zone, An organic polymer film containing fluorinated poly-para-xylylene obtained by thermally decomposing a substance into para-xylylene monomer in a pyrolysis zone and depositing the para-xylene monomer on the substrate in a polymerization zone as poly-para-xylene. .
  • the relative dielectric constant of the organic polymer film containing fluorinated polyparaxylylene is 2.5 or less, and the weight loss after heating at 400 ° C for 1 hour in an air or inert gas atmosphere is 0.05.
  • the organic polymer film is less than wt%.
  • the above-mentioned pyrolysis step converts the sublimate into para-xylylene at 700 to 750 ° C. It must be a process of thermal decomposition into monomers, and the cyclophane compound containing a fluorine atom must be 1,1,2,2,9,9,10,10-octafluoro [2.2] cyclophane This is a method for producing an organic polymer film.
  • the step of heat-treating the fluorinated polyparaxylylene according to the above item (3) includes: (i) heating to 170 to 220 ° C. at a maximum rate of 5 ° C./min.
  • the first heat treatment step is performed at a constant temperature of 170 to 220 ° C for at least 10 minutes.
  • the second heat treatment step is performed at a maximum rate of 1 ° C / min.
  • a third heat treatment step of heating to 0 ° C, 350-380 A fourth heat treatment step of heating at least 30 minutes at 80 ° C, a heating rate of 0.5 ° C / min at the fastest 390-
  • the heat treatments (i) and (ii) are performed under reduced pressure conditions of 0.001 to 0.1 mmHg, and the heat treatments (iii) and (iv) are performed in an air atmosphere. This is a method for producing an organic polymer film.
  • the insulating film has a relative dielectric constant of 2.5 or less and is air or non-air.
  • This is a semiconductor device using an organic polymer film whose weight loss after heating at 400 ° C for 1 hour in an active gas atmosphere is less than 0.05 wt%.
  • a first wiring layer is formed on at least one main surface of the semiconductor substrate, an insulating film is formed on the surface of the first wiring layer, and a conduction hole is formed on the insulating film.
  • the insulating film is an organic polymer film having a relative dielectric constant of 2.5 or less and a weight loss rate of less than 0.05 wt% after heating at 400 ° C. for 1 hour in an atmosphere of air or an inert gas. Film).
  • the semiconductor substrate is a silicon oxide film
  • the first and second wiring layers are aluminum wiring
  • the thin-film resistance layer is a Cr ⁇ Si02 film.
  • the organic polymer film (film) contains a fluorinated polyparaxylylene formed by sublimating a fluorine atom-containing cyclophane compound and then thermally decomposing it into a paraxylylene monomer and polymerizing the paraxylylene monomer. Is preferred No.
  • the sublimation is passed through the pyrolysis zone.
  • a fluorinated polyparaxylylene obtained by thermally decomposing into laxylylene monomer and depositing the paraxylylene monomer as polyparaxylylene on a substrate in a polymerization zone.
  • FIG. 1 is a cross-sectional view illustrating a manufacturing process of a semiconductor device according to the present invention.
  • FIG. 2 is a schematic view of a process for producing an organic polymer film (polyparaxylene) of the present invention.
  • FIG. 3 is a structural cross section showing a manufacturing process of the thin film multilayer wiring board according to the present invention.
  • the present invention relates to a cyclophane compound containing a fluorine atom, for example, 1,1,2,2,9,9,10,10-octafluoro [2.2] cycle
  • a cyclophane compound containing a fluorine atom for example, 1,1,2,2,9,9,10,10-octafluoro [2.2] cycle
  • a temperature of 700 ° C. to 750 ° C. is selected, and specific heating and constant temperature heating are added stepwise to the fluorinated polyparaxylylene, and finally, 390 to 400 ° C.
  • the relative dielectric constant is 2.5 or less, and the weight loss rate after heating for 1 hour at 400 ° C in an air or inert gas atmosphere is 0.05 wt%.
  • Organic polymer films of less than In the present invention a cyclophane compound containing a fluorine atom, for example, 1,1,2,2,9,9,10,10-octafluoro [2.2] paracyclophane (dimer) is efficiently converted into a monomer.
  • the decomposition of the monomer proceeds when the dimer is thermally decomposed into the monomer, and by-products that impair the heat resistance during the production of fluorinated polyparaxylylene are included. In other words, many components are reduced at 250 to 400 ° C, and even if a thin film is formed and subjected to a heat treatment at 400 ° C, these by-products cannot be completely removed.
  • This heat treatment may be performed in an air atmosphere, but the conditions of the stepwise heating differ depending on the atmosphere.
  • the first stage heats up to 170 to 220 ° C at the fastest heating rate of 5 ° C / min, and the second stage heats at this temperature range slightly.
  • heating at a maximum rate of 1 ° C / min to 350-390 ° C, and in the fourth stage, at least 30 minutes in this temperature range.
  • heating is performed at a maximum rate of 0.5 ° C / min to 390 to 410 ° C
  • the sixth step is preferably performed at 390 to 410 ° C for at least 30 minutes.
  • the first step is heating at a maximum rate of 5 ° C / min to 190 ° C to 210 ° C
  • the second step is a constant temperature heating at least 30 minutes in this temperature range.
  • the third stage heats up to 370-380 ° C at the fastest heating rate of 1 ° C / min
  • the fourth stage heats at least 60 minutes in this temperature range
  • the fifth stage It is preferable to heat to 390 to 410 ° C at a heating rate of 0.5 ° C / min at the highest speed, and to perform heating in this temperature range for at least 60 minutes in the sixth stage.
  • the first stage heats up to 170-220 ° C at the fastest rate of 10 ° C / min in the first stage, and the second stage heats at least 10 ° C in this temperature range.
  • the third stage is heating at a maximum rate of 3 ° C / min to 350-390 ° C, and the fourth stage is heating for at least 15 minutes in this temperature range.
  • heating is performed at a maximum rate of 1 ° C / min to 390 to 410 ° C
  • the sixth step can be performed in this temperature range for at least 15 minutes. preferable.
  • the first stage is heated to 190 to 210 ° C at a maximum heating rate of 10 ° C / min
  • the second stage is a constant temperature of at least 15 minutes in this temperature range.
  • the third stage heats up to 370-380 ° C at the fastest rate of 3 ° C / min
  • the fourth stage heats at least 30 minutes in this temperature range
  • the fifth stage Is heated to 390 to 410 ° C. at a heating rate of 1 ° C./min at the highest speed
  • the sixth step is preferably performed under the heating condition of at least 30 minutes in this temperature range.
  • the weight loss is measured using a Mettler TA-300 (manufactured by Mettler Co.), and the data is measured using SOLARIS software (manufactured by Mettler Co.). Processed. A small roll of 10 to 16 mg of film was placed in the ceramic TG non-layer, and heated to 400 ° C at a rate of 10 ° C / min. . After that, it was kept at 400 ° C for 1 to 3 hours, and the weight loss rate was measured. The measurement was performed under air atmosphere and nitrogen atmosphere.
  • the present invention will be described specifically with reference to examples.
  • 1,1,2,2,9,9,10,10-octylfluoro is a cyclophane compound containing a fluorine atom in the loop 2 in the sublimation zone 1
  • Paracyclophane 7 is heated and sublimated at 30 to 70 ° C to form a dimer (gas).
  • the inside of the apparatus was kept at a vacuum of 0.005 mmHg or more.
  • the crucible 2 is heated to 60 ° C, and then the dimer 7 is fed to the pyrolysis zone 3 and the monomer is heated at 750 ° C (highly reactive monomer, ⁇ , hi ', hi'-tetrafluo-P -Xylylene intermediate) Decomposes into 8.
  • this highly reactive intermediate 8 was polymerized and deposited on a circular glass plate 4 having a diameter of 50 mm and cooled to ⁇ 10 ° C. in a polymerization zone 5.
  • the weight loss of the fluorinated polyparaxylylene film obtained above after heating at 400 ° C. for 3 hours in a nitrogen atmosphere was 0%.
  • the weight loss after heating at 400 ° C for 1 hour in an air atmosphere was 0%. (Measurement accuracy of the device: 0.05%)
  • the density of the fluorinated polyparaxylylene film was 1.62 g / cm 3
  • the relative dielectric constant was 2.20 at 1 MHz
  • the dielectric loss tangent was less than 0.001.
  • 1,1,2,2,9,9,10,10-fluoride [2.2] Put paracyclophane 7 into crucible 2 of sublimation zone 1. The inside of the apparatus was kept at a vacuum of 0.005 mmHg or more. Heat Ruppu 2 to 70 ° C, sublimate 1,1,2,2,9,9,10,10-octylfluoro [2.2] paracyclophane 7 and move from sublimation zone to pyrolysis zone Let it. The pyrolysis is carried out at 700 ° C, and the highly reactive H, H, H ', H'-tetrafluo-P-xy Rylene intermediate 8 is formed.
  • this highly reactive intermediate 8 is polymerized and deposited at a rate of 0.26 ⁇ m / min on a glass substrate 4 having a diameter of 50 mm and cooled to -1 ° C in a polymerization zone 5 to have a thickness of 3
  • a film containing 0 ⁇ m of poly (hi, hi, hi ', hi'-tetrafluo-P-xylylene) was obtained.
  • the film was returned to normal pressure, it was placed in a glass tube and suctioned to a vacuum of 0.005 mmHg. Then, heat to 200 ° C at a heating rate of 5 ° C / min, keep it at 200 ° C for 40 minutes, then heat it to 380 ° C at a heating rate of 1 ° C / min, and keep it at 380 ° C for 60 minutes. Then, the sample was heated to 400 ° C at a heating rate of 0.5 ° C / minute, and heat-treated at 400 ° C for 60 minutes.
  • the density of the obtained organic polymer film was 1.62 g / cm 3 , the relative dielectric constant was 2.20 at 1 MHz, and the dielectric loss tangent was less than 0.001.
  • 1,1,2,2,9,9,10,10-octafluoro [2.2] Put paracyclophane into the crucible in the sublimation zone. The inside of the apparatus was kept at a vacuum of 0.005 mmHg or more. Heat the rump to 60 ° C and sublimate 1,1,2,2,9,9,10,10-fluoro- [2.2] paracyclophane and move it from the sublimation zone to the pyrolysis zone. Pyrolysis is carried out at 730 ° C to form a highly reactive intermediate of tetra-fluoro-P-xylylene.
  • the highly reactive intermediate was polymerized and deposited at a rate of 0.29 ⁇ m / min on a 100 mm-diameter silicon wafer cooled to ⁇ 15 ° C. in the polymerization zone, to a thickness of 1 ⁇ m.
  • a thin film containing poly (hi, hi, hi ', hi'-tetrafluo-P-xylylene) of 0 ⁇ m was obtained.
  • the silicon wafer with the thin film After returning the silicon wafer with the thin film to normal pressure, it was placed in a vacuum heating furnace and sucked to a vacuum degree of 0.005 mmHg. Thereafter, the temperature is increased to 200 ° C at a rate of 5 ° C / min. Heat, as it is, for 30 minutes at 200 ° C, followed by heating at a rate of 1 ° C / min to 380 ° C, as it is for 60 minutes at 380 ° C, and at a rate of 0 ° C. Heating was performed up to 400 ° C. at 5 ° C./min, and heat treatment was performed at 400 ° C. for 60 minutes.
  • the relative permittivity of the obtained thin film was 2.20 at 1 MHz and the dielectric loss tangent was less than 0.001.
  • a first-layer aluminum wiring 11 is formed on a semiconductor substrate 10, and an organic polymer thin film 12 containing poly (hi, hi, hi ', hi'-tetrafluoro-para-xylylene) is formed on the aluminum wiring 11.
  • an organic polymer thin film 12 containing poly (hi, hi, hi ', hi'-tetrafluoro-para-xylylene) is formed on the aluminum wiring 11.
  • Step (a) Step (a).
  • the film was formed under the same conditions as in Example 3. After the film was formed, the film was subjected to a heat treatment at 400 ° C. for 30 minutes under a reduced pressure of 0.05 mm Hg. . Next, a silicon oxide film 13 was formed thereon by a chemical vapor polymerization method. The silicon oxide film 13 was formed at a temperature of 400 ° C .: Step (b).
  • Step (c.) After polishing the silicon oxide film 13 by a chemical mechanical polishing method, a via hole was formed. This via hole was filled with tungsten 14: Step (c.).
  • a second-layer aluminum wiring 15 was formed thereon: Step (d).
  • the organic polymer thin film of the semiconductor device formed in this way had a relative dielectric constant of 2.2, and the capacitance between wirings could be reduced. Thus, a highly reliable semiconductor device that achieves a higher signal transmission speed can be provided.
  • the thin-film multilayer wiring board according to the present invention will be described with reference to FIG.
  • Semiconductor base The first layer aluminum wiring 11 was formed on the plate 10.
  • An organic polymer thin film 12 containing poly ( ⁇ , hi, hi ′, hi′-tetrafluoro-para-xylylene) was formed on the aluminum wiring 11: Step (a).
  • the film was formed under the same conditions as in Example 3.
  • the film was subjected to a heat treatment at 400 ° C. for 30 minutes under a reduced pressure of 0.05 mmHg.
  • Step (b) a silicon oxide film 13 was formed thereon by a chemical vapor polymerization method: Step (b).
  • a second layer of aluminum film 15 having a thickness of 0.4 ⁇ m was formed thereon: Step (d), using 0 FPR (manufactured by Tokyo Ohka Kogyo Co., Ltd.) as the c- register, and after film formation and exposure, NMD- 3 (manufactured by Tokyo Ohka Kogyo Co., Ltd.)
  • an aluminum multilayer wiring board prepared in this manner, an organic material containing poly (hi, hi, hi ', hi'-tetrafluoro-open-paraxylylene) was used.
  • the polymer thin film has a relative dielectric constant of 2.2, which has made it possible to reduce the capacitance between wires.
  • the C r ⁇ S i 02 wiring 16 was formed as a thin-film resistance element for terminal resistance, it was found that the individual resistance value was 60 ⁇ 3 ⁇ , indicating high reliability as a resistance element.
  • a semiconductor device using two wirings can speed up signal transmission and achieve high reliability.
  • 1,1,2,2,9,9,10,10-octafluoro a 35 m thick An organic polymer film containing poly (hi, hi, hi ', hi', -tetrafluo-P-xylylene) was obtained. After the film was returned to normal pressure, it was removed from the glass substrate, placed in a glass ampule tube, and suctioned to a vacuum of 0.005 mmHg. After that, it was heated to 400 ° C at a heating rate of 4 ° C / min, and heat-treated at 400 ° C for 60 minutes.
  • the density of the obtained organic polymer film was 1.62 g / cm 3 , the relative dielectric constant was 2.20 at 1 MHz, and the dielectric loss tangent was less than 0.001.
  • the density of the obtained organic polymer film is 1.50 g / cm 3 and the relative dielectric constant is 1 M
  • the weight loss of the film after heating at 400 ° C. for 3 hours in a nitrogen atmosphere was 0.3%.
  • the weight loss rate after heating at 400 ° C for 1 hour in an air atmosphere is
  • a first-layer aluminum wiring 11 is formed on a semiconductor substrate 10, and an organic polymer thin film 12 containing para-xylylene is formed on the aluminum wiring.
  • a film was formed. At this time, the film was formed under the same conditions as in Comparative Example 2. After the film was formed, the film was directly subjected to a heat treatment under reduced pressure of 0.005 mmHg at 400 ° C. for 30 minutes. Next, a silicon oxide film 13 was formed thereon by a chemical vapor polymerization method. The silicon oxide film 13 was formed at a temperature of 400 ° C. After polishing the silicon oxide film 13 by a chemical mechanical polishing method, a via hole was formed. After filling the via hole with tungsten 14, a second-layer aluminum wiring 15 was formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Description

明 細 書 有機高分子フィルム、 その製造方法及びそれを用いた半導体装置 技術分野
本発明は電子、電気機器分野で使用される絶縁フィルム及びその製造方法、 並びにそれを用いた半導体装置に関する。 背景技術
半導体集積回路は高集積化に伴ない配線幅の微細化、配線間隔の縮小化が進 み、そのために配線間に生じる寄生容量が増し半導体集積回路の演算処理速度 の向上の障害となっている。 この 1つの対応として、 配線絶縁膜に比誘電率の 低いボリパラキシリレン膜が提案されている。
ポリパラキシリレン膜の形成方法は、 例えば、 〔2.2〕 パラシクロフアンを 1 2 0 °Cで昇華させた後、 昇華物を 6 5 0 °Cで ρ ·キ シ リ レ ン 中間体に熱 分解する。 そして、 重合容器内で 2 0 °Cの基板上に重合物を析出させてポリパ ラキシリ レン膜を得ている。
また、 第 1図は、 半導体装置の絶縁層としてポリパラキシリ レンを用いる場 合の製造方法を示す。 まず、 半導体基板 10 上に第 1 層目のアルミニウム配線 11 を形成し、 このアルミニウム配線 11 の形成された半導体基板上に前記の方 法でポリパラキシリレンの絶縁膜 12 を成膜する : 工程 (a ) 。 さらにその上 にシリコン酸化膜 13を化学気相成長によって形成する :工程 (b ) 。 そして、 シリコン酸化膜 13 を化学的機械研磨法によって研磨後、 ビアホールを夕ング ステン 14により埋め込む : 工程 ( c ) 。 その後、 2層目のアルミニウム配線 15 を形成する : 工程 (d ) 。 以上の工程を繰り返し、 多層配線層を有する基板として、 該基板上に半導体 素子を搭載した半導体装置を得る。
半導体装置の製造では、後工程となるシリコン酸化膜の形成時やタングステ ン膜形成時に 4 0 0°C付近での熱処理、及び薄膜多層配線を形成する際に抵抗 層を形成するため、 空気雰囲気下、 4 0 0 °Cで 1時間の熱処理が加えられる。 このために空気雰囲気下、 4 0 0°Cで 1時間の熱履歴を受けても分解性ガスを 発生しない絶縁薄膜材料が必要となっている。
上記のパラキシレン膜は 4 0 0 °Cの熱処理で物性の低下は避けられず、微細 配線化、配線間隔の縮小化が求められる半導体集積回路の絶縁薄膜に適用でき ない。
更に、半導体装置の絶縁薄膜の一層の低誘電率化は重要な課題であり比誘電 率で 2. 5以下の材料の要求が強い。
MACROMOLECULES、 1999,32 , 7555-7561 には、 1, 1 ,2, 2, 9, 9, 10, 10-ォクタ フルォロ [2.2]シクロフアンを真空下で 7 0〜 1 0 0°Cで昇華させた後、 6 5 0°Cで熱分解させ、冷却した基板上に重合物を析出させて得られる有機高分子 薄膜は、 比誘電率が 2. 3で耐熱性が優れていることの開示がある。 しかし、 熱分解温度が 6 5 0 °Cで得られる薄膜は 2 5 0〜4 0 0 °Cでの減量成分が多 く含まれる (Mat.Res.Soc.Symp.Proc.、 1997, Vol .443, 21-33及び Mat. Res.
Soc.Symp.Proc. 1997, Vol .476,213-218) 。 そのため、 この膜は薄膜の形成後 に 4 0 0°Cで熱処理しても、 前記の原料成分を完全には除去できない。窒素ガ ス雰囲気中で熱処理する提案はあるが、 抵抗層形成のために、 空気雰囲気下で 熱処理に関する開示はない。 発明の開示
本発明の目的は、半導体装置の絶縁層に適用できる低誘電率かつ高耐熱性の 有機高分子フィルム、 及びその製造方法、 並びにそれを用いた半導体装置を提 供することにある。
これらの課題を解決する本発明の要旨は以下のとおりである。
( 1 ) 比誘電率が 2. 5以下で、 且つ空気又は不活性ガス雰囲気下 400 °C,
1時間加熱後の減量率が 0. 05wt%未満である有機高分子フィルムである。 また、比誘電率が 2.0〜2. 5で、且つ空気又は窒素ガス雰囲気下 400°C、 1時間加熱後の減量率が 0. 05 wt%未満である有機高分子フィルムである。
(2) フッ素原子を含むシクロフアン化合物を昇華させた後、 パラキシリ レン モノマーに熱分解し、該パラキシリ レンモノマーを重合させて得られるフヅ素 化ポリパラキシリレンを含む有機高分子フィルムである。
前記のフッ素原子を含むシクロフアン化合物が 1,1,2,2,9,9,10,10-ォク 夕フルォロ [2.2]シクロフアンであって、 該化合物を昇華ゾーンで昇華させた 後、 該昇華物をパラキシリ レンモノマーに熱分解ゾーンで熱分解し、 該パラキ シリ レンモノマーを重合ゾーンで基板上にポリパラキシレンとして析出させ ることにより得られるフッ素化ポリパラキシリ レンを含む有機高分子フィル ムである。
また、フッ素化ポリパラキシリレンを含む有機高分子フィルムの比誘電率が 2. 5以下で、 且つ空気又は不活性ガス雰囲気下 400°C、 1時間加熱後の減 量率が 0. 0 5 wt%未満である有機高分子フイルムである。
( 3 ) フヅ素原子を含むシクロファン化合物を 0. 00 1〜0. I mmH gの 減圧条件で、 3 0〜70°Cで昇華させる工程、 該昇華物を 68 0〜7 70 °Cで パラキシリレンモノマーに熱分解する工程、該パラキシリ レンモノマーを基板 上で- 40〜2 0°Cで重合してフヅ素化ポリパラキシリレンを合成する工程、 該フッ素化ポリパラキシリ レンに昇温加熱と定温加熱を段階的に加え、最終的 に 3 9 0〜4 1 0 °Cで熱処理する工程を有する有機高分子フィルムの製造方 法である。
そして、 前記の熱分解工程が、 昇華物を 7 00〜 7 50 °Cでパラキシリレン モノマーに熱分解する工程であること、及びフヅ素原子を含むシクロファン化 合物が 1,1,2,2,9,9,10,10-ォク夕フルォロ[2.2]シクロフアンであることを 特徴とする有機高分子フィルムの製造方法である。
( 4 ) 更に、 前記項 ( 3 ) のフヅ素化ポリパラキシリレンを熱処理する工程が、 ( i ) 最速で 5 °C /分の昇温速度で 1 70〜 2 2 0 °Cまで加熱する第 1の熱処 理工程、 1 70〜2 20 °Cで少なくても 1 0分の定温加熱する第 2の熱処理ェ 程、 最速で 1 °C/分の昇温速度で 3 50〜39 0 °Cまで加熱する第 3の熱処理 工程、 350〜 3 80°Cで少なくても 3 0分加熱する第 4の熱処理工程、 最速 で 0. 5 °C/分の昇温速度で 39 0〜4 1 0°Cまで加熱する第 5の熱処理工程、 39 0〜 4 1 0 °Cで少なくても 3 0分の加熱する第 6の熱処理工程を有する こと。
( ϋ ) 最速で 5 °C/分の昇温速度で 1 9 0〜2 1 0°Cまで加熱する第 1の熱処 理工程、 1 90〜2 1 0°Cで少なくても 30分の定温加熱する第 2の熱処理ェ 程、 最速で 1 °C /分の昇温速度で 37 0〜38 0 °Cまで加熱する第 3の熱処理 工程、 370〜380 °Cで少なくても 6 0分加熱する第 4の熱処理工程、 最速 で 0. 5 °C/分の昇温速度で 39 0〜4 1 0°Cまで加熱する第 5の熱処理工程、 39 0〜 4 1 0 °Cで少なくても 6 0分の加熱する第 6の熱処理工程を有する こと。
(iii) 最速で 1 0°C/分の昇温速度で 1 70〜 2 2 0 °Cまで加熱する第 1の熱 処理工程、 1 7 0〜2 2 0 °Cで少なくても 1 0分の定温加熱する第 2の熱処理 工程、 最速で 3 °C/分の昇温速度で 3 50〜3 9 0 °Cまで加熱する第 3の熱処 理工程、 350〜390 °Cで少なくても 1 5分加熱する第 4の熱処理工程、 最 速で 1 °C /分の昇温速度で 390〜4 1 0°Cまで加熱する第 5の熱処理工程、 39 0〜4 1 0°Cで少なくても 1 5分の加熱する第 6の熱処理工程を有する こと。
(iv) 最速で 1 0°C/分の昇温速度で 1 90〜 2 1 0°Cまで加熱する第 1の熱 処理工程、 190〜2 1 0°Cで少なくても 1 5分の定温加熱する第 2の熱処理 工程、 最速で 3 °C/分の昇温速度で 370〜380 °Cまで加熱する第 3の熱処 理工程、 370〜 380 °Cで少なくても 30分加熱する第 4の熱処理工程、 最 速で 1°C/分の昇温速度で 390〜4 1 0°Cまで加熱する第 5の熱処理工程、 390〜 4 1 0 °Cで少なくても 30分の加熱する第 6の熱処理工程を有する こと。 そして、 前記 ( i ) 、 (ii) の熱処理を 0. 00 1〜0. I mmHgの 減圧条件で行うこと、 (iii) 、 (iv) の熱処理を空気雰囲気で行なうことこ とを特徴とする有機高分子フィルムの製造方法である。
( 5 )絶縁フィルム上に薄膜配線が形成され、 該薄膜配線が半導体素子と電気 的に接続してなる半導体装置において、 該絶縁フィルムは比誘電率が 2. 5以 下で、 且つ空気あるいは不活性ガス雰囲気下 400 °C、 1時間加熱後の減量率 が 0. 05 wt%未満である有機高分子フィルムを用いた半導体装置である。 ( 6 )半導体基板の少な く と も 片側主面に 1 層 目 の配線層 が形成 さ れ、 該 1 層 目 の配線層の表面 に絶縁膜が形成さ れ、 該絶縁膜上 に導通穴を介して前記 1 層 目 の配線層 と 電気的 に接続 し た薄膜抵抗 層が形成され、 該薄膜抵抗層の上に電気的に接続 し た 2 層 目 の配線層 が形成さ れて な る 半導体装置において、 該絶縁膜は比誘電率が 2. 5 以下で、 且つ空気あるいは不活性ガス雰囲気下 400°C、 1時間加熱後の減量 率が 0. 05 wt%未満である有機高分子フィルム (膜) である半導体装置で ある。
前記の半導体基板は シ リ コ ン酸化膜、 1 層 目及び 2層 目 の配線 層がアル ミ ニ ゥ ム配線、 薄膜抵抗層が C r · S i 02 膜であることが 好ましい。
前記の有機高分子フィルム (膜) がフッ素原子を含むシクロフアン化合物を 昇華させた後、 パラキシリ レンモノマーに熱分解し、 該パラキシリレンモノマ 一を重合させて形成されるフッ素化ポリパラキシリ レンを含むことが好まし い。
更に前記の有機高分子フ ィルムが 1,1,2,2,9,9,10,10-ォク夕 フルォロ [2.2]シクロフアンを昇華ゾーンで昇華させた後、 該昇華を熱分解ゾーンでパ ラキシリレンモノマ一に熱分解し、該パラキシリレンモノマーを重合ゾーンで 基板上にポリパラキシリ レンとして析出させて得られるフヅ素化ポリパラキ シリレンを含むことが好ましい。
また、 有機高分子フィルムがフッ素原子を含むシクロフアン化合物を 0. 0 0 1〜 0. 1 mm H gの減圧条件で、 3 0〜 70 °Cで昇華させる工程、 該昇華 物を 6 80〜7 70 °Cでパラキシリレンモノマ一に熱分解する工程、該パラキ シリレンモノマ一を基板上で- 40〜2 0°Cで重合してフッ素化ポリパラキシ リレンを合成する工程、該フッ素化ポリパラキシリ レンに昇温加熱と定温加熱 を段階的に加え、最終的に 39 0〜4 1 0°Cで熱処理する工程を用いて形成し てなるフッ素化ポリパラキシリ レンであることが好ましい。 更に云えば、 該熱 処理する工程が上記の ( i ) 〜 (iv) の工程を含むことが好ましい。 図面の簡単な説明
第 1図は本発明の半導体装置の製造工程を示す構成断面である。
第 2図は本発明の有機高分子フィルム (ポリパラキシレン) の製造工程の概 略図である。
第 3図は本発明に係わる薄膜多層配線基板の製造工程を示す構成断面であ る。 発明を実施するための最良の形態
本発明は、 フ ッ 素原子 を含む シ ク ロ フ ア ン化合物、 例 え ば、 1,1,2,2,9,9,10,10- ォ ク タ フ ル ォ ロ [2.2] シ ク ロ フ ア ン 或 い は 4, 5, 7, 8, 12, 13, 15, 16-ォクタフルォロ [2.2] -パラシクロファン等の気相重合 により得られる高分子薄膜の薄膜形成時の熱分解温度を 6 8 0 °C〜 7 7 0 °C 更に好ましくは 700°C〜 7 50°Cを選定すること、及び該フヅ素化ポリパラ キシリレンに特定の昇温加熱と定温加熱を段階的に加え、最終的に 39 0〜4
1 0°Cで熱処理する工程を採用することにより、 比誘電率が 2. 5以下で、 且 つ空気又は不活性ガス雰囲気下 400°C、 1時間加熱後の減量率が 0. 05w t%未満の有機高分子フィルムを提供できる。 本発明において、 フ ッ素原子を含むシク ロ フアン化合物、 例えば、 1,1,2,2,9,9,10,10-ォクタフルォロ [2.2]パラシクロフアン (ダイマ) がモノ マーに効率良く熱分解するために 6 80 °C〜 77 0 °Cが好ましく、更に好まし くは 700°C〜 7 50 °Cを選定する必要がある。熱分解温度が 680 °C未満で あると、 ダイマからモノマ一への分解が十分に進行せず、 このためにフッ素化 ポリパラキシリ レンは目的とする比誘電率、 及び耐熱性が得られない。 また、
770 °Cを越えると、ダイマーからモノマーに熱分解する際にモノマーの分解 が進み、フッ素化ポリパラキシリレンの生成時に耐熱性を損なう副生成物が含 まれる。 すなわち、 2 50〜 400°Cで減量する成分が多く含まれ、 薄膜の形 成後に 400 °Cで熱処理工程を施しても、これらの副生成物を完全には除去で きない。
また 400° ( , 1時間加熱後の減量率が 0. 0 5 w t %以下の有機高分子フ ィルムを得るには, 上記の一連の重合反応は 0.0 0 1〜 0. 1 mmH g減圧 条件下, 1,1, 2,2, 9, 9,10, 10-ォクタフルォロ [2.2]パラシクロフアンの昇華を 30〜70°Cで基板への重合が- 40〜20°Cで行う。 そして、 フィルムが形 成された後、 昇温加熱と定温加熱を段階的に加え,最終的に 390〜4 1 0°C まで熱処理する。
この熱処理は空気雰囲気下でも良いが、雰囲気により段階加熱の条件が異な る。 真空度 0.00 1から 0.1 mmH gでの熱処理は、 第 1段階は最速で 5 °C /分の昇温速度で 1 70〜 2 20 °Cまで加熱し、 第 2段階はこの温度範囲で少 なくても 1 0分の定温加熱を、 第 3段階は最速で 1°C/分の昇温速度で 350 ~ 390°Cまで加熱し、第 4段階はこの温度範囲でで少なくても 30分の加熱 を、 第 5段階は最速で 0. 5 °C/分の昇温速度で 390〜4 1 0°Cまで加熱し、 第 6段階は 3 9 0〜4 1 0°Cで少なくても 3 0分の条件で行われることが好 ましい。 さらに、 好ましくは第 1段階は最速で 5 °C/分の昇温速度で 1 9 0〜 2 1 0°Cまで加熱し、第 2段階はこの温度範囲で少なくても 3 0分の定温加熱 を、 第 3段階は最速で 1 °C /分の昇温速度で 3 70〜 38 0°Cまで加熱し、 第 4段階はこの温度範囲で少なくても 60分の加熱を、 第 5段階は最速で 0. 5 °C/分の昇温速度で 39 0〜4 1 0°Cまで加熱し、 第 6段階はこの温度範囲 で少なくても 6 0分の加熱を行なうことが好ましい。
空気雰囲気中では、 熱処理が第 1段階は最速で 1 0°C/分の昇温速度で 1 7 0〜2 2 0 °Cまで加熱し、第 2段階はこの温度範囲で少なくても 1 0分の定温 加熱を、第 3段階は最速で 3 °C/分の昇温速度で 3 50〜 39 0 °Cまで加熱し、 第 4段階はこの温度範囲で少なくても 1 5分の加熱を、第 5段階は最速で 1 °C /分の昇温速度で 39 0〜4 1 0°Cまで加熱し、 第 6段階はこの温度範囲で少 なくても 1 5分の条件で行うことが好ましい。 さらに、 好ましくは第 1段階は 最速で 1 0°C/分の昇温速度で 1 9 0〜2 1 0°Cまで加熱し、 第 2段階はこの 温度範囲で少なくても 1 5分の定温加熱を、 第 3段階は最速で 3 °C/分の昇温 速度で 370〜 3 80°Cまで加熱し、第 4段階はこの温度範囲で少なくても 3 0分の加熱を、 第 5段階は最速で 1 °C /分の昇温速度で 3 9 0〜4 1 0°Cまで 加熱し、第 6段階はこの温度範囲で少なくても 30分の加熱条件で行なうこと が好ましい。
本発明におい て、加熱減量の測定は、 Mettler TA-300 (Mettler Co.製)を 用 い て 測 定 し 、 デ ー タ は SOLARIS ソ フ ト ウ エ ア (Mettler Co.製)を用 い て処理 し た 。 セ ラ ミ ッ ク の TGノ ン に 10 〜16m g の フ ィ ル ム を 小 さ く ロ ール状 に し て 収 め、 昇温速度 10°C /分で 400°Cま で加熱 し た。 その後、 400°Cで 1〜3 時間保 ち減量率 を測定 し た。 空気雰囲気下 と窒素雰囲気下で測定 し た。 以下、 実施例により本発明を具体的に説明する。
〔実施例 1〕 以下、 第 2図を用いて本発明の一例を説明する。
第 2 (a)図の昇華ゾーン 1の中のるっぽ 2中にフッ素原子を含むシクロフ ァン化合物である 1,1,2, 2, 9, 9, 10, 10-ォク夕フルォロ [2.2]パラシクロファ ン 7を 30〜7 0°Cで加熱昇華しダイマ一 (ガス) とする。 装置内は 0. 00 5 mmH g以上の真空度に保たれた。 るつぼ 2を 60 °Cに加熱し、 次に、 この ダイマ一 7 を熱分解ゾーン 3 に送り込み 7 50 °Cでモノマ一 (高反応性のひ, α ,ひ',ひ' -テトラフルォ口- P-キシリレン中間体) 8に分解する。 次に、 この 高反応性の中間体 8を重合ゾーン 5にある- 1 0 °Cに冷却された直径 50 mm の円形のガラス板 4の上に重合析出させた。 析出速度で 0. 2 7〃m/分で, 厚さ 35〃mのポリ (ひ, α,ひ',ひ', -テトラフルォ口- P-キシリレン) 9を含 む有機高分子フィルムを得た。 そのフィルムを常圧に戻した後、 ガラス管に入 れ真空度 0. 0 05 mmH gに吸引した。
その後、 真空度が 0.0 0 5 mmH gの雰囲気下で第 2 (b) 図に示す昇温 加熱と定温加熱を段階的に加え、 最終的に 40 0°Cまで熱処理した。
前記で得られたフッ素化ポリパラキシリレンフィルムは、 窒素雰囲気下、 4 00°Cで 3時間加熱後の減量率は 0%であった。 ま た、 空気雰囲気下 4 0 0 °Cで 1 時間加熱後の減量率は 0%で あ っ た 。(装置の測定精度 : 0. 05%)
また、 該フヅ素化ポリパラキシリ レンフィルムの密度は 1. 6 2 g/cm3 で、 比誘電率は 1 MH zで 2. 20、 誘電正接は 0. 00 1未満を示した。
〔実施例 2〕
1,1,2,2,9,9,10,10-ォク夕フルォロ 〔2.2〕 パラシクロフアン 7を昇華ゾー ン 1のるつぼ 2内に入れる。装置内は 0. 00 5 mmH g以上の真空度に保た れた。るっぽ 2を 70°Cに加熱し、 1,1,2,2,9,9,10,10-ォク夕フルォロ〔2.2〕 パラシクロフアン 7を昇華させ昇華ゾーンから熱分解ゾーンに移動させる。熱 分解は 700 °Cで行われ、 高反応性のひ,ひ, ひ',ひ' -テ トラフルォ口- P-キシ リ レン中間体 8が形成される。 次に、 この高反応性の中間体 8を重合ゾーン 5 にある- 1 °Cに冷却された直径 50 mmのガラス基板 4上に 0.2 6〃m/分の 速度で重合析出させ、 厚さ 3 0〃mのポリ (ひ,ひ,ひ',ひ' -テ トラフルォ口- P-キシリレン) を含むフィルムを得た。
そのフィルムを常圧に戻した後、 ガラス管に入れ真空度 0. 005 mmH g に吸引した。その後、昇温速度 5 °C /分で 20 0 °Cまで加熱、そのまま 200°C で 40分、 続いて昇温速度 1 °C /分で 380 °Cまで加熱、 そのまま 3 80 °Cで 60分、 さらに、 昇温速度、 0. 5 °C/分で 400 °Cまで加熱、 そのまま 40 0°Cで 60分の熱処理を行った。
得られた有機高分子フィルムの密度は 1. 6 2 g/c m3で、 比誘電率は 1 M H zで 2. 2 0、 誘電正接は 0.001未満を示した。
このフィルムの窒素雰囲気下、 400 °Cで 3時間加熱後の減量率は 0 %であ つた。 ま た、 空気雰囲気下 400 °Cで 1 時間加熱後の減量率は 0% で あ っ た。 (装置の測定精度 : 0. 0 5%)
〔実施例 3〕
1,1,2,2,9,9,10,10-ォクタフルォロ 〔2.2〕 パラシクロフアンを昇華ゾーン のるつぼ内に入れる。装置内は 0. 00 5 mmH g以上の真空度に保たれた。 るっぽを 60°Cに加熱し、 1,1,2,2, 9, 9, 10, 10-ォク夕フルォロ 〔2.2〕 パラシ クロフアンを昇華させ昇華ゾーンから熱分解ゾーンに移動させる。熱分解は 7 30°Cで行われ、 高反応性のひ,ひ,ひ',ひ' -テトラフルォ口- P-キシリレン中 間体が形成される。 次に、 この高反応性の中間体を重合ゾーンにある- 1 5°C に冷却された直径 1 00 mmのシリコンウェハ上に 0. 29〃m /分の速度で 重合析出させ、 厚さ 1 0〃mのポリ (ひ,ひ, ひ',ひ' -テ トラフルォ口- P-キシ リレン) を含む薄膜を得た。
その薄膜付きのシリコンウェハを常圧に戻した後、真空加熱炉に入れ真空度 0. 005 mmH gに吸引した。 その後、 昇温速度 5 °C/分で 2 00 °Cまで加 熱、 そのまま 2 0 0 °Cで 3 0分、 続いて昇温速度 1 °C /分で 3 8 0 °Cまで加熱、 そのまま 3 8 0 °Cで 6 0分、 さらに、 昇温速度 0 . 5 °C /分で 4 0 0 °Cまで加 熱、 そのまま 4 0 0 °Cで 6 0分の熱処理を行った。
得られた薄膜の比誘電率は 1 M H zで 2 . 2 0、 誘電正接は 0 . 0 0 1未満 した。
このフィルムの窒素雰囲気下、 4 0 0 で 3時間加熱後の減量率は 0 %であ つた。 ま た、 空気雰囲気下 400 °Cで 1 時間加熱後の減量率は 0 % で あ っ た。 (装置の測定精度 : 0 . 0 5 % )
〔実施例 4〕
第 2図を用いて本発明の半導体装置について説明する。 半導体基板 10上に 第 1層目のアルミニゥム配線 11 を形成し、このアルミニゥム配線 11の上にポ リ (ひ,ひ,ひ',ひ' -テトラフルォ口-パラキシリ レン)を含む有機高分子薄膜 12 を成膜した : 工程 (a ) 。
この時の成膜条件は実施例 3 と全く同じ条件で成膜し、 成膜後、 そのまま 0 . 0 0 5 m m H gの減圧下で 4 0 0 °C、 3 0分の熱処理を施した。 次に、 その上 部にシリコン酸化膜 13 を化学気相重合法によって形成した。 シリコン酸化膜 13の成膜温度は 4 0 0 °Cで行った : 工程 (b ) 。
シリコン酸化膜 13 を化学的機械研磨法で研磨後、 ビアホールを形成した。 このビアホールをタングステン 14により埋め込んだ : 工程 ( c.) 。
その上に第 2層目のアルミニウム配線 15を形成した : 工程 (d ) 。
以上の手順を繰り返すことにより、多層配線を有する半導体装置を製造した c このようにして形成された半導体装置の有機高分子薄膜は比誘電率 2 . 2を 有し、 配線間の容量低減を可能とし、 信号伝送速度の高速化を達成した高信頼 性の半導体装置を提供できる。
〔実施例 5〕
第 3図を用いて本発明に係わる薄膜多層配線基板ついて説明する。半導体基 板 10上に第 1層目のアルミニウム配線 11を形成した。このアルミニウム配線 11 の上にポリ (α,ひ, ひ',ひ' -テトラフルォ口-パラキシリ レン) を含む有機 高分子薄膜 12 を成膜した : 工程 (a) 。 この時の成膜条件は実施例 3と同じ 条件で成膜し、 成膜後、 そのまま 0. 0 05 mmH gの減圧下で 400°C、 3 0分の熱処理を施した。
次に、 その上部にシリコン酸化膜 13を化学気相重合法によって形成した : 工程 (b) 。
このシリコン酸化膜 13を化学的機械研磨法で研磨後、 ビアホールを形成し た。 このビアホールをタングステン 17により埋め込んだ : 工程 (c ) 。
次いで、 薄膜抵抗素子用として膜厚が 0. 3 111の01^ 3 ;102 (組成 C r : S i 02 = 66 w t % : 34w t %) 膜 16 をスパヅ夕により形成した。 この 後、 抵抗値を一定にするため、 空気雰囲気下で 40 0°C、 2時間の熱処理が施 された。
その上に膜厚 0.4〃mの第 2層目のアルミニウム膜 15を形成した:工程(d)c レジス トとして 0 FPR (東京応化工業株式会社製) を用い、 成膜一露光後、 NMD- 3 (東京応化工業株式会社製) 現像液でレジス トパターンをアルミ二 ゥム膜上に形成した (工程 8) 。 エッチング液の組成がリン酸 :硝酸 :酢酸 : 水 =78: 2: 15: 5 (体積分率) の溶液でエッチングを行い 2層目のアルミニゥ ム配線 17を形成した。
次ぎに、 フヅ化水素 7.5 mol/l、 塩酸 2.4 mol/l、 リン酸 0.51 mol/l、 フッ 化アンモニゥム 3. 74 mol/1 の水溶液を用いた用いたエッチングを行い薄 膜抵抗素子である C r · S i 02配線 16を形成した : 工程 ( e ) 。
その後、上記の工程を繰り返し行いアルミニゥムの多層配線基板を作成した < このようにして製造した薄膜多層配線基板において、 ポリ (ひ,ひ,ひ',ひ'- テトラフルォ口-パラキシリ レン) を含む有機高分子薄膜は比誘電率が 2. 2 であり、 配線間の容量の低減を可能にした。 C r · S i 02配線 16は末端抵抗用の薄膜抵抗素子として形成したが、個々 の抵抗値が 60 ± 3 Ωの値を示し、抵抗素子として信頼性の高いことが分かつ た。
この結果、 絶縁膜としてポリ (ひ,ひ,ひ',ひ' -テ トラフルォ口-パラキシリレ ン) を含む有機高分子薄膜と、 末端抵抗用の薄膜抵抗素子として C r · S i 0
2配線を用いた半導体装置は信号伝送の高速化が可能で、 かつ高信頼生化を達 成できる。
〔比較例 1〕
1,1,2,2,9,9,10,10-ォクタフルォロ 〔2.2〕 パラシクロフアンの熱分解を 6 50 °Cで行った以外は実施例 1と全く同様にして厚さ 3 5 mのポリ(ひ,ひ, ひ',ひ', -テトラフルォ口- P-キシリレン) を含む有機高分子フィルムを得た。 そのフィルムを常圧に戻した後、 ガラス基板から取り除き、 ガラスアンプル 管に入れ真空度 0. 00 5 mmH gに吸引した。 その後,昇温速度 4 °C/分で 4 00°Cまで加熱、 そのまま 400°Cで 6 0分の熱処理を行った。
得られた有機高分子フィルムの密度は 1. 62 g/c m3で,比誘電率は 1 M H zで 2. 2 0、 誘電正接は 0. 00 1未満を示した。
このフィルムの窒素雰囲気下、 400 °Cで 3時間加熱後の減量率は 0. 1 5 %であった。 ま た、 空気雰囲気下 400°Cで 1 時間加熱後の減量率 は 0.2%であ っ た。 (装置の測定精度 : 0. 0 5 %)
〔比較例 2〕
ポリ (ひ,ひ,ひ',ひ',-テトラフルォ口- P-キシリレン) の原料となる二量体 1,1,2,2,9,9,10,10-ォクタフルォロ 〔2.2〕 パラシクロフアンの熱分解を 8 5 0°Cで行った以外は実施例 1 と全く同様にして厚さ 3 5 zmのポリ (ひ,ひ, ひ',ひ', -テトラフルォ口- P-キシリ レン) を含む有機高分子フィルムを得た。 そのフィルムを常圧に戻した後、 ガラス基板から取り除き、 ガラスアンプル 管に入れ真空度 0. 005 mmH gに吸引した。 その後、 昇温速度 4°C/分で 400°Cまで加熱、 そのまま 400°Cで 60分の熱処理を行った。
得られた有機高分子フィルムの密度は 1. 50 g/c m3で、 比誘電率は 1 M
H zで 2. 1 5、 誘電正接は 0. 00 1未満を示した。
このフィルムの窒素雰囲気下、 400 °Cで 3時間加熱後の減量率は 0. 3% であった。 ま た、 空気雰囲気下 400°Cで 1 時間加熱後の減量率は
0.35%で あ っ た。 (装置の測定精度 : 0. 05%)
〔比較例 3〕
半導体基板 10上に第 1層目のアルミニウム配線 11を形成し、このアルミ二 ゥム配線の上にひ, ひ,ひ', ひ'-テ トラフルォ口-パラキシリ レンを含む有機高 分子薄膜 12 を成膜した。 この時の成膜条件は比較例 2と全く同じ条件で成膜 し、 成膜後、 そのまま 0. 005 mm H gの減圧下で 400°C、 30分の熱処 理を施した。 次に、 その上部にシリコン酸化膜 13を化学気相重合法によって 形成した。 シリコン酸化膜 13の成膜温度は 400 °Cで行つた。 シリコン酸化 膜 13を化学的機械研磨法で研磨後、 ビアホールを形成した。 このビアホール をタングステン 14により埋め込み後、第 2層目のアルミニウム配線 15を形成 した。
前記により形成された有機高分子薄膜 12とシリコン酸化膜 13の界面にはァ ゥトガスに起因する膨れと剥離が発生したので、これ以上の評価は行わなかつ た。

Claims

請 求 の 範 囲
1. 比誘電率が 2. 5以下で、 且つ空気又は不活性ガス雰囲気下 400°C、 1 時間加熱後の減量率が 0. 0 5 wt%未満であることを特徴とする有機高分子 フィルム。
2. 比誘電率が 2.0〜 2. 5で、 且つ空気又は窒素ガス雰囲気下 400 °C、 1 時間加熱後の減量率が 0. 0 5 wt%未満であることを特徴とする有機高分子 フィルム。
3. フッ素原子を含むシクロファン化合物を昇華させた後、 パラキシリレンモ ノマーに熱分解し、該パラキシリレンモノマーを重合させて得られるフッ素化 ポリパラキシリ レンを含むことを特徴とする請求項 1又は 2記載の有機高分 子フィルム。
4. 1,1,2,2,9,9,10,10-ォクタフルォロ [2.2]シクロファンを昇華ゾーンで昇 華させた後、該昇華物をパラキシリ レンモノマーに熱分解ゾーンで熱分解し、 該パラキシリ レンモノマ一を重合ゾーンで基板上にポリパラキシレンとして 析出させることにより得られるフッ素化ポリパラキシリ レンを含むことを特 徴とする請求項 1又は 2記載の有機高分子フィルム。
5. フッ素原子を含むシクロファン化合物を 0. 0 0 1 ~0. I mmHgの減 圧条件で、 30〜 7 0 °Cで昇華させる工程、 該昇華物を 680〜 770 °Cでパ ラキシリ レンモノマーに熱分解する工程、該パラキシリレンモノマ一を重合容 器内の基板上で- 40〜2 0°Cで重合してフッ素化ポリパラキシリレンを合成 する工程、該フッ素化ポリパラキシリレンに昇温加熱と定温加熱を段階的に加 え、 最終的に 3 9 0〜4 1 0°Cで熱処理する工程、 を有することを特徴とする 有機高分子フィルムの製造方法。
6. フッ素原子を含むシクロフアン化合物を昇華させる工程、 該昇華物を 7 0 0〜 7 5 0 °Cでパラキシリ レンモノマ一に熱分解する工程、該パラキシリ レン モノマ一を一担取り出した後、 重合容器内の基板上で- 4 0 - 2 0 °Cで重合し てフッ素化ポリパラキシリ レンを合成する工程、該フヅ素化ポリパラキシリレ ンに昇温加熱と定温加熱を段階的に加え、最終的に 3 9 0〜4 1 0 °Cで熱処理 する工程、 を有することを特徴とする有機高分子フィルムの製造方法。
7 . フッ素原子を含むシクロフアン化合物を昇華させる工程、 該昇華物を 7 0 0〜7 5 0 °Cでパラキシリ レンモノマーに熱分解する工程、該パラキシリ レン モノマーを重合容器内の基板上で- 4 0〜2 0 °Cで重合してフッ素化ポリパラ キシリ レンを合成する工程、該フッ素化ポリパラキシリレンに昇温加熱と定温 加熱を段階的に加え、 最終的に 3 9 0〜4 1 0 °Cで熱処理する工程、 を有する ことを特徴とする有機高分子フィルムの製造方法。
8 . 請求項 5〜 7のいずれかにおいて、 フヅ素原子を含むシクロファン化合物 が 1,1,2,2,9 , 9, 10 , 10-ォク夕フルォロ [2.2 ]パラシクロフアンであることを 特徴とする有機高分子フィルムの製造方法。
9 . 請求項 5〜 8のいずれかにおいて、 フッ素化ポリパラキシリ レンを熱処理 する工程が、 最速で 5 °C/分の昇温速度で 1 7 0〜 2 2 0 °Cまで加熱する第 1 の熱処理工程、 1 7 0〜2 2 0 °Cで少なくても 1 0分の定温加熱する第 2の熱 処理工程、 最速で 1 °C /分の昇温速度で 3 5 0〜 3 9 0 °Cまで加熱する第 3の 熱処理工程、 3 5 0〜3 8 0 °Cで少なくても 3 0分加熱する第 4の熱処理工程、 最速で 0 . 5 °C/分の昇温速度で 3 9 0〜4 1 0 °Cまで加熱する第 5の熱処理 工程、 3 9 0〜4 1 0 °Cで少なくても 3 0分の加熱する第 6の熱処理工程こと を特徴とする有機高分子フィルムの製造方法。
1 0 . 請求項 5〜 8のいずれかにおいて、 フッ素化ポリパラキシリレンを熱処 理する工程が、 最速で 5 °C /分の昇温速度で 1 9 0〜2 1 0 °Cまで加熱する第 1の熱処理工程、 1 9 0〜 2 1 0 °Cで少なくても 3 0分の定温加熱する第 2の 熱処理工程、 最速で 1 °C/分の昇温速度で 3 7 0〜 3 8 0 °Cまで加熱する第 3 の熱処理工程、 37 0〜3 80 °Cで少なくても 60分加熱する第 4の熱処理ェ 程、 最速で 0. 5 °C/分の昇温速度で 39 0〜4 1 0°Cまで加熱する第 5の熱 処理工程、 39 0〜 4 1 0 °Cで少なくても 60分の加熱する第 6の熱処理工程 ことを特徴とする有機高分子フィルムの製造方法。
1 1. 請求項 5から 10のいずれかにおいて、 フッ素化ポリパラキシリ レンの 熱処理を 0. 00 1〜 0. 1 mmH gの減圧条件で行うことを特徴とする有機 高分子フィルムの製造方法。
1 2.請求項 5〜 8のいずれかにおいて、 フヅ素化ポリパラキシリレンを熱処 理する工程が、 最速で 1 0°C/分の昇温速度で 1 7 0〜2 20 °Cまで加熱する 第 1の熱処理工程、 1 70〜 2 20 °Cで少なくても 1 0分の定温加熱する第 2 の熱処理工程、 最速で 3 °C/分の昇温速度で 3 50〜39 0 °Cまで加熱する第 3の熱処理工程、 3 50〜39 0 °Cで少なくても 1 5分加熱する第 4の熱処理 工程、 最速で 1 °C/分の昇温速度で 39 0〜4 1 0 °Cまで加熱する第 5の熱処 理工程、 390〜4 1 0°Cで少なくても 1 5分の加熱する第 6の熱処理工程こ とを特徴とする有機高分子フィルムの製造方法。
1 3.請求項 5〜 8のいずれかにおいて、 フヅ素化ポリパラキシリレンを熱処 理する工程が、 最速で 1 0°C/分の昇温速度で 1 9 0〜2 1 0°Cまで加熱する 第 1の熱処理工程、 1 9 0〜2 1 0°Cで少なくても 1 5分の定温加熱する第 2 の熱処理工程、 最速で 3 °C/分の昇温速度で 3 70〜380 °Cまで加熱する第 3の熱処理工程、 370〜380 °Cで少なくても 3 0分加熱する第 4の熱処理 工程、 最速で 1 °C /分の昇温速度で 3 9 0〜4 1 0 °Cまで加熱する第 5の熱処 理工程、 390〜4 1 0°Cで少なくても 30分の加熱する第 6の熱処理工程こ とを特徴とする有機高分子フィルムの製造方法。
14. 請求項 5〜 8と請求項 1 2, 1 3のいずれかにおいて、 フッ素化ポリ Λ ラキシリ レンの熱処理を空気雰囲気行なうことを特徴とする有機高分子フィ ルムの製造方法。
1 5 . 絶縁フィルム上に薄膜配線が形成され、 該薄膜配線が半導体素子と電気 的に接続してなる半導体装置において、該絶縁フィルムが請求項第 1項から第 4項記載の有機高分子フィルムであることを特徴とする半導体装置。
1 6 .半導体基板の少な く と も 片側主面 に 1 層 目 の配線層が形成 さ れ、 該 1 層 目 の配線層の表面 に絶縁膜が形成さ れ、 該絶縁膜上 に導通穴を介して前記 1 層 目 の配線層 と 電気的 に接続 し た薄膜抵抗 層が形成され、 該薄膜抵抗層の上に電気的に接続 し た 2 層 目 の配線層 が形成さ れて な る 半導体装置 において、該絶縁フィルムが請求項第 1 項から第 4項記載の有機高分子フィルムであることを特徴とする半導体装置。
1 7 . 請求項 1 6において、 半導体基板が シ リ コ ン酸化膜、 1 層 目 及 び 2 層 目 の配線層がアル ミ ニ ウ ム配線、 薄膜抵抗層が C r / S i 0 2 膜であることを特徴とする半導体装置。
1 8 .請求項 5から 1 4に記載されたプロセスで製造された有機高分子フィル ムを用いることを特徴とする請求項 1 5項から 1 7項に記載の半導体装置。
PCT/JP2002/007388 2001-07-27 2002-07-22 Organic polymer film, method for producing the same and semiconductor device using the same WO2003011951A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003517136A JPWO2003011951A1 (ja) 2001-07-27 2002-07-22 有機高分子フィルム、その製造方法及びそれを用いた半導体装置
US10/484,893 US20050156287A1 (en) 2001-07-27 2002-07-22 Organic polymer film, method for producing the same and semiconductor device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2001120907 2001-07-27
RU2001120907/04A RU2218364C2 (ru) 2001-07-27 2001-07-27 ПЛЕНКА ИЗ ПОЛИ ( α,α,α′,α′- ТЕТРАФТОРПАРАКСИЛИЛЕНА), СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ПОЛУПРОВОДНИКОВЫЙ ПРИБОР С ЕЕ ИСПОЛЬЗОВАНИЕМ

Publications (1)

Publication Number Publication Date
WO2003011951A1 true WO2003011951A1 (en) 2003-02-13

Family

ID=20252104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007388 WO2003011951A1 (en) 2001-07-27 2002-07-22 Organic polymer film, method for producing the same and semiconductor device using the same

Country Status (4)

Country Link
US (1) US20050156287A1 (ja)
JP (1) JPWO2003011951A1 (ja)
RU (1) RU2218364C2 (ja)
WO (1) WO2003011951A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031070A (ja) * 2017-08-08 2019-02-28 南臺學校財團法人南臺科技大學 複合板及びこれを用いた太陽電池モジュール並びに発光装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015699A2 (en) * 1995-10-27 1997-05-01 Specialty Coating Systems, Inc. Method and apparatus for the deposition of parylene af4 onto semiconductor wafers
JPH10195181A (ja) * 1997-01-14 1998-07-28 Daisan Kasei Kk 耐熱性ポリ−α,α−ジフルオロ−パラキシリレン膜
US5804259A (en) * 1996-11-07 1998-09-08 Applied Materials, Inc. Method and apparatus for depositing a multilayered low dielectric constant film
EP0966039A2 (en) * 1998-06-15 1999-12-22 Kishimoto Sangyo Co., Ltd. Insulating film for semiconductor device and semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123993A (en) * 1998-09-21 2000-09-26 Advanced Technology Materials, Inc. Method and apparatus for forming low dielectric constant polymeric films
US6107184A (en) * 1998-12-09 2000-08-22 Applied Materials, Inc. Nano-porous copolymer films having low dielectric constants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015699A2 (en) * 1995-10-27 1997-05-01 Specialty Coating Systems, Inc. Method and apparatus for the deposition of parylene af4 onto semiconductor wafers
US5804259A (en) * 1996-11-07 1998-09-08 Applied Materials, Inc. Method and apparatus for depositing a multilayered low dielectric constant film
JPH10195181A (ja) * 1997-01-14 1998-07-28 Daisan Kasei Kk 耐熱性ポリ−α,α−ジフルオロ−パラキシリレン膜
EP0966039A2 (en) * 1998-06-15 1999-12-22 Kishimoto Sangyo Co., Ltd. Insulating film for semiconductor device and semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HARUS A.S. ET AL.: "Parylene AF-4: A low epsilon r materials candidate for ULSI multilevel interconnect applications", MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, vol. 443, 1997, pages 21 - 33, XP001120234 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031070A (ja) * 2017-08-08 2019-02-28 南臺學校財團法人南臺科技大學 複合板及びこれを用いた太陽電池モジュール並びに発光装置

Also Published As

Publication number Publication date
JPWO2003011951A1 (ja) 2004-11-18
US20050156287A1 (en) 2005-07-21
RU2218364C2 (ru) 2003-12-10

Similar Documents

Publication Publication Date Title
JP3418458B2 (ja) 半導体装置の製造方法
US6596467B2 (en) Electronic device manufacture
JP2008511711A5 (ja)
US6797343B2 (en) Dielectric thin films from fluorinated precursors
US20040084774A1 (en) Gas layer formation materials
CN114038762A (zh) 利用微波能量固化热塑性塑料的方法
JP2008511711A (ja) 新規ポリオルガノシロキサン誘電体
EP1442071B1 (en) Etch-stop resins
Yang et al. High deposition rate parylene films
WO2002069395A2 (en) INTEGRATION OF LOW ⊂ THIN FILMS AND Ta INTO Cu DAMASCENE
You et al. Vapor deposition of parylene‐F by pyrolysis of dibromotetrafluoro‐p‐xylene
JPWO2003011952A1 (ja) ポリパラキシリレンフィルム、その製造方法及び半導体装置
Lang et al. Vapor deposition of very low k polymer films, poly (naphthalene), poly (fluorinated naphthalene)
WO2002093641A1 (en) Layered hard mask and dielectric materials and methods therefor
WO2003011951A1 (en) Organic polymer film, method for producing the same and semiconductor device using the same
KR20040084737A (ko) 반도체 장치의 제조 방법
JP3485425B2 (ja) 低誘電率絶縁膜の形成方法及びこの膜を用いた半導体装置
JP2006503165A (ja) オルガノシロキサン
Taylor et al. Parylene Copolymers
JP3384487B2 (ja) 絶縁膜の形成方法および多層配線
JPH06112336A (ja) 半導体装置の製造方法
JP2005536026A (ja) ナノ多孔質材料およびその形成方法
JPH05218214A (ja) 有機硅素重合体と半導体装置の製造方法
RU2001120907A (ru) Органическая полимерная пленка, способ ее получения и полупроводниковый прибор с ее использованием
WO2005043596A2 (en) Layered hard mask and dielectric materials and methods therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003517136

Country of ref document: JP

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10484893

Country of ref document: US