WO2003010369A1 - Oxide high-critical temperature superconductor acicular crystal and its production method - Google Patents

Oxide high-critical temperature superconductor acicular crystal and its production method Download PDF

Info

Publication number
WO2003010369A1
WO2003010369A1 PCT/JP2002/005715 JP0205715W WO03010369A1 WO 2003010369 A1 WO2003010369 A1 WO 2003010369A1 JP 0205715 W JP0205715 W JP 0205715W WO 03010369 A1 WO03010369 A1 WO 03010369A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
needle
crystal structure
oxide
crystals
Prior art date
Application number
PCT/JP2002/005715
Other languages
English (en)
French (fr)
Inventor
Mitsunori Sato
Tsutomu Yamashita
Hiroshi Maeda
Sangjae Kim
Masanori Nagao
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to US10/483,562 priority Critical patent/US7008906B2/en
Priority to CA002453922A priority patent/CA2453922C/en
Priority to DE60238328T priority patent/DE60238328D1/de
Priority to EP02738643A priority patent/EP1411154B1/en
Publication of WO2003010369A1 publication Critical patent/WO2003010369A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/04Isothermal recrystallisation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/225Complex oxides based on rare earth copper oxides, e.g. high T-superconductors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/729Growing single crystal, e.g. epitaxy, bulk

Definitions

  • the present invention relates to an oxide high-temperature superconductor needle-like crystal having almost no defects, that is, almost a perfect crystal of an oxide high-temperature superconductor essential for realizing a superconducting electronic element, and a method for producing the same. Things. Light
  • Single crystal oxide high-temperature superconductors have a crystal structure in which conductive layers and non-conductive layers are alternately stacked, and each layer has a unique Josephson bond.
  • a single crystal switching device using the intrinsic Josephson effect has been proposed. This new single-crystal switching device can be reduced in size to almost 1/100 compared to the conventional Josephson junction, has a switching speed about 100 times faster, and is expected to operate at a high frequency of THz (terahertz). .
  • the needle-shaped crystal of the Bi-2223 crystal structure with a superconducting critical temperature of 110K and much higher than the liquid nitrogen temperature of 77K is higher than the Bi-2212 crystal structure with a superconducting critical temperature of 85K. It is advantageous.
  • the needle-shaped crystals that have been grown to date have only the B i -2212 crystal structure, and the growth of needle-shaped crystals having the B i-2223 crystal structure has not been successful. Disclosure of the invention
  • the high-temperature oxide superconductor Bi 2 Sr 2 Ca 2 Cu 3 O, 0 (B i-2223) has established a method of producing a needle-like crystal having no defect in the crystal structure, and has obtained a high-quality needle-like crystal. Has not yet been realized.
  • the present invention provides an oxide high-temperature superconductor needle-like crystal having a crystal structure of Bi-2223, which is indispensable for realizing a superconducting device element, and having very few defects, and its production.
  • the aim is to provide a method.
  • the oxide high temperature superconductor acicular crystal the oxide 1 mole of B i 2 Sr 2 Ca 2 Cu 3 O 10 crystal structure, Te0 2 and from 0.2 to 0.8 moles pressure containing the powder molded body C. in 5-100% oxygen atmosphere, and heat treated at 840 ⁇ 890 ° C, B i 2 is grown from the compact S r 2 Ca 2 Cu 3 0 ! .
  • a needle-shaped crystal having a crystal structure is provided.
  • a method for producing a needle-like crystal having a crystal structure comprising: Bi 2 Sr 2 Ca 2 Cu 30 .
  • B i S r Ca in 2 Cu 3 ⁇ 1Q method for producing a needle-like crystals of the crystal structure B i S r Ca 2 Cu 3 ⁇ t. T e 0 2 to 0.2 to 0 to oxide 1 mole of crystal structure. 8 mol, the green compact to 0.1 to 2.0 mol composite containing ⁇ & 0, 5 to 100% oxygen atmosphere at medium, heat treated at 840 ⁇ 890 ° C, B from the shaped body i S r 2 Ca 2 Cu 3 0! . It is characterized by growing needle-like crystals having a crystal structure.
  • the present invention relates to an oxide high-temperature superconductor B i 2 Sr 2 Ca 2 Cu 3 O 10 (B i -222
  • the present invention is preliminarily B i - produced in 2223 single-phase powder special method of a crystalline structure, acicular Te0 2 powder which allows the growth of crystals, Te_ ⁇ 2 Ca_ ⁇ powders, Oh Rui ( SrCa) 3 Te_ ⁇ powder green compact directly from that is contained in the single-phase powder of 6 B i - is to develop needle-like crystals of 2223 structures.
  • This manufacturing method and the needle-like crystal grown by this method are completely new, and a needle-like crystal with a superconducting critical temperature of 110 K was realized.
  • the growth of the acicular crystal is promoted as the difference in melting point between the oxide high-temperature superconductor and the parent phase of the charged composition increases. Therefore, it is extremely effective for containing have the Te0 2 to lower the melting point of the matrix phase to the charged composition.
  • the needle-like crystal having the B i—2223 crystal structure is B i 2 S r 2 Ca 2 Cus 0 !. Relative oxide to 1 mol, and growth in the case the content of Te_ ⁇ 2 is 0.1 to 0.8 mol, the largest its effect 0.5 moles vicinity.
  • the grown needle crystals do not contain Te.
  • the needle-like crystal having a Bi—2 2 3 3 crystal structure grows at a heat treatment temperature of 840 to 890 ° C. and an oxygen ratio of 5 to 100% in the atmosphere.
  • the optimum conditions are a heat treatment temperature of 860 ° C. and an oxygen ratio of the atmosphere of 10%.
  • a powder having the composition of B i -222 3 was prepared by a co-precipitation method.
  • the pressure powder compact at 2 0% O 2 in, and 1 0 O h heat treatment at 8 4 5 ° C ⁇ 8 5 0 ° C, B i - 2 2 2 3 give the single phase Peretsuto crystal structure Was.
  • the pellets were pulverized in anhydrous alcohol by a ball mill so as not to hydrolyze the pellets, thereby producing a single-phase powder having a Bi-223 crystal structure.
  • a part of B i was replaced with Pb (B i Pb) 2 S r z C a 2 C u 30 i. It is necessary to As is already known, the charge composition is described in detail in Bi 1.6-1.8 Pb
  • This green compact was heat-treated at 860 ° C. for 100 h in a 10% oxygen atmosphere, and needle-like crystals were grown from the green compact.
  • Table 1 shows the green compacts, that is, the crystal structure of the parent phase and the crystal structure of the needle-shaped crystals.
  • Bi-2223 crystal ⁇ powder Bi-2223 (Te0 2 + Ca0 ) Bi-2223 From the parent phase of the Bi-2212 crystal structure, needle-shaped crystals of the Bi-2212 crystal structure are grown, and from the parent phase of the Bi-2223 crystal structure, needle-shaped crystals of the Bi-2223 crystal structure are grown. . That is, the crystal structure of the acicular crystal is governed by the crystal structure of the superconductor in the matrix. A single-phase acicular crystal having a Bi-2223 crystal structure can be grown only from a green compact having a Bi-2223 crystal structure.
  • the acicular crystal having the B i -2223 crystal structure is B i 2 Sr 2 C a 2 Cu 3 ⁇ ! It grows when the content of (SrCa) 3 TeC is 0.2 to 0.8 mol per 1 mol of the oxidized slime of 0 , and the effect is greatest near 0.5 mol, and the length is 5 to Grow to 7mm.
  • the grown needle crystals do not contain Te.
  • Needle-like formation of B i -2 2 2 3 crystal structure says that when the oxygen content of the atmosphere is 10%, it grows at a heat treatment temperature of 84-890 ° C and 860 ° C Grows to a length of 9 to 12 mm. Furthermore, at the heat treatment temperature of 860 ° C, which was the best growth, the acicular crystal grew at an oxygen ratio of 5 to 100% in the atmosphere, and became 10 to 12 mm in length at 10%. grow up.
  • the optimal conditions for the heat treatment are as follows: temperature 860 ° (:, oxygen ratio of atmosphere is 10%.
  • the grown needle-shaped crystals are obtained by X-ray diffraction, electron beam microanalyzer, energy-dispersion spectrometer. The needle-like crystals were all single crystals of the Bi-223 phase and did not contain the element T e. Which lowers the melting point of the parent phase.
  • the present invention relates to a needle-like crystal of an oxide high-temperature superconductor close to a perfect crystal and a method for producing the same.
  • it is suitable as a THz band high frequency superconducting device.

Description

酸化物高温超伝導体針状結晶及びその製造方法 技術分野
本発明は、超伝導エレクトロニクス素子を実現するために不可欠な酸化物高温 超伝導体の、 欠陥のほとんどない単,結晶、 すなわち完全結晶に近い酸化物高温超 伝導体針状結晶及びその製造方法に関するものである。 明
背景技術
酸化物高温超伝導体の単結晶は、 導電層と非導電層が交互に積層した結晶構造 を持ち、 各層間が固有ジョセフソン結合している。 近年、 この固有ジョセフソン 効果を用いた単結晶スィツチング素子デバイスが提案されている。 この新しい単 結晶スィッチング素子は、 従来のジヨセフソン接合よりほぼ 1/100に小型化 することができ、 スイッチング速度も 100倍程度速く、 作動周波数は、 THz (テラへルツ) の高周波が期待されている。
現在、 B i2 Sr2 C a2 Cu3 。針状結晶を用いて作製したサブミクロン 結晶素子において、電子対が 1個ずつ通過する超伝導単電子トンネル現象が起こ ることが明らかにされている。 この現象を起こすには、 液体ヘリウム温度 (4. 2 K) で作動する必要があるが、 結晶のュニットセルの積層数を 1000程度に すると、液体窒素温度 (77K) で作動する超伝導単電子対素子が実現できるも のと予想されている。
これらの素子の実現には、 無欠陥もしくは欠陥の極めて少ない単結晶が要求さ れる。 現在のところ、 B i系酸化物超伝導体の針状結晶が最も性能が良いと言わ れている。 この酸化物超伝導体には、 超伝導臨界温度が約 85 Kの B i 2 S r 2 Ca, Cu 2 08 (B i -221 2) の結晶構造と、超伝導臨界温度が約 1 10 Kの B i2 Sr2 Ca2 Cu3 OI0 (B i - 2223 )結晶構造の 2種類の結晶 構造がある。 開発'研究には、育成が実現している B i— 2212結晶構造の針 状結晶が使用されている。 本発明者らは、 B i— 2212結晶構造の針状結晶を 育成するための仕込み組成に、 その融点を低くする元素を含有する圧粉成形体か ら、 急冷、 非晶質化を経ることなく、 極めて結晶性の良い B i -22 12結晶構 造の針状結晶を育成することに成功し、 既に特許出願をした (特願 2001 -3 8 170) o
超伝導臨界温度が 85 Kの B i— 2212結晶構造より、 超伝導臨界温度が 1 10Kと液体窒素温度 77Kよりはるかに高い B i - 2223結晶構造の針状結 晶は、 実用の観点から極めて有利である。 し力、し、 これまでに育成されている針 状結晶は B i -2212結晶構造のみであり、 B i— 2223結晶構造の針状結 晶の育成には成功していない。 発明の開示
上述したように、酸化物高温超伝導体 B i2 Sr2 Ca2 Cu3 O,0 (B i - 2223 ) 結晶構造の欠陥のない針状結晶の製造方法を確立し、 高品位針状結晶 を作製することは未だ実現されていない。
そこで、 B i— 2223結晶構造の欠陥のない針状結晶の製造方法を確立し、 高品位針状結晶を作製して、 現在理論的に提案されているが未だ実現していない 超伝導エレクトロニクス素子実用化への道を拓くことが課題である。
本発明は、 上記状況に鑑み、超伝導デバイス素子の実現に不可欠な、 欠陥の極 めて少ない酸化物高温超伝導体 B i - 2223結晶構造の酸化物高温超伝導体針 状結晶及びその製造方法を提供することを目的とする。
本発明は、 上記目的を達成するために、
〔 1〕 酸化物高温超伝導体針状結晶において、 B i2 Sr 2 Ca2 Cu3 O10 結晶構造の酸化物 1モルに対して、 Te02 を 0. 2~0. 8モル含有する圧粉 成形体を、 5〜100%酸素雰囲気中にて、 840〜890°Cで熱処理し、前記 成形体から育成される B i 2 S r 2 Ca2 Cu3 0!。結晶構造の針状結晶を具備 する。
〔2〕 B i 2 S r 2 Ca2 Cu3 0 i。結晶構造の針状結晶の製造方法において、 B i 2 S r 2 Ca2 Cu3 0 ,。結晶構造の酸化物 1モルに対して、 Te02 を 0. 2〜0. 8モル含有する圧粉成形体を、 5〜100%酸素雰囲気中にて、 840 〜890°Cで熱処理し、前記成形体から B i S r Ca2 Cu3 〇!。結晶構造 の針状結晶を育成することを特徴とする。
〔 3〕酸化物高温超伝導体針状結晶において、 B i 2 S r 2 Ca2 Cu310 結晶構造の酸化物 1モルに対して Te02 を 0. 2〜0. 8モル、 CaOを 0. 1〜2. 0モル複合含有する圧粉成形体を、 5〜100%酸素雰囲気中にて、 8 40〜890°Cで熱処理し、前記成形体から育成される B i 2 Sr2 Ca2 Cu 〇,。結晶構造の針状結晶を具備する。
〔4〕 B i S r Ca2 Cu31Q結晶構造の針状結晶の製造方法において、 B i S r Ca2 Cu3 〇 t。結晶構造の酸化物 1モルに対して T e 02 を 0. 2〜0. 8モル、 〇&0を0. 1〜2. 0モル複合含有する圧粉成形体を、 5〜 100%酸素雰囲気中にて、 840〜890°Cで熱処理し、前記成形体から B i S r 2 Ca2 Cu3 0!。結晶構造の針状結晶を育成することを特徴とする。 〔5〕 酸化物高温超伝導体針状結晶において、 B i2 S r2 Ca2 Cu3 O10結 晶構造の酸化物 1モルに対して、 ( S r C a ) 3 T e 06 結晶構造の酸化物を 0. 2〜0. 8モル含有する圧粉成形体を、 5〜100%酸素雰囲気中にて、 840 〜890°Cで熱処理し、前記成形体から育成される B i 2 Sr2 Ca2 Cu3 〇 結晶構造の針状結晶を具備する。
〔6〕 B i 2 Sr2 Caz Cu3 ◦!。結晶構造の針状結晶の製造方法において、 B i Sr2 C a2 Cu3 〇,。結晶構造の酸化物 1モルに対して、 (SrCa) Te06 結晶構造の酸化物を 0. 2〜 0. 8モル含有する圧粉成形体を、 5〜 100%酸素雰囲気中にて、 840〜890°Cで熱処理し、 前記成形体から B i S r 2 C a2 Cu3 ◦!。結晶構造の針状結晶を育成することを特徴とする。 発明を実施するための最良の形態
本発明は、 酸化物高温超伝導体 B i 2 Sr2 Ca2 Cu3 O10 (B i -222
3 )結晶構造の粉末に T e 02 , C a◦などの粉末を含有させた圧粉成形体を酸 素分圧を変えた雰囲気中で熱処理し、 成形体から直接 B i - 2223結晶構造の 針状結晶を作製することに成功した。
これまでの針状結晶の育成は、 多相の仮焼粉末を用いて行われていた。 そのた め B i— 2223結晶構造の針状結晶の育成は不可能であった。
本発明は、 あらかじめ B i - 2223結晶構造の単相粉末を特殊な方法で作製 し、針状結晶の成長を可能にする Te02 の粉末、 Te〇2 と Ca〇の粉末、 あ るいは (SrCa) 3 Te〇6 の粉末をその単相粉末に含有させた圧粉成形体か ら直接 B i - 2223構造の針状結晶を育成するものである。 この製造方法と、 これによつて育成された針状結晶は全く新しいもので、 これにより超伝導臨界温 度が 1 10Kの針状結晶が実現できた。
以下、本発明の実施の形態について詳細に説明する。
( 1 ) B i - 2223結晶構造の単相化の効果
超伝導臨界温度が、 20 K以下の B i - 220 K 85 K近傍の B i -22 1 2、 1 1 OK近傍の B i - 2223結晶構造の針状結晶の育成の研究過程で、 針 状結晶の結晶構造は、 圧粉成形体すなわち母相の結晶構造に支配されることを見 いだした。 欠陥のない単相の B i - 2223結晶構造の針状結晶は、単相の B i -2223結晶構造の母相圧粉成形体からの育成が不可欠である。
(2) Te〇2 の含有と Te〇2 と Ca〇の複合含有の効果
針状結晶は、 酸化物高温超伝導体と仕込み組成の母相との融点の差が大きいほ ど成長が促進される。 そこで、 母相の融点を低くする Te02 を仕込み組成に含 有させることが極めて有効である。 B i— 2223結晶構造の針状結晶は、 B i 2 S r2 Ca2 Cus 0!。の酸化物 1モルに対して、 Te〇2 の含有量が 0. 1 〜0. 8モルの場合において成長し、 0. 5モル近傍でその効果が最も大きい。 ここで、育成した針状結晶には、 Teが含まれていない。
さらに、針状結晶は、 Te〇2 と C a〇の複合含有によって、 より母相の融点 が低くなり、 成長が促進される。 そこで、 Te〇2 の含有、 Te〇2 と Ca〇の 複合含有ともに、 母相には、 (SrCa) 3 Te06 結晶構造が生成されている。
(3) (SrCa) 3 Te06 含有の効果
B i - 2223結晶構造の針状結晶の育成には、 母相にそれを成長させるため の拡散の駆動力が必要である。 母相に含有される (SrCa) 3 Te〇6 がこの 駆動力の役割を果たしている。 B i2 S r2 Ca2 Cu3 0,。結晶構造の酸化物 1モルに対して (SrCa) a Te06 結晶構造の酸化物が 0. 2〜0. 8モル 含有する圧粉成形体において針状結晶が成長し、 0. 5モル近傍でその効果が最 も大きい。
(4 )熱処理の温度と雰囲気の効果
針状結晶の育成には、 熱処理の温度と雰囲気の最適化が必要である。 B i— 2 2 2 3結晶構造の針状結晶は、 熱処理の温度 8 4 0〜8 9 0°C、 雰囲気の酸素割 合 5〜1 0 0%において成長する。 その最適条件は、熱処理の温度 8 6 0 °C、 雰 囲気の酸素割合 1 0%である。
〔実施例〕
( 1 ) B i - 2 2 2 3結晶構造の単相化の効果
B i - 2 2 2 3仕込み組成の粉末を、 ィ匕学的共沈法によって作製した。 その圧 粉成形体を 2 0%O2 中にて、 8 4 5°C〜 8 5 0 °Cで 1 0 O h熱処理して、 B i - 2 2 2 3結晶構造の単相ペレツトを得た。 このペレツトを加水分解しないよう に無水アルコール中で粉砕をボールミルで行い、 B i— 2 2 2 3結晶構造の単相 粉末を作製した。 ここで、 B i — 2 2 2 3構造の単相化には、 B iの一部を Pb で置換した (B i Pb) 2 S r z C a2 C u3 0 i。とすることが必要である。 すでに知られているように、 その仕込み組成は、 詳しくは、 B i 1. 6- 1. 8 Pb
0. 3-0. 4 S r i. 9 C l 2. 1 し U 3. O 0, である。
一方、 同じ仕込み組成であるが B i - 2 2 1 2結晶構造に C a 2 Cu03 , C a 2 Pb 04 などが含まれる多相の仮焼粉末を用意した。 これらの粉末に B i 2 S r 2 C a2 Cu3 〇!。糸吉晶構造の酸化物 1モルに対して T e 02 を 0. 5モル、 C aOを 1. 0モル複合含有させた混合粉末を 8 2 0°Cで 1 0 h仮焼した後、 圧 粉成形体、 直径 1 5 mm.厚さ 2 mmを作製した。
この圧粉成形体を 1 0 %酸素雰囲気中にて、 8 6 0°Cで 1 0 0 h熱処理し、 成 形体から針状結晶を育成した。 表 1に、 圧粉成形体、 すなわち、 母相の結晶構造 と針状結晶の結晶構造に- 表 1
母相の結晶構造 針状結晶の結晶構造
B卜 2223仕込み組成仮焼粉末 Bi-2212+Ca2Cu03+Ca2Pb04 等 Bi-2212
(Te02+Ca0)
Bi-2223結晶搆造粉末 Bi-2223 (Te02+Ca0) Bi-2223 B i - 2212結晶構造の母相からは、 B i _ 2212結晶構造の針状結晶が、 B i- 2223結晶構造の母相からは、 B i - 2223結晶構造の針状結晶が成 長する。 すなわち、針状結晶の結晶構造は、 母相内超伝導体の結晶構造に支配さ れる。 単相の B i - 2223結晶構造の針状結晶は、 B i— 2223結晶構造の 母相圧粉成形体からのみで育成が可能である。
(2) Te 02 の含有と Te〇2 と CaOの複合含有の効果
B i 2 S r 2 C a2 Cu3 0 i。結晶構造の酸化物に T e 02 の含有、 Te02 と C a 0の複合含有において、 その含有量を変えた混合粉末を 820 °Cで 1 Oh 仮焼した後、 直径 15 mm,厚さ 2 mmの圧粉成形体を作製した。 この圧粉成 形体を 10%酸素雰囲気中にて、 860 °Cで 100 h熱処理し、 成形体から針状 結晶を育成した。 表 2に Te02 の含有量と Te02 と CaOの複合含有量を変 化させたときの B i - 2223結晶構造の針状結晶の長さについて示す。
表 2
Figure imgf000008_0001
B i- 2223結晶構造の針状結晶は、 B i 2 S r 2 Ca2 Cu3 0 。の酸化 物 1モルに対して Te 02 の含有量が 0. 2〜0. 8モルの場合において成長し、 0. 5モル近傍でその効果が最も大きく、 長さ 6〜 8mmに成長する。 さらに、 最も効果的であった 0. 5モルの Te02 と C a◦との複合含有については、 C a 0の含有量が 0. 1〜2. 0モルの複合含有の場合において成長し、 C a 1. 0モル近傍でその効果が最も大きく、長さ 9〜12 mmに成長する。 針状結晶は Te 02 と C a 0の複合含有によって、 より成長 促進される。
また、 Teを含有しない成形体では、針状結晶の成長が観察されなかった。 育 成した針状結晶には、 Teが含まれていない。 ' さらに、 Te〇2 の含有、 Te 02 と C a 0の複合含有ともに、 母相には (S r C a) 3 TeOs結晶構造が生成されている。
(3) (S r C a) 3 Te06 含有の効果 '
B i S r 2 Ca2 Cu3 。結晶構造の酸化物に (SrCa) 3 Te06 の 含有において、 その含有量を変えた混合粉末を 820°Cで 1 0 h仮焼した後、 圧 粉成形体、 直径 1 5 mm,厚さ 2 mmを作製した。 この圧粉成形体を 10 %酸 素雰囲気中にて、 870 °Cで 1 g O h熱処理し、 成形体から針状結晶を育成した。 表 3に (SrCa) 3 Te 06 の含有量を変化させたときの B i - 2223結晶 構造の針状結晶の長さについて示す。
表 3
Figure imgf000009_0001
B i - 2223結晶構造の針状結晶は、 B i2 Sr2 C a2 Cu3 〇! 0の酸ィ匕 物 1モルに対して (SrCa) 3 TeC の含有量が 0. 2〜0. 8モルの場合 において成長し、 0. 5モル近傍でその効果が最も大きく、 長さ 5〜 7mmに成 長する。 なお、 育成した針状結晶には Teが含まれていない。
( 4 ) 熱処理の温度と雰囲気の効果
B i S r Ca2 Cu3 Oi。結晶構造の酸化物 1モルに対して、 T e〇 2 を 0. 5モル、 〇 &〇を1. 0モル複合含有させた混合粉末を、 820でで1011 仮焼した後、 直径 1 5 mm.厚さ 2 mmの圧粉成形体を作製した。 この圧粉成 形体を温度と雰囲気の酸素割合を変えて 10 Oh熱処理し、 成形体から針状結晶 を育成した。 ここで、 酸素割合は、 アルゴンとの混合によって制御した。 表 4に 熱処理の温度と雰囲気の酸素割合を変化させたときの B i - 2223結晶構造の 針状結晶の長さについて示す。 表 4
Figure imgf000010_0001
B i - 2 2 2 3結晶構造の針状結曰曰曰は、 雰囲気の酸素割合 1 0 %のとき、熱処 理温度 8 4 0〜 8 9 0 °Cにおいて成長し、 8 6 0 °Cで長さ 9〜 1 2 mmに成長す る。 さらに、 成長の最も良かった熱処理温度 8 6 0 °Cのとき、針状結晶は、 雰囲 気の酸素割合 5〜 1 0 0 %において成長し、 1 0 %で長さ 9〜1 2 mmに成長す る。 熱処理の最適条件は、 温度 8 6 0 ° (:、 雰囲気の酸素割合 1 0 %である。 育成された針状結晶は、 X線回折法、電子線マイクロアナライザ一、 エネルギ 一分散スぺクトロメータ一で調べた。 針状結晶は、 全て B i - 2 2 2 3相の単結 晶で母相の融点を低くする元素 T e.が含有していなかった。
なお、 本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づい て種々の変形が可能であり、 これらを本発明の範囲から排除するものではない。 以上、 詳細に説明したように、 本発明によれば、 以下のような効果を奏するこ とができる。
(A) B i - 2 2 2 3結晶構造の、 欠陥のない針状結晶の製造方法を確立し、 高品位針状結晶を育成することができる。
( B ) その B i - 2 2 2 3結晶構造の針状結晶の提供によって、 現在理論的に 提案されているが、 未だ実現されていない超伝導エレクトロニクス素子の開発に 貢献することができる。 すなわち、 これまで不可能な領域であった高周波 '高速 スイッチング素子が実現され、 特に、情報関連技術に大きな影響をもたらすこと ができる。 産業上の利用可能性
本発明は、完全結晶に近い酸化物高温超伝導体針状結晶及びその製造方法に係 り、特に、 TH z帯高周波超伝導デバイスとして好適である。

Claims

請 求 の 範 囲
1. B i Sr2 Ca2 Cu3 Ch。結晶構造の酸化物 1モルに対して、 Te〇
2 を 0. 2〜0. 8モル含有する圧粉成形体を、 5〜100%酸素雰囲気中にて、 840〜890°Cで熱処理し、前記成形体から育成される B i 2 S r 2 C a2 C
U 3 Ol。結晶構造の針状結晶を具備する酸化物高温超伝導体針状結晶。
2. B i S r C a2 Cu3 θ!。結晶構造の酸化物 1モルに対して、 T e〇
2 を 0. 2〜0. 8モル含有する圧粉成形体を、 5〜100%酸素雰囲気中にて、 840〜890°Cで熱処理し、前記成形体から B i 2 S r 2 C a2 Cu3 〇!。結 晶構造の針状結晶を育成することを特徴とする酸化物高温超伝導体針状結晶の製 造方法。
3. B i Sr2 Ca2 Cu3 ◦!。結晶構造の酸化物 1モルに対して T e〇2 を 0. 2〜0. 8モル、 C a〇を 0. 1〜2. 0モル複合含有する圧粉成形体を、 5〜100%酸素雰囲気中にて、 840〜890°Cで熱処理し、前記成形体から 育成される B i2 Sr2 C a2 Cu3 0 ,。結晶構造の針状結晶を具備する酸化物 高温超伝導体針状結晶。
4. B i 2 S r 2 C a2 Cu3 0 i。結晶構造の酸化物 1モルに対して T e〇 2 を 0. 2〜0. 8モル、 Ca〇を 0. 1〜2. 0モル複合含有する圧粉成形体を、 5-100 %酸素雰囲気中にて、 840〜 890 °Cで熱処理し、前記成形体から B i 2 Sr2 Ca2 Cu3 0 ,。結晶構造の針状結晶を育成することを特徴とする 酸化物高温超伝導体針状結晶の製造方法。
5. B i Sr2 Ca2 Cu3 0 ,。結晶構造の酸化物 1モルに対して、 (Sr Ca) Te06 結晶構造の酸化物を 0. 2〜0. 8モル含有する圧粉成形体を、 5-100%酸素雰囲気中にて、 840〜890°Cで熱処理し、前記成形体から 育成される B i2 Sr2 Ca2 Cu3 ◦ 。結晶構造の針状結晶を具備する酸化物 高温超伝導体針状結晶。
6. B i Sr2 Ca2 Cu3 0 !。結晶構造の酸化物 1モルに対して、 (Sr Ca) ΤΘ06 結晶構造の酸化物を 0. 2〜0. 8モル含有する圧粉成形体を、 5〜 100%酸素雰囲気中にて、 840〜890°Cで熱処理し、 前記成形体から B i 2 Sr2 Ca2 Cu3 0 ,。結晶構造の針状結晶を育成することを特徴とする 酸化物高温超伝導体針状結晶の製造方法。
PCT/JP2002/005715 2001-07-25 2002-06-10 Oxide high-critical temperature superconductor acicular crystal and its production method WO2003010369A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/483,562 US7008906B2 (en) 2001-07-25 2002-06-10 Oxide high-critical temperature superconductor acicular crystal and its production method
CA002453922A CA2453922C (en) 2001-07-25 2002-06-10 Oxide high-critical temperature superconductor acicular crystal and method for producing the same
DE60238328T DE60238328D1 (de) 2001-07-25 2002-06-10 Nadelförmiger kristall aus oxidsupraleiter mit hoher kritischer temperatur und herstelungsverfahren dafür
EP02738643A EP1411154B1 (en) 2001-07-25 2002-06-10 Oxide high-critical temperature superconductor acicular crystal and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-224741 2001-07-25
JP2001224741A JP4141666B2 (ja) 2001-07-25 2001-07-25 酸化物高温超伝導体針状結晶の製造方法

Publications (1)

Publication Number Publication Date
WO2003010369A1 true WO2003010369A1 (en) 2003-02-06

Family

ID=19057848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005715 WO2003010369A1 (en) 2001-07-25 2002-06-10 Oxide high-critical temperature superconductor acicular crystal and its production method

Country Status (6)

Country Link
US (1) US7008906B2 (ja)
EP (1) EP1411154B1 (ja)
JP (1) JP4141666B2 (ja)
CA (1) CA2453922C (ja)
DE (1) DE60238328D1 (ja)
WO (1) WO2003010369A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196368B2 (ja) * 2008-02-21 2013-05-15 独立行政法人物質・材料研究機構 酸化物超伝導体とその製造方法
JP2011233825A (ja) * 2010-04-30 2011-11-17 National Institute Of Advanced Industrial & Technology 固有ジョセフソン接合素子、及び、これを用いた量子ビット、超伝導量子干渉素子、テラヘルツ検出器、テラヘルツ発振器、電圧標準装置、ミリ波・サブミリ波受信機、並びに、固有ジョセフソン接合素子の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465395A (ja) * 1990-07-03 1992-03-02 Agency Of Ind Science & Technol 超電導繊維状単結晶およびその製造方法
JPH1192143A (ja) * 1997-09-17 1999-04-06 Agency Of Ind Science & Technol 超電導ウィスカーおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465395A (ja) * 1990-07-03 1992-03-02 Agency Of Ind Science & Technol 超電導繊維状単結晶およびその製造方法
JPH1192143A (ja) * 1997-09-17 1999-04-06 Agency Of Ind Science & Technol 超電導ウィスカーおよびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MATSUBARA ICHIRO ET AL.: "Growth of superconducting whiskers in the Bi system", JOURNAL OF CRYSTAL GROWTH, vol. 128, no. 1-4, PART 2, 1 March 1993 (1993-03-01), pages 719 - 724, XP000349447 *
MATSUBARA ICHIRO ET AL.: "Preparation and critical current density of Bi2Sr2Ca2Cu2O10+x superconducting whiskers", APPLIED PHYSICS LETTERS, vol. 57, no. 23, 3 December 1990 (1990-12-03), pages 2490 - 2491, XP000216294 *
See also references of EP1411154A4 *

Also Published As

Publication number Publication date
EP1411154A4 (en) 2008-05-28
US20040171493A1 (en) 2004-09-02
EP1411154B1 (en) 2010-11-17
EP1411154A1 (en) 2004-04-21
US7008906B2 (en) 2006-03-07
JP2003040698A (ja) 2003-02-13
CA2453922C (en) 2007-08-07
JP4141666B2 (ja) 2008-08-27
DE60238328D1 (de) 2010-12-30
CA2453922A1 (en) 2003-02-06

Similar Documents

Publication Publication Date Title
JP3089294B2 (ja) 超電導テープ材の製造方法
WO2003010369A1 (en) Oxide high-critical temperature superconductor acicular crystal and its production method
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JP4094238B2 (ja) 高温超伝導酸化物の針状結晶の製造方法
US7964532B2 (en) RE123-based oxide superconductor and method of production of same
JP3910483B2 (ja) 酸化物超伝導体針状結晶の製造方法
CN109786025A (zh) 一种改性铋系超导体的制备方法
EP1176645B1 (en) Method for preparing bismuth-based high temperature superconductors
JPH08259230A (ja) 酸化物超電導体およびその製造方法
US5399312A (en) Method for fabricating high-jc thallium-based superconducting tape
US6767866B1 (en) Selective reduction type high temperature superconductor and methods of making the same
JPH0465395A (ja) 超電導繊維状単結晶およびその製造方法
JPH0687611A (ja) 酸化物系超電導体、その製造方法及び線材
JP3411048B2 (ja) 酸化物超電導体の製造方法
JP2006045028A (ja) 酸化物超伝導体針状結晶とその製造方法
JP2002326817A (ja) 酸化物超電導体およびその製造方法
JPH0725639B2 (ja) 超電導繊維状結晶、単結晶およびその製造方法
Lu et al. Effect of Oxygen Partial Pressure on the Microstructure and Formation of Bi-2223 Phase in the Partial-melting and Sintering Process
Aldica et al. Structure and superconductivity of Bi-(Pb)-Ca-Sr-Cu-O ceramics processed by arc melting
JPH08217442A (ja) 炭素を含有する金属酸化物線材及びその製造方法
JPH04501407A (ja) 超伝導金属酸化物組成物及びその製造及び使用方法
JPH0936446A (ja) ジョセフソン接合デバイス及びその製造方法
JPH07232917A (ja) 酸化物超電導体及びその製造方法
JPH0465396A (ja) 超電導単結晶の製造方法
JPH03290316A (ja) Bi基酸化物超電導体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10483562

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2453922

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002738643

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002738643

Country of ref document: EP