WO2003010156A1 - Procede de preparation de alpha-halogenoalkylarylcetones et de leurs produits intermediaires halogenes de type cetal cyclique - Google Patents

Procede de preparation de alpha-halogenoalkylarylcetones et de leurs produits intermediaires halogenes de type cetal cyclique Download PDF

Info

Publication number
WO2003010156A1
WO2003010156A1 PCT/FR2002/002458 FR0202458W WO03010156A1 WO 2003010156 A1 WO2003010156 A1 WO 2003010156A1 FR 0202458 W FR0202458 W FR 0202458W WO 03010156 A1 WO03010156 A1 WO 03010156A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
ketone
group
formula
diol
Prior art date
Application number
PCT/FR2002/002458
Other languages
English (en)
Inventor
Nicolas Roques
Laurent Saint-Jalmes
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Publication of WO2003010156A1 publication Critical patent/WO2003010156A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/18Radicals substituted by singly bound oxygen or sulfur atoms
    • C07D317/22Radicals substituted by singly bound oxygen or sulfur atoms etherified
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/56Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds
    • C07C45/57Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom
    • C07C45/59Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom in five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/63Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/16Radicals substituted by halogen atoms or nitro radicals

Definitions

  • the present invention relates to a process for the preparation of cyclic ketals and selectively monohalogenated and more particularly chlorinated ketones.
  • the invention relates more particularly to a process for the preparation of intermediate products of the cyclic ketal type of ⁇ -haloalkylaryl ketones as well as ⁇ -haloalkylaryl ketones.
  • Arylated and ⁇ -haloalkylated ketones are products used as synthesis intermediates in the preparation of agrochemicals.
  • the Applicant makes it possible to avoid this drawback by proposing a process involving a halogen intermediate product of the cyclic ketal type.
  • a first object of the invention is a process for the preparation of a cyclic ketal of an ⁇ -haloalkylaryl ketone, characterized in that an alkylaryl ketone is reacted with a sulfuryl halide, in the presence of an aliphatic diol capable of form with the carbonyl function, a cyclic ketal.
  • Another subject of the invention is a process for the preparation of an ⁇ -haloalkylaryl ketone characterized in that the preparation of a cyclic ketal of an ⁇ -haloalkylaryl ketone is carried out by halogenation of an alkylaryl ketone with a halide of sulfuryl in the presence of an aliphatic diol capable of forming, with the carbonyl function, a cyclic ketal then the hydrolysis of the product obtained is carried out.
  • alkylaryl ketone which can be represented by the fo
  • Ri represents a hydrogen atom or one or more substituents, identical or different
  • R 2 and R ⁇ are a hydrogen atom
  • R and R 3 identical or different, represent an alkyl, cycloalkyl, aryl or arylalkyl group,
  • number of substituents on a cycle is a number less than or equal to 5,
  • two Ri groups placed on two vicinal carbon atoms can form together and with the carbon atoms which carry them a saturated, unsaturated or aromatic ring, having 5 to 7 atoms and optionally comprising a or more heteroatoms.
  • the aromatic compound of formula (I) can carry one or more substituents.
  • the nature of the substituents is not critical insofar as they do not interfere with the halogenation reaction of the process of the invention.
  • n varies from 0 to 5 and is preferably equal to 1 or 2.
  • Ri identical or different, represent a hydrogen atom or a substituent such as an alkyl, alkenyl, alkoxy, alkoxyalkyl, cycloalkyl, aryl, arylalkyl, aryloxy, acyloxy group, a nitro group, a halogen atom, a mono-, poly- or per-haloalkyl group.
  • Ri groups placed on two vicinal carbon atoms can be linked to each other by an alkylene, alkenylene or alkenylidene group having from 3 to 5 carbon atoms to form a saturated, unsaturated or aromatic ring having from 5 to 7 atoms: a or several carbon atoms which can be replaced by a heteroatom, preferably oxygen
  • alkyl means a linear or branched hydrocarbon chain having from 1 to 15 carbon atoms and preferably from 1 or 2 to 10 carbon atoms.
  • alkenyl is meant a hydrocarbon group, linear or branched having from 2 to 15 carbon atoms, comprising one or more double bonds, preferably 1 to 2 double bonds.
  • cycloalkyl is meant a cyclic hydrocarbon group, comprising from 3 to 8 carbon atoms, preferably a cyclopentyl or cyclohexyl group.
  • aryl is meant an aromatic mono- or polycyclic group, preferably mono- or bicyclic comprising from 6 to 12 carbon atoms, preferably phenyl or naphthyl.
  • arylalkyl is meant a hydrocarbon group, linear or branched carrying a monocyclic aromatic ring and comprising from 7 to 12 carbon atoms, preferably benzyl.
  • acyl is meant a group of type R 4 -CO in which R 4 represents an alkyl group, linear or branched having from 1 to 12 carbon atoms.
  • halogen is meant fluorine, chlorine, bromine or iodine.
  • a hydrogen atom . an alkyl group, linear or branched, having from 1 to 6 carbon atoms, preferably from 1 to 4 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl,.
  • a linear or branched alkoxy group having from 1 to 6 carbon atoms, preferably from 1 to 4 carbon atoms such as the methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, groups. a trifluoromethyl group,
  • a halogen atom preferably a fluorine, chlorine or bromine atom.
  • acetophenone 4-chlorophenylmethylketone and 4-methoxyphenylmethylketone.
  • diol comprises an aliphatic hydrocarbon chain comprising a number of atoms sufficient to form the desired ketal function.
  • the preferred compound used corresponds to formula (II):
  • - m is a number ranging from 2 to 4
  • - p is a number equal to 0 or 1
  • - q is a number equal to 0 or m
  • R 5 ⁇ R ⁇ identical or different, represent a hydrogen atom, a linear or branched alkyl group having from 1 to 10 carbon atoms, a phenyl group.
  • a diol of formula (II) is preferably chosen in which m is equal to 2 or 3, p and q equal to 0 and R 5> R represent a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms.
  • R 5 , R ⁇ may carry substituents and reference may be made to the examples given for R 4.
  • diols ethylene glycol or propylene glycol are used.
  • halogenating agent it is chosen from sulfuryl chloride, sulfuryl bromide, sulfuryl chlorofluoride or any other equivalent. It is desirable that it has a sufficient purity of at least 95%.
  • the substrate to be halogenated namely the alkylarylketone then called in a simplified manner, "ketone", the halogenating agent, the diol and the organic solvent.
  • the amount of halogenating agent is such that the halogenating agent / ketone molar ratio is at least 0.5 and most often between 1 and 4. Said ratio is preferably chosen between 0.5 and 2.
  • the diol its quantity is at least equal to the stoichiometry.
  • the diol / ketone molar ratio is at least 1.
  • the upper limit is in no way critical and values such as 10 can be reached or even exceeded. Most often, said ratio is preferably chosen between 3 and 5.
  • the reaction can be carried out using the diol as organic solvent but according to a preferred variant of the invention, an organic solvent is added.
  • organic solvent is such that it is inert with respect to the halogenating agent and its polarity is not decisive.
  • aliphatic, cycloaliphatic or aromatic hydrocarbons Preferably, use is made of aliphatic, cycloaliphatic or aromatic hydrocarbons, halogenated or not.
  • aliphatic hydrocarbons there may be mentioned more particularly paraffins such as in particular, hexane, cyclohexane, methylcyclohexane, aromatic hydrocarbons and more particularly aromatic hydrocarbons such as in particular benzene, toluene, xylenes , cumene, petroleum fractions consisting of a mixture of alkylbenzenes, in particular Solvesso®-type fractions.
  • aliphatic or aromatic halogenated hydrocarbons there may be mentioned more particularly, aliphatic halogenated hydrocarbons and more particularly, perchlorinated hydrocarbons such as in particular tetrachloromethane, hexachloroethane; partially chlorinated hydrocarbons such as dichloromethane 1,2-dichloroethane; aromatic halogenated hydrocarbons such as monochlorobenzene, dichlorobenzenes and trifluoromethylbenzene.
  • perchlorinated hydrocarbons such as in particular tetrachloromethane, hexachloroethane
  • partially chlorinated hydrocarbons such as dichloromethane 1,2-dichloroethane
  • aromatic halogenated hydrocarbons such as monochlorobenzene, dichlorobenzenes and trifluoromethylbenzene.
  • the preferred solvents are dichloromethane and monochlorobenzene.
  • this is not critical. It most often represents from 100 to 500% of the stoichiometric amount expressed relative to the ketone.
  • the reaction is advantageously carried out at a temperature between 0 ° C and 100 ° C and preferably between 10 ° C and 50 ° C.
  • the process of the invention is generally carried out under atmospheric pressure but can also be carried out under slightly reduced pressure of, for example, between 500 and 760 mm of mercury.
  • the reaction is carried out under a controlled atmosphere of inert gases.
  • inert gases we can establish a atmosphere of rare gases, preferably argon but it is more economical to use nitrogen.
  • a first variant consists in first loading the organic solvent, the ketone and the diol and then pouring the pure or diluted sulfuryl halide in a part of the organic solvent, for example 10 to 30% by weight of the solvent used.
  • a preferred variant of the invention consists in loading the organic solvent, the ketone and part of the diol, for example from 50 to 100%, then in gradually pouring the other part of the diol and the sulfuryl halide, thus making it possible to minimize side reactions.
  • the addition time depends on the quantity to be added. It can vary for example between 1 and 8 hours.
  • - R, R 2 , R3, n and ⁇ have the meaning given above, - X represents a halogen atom, preferably a chlorine or bromine atom.
  • the cyclic ketal can be recovered, in a conventional manner, by crystallization or by purification on a silica column.
  • the ketone can also be obtained from the reaction medium without separating the compound of formula (III).
  • the hydrolysis of the reaction medium is carried out without separation of the compound of formula (III).
  • the ketone function is released by hydrolysis.
  • water is generally added in stoichiometric amount and preferably in excess of 100 to 200%. It is optionally possible to use water / methanol mixtures having
  • a catalyst of Br ⁇ nsted acid type can be added and mention may in particular be made of sulfuric acid, phosphoric acid, hydrochloric acid, acid hydrobromic, hydrofluoric acid, trifluoroacetic acid, trifluoromethanesulfonic acid.
  • sulfuric acid is chosen.
  • the amount of acid used is the amount such that the ratio between the number of moles of compound of formula (III) and the number of H + ions generally varies from 0.05 and 0.3.
  • the conventional treatments of back-extraction of the aqueous phase are carried out using the organic solvent, distillation of the solvent and a solvent such as methanol or monochlorobenzene is added.
  • the halogenated aromatic ketone is cooled and precipitated, which preferably corresponds to the following formula (IV):
  • R 7 represents an alkyl group having from 1 to 4 carbon atoms
  • - ⁇ a represents an ethylene, methylethylene or propylene group.
  • Example 1 is given below illustrating the present invention and which are given by way of illustration and without limitation.
  • Example 1 is given below illustrating the present invention and which are given by way of illustration and without limitation.
  • reaction medium is then left at this temperature of 18 ° C. for 1 h 15 min.
  • the reaction medium is poured onto an ice (30 g) / water (30 g) mixture.
  • the aqueous phase is extracted twice with 30 ml of dichloromethane and the combined organic phases are dried over MgSO 4 and then filtered.
  • the crude reaction product which is analyzed by gas chromatography (GC) has the following composition:
  • the crude reaction product is purified by flash chromatography on a silica column and 6 g of acetal of formula (B) are isolated. The isolated yield is 53%.
  • Said product is characterized by NMR and mass spectrometry: 1 H NMR: 3.68 (s, 2H, -CH 2 CI), 3.75 (s, 3H, -OMe), 3.84 - 4.10 (m, 4H, -CH 2 CH 2 -), 6.82 (d, 2H, ArH), 7.37 (d, 2H, ArH), SM (El): 228 (M ° +), 197 (M - OMe) , 192 (M-Cl).
  • reaction medium is then brought to 50 ° C for 30 min.
  • the crude reaction product obtained is taken up in 37.37 g of methanol at 50 ° C and the clear solution thus obtained is gradually cooled to 0 ° C.
  • the compound of formula (C) is characterized by the conventional methods White solid: melting point: 97.5 - 98.5 ° C, GC: 98.5% w / w, 1 H NMR: 99% w / w , 3.81 (s, 3H, -OMe), 4.57 (s, 2H, -CH 2 CI), 6.88 (d, 2H, ArH), 7.87 (d, 2H, ArH).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention a pour objet un procédé de préparation de cétals cycliques et cétones sélectivement monohalogénés et plus particulièrement chlorés. L'invention vise plus particulièrement un procédé de préparation des produits intermédiaires de type cétal cyclique d'α-halogénoalkylarylcétones ainsi que les α-halogénoalkylarylcétones. Le procédé de préparation desdits cétals selon l'invention est caractérisé par le fait que l'on fait réagir une alkylarylcétone avec un halogénure de sulfuryle, en présence d'un diol aliphatique susceptible de former avec la fonction carbonyle, un cétal cyclique.

Description

PROCEDE DE PREPARATION DE α-HALOGENOALKYLARYLCETONES ET DE LEURS PRODUITS INTERMEDIAIRES HALOGENES
La présente invention a pour objet un procédé de préparation de cétals cycliques et cétones sélectivement monohalogénés et plus particulièrement chlorés.
L'invention vise plus particulièrement un procédé de préparation des produits intermédiaires de type cétal cyclique d'α-halogénoalkylarylcétones ainsi que les α-halogénoalkylarylcétones.
Les cétones arylées et α-halogénoalkylées sont des produits utilisés comme intermédiaires de synthèse dans la préparation de composés agrochimiques.
Il est connu selon Lands et al. [J. Med. Chem. 35, 3081 -3084 (1992)] de préparer la 3-chlorophényl-α-chlorométhylcétone par réaction du chlorure de sulfuryle avec la 3-chlorophénylméthylcétone. Dans cette publication, le rendement obtenu n'est pas suffisamment élevé puisqu'il est de 41 %. Pour pallier cet inconvénient, il a été proposé selon US-A-5 710 341 , d'effectuer ce type de réaction, en conduisant la réaction dans un alcool aliphatique, qui est un alcool linéaire ou ramifié ayant de 1 à 10 atomes de carbone, de préférence, un alcool inférieur ayant de 1 à 4 atomes de carbone et plus particulièrement le méthanol. Certes, ce procédé permet d'obtenir un rendement et une sélectivité plus élevés en α-chlorométhylphénylcétones mais la mise en œuvre du méthanol entraîne la formation dans le milieu de chlorure de méthyle, gaz très toxique qui résulte de la réaction du méthanol et du chlorure de sulfuryle.
La demanderesse permet d'éviter cet inconvénient en proposant un procédé faisant intervenir un produit intermédiaire halogène de type cétal cyclique.
Un premier objet de l'invention est un procédé de préparation d'un cétal cyclique d'une α-halogénoalkylarylcétone caractérisé par le fait que l'on fait réagir une alkylarylcétone avec un halogenure de sulfuryle, en présence d'un diol aliphatique susceptible de former avec la fonction carbonyle, un cétal cyclique. Un autre objet de l'invention est un procédé de préparation d'une α- halogénoalkylarylcétone caractérisé par le fait que l'on effectue la préparation d'un cétal cyclique d'une α-halogénoalkylarylcétone par halogénation d'une alkylarylcétone, par un halogenure de sulfuryle en présence d'un diol aliphatique susceptible de former avec la fonction carbonyle, un cétal cyclique puis l'on conduit l'hydrolyse du produit obtenu.
Conformément au procédé de l'invention, on obtient un rendement et une sélectivité du même ordre de grandeur que ceux obtenus dans l'état de la technique mais le procédé de l'invention permet de minimiser la réaction secondaire de l'alcool avec le chlorure de sulfuryle du fait que l'alcool mis en œuvre est non miscible en grande partie avec le milieu réactionnel.
Ainsi, le problème du dégagement du chlorure de méthyle est évité.
Intervient donc dans le procédé de l'invention, une alkylarylcétone qui peut être représentée par la fo
Figure imgf000003_0001
dans ladite formule :
- Ri représente un atome d'hydrogène ou un ou plusieurs substituants, identiques ou différents,
- au moins l'un de R2 et Rββst un atome d'hydrogène,
- R et R3, identiques ou différents, représentent un groupe alkyle, cycloalkyle, aryle ou arylalkyle,
- n, nombre de substituants sur un cycle, est un nombre inférieur ou égal à 5,
- lorsque n est supérieur ou égal à 2, deux groupes Ri placés sur deux atomes de carbone vicinaux peuvent former ensemble et avec les atomes de carbone qui les portent un cycle saturé, insaturé ou aromatique, ayant de 5 à 7 atomes et comprenant éventuellement un ou plusieurs hétéroatomes.
Le composé aromatique de formule (I) peut être porteur d'un ou plusieurs substituants. La nature des substituants n'est pas critique dans la mesure dans la mesure où ils n'interfèrent pas avec la réaction d'halogénation du procédé de l'invention.
Le nombre maximum de substituants susceptibles d'être portés par un cycle, est aisément déterminé par l'Homme du Métier. n varie de 0 à 5 et est de préférence égal à 1 ou 2.
Dans la formule (I), Ri, identiques ou différents, représentent un atome d'hydrogène ou un substituant tel qu'un groupe alkyle, alcényle, alkoxy, alkoxyalkyle, cycloalkyle, aryle, arylalkyle, aryloxy, acyloxy, un groupe nitro, un atome d'halogène, un groupe mono-, poly- ou per-halogénoalkyle. et deux groupes Ri placés sur deux atomes de carbone vicinaux, peuvent être liés entre eux par un groupe alkylène, alcénylène ou alcénylidene ayant de 3 à 5 atomes de carbone pour former un cycle saturé, insaturé ou aromatique ayant de 5 à 7 atomes : un ou plusieurs atomes de carbone pouvant être remplacés par un hétéroatome, de préférence l'oxygène
Dans le cadre de l'invention, on entend par « alkyle », une chaîne hydrocarbonée linéaire ou ramifiée ayant de 1 à 15 atomes de carbone et de préférence de 1 ou 2 à 10 atomes de carbone.
Par « alcényle », on entend un groupe hydrocarboné, linéaire ou ramifié ayant de 2 à 15 atomes de carbone, comprenant une ou plusieurs doubles liaisons, de préférence, 1 à 2 doubles liaisons.
Par « cycloalkyle », on entend un groupe hydrocarboné cyclique, comprenant de 3 à 8 atomes de carbone, de préférence, un groupe cyclopentyle ou cyclohexyle. Par « aryle », on entend un groupe mono- ou polycyclique aromatique, de préférence, mono- ou bicyclique comprenant de 6 à 12 atomes de carbone, de préférence, phényle ou naphtyle.
Par « arylalkyle », on entend un groupe hydrocarboné, linéaire ou ramifié porteur d'un cycle aromatique monocyclique et comprenant de 7 à 12 atomes de carbone, de préférence, benzyle.
Par « acyle », on entend un groupe de type R4-CO dans lequel R4 représente un groupe alkyle, linéaire ou ramifié ayant de 1 à 12 atomes de carbone.
Par « halogène », on entend le fluor, le chlore, le brome ou l'iode. Les composés qui conviennent particulièrement bien à la mise en oeuvre du procédé de l'invention répondent à la formule (I) dans laquelle Ri, identiques ou différents, représentent :
. un atome d'hydrogène, . un groupe alkyle, linéaire ou ramifié, ayant de 1 à 6 atomes de carbone, de préférence de 1 à 4 atomes de carbone, tel que méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, sec-butyle, tert-butyle, . un groupe alkoxy linéaire ou ramifié ayant de 1 à 6 atomes de carbone, de préférence de 1 à 4 atomes de carbone tel que les groupes méthoxy, éthoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, . un groupe trifluorométhyle,
. un atome d'halogène, de préférence un atome de fluor, chlore ou brome. Comme exemples préférés de composés de formule (I), on peut mentionner notamment l'acetophénone, la 4-chlorophénylméthylcétone et la 4- méthoxyphénylméthylcétone.
En ce qui concerne le diol, il comprend une chaîne hydrocarbonée aliphatique comprenant un nombre d'atomes suffisant pour former la fonction cétalique souhaitée. Le composé préféré mis en œuvre répond à la formule (II) :
HO - Ψ - OH (II) dans laquelle Ψ représente un groupe
— «≈W^ m -<P)p κ— <CRΛ) q— „ dans , leque ,l :
- m est un nombre allant de 2 à 4, - p est un nombre égal à 0 ou 1 ,
- q est un nombre égal à 0 ou m,
- R Rβ, identiques ou différents, représentent un atome d'hydrogène, un groupe alkyle linéaire ou ramifié ayant de 1 à 10 atomes de carbone, un groupe phényle. On choisit préférentiellement un diol de formule (II) dans laquelle m est égal à 2 ou 3, p et q égal à 0 et R5> Re représentent un atome d'hydrogène ou un groupe alkyle ayant de 1 à 4 atomes de carbone.
Il est à noter que les différents groupes R5, Rβ peuvent porter des substituants et l'on peut se référer aux exemples donnés pour R^ Comme exemples préférées de diols, on fait appel à l'éthylène glycol ou au propylène glycol.
Pour ce qui est de l'agent halogénant, il est choisi parmi le chlorure de sulfuryle, le bromure de sulfuryle, le chlorofluorure de sulfuryle ou tout autre équivalent. II est souhaitable qu'il ait une pureté suffisante d'au moins 95 %.
Intervient dans le procédé de l'invention, le substrat à halogéner à savoir l'alkylarylcétone dénommée ensuite d'une manière simplifiée, « cétone », l'agent halogénant, le diol et le solvant organique. La quantité d'agent halogénant est telle que le rapport molaire agent halogénant/cétone est d'au moins 0,5 et le plus souvent compris entre 1 et 4. Ledit rapport est préférentiellement choisi entre 0,5 et 2.
Pour ce qui est du diol, sa quantité est au moins égale à la stœchiométrie. Le rapport molaire diol/cétone est d'au moins 1. La limite supérieure n'est en aucun cas critique et des valeurs telles que 10 peuvent être atteintes voire dépassées. Le plus souvent, ledit rapport est choisi de préférence, entre 3 et 5.
La réaction peut être conduite en utilisant le diol comme solvant organique mais selon une variante préférée de l'invention, on ajoute un solvant organique. Le choix du solvant est tel qu'il soit inerte vis-à-vis de l'agent halogénant et sa polarité n'est pas déterminante.
D'une manière préférée, on fait appel aux hydrocarbures aliphatiques, cycloaliphatiques ou aromatiques, halogènes ou non.
A titre d'exemples d'hydrocarbures aliphatiques, on peut citer plus particulièrement les paraffines tels que notamment, l'hexane, le cyclohexane, le méthylcyclohexane, les hydrocarbures aromatiques et plus particulièrement les hydrocarbures aromatiques comme notamment le benzène, le toluène, les xylènes, le cumène, les coupes pétrolières constituées de mélange d'alkylbenzènes notamment les coupes de type Solvesso®. En ce qui concerne les hydrocarbures halogènes aliphatiques ou aromatiques, on peut mentionner plus particulièrement, les hydrocarbures halogènes aliphatiques et plus particulièrement, les hydrocarbures perchlorés tels que notamment le tétrachlorométhane, l'hexachloroéthane ; les hydrocarbures partiellement chlorés tels que le dichlorométhane le 1 ,2- dichloroéthane ; les hydrocarbures halogènes aromatiques tels que le monochlorobenzène, les dichlorobenzènes et le trifluorométhylbenzène.
Les solvants préférés sont le dichlorométhane et le monochlorobenzène.
En ce qui concerne la quantité de solvant organique mise en œuvre, celle- ci n'est pas critique. Elle représente le plus souvent de 100 à 500 % de la quantité stœchiométrique exprimée par rapport à la cétone.
La réaction est avantageusement effectuée à une température se situant entre 0°C et 100°C et de préférence, entre 10°C et 50°C.
Le procédé de l'invention est généralement mis en oeuvre sous pression atmosphérique mais peut l'être également sous pression légèrement réduite comprise, par exemple, entre 500 et 760 mm de mercure.
Selon une variante préférée du procédé de l'invention, on conduit la réaction sous atmosphère contrôlée de gaz inertes. On peut établir une atmosphère de gaz rares, de préférence l'argon mais il est plus économique de faire appel à l'azote.
Plusieurs modes de mises en oeuvre peuvent être envisagés.
Une première variante consiste à charger d'abord le solvant organique, la cétone et le diol et de couler ensuite l'halogénure de sulfuryle pur ou dilué dans une partie du solvant organique par exemple 10 à 30 % en poids du solvant mis en oeuvre.
Une variante préférée de l'invention consiste à charger le solvant organique, la cétone et une partie du diol par exemple de 50 à 100 %, puis à couler progressivement l'autre partie du diol et l'halogénure de sulfuryle, permettant ainsi de minimiser les réactions secondaires.
La durée d'addition est fonction de la quantité à ajouter. Elle peut varier par exemple entre 1 et 8 heures.
En fin de réaction on obtient dans le solvant organique, un mélange comprenant la cétone α-halogéné mais essentiellement la cétone sous la forme d'un cétal cyclique et qui répond à la formule :
Figure imgf000007_0001
dans ladite formule :
- R , R2, R3 , n et ψ ont la signification donnée précédemment, - X représente un atome d'halogène, de préférence un atome de chlore ou de brome. On peut récupérer le cétal cyclique, d'une manière classique, par cristallisation ou par purification sur colonne de silice.
On peut également obtenir la cétone à partir du milieu réactionnel sans pour autant séparer le composé de formule (III). Ainsi, on effectue l'hydrolyse du milieu réactionnel sans séparation du composé de formule (III). On libère la fonction cétonique par hydrolyse.
A cet effet, on ajoute de l'eau en général en quantité stœchiométrique et de préférence en excès de 100 à 200 %. On peut éventuellement faire appel à des mélanges eau/méthanol ayant de
50 à 95 % en poids de méthanol et de 5 à 50 % en poids d'eau.
On peut ajouter un catalyseur de type acide de Brόnsted et l'on peut citer notamment l'acide sulfurique, l'acide phosphorique, l'acide chlorhydrique, l'acide bromhydrique, l'acide fluorhydrique, l'acide trifluoroacétique, l'acide trifluorométhanesulfonique.
On choisit préférentiellement l'acide sulfurique.
La quantité d'acide mise en œuvre est la quantité telle que le rapport entre le nombre de moles de composé de formule (III) et le nombre d'ions H+ varie généralement de 0,05 et 0,3.
On chauffe vers 50 - 60 °C.
On sépare les phases aqueuse et organique.
On effectue les traitements classiques de contre-extraction de la phase aqueuse à l'aide du solvant organique, distillation du solvant et l'on ajoute un solvant tel que le méthanol ou le monochlorobenzène.
On refroidit et l'on précipite la cétone aromatique halogénée qui répond de préférence, à la formule suivante (IV) :
Figure imgf000008_0001
dans ladite formule :
- Ri, R2, R3 et X et n ont la signification donnée précédemment.
Les composés répondant à la formule suivante sont revendiqués à titre de produits nouveaux.
Figure imgf000008_0002
dans ladite formule,
- R7 représente un groupe alkyle ayant de 1 à 4 atomes de carbone,
- Ψa représente un groupe éthylène, méthyléthylène ou propylène.
On donne ci-après des exemples illustrant la présente invention et qui sont donnés à titre illustratif et sans caractère limitatif. Exemple 1 :
Préparation du dioxolane de la 4-méthoxyphényl-α-chlorométhylcétone.
On introduit dans un réacteur de 100 ml, 25 ml de monochlorobenzène puis à 15°C, on ajoute successivement 7,435 g d'acetoanisole et 11 ,2 ml d'éthylène glycol.
On coule ensuite une solution de SO2CI2 (8,58 g) dans du monochlorobenzène (10 ml) sur une période de 1 heure entre 15 et 18°C.
On laisse ensuite le milieu réactionnel à cette température de 18°C durant 1 h 15.
Le milieu réactionnel est coulé sur un mélange glace (30 g) / eau (30 g).
La phase aqueuse est extraite deux fois avec 30 ml de dichlorométhane et les phases organiques rassemblées sont séchées sur MgSO4 puis filtrées.
La phase organique est alors concentrée à l'évaporateur rotatif (11 ,9 g).
Le brut réactionnel qui est analysé par chromatographie en phase gazeuse (CPG) a la composition suivante :
Les résultats obtenus sont consignés dans le tableau (I) :
Tableau (I)
Figure imgf000009_0001
Le brut réactionnel est purifié par chromatographie flash sur colonne de silice et on isole 6 g d'acétal de formule (B). Le rendement isolé est de 53 %. Ledit produit est caractérisé par RMN et spectrométrie de masse : RMN 1H : 3,68 (s, 2H, -CH2CI), 3,75 (s, 3H, -OMe), 3,84 - 4,10 (m, 4H, -CH2CH2-), 6,82 (d, 2H, ArH), 7,37 (d, 2H, ArH), SM (El): 228 (M°+), 197 (M - OMe), 192 (M- Cl).
Exemple 2
Préparation de la 4-méthoxyphényl-α-chlorométhylcétone.
On introduit dans un réacteur de 100 ml, 26,35 g de monochlorobenzène puis à 20°C, on ajoute successivement 11 ,59 g d'acetoanisole et 15,71 g d'éthylène glycol.
On coule ensuite simultanément à l'aide de deux pousse-seringues différents SO2CI2 (19,15 g) et l'éthylène glycol (9,61 g) sur une période de 3,5 h entre 20 et 30°C.
On ajoute ensuite 7,70 g d'eau à 22°C sur une période de 15 min (réaction exothermique, 20°C à 28°C).
Le milieu réactionnel est ensuite porté à 50°C durant 30 min.
On ajoute ensuite 18,60 g d'eau et après décantation, la phase aqueuse obtenue est contre-extraite avec 23,43 g de monochlorobenzène.
Les phases organiques sont rassemblées et on élimine par distillation le monochlorobenzène.
Le brut réactionnel obtenu est repris dans 37,37 g de méthanol à 50°C et la solution limpide ainsi obtenue est refroidie progressivement à 0°C.
On isole après filtration 10,97 g de 4-méthoxyphényl-α-chlorométhylcétone. ré ondant à la formule (C) :
Figure imgf000010_0001
* dosage CPG avec étalon interne
Le composé de formule (C) est caractérisé par les méthodes classiques Solide blanc: de point de fusion : 97,5 - 98,5 °C, GC: 98,5 % p/p, RMN 1H : 99 % p/p, 3,81 (s, 3H, -OMe), 4,57 (s, 2H, -CH2CI), 6,88 (d, 2H, ArH), 7,87 (d, 2H, ArH).

Claims

REVENDICATIONS
1 - Procédé de préparation d'un cétal cyclique d'une α- halogénoalkylarylcétone caractérisé par le fait que l'on fait réagir une alkylarylcétone avec un halogenure de sulfuryle, en présence d'un diol aliphatique susceptible de former avec la fonction carbonyle, un cétal cyclique.
2 - Procédé de préparation d'une α-halogénoalkylarylcétone caractérisé par le fait que l'on effectue la préparation d'un cétal cyclique d'une α- halogénoalkylarylcetone par halogenation d'une alkylarylcétone, par un halogenure de sulfuryle en présence d'un diol aliphatique susceptible de former avec la fonction carbonyle, un cétal cyclique puis l'on conduit l'hydrolyse du produit obtenu.
3 - Procédé selon l'une des revendications 1 et 2 caractérisé par le fait que l'alkylarylcétone répond à la formule générale (I) :
Figure imgf000011_0001
dans ladite formule :
- Ri représente un atome d'hydrogène ou un ou plusieurs substituants, identiques ou différents,
- au moins l'un de R2 et R3 est un atome d'hydrogène,
- R2 et R3, identiques ou différents, représentent un groupe alkyle, cycloalkyle, aryle ou arylalkyle,
- n, nombre de substituants sur un cycle, est un nombre inférieur ou égal à 5,
- lorsque n est supérieur ou égal à 2, deux groupes Ri placés sur deux atomes de carbone vicinaux peuvent former ensemble et avec les atomes de carbone qui les portent un cycle saturé, insaturé ou aromatique, ayant de 5 à 7 atomes et comprenant éventuellement un ou plusieurs hétéroatomes.
4 - Procédé selon la revendication 3 caractérisé par le fait que l'alkylarylcétone répond à la formule générale. (I) dans laquelle Ri, identiques ou différents, représentent un atome d'hydrogène, un groupe alkyle, alcényle, alkoxy, aikoxyalkyle, cycloalkyle, aryle, arylalkyle, aryloxy, acyloxy, un groupe nitro, un atome d'halogène, un groupe mono-, poly- ou per-halogénoalkyle. et deux groupes Ri placés sur deux atomes de carbone vicinaux, peuvent être liés entre eux par un groupe alkylène, alcénylène ou alcénylidene ayant de 3 à 5 atomes de carbone pour former un cycle saturé, insaturé ou aromatique ayant de 5 à 7 atomes : un ou plusieurs atomes de carbone pouvant être remplacés par un hétéroatome, de préférence l'oxygène.
5 - Procédé selon la revendication 4 caractérisé par le fait que l'alkylarylcétone répond à la formule générale (I) dans laquelle les groupes R1 f identiques ou différents, représentent:
. un atome d'hydrogène,
. un groupe alkyle, linéaire ou ramifié, ayant de 1 à 6 atomes de carbone, de préférence de 1 à 4 atomes de carbone, tel que méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, sec-butyle, tert-butyle, . un groupe alkoxy linéaire ou ramifié ayant de 1 à 6 atomes de carbone, de préférence de 1 à 4 atomes de carbone tel que les groupes méthoxy, éthoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, . un groupe trifluorométhyle,
. un atome d'halogène, de préférence un atome de fluor, chlore ou brome.
6 - Procédé selon la revendication 3 caractérisé par le fait que l'alkylarylcétone est l'acetophénone, la 4-chlorophénylméthylcétone et la 4- méthoxyphénylméthylcétone.
7 - Procédé selon l'une des revendications 1 et 2 caractérisé par le fait que le diol répond à la formule (II) :
HO - Ψ - OH (II) dans laquelle Ψ représente un groupe
-(CR5Rβ)— (0) p— (CR.R,) — m κ M dans lequel : - m est un nombre allant de 2 à 4,
- p est un nombre égal à 0 ou 1 ,
- q est un nombre égal à 0 ou m,
- R R6, identiques ou différents, représentent un atome d'hydrogène, un groupe alkyle linéaire ou ramifié ayant de 1 à 10 atomes de carbone, un groupe phényle.
8 - Procédé selon la revendication 7 caractérisé par le fait que le diol répond à la formule (II) dans laquelle m est égal à 2 ou 3, p et q égal à 0 et R5, Re représentent un atome d'hydrogène ou un groupe alkyle ayant de 1 à 4 atomes de carbone.
9 - Procédé selon l'une des revendications 7 et 8 caractérisé par le fait que le diol est l'éthylène glycol ou au propylène glycol.
10 - Procédé selon l'une des revendications 1 et 2 caractérisé par le fait que l'agent halogénant est parmi le chlorure de sulfuryle, le bromure de sulfuryle, le chlorofluorure de sulfuryle ou tout autre équivalent.
11 - Procédé selon l'une des revendications 1 et 2 caractérisé par le fait que la quantité d'agent halogénant est telle que le rapport molaire agent halogénant/cétone est d'au moins, 0,5 et le plus souvent compris entre 1 et 4 et préférentiellement choisi entre 0,5 et 2.
12 - Procédé selon l'une des revendications 1 et 2 caractérisé par le fait que le rapport molaire diol/cétone est d'au moins 1 , compris entre 1 et 10 et de préférence, entre 3 et 5.
13 - Procédé selon l'une des revendications 1 à 12 caractérisé par le fait que la réaction est conduite en présence d'un solvant organique.
14 - Procédé selon la revendication 13 caractérisé par le fait que le solvant organique est un hydrocarbure aliphatique, cycloaliphatique ou aromatique, halogène ou non, de préférence le dichlorométhane et le monochlorobenzène.
15 - Procédé selon l'une des revendications 1 à 14 caractérisé par le fait que la réaction est effectuée à une température se situant entre 0°C et 100°C et de préférence, entre 10°C et 50°C.
16 - Procédé selon l'une des revendications 1 à 15 caractérisé par le fait que l'on charge d'abord le solvant organique, la cétone et le diol et l'on coule ensuite l'halogénure de sulfuryle pur ou dilué dans une partie du solvant organique.
17 - Procédé selon l'une des revendications 1 à 15 caractérisé par le fait que l'on charge d'abord le solvant organique, la cétone et une partie du diol puis l'on coule progressivement l'autre partie du diol et l'halogénure de sulfuryle. 18 - Procédé selon l'une des revendications 1 à 17 caractérisé par le fait que l'on récupère un mélange comprenant la cétone sous la forme d'un cétal cyclique de formule (III) et la cétone α-halogéné de formule (IV) :
Figure imgf000014_0001
dans lesdites formules :
- Ri, R2, R3, X et n ont la signification donnée précédemment dans l'une des revendications 3 à 5,
- ψ a la signification donnée dans l'une des revendications 7 et 8,
- X représente un atome d'halogène, de préférence un atome de chlore ou de brome.
19 - Procédé selon la revendication 18 caractérisé par le fait que on effectue l'hydrolyse du milieu réactionnel sans séparation du composé de formule (III).
20 - Procédé selon la revendication 19 caractérisé par le fait que l'hydrolyse est effectuée en présence d'un catalyseur de type acide de Brônsted.
21 - Procédé selon la revendication 20 caractérisé par le fait que un catalyseur est choisi parmi l'acide sulfurique, l'acide phosphorique, l'acide chlorhydrique, l'acide bromhydrique, l'acide fluorhydrique, l'acide trifluoroacétique, l'acide trifluorométhanesulfonique.
22 - Composés répon
Figure imgf000014_0002
dans ladite formule,
- R7 représente un groupe alkyle ayant de 1 à 4 atomes de carbone,
- Ψa représente un groupe éthylène, méthyléthylène ou propylène. - Composé répondant à la formule suivante
Figure imgf000015_0001
PCT/FR2002/002458 2001-07-23 2002-07-11 Procede de preparation de alpha-halogenoalkylarylcetones et de leurs produits intermediaires halogenes de type cetal cyclique WO2003010156A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/09805 2001-07-23
FR0109805A FR2827602A1 (fr) 2001-07-23 2001-07-23 Procede de preparation de alpha-halogenoalkylarylcetones et de leurs produits intermediaires halogenes de type cetal cyclique

Publications (1)

Publication Number Publication Date
WO2003010156A1 true WO2003010156A1 (fr) 2003-02-06

Family

ID=8865802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/002458 WO2003010156A1 (fr) 2001-07-23 2002-07-11 Procede de preparation de alpha-halogenoalkylarylcetones et de leurs produits intermediaires halogenes de type cetal cyclique

Country Status (2)

Country Link
FR (1) FR2827602A1 (fr)
WO (1) WO2003010156A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078705A1 (fr) * 2003-03-06 2004-09-16 Basf Aktiengesellschaft Procede de production d'$g(a)-(3-arylthio)-acetophenones
JP2012087113A (ja) * 2010-09-22 2012-05-10 Daicel Corp フェニル酢酸化合物
CN110494427A (zh) * 2017-04-24 2019-11-22 Igm集团私人有限公司 烷基芳基酮的简单氧化官能化

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160838A (en) * 1977-06-02 1979-07-10 Janssen Pharmaceutica N.V. Antimicrobial and plant-growth-regulating triazole derivatives
EP0034871A2 (fr) * 1980-02-26 1981-09-02 BLASCHIM S.p.A. Procédé de préparation d'esters d'acides alcanoiques par réarrangement d'alpha-halocétals
EP0054278A1 (fr) * 1980-12-11 1982-06-23 Magyar Tudomanyos Akademia Közp Kemiai Kutato Intezet Agents de protection des plantes à utiliser lors de la lutte contre les mauvaises herbes; le 2-(dichlorométhyl)-3-phényl-1,3-oxazolidine et le 2-(dichlorométhyl)-3-allyl-1,3-oxazolidine et procédé de préparation des composés compris dans les agents précités comme antidotes, respectivement de ces derniers composés
US5710341A (en) * 1995-03-31 1998-01-20 Basf Aktiengesellschaft Preparation of α-chloroalkyl aryl ketones

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160838A (en) * 1977-06-02 1979-07-10 Janssen Pharmaceutica N.V. Antimicrobial and plant-growth-regulating triazole derivatives
EP0034871A2 (fr) * 1980-02-26 1981-09-02 BLASCHIM S.p.A. Procédé de préparation d'esters d'acides alcanoiques par réarrangement d'alpha-halocétals
EP0054278A1 (fr) * 1980-12-11 1982-06-23 Magyar Tudomanyos Akademia Közp Kemiai Kutato Intezet Agents de protection des plantes à utiliser lors de la lutte contre les mauvaises herbes; le 2-(dichlorométhyl)-3-phényl-1,3-oxazolidine et le 2-(dichlorométhyl)-3-allyl-1,3-oxazolidine et procédé de préparation des composés compris dans les agents précités comme antidotes, respectivement de ces derniers composés
US5710341A (en) * 1995-03-31 1998-01-20 Basf Aktiengesellschaft Preparation of α-chloroalkyl aryl ketones

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 78, no. 21, 1973, Columbus, Ohio, US; abstract no. 135816b, SANCHEZ-VIESCA,F.: "KETONES CONTAINING THE 2,4,5-TRIMETHOXYPHENYL RING." page 342; column 2; XP002218936 *
CIENCIA (MEXICO CITY), vol. 27, no. 6, 1972, MEXICO, pages 185 - 9 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078705A1 (fr) * 2003-03-06 2004-09-16 Basf Aktiengesellschaft Procede de production d'$g(a)-(3-arylthio)-acetophenones
US7385087B2 (en) 2003-03-06 2008-06-10 Basf Aktiengesellschaft Method for producing a-(3-arylthio)-acetophenones
JP2012087113A (ja) * 2010-09-22 2012-05-10 Daicel Corp フェニル酢酸化合物
CN110494427A (zh) * 2017-04-24 2019-11-22 Igm集团私人有限公司 烷基芳基酮的简单氧化官能化
CN110494427B (zh) * 2017-04-24 2023-03-28 Igm集团私人有限公司 烷基芳基酮的简单氧化官能化

Also Published As

Publication number Publication date
FR2827602A1 (fr) 2003-01-24

Similar Documents

Publication Publication Date Title
CA2531443C (fr) Preparation de derives de 1,3-diphenylprop-2-en-1-one
EP1222181B1 (fr) Procede de preparation d&#39;un compose de type benzofurane ou benzothiophene
EP1222159B1 (fr) Intermediaires de fabrication d&#39;un derive de type benzofurane ou benzothiophene nitre en position 5 et leurs utilisations
EP0877726A1 (fr) Procede d&#39;acylation d&#39;un compose aromatique
WO2003010156A1 (fr) Procede de preparation de alpha-halogenoalkylarylcetones et de leurs produits intermediaires halogenes de type cetal cyclique
EP0030528B1 (fr) Procédé pour la fixation de groupes alkyles, aralkyles ou cycloalkyles sur une chaîne carbonée portant un groupe fonctionnel
CA1250313A (fr) PROCEDE DE PREPARATION DE COMPOSES INSATURES CHLORES EN .alpha. DE DEUX GROUPEMENTS ELECTROATTRACTEURS EN POSITION .beta.
CA2585714A1 (fr) Procede d&#39;acylation d&#39;un compose aromatique.
FR2887873A1 (fr) PROCEDE DE PREPARATION D&#39;UN ALCYNE PRESENTANT UN GROUPE HYDROXYLE OPTIQUEMENT ACTIF EN POSITION b OU g D&#39;UNE TRIPLE LIAISON ET PRODUITS INTERMEDIAIRES OBTENUS
EP1904425A1 (fr) Procede de preparation de composes hydrocarbones mono-ou difluores
CA1087614A (fr) Procede de preparation de la prostaglandine a.sub.2 et de certains de ses derives
WO2003048145A2 (fr) Procede de preparation d&#39;un compose de type aminobenzofuranne.
FR2787787A1 (fr) Procede de preparation de thioethers aromatiques de type diphenyle
EP0082782B1 (fr) Procédé de préparation d&#39;halogénoacétals éthyléniques
EP1216220A1 (fr) Procede de preparation d&#39;ethers mixtes alcyniques substitues
FR2809397A1 (fr) Procede de preparation d&#39;un compose de type benzofuranne ou benzothiophene
FR2784986A1 (fr) Procede de preparation d&#39;un compose de type indanone ou thioindanone
EP1747213B1 (fr) Nouveaux derives 7,7-disubstitues du (5h,9h)-6,8-dioxabenzocycloheptene, leur preparation et leur utilisation dans la synthese d&#39;analogues non steroidiens de la vitamine d
WO2005105730A2 (fr) Procede de preparation d&#39;un alcool a partir d&#39;un compose halogenoaromatique et d&#39;un aldehyde.
WO2004074229A1 (fr) Procede d’acylation de composes aromatiques en presence d’un catalyseur recyclable
WO2000043342A1 (fr) Procede de preparation d&#39;un compose de type indanone ou thioindanone
FR2827858A1 (fr) Nouvelles sulfonamides, leur preparation et leur utilisation pour le dedoublement d&#39;une amine chirale racemique
FR2800064A1 (fr) Procede de preparation d&#39;un compose de type benzofurane ou benzothiophene
WO2004067490A2 (fr) Utilisation de benzoates d’indium comme catalyseurs des reactions d’acylation de composes aromatiques
CH618155A5 (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP