WO2003004859A1 - Kraftstoffinjektor mit hochdruckfestigkeitsoptimiertem steuerraum - Google Patents

Kraftstoffinjektor mit hochdruckfestigkeitsoptimiertem steuerraum Download PDF

Info

Publication number
WO2003004859A1
WO2003004859A1 PCT/DE2002/002237 DE0202237W WO03004859A1 WO 2003004859 A1 WO2003004859 A1 WO 2003004859A1 DE 0202237 W DE0202237 W DE 0202237W WO 03004859 A1 WO03004859 A1 WO 03004859A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
flow channel
fuel
fuel injector
control chamber
Prior art date
Application number
PCT/DE2002/002237
Other languages
English (en)
French (fr)
Inventor
Friedrich Boecking
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP02748598A priority Critical patent/EP1436498A1/de
Publication of WO2003004859A1 publication Critical patent/WO2003004859A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0033Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat
    • F02M63/0036Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat with spherical or partly spherical shaped valve member ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0043Two-way valves

Definitions

  • control rooms are integrated into the housing of the fuel injectors, the pressure relief of which allows a nozzle needle to be actuated to release or close injection openings.
  • the control chamber can be acted upon by a high-pressure fuel volume from the high-pressure source via an inlet throttle.
  • EP 0 994 248 A2 relates to a fuel injector with injection course shaping by piezoelectric control of the nozzle needle stroke.
  • a fuel injector includes a cylinder body on which an injection opening is formed.
  • a nozzle needle is movably received in the injector body and moves by a stroke between an open position in which the injection openings are open and a closed position in which the injection openings are closed.
  • a piezoelectric actuator is also accommodated in the injector body, the piezo element of which can be switched back and forth between a switch-on and a switch-off position.
  • the nozzle needle and the piezoelectric actuator are connected to one another via a coupling element in the form of a pressure chamber in such a way that the movement of the piezo element of the piezoelectric actuator is translated into a larger axial stroke movement of the nozzle needle in the injector housing.
  • DE 197 15 234 AI relates to a solenoid-controlled direct injection fuel injector for accumulator injection systems of Mel r cylinder internal combustion engines.
  • a feed line leads to a spring-loaded nozzle needle, the feed line being able to be shut off by a control piston with a valve function.
  • a nozzle needle is provided which is supported in a spring chamber and presses the nozzle needle onto its needle seat.
  • a control chamber is arranged on the rear side of the control piston under system pressure, a magnetic valve being provided through which the control chamber can be connected to a relief line and, at the same time, the injection line can be shut off by means of a high-pressure valve arranged on the control piston for the supply line leading to the nozzle needle.
  • a throttled line connection is provided as a bypass between the supply line and the relief line, the line connection containing a leakage valve which is operatively connected to the solenoid valve and through which the line connection can be interrupted during the injection.
  • control rooms are permanently connected to the high-pressure source via an inlet throttle element connected upstream of them.
  • an inlet throttle element connected upstream of them.
  • the advantages that can be achieved with the solution according to the invention can be seen above all in that the high pressure that is permanently applied via the high-pressure source is present at a throttle element that acts as an inlet throttle, which opens into a flow channel from or to the control chamber and the flow channel is significantly less sensitive to one constant high pressure.
  • a throttle element that acts as an inlet throttle, which opens into a flow channel from or to the control chamber and the flow channel is significantly less sensitive to one constant high pressure.
  • the fatigue strength of the fuel injector it is more favorable to allow high pressures to be advantageously applied to smaller-sized flow cross sections or pressure chambers, the wall thickness of which can be designed more favorably with regard to the high pressure load.
  • the control chamber integrated into the injector body of a fuel injector can be relieved of a permanent and directly present high pressure level, which is considerably cheaper in terms of the fatigue strength of the injector body compared to the solutions known from the prior art.
  • the inlet throttle is arranged in the opening in the flow channel, which connects the control chamber and a switching valve to one another.
  • the throttle element functioning as an inlet throttle is preferably arranged such that it opens at a distance from a further throttle, which functions as an outlet throttle and is integrated into the control chamber duct. Within this distance, ie this partial length of the flow channel, the fuel flow is able to contact the wall of the flow channel, ie an essentially laminar flow is formed.
  • the throttle element acting as an inlet throttle can also open into the valve chamber of the switching valve which relieves pressure from the control chamber.
  • the length of the flow channel connecting the valve chamber and the control chamber to one another is dimensioned such that a laminar flow state of the fuel in the flow channel also arises in the second embodiment variant.
  • the throttle element integrated into the flow channel according to the embodiment variants mentioned is connected downstream of the valve chamber of the switching valve which relieves the pressure in the control chamber.
  • the calming section formed in the flow channel for the fuel flow can be dispensed with, since the throttle element assigned to the control chamber on the outlet side is arranged downstream of the valve chamber of the switching valve.
  • a particularly compact and pressure-resistant injector is therefore possible, since the length of the flow channel between the valve chamber of the switching valve and the control chamber can be kept short.
  • FIG. 1 shows an injector arrangement, the control chamber of which is connected to a valve chamber by a flow channel, with an inlet opening into the flow channel at approximately half its length
  • FIG. 2 shows an injector design in which the inlet opens into the valve chamber of a switching valve which relieves the pressure in the control chamber and
  • FIG 3 shows a further injector design with the outlet throttle element connected downstream of the switching chamber to relieve pressure in the control chamber.
  • FIG. 1 shows an injector arrangement, the control chamber of which is connected to a valve chamber through a flow channel, in which an inlet on the high-pressure side with an integrated throttle element opens approximately at half its length.
  • the injector body 1 of a fuel injector comprises a control room 2 which is delimited by a control room wall 3 and a control room area 4.
  • a stop 5 is formed on the control chamber surface 4, which is preferably configured as a projection which annularly surrounds a drain / inlet opening of the control chamber 2.
  • An end face 8 of a nozzle needle / tappet arrangement 6 lies opposite the stop 5 on the control chamber surface 4. The nozzle needle / tappet arrangement 6 can be moved up and down in the injector body 1 in the vertical direction in accordance with the double arrow denoted by reference numeral 7.
  • the control chamber 2 of the fuel injector as shown in FIG. 1 is connected to a valve chamber 20 of the switching valve 19 via a flow channel 14 penetrating the injector body 1 in the vertical direction.
  • a first throttle element 10 adjoining the outlet / inlet opening 9 is let into the flow channel 14.
  • the throttle element 10 is formed in a throttle cross section 11, which is small in comparison to the channel cross section 15 of the flow channel 14.
  • a first distance 18 from the mungskanal 14 integrated first throttle element 10 opens an inlet 16 from a high pressure source, not shown here.
  • the high pressure source can be a high pressure pump or a high pressure common rail of the fuel injection system.
  • a further throttle element 17 is integrated in the inlet 16 from the high pressure source, the cross section of which is small compared to the cross section of the inlet 16 from the high pressure source.
  • the first distance 18 between the mouth of the inlet 16 from the high-pressure source in the flow channel 14 is selected such that the mouth of the high-pressure side inlet 16 is approximately half the length of the flow channel 14 between the control chamber 2 and the valve chamber 20 lies.
  • the switching valve 19 is preferably designed as a 2/2-way valve and comprises a spherically configured valve body 21.
  • the valve body 21 is acted on the one hand by a prestressing element 23 which is supported on the upper wall of the valve chamber 20; actuation of the valve body 21 of the switching valve 19 is possible by means of a transmission element 24, the end face 25 of which rests on the peripheral surface of the valve body 21.
  • the transmission element 24 can be moved in the vertical direction in the direction of the double arrow 26 shown in FIG. 1, for which purpose a piezoelectric actuator, a solenoid valve or a mechanical / hydraulic translator can preferably be used.
  • a leakage oil drain 27 branches off at a branch point 28, via which a control volume flowing into the valve chamber 20 via the flow channel 14 leaves the control chamber 2 when the pressure in the control chamber 2 is released ,
  • valve body 21 of the switching valve 19 If the valve body 21 of the switching valve 19 is placed in its seat 22 formed in the injector body 1, fuel flows in the inflow direction 12 in the direction of the control chamber 2 formed in the injector body 1 via the inlet 16 on the high-pressure side and the throttle element 17 integrated therein.
  • the throttle element accommodated in the flow channel 14 10 acts as a further inlet throttle in the feed direction 12 of the fuel in relation to the control chamber 10. Pressure builds up in the control chamber 2, so that the end face 8 of the nozzle needle / plunger arrangement 6 is pressurized and the nozzle needle / plunger arrangement 6 can be moved into its closed position.
  • the spherically configured valve body 21 of the switching valve 19 is actuated from its injector body 1 after an appropriate actuation of the transmission element 24 by an actuator (not shown here). drove the seat 22.
  • the throttle element 10 which acts as an outlet throttle in the flow direction 14 of the fuel, acts as an outlet throttle and then enters the flow channel 14.
  • the throttle 17 accommodated in the high-pressure side inlet 16 and integrated therein acts as a leakage-reducing throttle element, since only a small part of the outflowing control volume can flow through it.
  • the control volume flows through the channel cross section 15 into the valve chamber 20 of the switching valve 19.
  • the mouth of the inlet 16 on the high-pressure side is arranged at a first distance 18 with respect to the throttle element 10 integrated in the flow channel 14, so that, seen in the drain direction 13 of the fuel, fuel flow emerging from the throttle element 10 acting as an outlet throttle to the Wall of the flow channel 14 creates.
  • FIG. 2 shows an injector structure in which the inlet directly opens into the valve chamber of a switching valve that relieves the pressure in the control chamber.
  • control chamber 2 which actuates the nozzle needle / tappet arrangement 6, and the valve chamber 20 of the switching valve 19 are connected to one another via a flow channel 14, in which a throttle element 10 is accommodated.
  • the throttle element 10 is located in the flow channel 14 directly behind the outlet / inlet opening 9, which is enclosed in the control chamber 2 by an annularly configured stop surface 5.
  • a housing-side seat 30 of the spherical valve body 21 of the switching valve 19 is formed in the upper region of the valve chamber 20; the biasing element 23 is supported on the bottom of the valve chamber 20 and acts as a restoring element on the spherically configured valve body 21.
  • the transmission element 24 is enclosed by an annular gap 31, via which the valve chamber 20 has entered, via the flow channel 14 controlled control volume flows into the drain oil drain.
  • the inlet 16 on the high-pressure side with an integrated throttle element 17 is arranged to open into the valve chamber 20 of the switching valve 19.
  • the inlet 16 on the high-pressure side opens at a second distance 32 with respect to the position of the throttle element 10 in the flow channel 14.
  • the flow channel 14, which connects the valve chamber 20 to the control chamber 2 can be flowed through by fuel both in the feed direction 12 with respect to the control chamber 2 and in the drain direction 13 when the pressure in the control chamber 2 is released by opening the valve body 21, preferably as 2/2 2-way valve procured switching valve 19.
  • the second distance 32 between the mouth of the high-pressure side inlet 16 into the valve chamber 20 and the throttle element 10 provided in the flow channel 14 is dimensioned so that a laminar flow state, ie a Applying the fuel flow to the wall of the flow channel 14 adjusts.
  • both of the embodiment variants shown in FIGS. 1 and 2 have in common that the inlet 16 on the high-pressure side opening into the flow channel 14 or the valve chamber 20 from a high-pressure source, not shown here, serves as a leak-reducing element in the discharge direction 13 when the control chamber 2 is depressurized.
  • a throttle element 17 is integrated in the high-pressure side inlet 16, the flow cross-section of which is dimensioned much smaller than the channel cross-section 15 of the flow channel 14.
  • the integrated throttle element 17 of the high-pressure side inlet 16 acts in each case as a leakage-reducing throttle element;
  • the first throttle 10 integrated in the flow channel 14 acts as a second inlet throttle, which is connected downstream of the throttle 17 integrated in the inlet 16 on the high-pressure side.
  • the throttle element 10 integrated in the flow channel 14 acts as an outlet throttle for the control chamber 2.
  • an outlet throttle element is integrated in a leakage oil outlet branching off from the valve chamber of a switching valve.
  • a particularly compact, high-pressure-resistant fuel injector can be realized with the embodiment variant shown in FIG.
  • the control chamber 2 and the valve chamber 20 of the switching valve 19, which is preferably configured as a 2/2-way valve, are connected via a flow channel 14, which both in the inflow direction 12 and in the outflow direction 13 in Fuel can flow through with respect to the control chamber 2.
  • a high-pressure inlet 16 opens into it, in which a throttle element 17 is integrated.
  • the integrated throttle element 17 functions as a feed throttle; with pressure relief of the control room 2, however, as a leakage reducing throttle element.
  • the underlying idea is that a downstream flow restrictor element 40 is installed in the leakage oil branch 27 from the control chamber 2.
  • the distance predetermined by the first distance 18 according to the first embodiment variant or by the second distance 32 according to the second embodiment variant, which serves as a calming section for the fuel flow is no longer necessary, since that throttle element 10 provided in flow channel 14 according to these embodiment variants has been dispensed with and is let into leak oil drain 27.
  • the length of the flow channel 14 between the valve chamber 20 and the outlet / inlet opening 9 of the control chamber 2 can be made shorter, since the distances 18 and 32 required to calm the fuel flow have been eliminated.
  • the structure of the switching valve 19 according to the third embodiment variant shown in FIG. 3 of the idea on which the invention is based essentially corresponds to that of the switching valve 19 according to the first embodiment variant shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung bezieht sich auf einen Kraftstoffinjektor für Speichereinspritzsysteme an direkteinspritzenden Verbrennungskraftmaschinen. Der Kraftstoffinjektor umfasst einen Injektorkörper (1), in welchem ein Steuerraum (2) ausgebildet ist. Mit diesem ist eine Düsennadel-/Stösselanordnung (6) im Injektorkörper (1) betätigbar. Der Steuerraum (2) ist mittels eines Schaltventils (19) druckentlastbar, wobei zwischen dem Steuerraum (2) und dem Ventilraum (20) des Schaltventils (19) ein Strömungskanal (14) verläuft. Ein hochdruckseitiger Zulauf (16) mit integriertem Drosselelement (17) mündet im Strömungskanal/Ventilraumbereich (14, 20).

Description

Kraftstoffinjektor mit hochdruckfestigkeitsoptimiertem Steuerraum
Technisches Gebiet
Bei luftverdichtenden Verbrennungskraftmaschinen werden heute zunehmend Speichereinspritzsysteme eingesetzt, welche die einzelnen den Zylindern der Verbrennungskraftma- schine zugeordneten Kraftstoffinjektoren mit unter hohem Druck stehenden Kraftstoff versorgen. Durch den Einsatz eines Hochdruckspeicherraumes (Common Rail) lassen sich Druckpulsationen im Kraftstoff dämpfen, so dass der an den einzelnen Einspritzöffnungen der Kraftstoffinjektoren anstehende Kraftstoffdruck nahezu konstant gehalten werden kann. Zur Steuerung der Düsennadelbewegung werden Steuerräume in die Gehäuse der Kraft- stoffinjektoren integriert, durch deren Druckentlastung sich eine Düsennadel zur Freigabe oder zum Verschließen von Einspritzöffnungen betätigen lässt. Im Allgemeinen ist der Steuerraum über eine Zulaufdrossel mit einem unter hohem Druck stehenden Kraftstoffvolumen von der Hochdruckquelle her beaufschlagbar.
Stand der Technik
EP 0 994 248 A2 bezieht sich auf einen Kraftstoffinjektor mit Einspritzverlaufsformung durch piezoelektrische Steuerung des Düsennadelhubes. Ein Kraftstoffinjektor umfasst einen Zylinderkörper, an welchem eine Einspritzöffhung ausgebildet ist. Eine Düsennadel ist im Injektorkörper bewegbar aufgenommen und bewegt sich um einen Hubweg zwischen einer Offenstellung, in der die Einspritzöffnungen geöffnet sind und einer Schließstellung, in welcher die Einspritzöffnungen verschlossen sind. Im Injektorkörper ist ferner ein piezoelektrischer Aktor aufgenommen, dessen Piezoelement zwischen einer Einschalt- und einer Ausschaltposition hin- und her schaltbar ist. Über eine Kopplungselement in Gestalt einer Druckkammer sind die Düsennadel und der piezoelektrische Aktor derart miteinander verbunden, dass die Bewegung des Piezoelementes des piezoelektrischen Aktors in eine grössere axiale Hubbewegung der Düsennadel im Injektorgehäuse übersetzt wird. DE 197 15 234 AI bezieht sich auf ein magnetventilgesteuertes direkteinspritzendes Kraftstoffeinspritzventil für Speichereinspritzsysteme von Mel rzylinderbrennkraftmaschinen. In jedem Ventilgehäuse führt eine Zuführleitung zu einer federbelasteten Düsennadel, wobei die Zuführleitung durch einen Steuerkolben mit Ventilfunktion absperrbar ist. Ferner ist eine Düsennadel vorgesehen, die sich in einem Federraum abstützt und die Düsennadel auf ihren Nadelsitz drückt. Auf der Rückseite des unter Systemdruck stehenden Steuerkolbens ist ein Steuerraum angeordnet, wobei ein Magnetventil vorgesehen ist, durch welches der Steuerraum mit einer Entlastungsleitung verbindbar und gleichzeitig zur Einspritzung die Absperrung der zur Düsennadel führenden Zuführleitung durch ein am Steuerkolben angeordnetes Hochdruckventil aufhebbar ist. Es ist eine gedrosselte Leitungsverbindung als Bypass zwischen der Zuführleitung und der Entlastungsleitung vorgesehen, wobei die Leitungsverbindung ein mit dem Magnetventil in Wirkverbindung stehendes Leckageventil enthält, durch welches während der Einspritzung die Leitungsverbindung unterbrechbar ist.
Bei beiden aus dem Stand der Technik bekannten Lösungen stehen die Steuerräume über ein diesen vorgeschaltetes Zulaufdrosselelement permanent mit der Hochdruckquelle in Verbindung. Hinsichtlich der Dauerfestigkeit der Injektorkörper eines Kraftstoffinjektors ist das permanente Anstehen eines sehr hohen Druckes jenseits von 1000 bar ungünstig und kann über die Standzeit eines Kraftstoffeinspritzsystems zu Problemen führen.
Darstellung der Erfindung
Die mit der erfindungsgemäßen Lösung erzielbaren Vorteile sind vor allem darin zu erblik- ken, dass der permanent über die Hochdruckquelle anstehende hohe Druck an einem als Zulaufdrossel wirkenden Drosselelement ansteht, welches in einem Strömungskanal von bzw. zum Steuerraum mündet und der Strömungskanal wesentlich unempfindlicher gegen einen dauerhaft anstehenden Hochdruck ist. Im Hinblick auf die Dauerfestigkeit des Kraft- stoffinjektors ist es günstiger, hohe Drücke vorteilhaft an kleiner dimensionierten Strömungsquerschnitten bzw. Druckräumen anstehen zu lassen, deren Wandstärke hinsichtlich der Hochdruckbeanspruchung günstiger ausgelegt werden kann. Dadurch lässt sich der in den Injektorkörper eines Kraftstoffinjektors integrierte Steuerraum von einem permanent und unmittelbar an diesem anstehenden Hochdruckniveau entlasten, was hinsichtlich der Dauerfestigkeit des Injektorkörpers im Vergleich zu den aus dem Stand der Technik bekannten Lösungen wesentlich günstiger ist. Gemäß einer ersten Ausfuhrungsvariante der erfindungsgemäß vorgeschlagenen Lösung ist die Zulaufdrossel im Strömungskanal mündend angeordnet, welcher den Steuerraum und ein Schaltventil miteinander verbindet. Vorzugsweise ist das als Zulaufdrossel fungierende Drosselelement so angeordnet, dass dieses mit einem Abstand von einer weiteren Drossel, als Ablaufdrossel fungierend in den Steuerraumkanal integriert, mündet. Innerhalb dieses Abstandes, d.h. dieser Teillänge des Strömungskanals, vermag sich die Kraftstoffströmung an die Wand des Strömungskanals anzulegen, d.h. es bildet sich eine im wesentlichen laminare Strömung aus.
In einer weiteren Ausführungsvariante des der Erfindung zugrundeliegenden Gedankens kann das als Zulaufdrossel wirkende Drosselelement auch im Ventilraum des den Steuerraum druckentlastenden Schaltventils münden. Die Länge des den Ventilraumes und den Steuerraum miteinander verbindenden Strömungskanals ist so bemessen, dass sich auch in der zweiten Ausführungsvariante ein laminarer Strömungszustand des Kraftstoffs im Strö- mungskanal einstellt.
In einer besonders kompaktbauenden dritten Ausführungsvariante des der Erfindung zugrundeliegenden Gedankens ist das gemäß der genannten Ausführungsvarianten in den Strömungskanal integrierte Drosselelement dem Ventilraum des den Steuerraum druk- kentlastenden Schaltventils nachgeschaltet. Gemäß dieser Ausführungsvariante kann die im Strömungskanal ausgebildete Beruhigungsstrecke für die Kraftstoffströmung entfallen, da das den Steuerraum ablaufseitig zugeordnete Drosselelement dem Ventilraum des Schaltventils nachgeordnet ist. Mithin ist ein besonderes kompaktbauender und druckfester Injektor möglich, da die Länge des Strömungskanals zwischen dem Ventilraum des Schalt- ventils und des Steuerraums kurz gehalten werden kann.
Zeichnung
Anhand der Zeichnung wird die Erfindung nachstehend näher erläutert.
Es zeigt:
Figur 1 eine Injektoranordnung, deren Steuerraum mit einem Ventilraum durch einen Strömungskanal verbunden ist, mit in den Strömungskanal etwa auf dessen halber Länge mündenden Zulauf, Figur 2 eine Injektorbauform, bei der der Zulauf in den Ventilraum eines den Steuerraum druckentlastenden Schältventils mündet und
Figur 3 eine weitere Injektorbauform mit den Ventilraum eines den Steuerraum druk- kentlastenden Schaltventils nachgeschaltetem Ablaufdrosselelement.
Ausfuhrungsvarianten
Figur 1 ist eine Injektoranordnung entnehmbar, deren Steuerraum mit einem Ventilraum durch einen Strömungskanal in Verbindung steht, in welchem etwa auf halber Länge ein hochdruckseitiger Zulauf mit integriertem Drosselelement mündet.
Der Injektorkörper 1 eines Kraftstoffinjektors umfassf einen Steuerraum 2, der von einer Steuerraumwandung 3 sowie einer Steuerraumfläche 4 begrenzt ist. An der Steuerraumflä- che 4 ist ein Anschlag 5 ausgebildet, der bevorzugt als ein Vorsprung konfiguriert ist, der ringförmig eine Ablauf-/Zulauföffnung des Steuerraumes 2 umschließt. Dem Anschlag 5 an der Steuerraumfläche 4 gegenüberliegend liegt eine Stirnfläche 8 einer Düsennadel- /Stößelanordnung 6. Die Düsennadel-/Stößelanordnung 6 ist im Injektorkörper 1 in verti- kale Richtung entsprechend des mit Bezugszeichen 7 bezeichneten Doppelpfeiles auf und ab bewegbar. Bei Druckentlastung des Steuerraums 2 durch Betätigung eines Schaltventils 19 fährt die Stirnseite 8 der Düsennadel-/Stößelanordnung 6 in den Steuerraum 2 ein; bei Druckbeaufschlagung des Steuerraums 2 in Zulaufrichtung 12 des Kraftstoffes über einen Zulauf 16 mit integriertem Drosselelement 17 erfolgt ein Druckaufbau im Steuerraum 2, so dass die Düsennadel-/Stößelanordnung 6 in vertikale Richtung nach unten fährt und demzufolge hier nicht dargestellte Einspritzöffnungen am in den Brennraum einer Verbrennungskraftmaschine hineinragenden Kraftstoffinjektorende verschließt.
Der Steuerraum 2 des Kraftstoffinjektor gemäß der Darstellung in Figur 1 steht über einen den Injektorkörper 1 in vertikale Richtung durchsetzenden Strömungskanal 14 mit einem Ventilraum 20 des Schaltventils 19 in Verbindung.
Der Strömungskanal 14, welcher den Ventilraum 20 des Schaltventils 19 mit dem Steuerraum 2 des Injektorkörpers 1 verbindet, ist in einem Kanalquerschnitt 15 ausgebildet. In der Darstellung gemäß Figur 1 ist in den Strömungskanal 14 ein sich an die Ablauf- /Zulauföffnung 9 anschließendes erstes Drosselelement 10 eingelassen. Das Drosselelement 10 ist in einem Drosselquerschnitt 11 ausgebildet, der klein im Vergleich zum Kanalquerschnitt 15 des Strömungskanals 14 ist. In einem ersten Abstand 18 vom in den Strö- mungskanal 14 integrierten ersten Drosselelement 10 mündet ein Zulauf 16 von einer hier nicht näher dargestellten Hochdruckquelle. Die Hochdruckquelle kann eine Hochdruckpumpe oder ein Hochdrucksammeiraum (Common Rail) des Kraftstoffeinspritzsystems sein. In den Zulauf 16 von der Hochdruckquelle ist ein weiteres Drosselelement 17 inte- griert, dessen Querschnitt klein im Vergleich zum Querschnitt des Zulaufs 16 von der Hochdruckquelle ist. Der erste Abstand 18 zwischen der Mündungsstelle des Zulaufs 16 von der Hochdruckquelle in den Strömungskanal 14 ist in der Darstellung des ersten Ausführungsbeispiels gemäß Figur 1 so gewählt, dass die Mündung des hochdruckseitigen Zulaufes 16 etwa auf halber Länge des Strömungskanals 14 zwischen Steuerraum 2 und Ventilraum 20 liegt.
Der Strömungskanal 14, ausgebildet im Kanalquerschnitt 15, mündet unterhalb eines Sitzes 22 in einen Ventilraum 20 eines Schaltventils 19. Das Schaltventil 19 ist bevorzugt als ein 2/2-Wege-Ventil ausgestaltet und umfasst einen kugelförmig konfigurierten Ventilkör- per 21. Der Ventilkörper 21 ist einerseits durch ein sich an der oberen Wandung des Ventilraums 20 abstützendes Vorspannelement 23 beaufschlagt; eine Betätigung des Ventilkörpers 21 des Schaltventils 19 ist durch ein Übertragungselement 24 möglich, dessen Stirnfläche 25 an der Umfangsfläche des Ventilkörpers 21 anliegt. Das Übertragungselement 24 kann in Richtung des in Figur 1 eingetragenen Doppelpfeils 26 in vertikale Rich- tung bewegt werden, wozu bevorzugt ein piezoelektrischer Aktor, ein Magnetventil oder ein mechanisch/hydraulischer Übersetzer eingesetzt werden können. Vom Ventilraum 20, welcher den kugelförmig konfigurierten Ventilkörper 21, das Vorspannelement 23 und das Übertragungselement 24 umgibt, zweigt ein Leckölablauf 27 an einer Abzweigstelle 28 ab, über welchen bei Druckentlastung des Steuerraums 2 ein über den Strömungskanal 14 in den Ventilraum 20 einströmendes Steuervolumen diesen verlässt.
Ist der Ventilkörper 21 des Schaltventils 19 in seinen im Injektorkörper 1 ausgebildeten Sitz 22 gestellt, strömt über den hochdruckseitigen Zulauf 16 und das in diesen integrierte Drosselelement 17 Kraftstoff in Zulaufrichtung 12 in Richtung des im Injektorkörper 1 ausgebildeten Steuerraums 2. Das im Strömungskanal 14 aufgenommene Drosselelement 10 fungiert in Zulaufrichtung 12 des Kraftstoffes in Bezug auf den Steuerraum 10 als weitere Zulaufdrossel. Es erfolgt ein Druckaufbau im Steuerraum 2, so dass die Stirnfläche 8 der Düsennadel-/Stößelanordnung 6 mit Druck beaufschlagt wird und die Düsennadel- /Stößelanordnung 6 in ihre Schließstellung gefahren werden kann.
Zur Druckentlastung des Steuerraums 2 wird der kugelförmig konfigurierte Ventilkörper 21 des Schaltventils 19 nach entsprechender Betätigung des Übertragungselements 24 durch einen hier nicht näher dargestellten Aktor aus seinem im Injektorkörper 1 vorgese- henen Sitz 22 gefahren. Aus dem Steuerraum 2 schießt über die Ablauf-/Zulauföfrhung 9 in das in den Strömungskanal 14 integrierte in Abiaufrichtung 13 des Kraftstoffes gesehen als Ablaufdrossel wirkende Drosselelement 10 ein und tritt danach in den Strömungskanal 14 ein. In diesem Falle fungiert die im hochdruckseitigen Zulauf 16 aufgenommene und in diesen integrierte Drossel 17 als leckagereduzierendes Drosselelement, da nur ein geringer Teil des abströmenden Steuervolumens durch diese abströmen kann. Bei geöffnetem, d.h. aus seinem Sitz 22 herausgestellten Ventilkörper 21 des Schaltventils 19 strömt das Steuervolumen durch den Kanalquerschnitt 15 in den Ventilraum 20 des Schaltventils 19 ein. In vorteilhafter Weise ist die Mündung des hochdruckseitigen Zulaufs 16 in einem ersten Ab- stand 18 in Bezug auf das in den Strömungskanal 14 integrierte Drosselelement 10 angeordnet, so dass sich in Abiaufrichtung 13 des Kraftstoffes gesehen aus dem als Ablaufdrossel wirkenden Drosselelement 10 austretende Kraftstoffstrom an die Wandung des Strömungskanals 14 anlegt.
Der Darstellung gemäß Figur 2 ist ein Injektoraufbau zu entnehmen, bei dem der Zulauf in den Ventilraum eines den Steuerraum druckentlastenden Schaltventils direkt mündet.
Gemäß dieser zweiten Ausführungsvariante des der Erfindung zugrundeliegenden Gedankens sind der Steuerraum 2, welcher die Düsennadel-/Stößelanordnung 6 betätigt und der Ventilraum 20 des Schaltventils 19 über einen Strömungskanal 14 miteinander verbunden, in welchem ein Drosselelement 10 aufgenommen ist. Analog zur Darstellung gemäß Figur 1 liegt das Drosselelement 10 im Strömungskanal 14 unmittelbar hinter der Ablauf- /Zulaufbffnung 9, welche im Steuerraum 2 von einer ringförmig konfigurierten Anschlagfläche 5 umschlossen ist.
Gemäß dieser Ausfuhrungsvariante ist ein gehäuseseitiger Sitz 30 des kugelförmigen Ventilkörpers 21 des Schaltventils 19 im oberen Bereich der Ventilkammer 20 ausgebildet; das Vorspannelement 23 stützt sich am Boden des Ventilraums 20 ab und wirkt als Rückstellelement auf den kugelförmig konfigurierten Ventilkörper 21. Das Übertragungselement 24 ist in der zweiten Ausfuhrungsvariante gemäß Figur 2 von einem Ringspalt 31 umschlossen, über welchen in den Ventilraum 20 eingetretenes, über den Strömungskanal 14 abgesteuertes Steuervolumen in den Leckölablauf einströmt.
Im Unterschied zur in Figur 1 dargestellten ersten Ausführungsvariante ist bei der zweiten Ausführungsvariante gemäß Figur 2 der hochdruckseitige Zulauf 16 mit integriertem Drosselelement 17 in den Ventilraum 20 des Schaltventils 19 mündend angeordnet. Der hochdruckseitige Zulauf 16 mündet in einem zweiten Abstand 32 in Bezug auf die Position des Drosselelementes 10 im Strömungskanal 14. Auch bei dieser zweiten Ausführungsvariante kann der Strömungskanal 14, der den Ventilraum 20 mit dem Steuerraum 2 verbindet, sowohl in Zulaufrichtung 12 in Bezug auf den Steuerraum 2 von Kraftstoff durchströmt werden als auch in Abiaufrichtung 13 bei Druckentlastung des Steuerraums 2 durch Öffnen des Ventilkörpers 21 des vorzugsweise als 2/2-Wege-Ventils beschaffenen Schaltventils 19. Gemäß der in Figur 2 dargestellten Ausführungsvariante ist der zweite Abstand 32 zwischen der Mündungsstelle des hochdruckseitigen Zulaufs 16 in den Ventilraum 20 und dem im Strömungskanal 14 vorgesehenen Drosselelement 10 so bemessen, dass sich ein laminarer Strömungszustand, d.h. ein Anlegen der Kraftstoffströmung an die Wandung des Strömungskanals 14 einstellt.
Beiden in Figur 1 und 2 dargestellten Ausfuhrungsvarianten ist gemeinsam, dass der in den Strömungskanal 14 bzw. in den Ventilraum 20 mündende hochdruckseitige Zulauf 16 von einer hier nicht dargestellten Hochdruckquelle bei Druckentlastung des Steuerraums 2 in Abiaufrichtung 13 als leckagereduzierendes Element dient. Dies deshalb, da in den hoch- druckseitigen Zulauf 16 ein Drosselelement 17 integriert ist, dessen Strömungsquerschnitt wesentlich geringer bemessen ist als der Kanalquerschnitt 15 des Strömungskanals 14. In Abiaufrichtung 13 wirkt das integrierte Drosselelement 17 des hochdruckseitigen Zulaufs 16 jeweils als leckagereduzierendes Drosselelement; in beiden Ausfuhrungsvarianten wirkt die in den Strömungskanal 14 integrierte erste Drossel 10 als zweite Zulaufdrossel, welche der in den hochdruckseitigen Zulauf 16 integrierten Drossel 17 nachgeschaltet ist. In Abiaufrichtung 13 wirkt das in den Strömungskanal 14 integrierte Drosselelement 10 als Ablaufdrossel für den Steuerraum 2.
Gemäß einer Figur 3 entnehmbaren dritten Injektor- Ausführungsvariante ist ein Ablauf- drosselelement in einen vom Ventilraum eines Schaltventils abzweigenden Leckölablauf integriert.
Mit der in Figur 3 dargestellten Ausführungsvariante lässt sich ein besonders kompaktbauender hochdruckfester Kraftstoffinjektor verwirklichen. Auch bei dieser dritten Ausfüh- rungsvariante des der Erfindung zugrundeliegenden Gedankens sind der Steuerraum 2 sowie der Ventilraum 20 des vorzugsweise als 2/2- Wege-Ventils konfigurierten Schaltventils 19 über einen Strömungskanal 14 verbunden, der sowohl in Zulaufrichtung 12 als auch in Abiaufrichtung 13 in Bezug auf den Steuerraum 2 von Kraftstoff durchströmt werden kann. Auf halber Länge des Strömungskanals 14 mündet in diesen ein hochdruckseitiger Zulauf 16, in welchen ein Drosselelement 17 integriert ist. In Zulaufrichtung 12 des Kraftstoffs in den Steuerraum 2 fungiert das integrierte Drosselelement 17 als Zulaufdrossel; bei Druk- kentlastung des Steuerraums 2 hingegen als leckagereduzierendes Drosselelement. Im Unterschied zu den in Figuren 1 und 2 dargestellten Ausfuhrungsvarianten des der Erfindung zugrundeliegenden Gedankens ist ein nachgeschaltetes Ablaufdrosselelement 40 in den Leckölabzweig 27 vom Steuerraum 2 verlegt. Bei der dritten Ausfuhrungsvariante des der Erfindung zugrundeliegenden Gedankens ist der durch den ersten Abstand 18 gemäß der ersten Ausführungsvariante bzw. durch den zweiten Abstand 32 gemäß der zweiten Aus- führungsvariante vorgegebene Abstand, der als Beruhigungsstrecke für die Kraftstoffströmung dient, nicht mehr notwendig, da das gemäß diesen Ausfuhrungsvarianten im Strömungskanal 14 vorgesehene Drosselelement 10 entfallen ist und in den Leckölablauf 27 eingelassen ist. Dadurch kann die Länge des Strömungskanals 14 zwischen dem Ventilraum 20 und der Ablauf-/Zulauföffnung 9 des Steuerraums 2 kürzer ausgebildet werden, da die zur Beruhigung der Kraftstoffströmung erforderlichen Abstände 18 bzw. 32 entfallen sind. Der Aufbau des Schaltventils 19 gemäß der in Figur 3 dargestellten dritten Ausführungsvariante des der Erfindung zugrundeliegenden Gedankens entspricht im wesentlichen der des Schaltventils 19 gemäß der ersten in Figur 1 dargestellten Ausfuhrungsvariante.

Claims

Patentansprüche
1. Kraftstoffinjektor für Speichereinspritzsysteme an direkteinspritzenden Verbrennungs- kraftmaschinen mit einem Injektorkörper (1), in welchem ein Steuerraum (2) ausgebildet ist, mit welchem eine Düsennadel-/Stößelanordnung (6) im Injektorkörper (1) betätigbar ist und mit einem Schaltventil (19), über welches der Steuerraum (2) druck- entlastbar ist und in dessen Ventilraum (20) ein den Steuerraum (2) und das Schaltventil (19) verbindender Strömungskanal (14) mündet, dadurch gekennzeichnet, dass ein hochdruckseitiger Zulauf (16) mit integriertem Drosselelement (17) in den Strömungskanal/Ventilraumbereich (14, 20) mündet.
2. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass der Strömungskanal (14) in Zulaufrichtung (12) des Kraftstoffes und in Abiaufrichtung (13) des Kraft- Stoffes beaufschlagbar ist.
3. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass der Strömungskanal (14) über eine Ablauf/Zulauföffnung (9) mit den Kanalquerschnitt (15) des Strömungskanals (14) übersteigender Querschnittsfläche in den Steuerraum (2) mündet.
4. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass im Strömungskanal (14) ein Drosselelement (10) aufgenommen ist, welches in Abiaufrichtung (13) des Kraftstoffes als Ablaufdrossel und in Zulaufrichtung (12) des Kraftstoffes als zweite Zulaufdrossel wirkt.
5. Kraftstoffinjektor gemäß Anspruch 4, dadurch gekennzeichnet, dass der hochdruck- seitige Zulauf (16) in einem ersten Abstand (18) vom Drosselelement (10) des Strömungskanal (14) in den Strömungskanal (14) mündet.
6. Kraftstoffinjektor gemäß Anspruch 4, dadurch gekennzeichnet, dass der hochdruck- seitige Zulauf (16) in einem zweiten Abstand (32) vom Drosselelement (10) des Strömungskanals (14) in den Ventilraum (20) des Schaltventils (19) mündet.
7. Kraftstoffinjektor gemäß der Ansprüche 1 und 4, dadurch gekennzeichnet, dass das integrierte Drosselelement (17) des hochdruckseitigen Zulaufs (16) in Abiaufrichtung
(13) des Kraftstoffs aus dem Steuerraum (2) leckagereduzierend wirkt.
8. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass das Drosselelement (10) dem Schaltventil (19) nachgeschaltet, im von Ventilraum (20) des Schaltventils (19) abzweigenden Leckölablauf (27) aufgenommen ist.
9. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass das Schaltventil (9) als 2/2- Wege- Ventil ausgebildet ist, dessen Ventilkörper (21) über ein sich an der Wandung des Ventilraums (20) abstützendes Vorspannelement (23) beaufschlagt ist und mittels eines über einen Aktor betätigbaren Übertragungselementes (24) in seinen Sitz (22, 30) oder aus diesem bewegbar ist.
PCT/DE2002/002237 2001-06-29 2002-06-19 Kraftstoffinjektor mit hochdruckfestigkeitsoptimiertem steuerraum WO2003004859A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02748598A EP1436498A1 (de) 2001-06-29 2002-06-19 Kraftstoffinjektor mit hochdruckfestigkeitsoptimiertem steuerraum

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10131631.3 2001-06-29
DE2001131631 DE10131631A1 (de) 2001-06-29 2001-06-29 Kraftstoffinjektor mit hochdruckfestigkeitsoptimiertem Steuerraum

Publications (1)

Publication Number Publication Date
WO2003004859A1 true WO2003004859A1 (de) 2003-01-16

Family

ID=7690073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002237 WO2003004859A1 (de) 2001-06-29 2002-06-19 Kraftstoffinjektor mit hochdruckfestigkeitsoptimiertem steuerraum

Country Status (3)

Country Link
EP (1) EP1436498A1 (de)
DE (1) DE10131631A1 (de)
WO (1) WO2003004859A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015078629A1 (de) * 2013-11-28 2015-06-04 Robert Bosch Gmbh Kraftstoffinjektor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19544987A1 (de) * 1994-12-02 1996-06-05 Nippon Denso Co Kraftstoffeinspritzvorrichtung
DE19609799A1 (de) * 1996-03-13 1997-09-18 Mtu Friedrichshafen Gmbh Brennstoffeinspritzverfahren und Brennstoffeinspritzsystem
DE19715234A1 (de) 1997-04-12 1998-06-25 Daimler Benz Ag Magnetventilgesteuertes direkteinspritzendes Kraftstoffeinspritzventil für Speichereinspritzsysteme von mehrzylindrigen Brennkraftmaschinen
US5819710A (en) * 1995-10-27 1998-10-13 Daimler Benz Ag Servo valve for an injection nozzle
DE19734354A1 (de) * 1997-08-08 1999-02-11 Mtu Friedrichshafen Gmbh Kraftstoffeinspritzsystem für eine Brennkraftmaschine
US5915361A (en) * 1997-10-10 1999-06-29 Robert Bosch Gmbh Fuel injection device
DE19812010C1 (de) * 1998-03-19 1999-09-30 Mtu Friedrichshafen Gmbh Kraftstoffeinspritzventil für eine Brennkraftmaschine
EP0994248A2 (de) 1998-10-13 2000-04-19 Caterpillar Inc. Brennstoffeinspritzventil mit piezoelektrischer Einspritzverlaufregelung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0741244B1 (de) * 1995-05-03 1999-07-07 DaimlerChrysler AG Einspritzdüse
GB2350662A (en) * 1999-06-03 2000-12-06 Lucas Ind Plc Valve for a fuel injector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19544987A1 (de) * 1994-12-02 1996-06-05 Nippon Denso Co Kraftstoffeinspritzvorrichtung
US5819710A (en) * 1995-10-27 1998-10-13 Daimler Benz Ag Servo valve for an injection nozzle
DE19609799A1 (de) * 1996-03-13 1997-09-18 Mtu Friedrichshafen Gmbh Brennstoffeinspritzverfahren und Brennstoffeinspritzsystem
DE19715234A1 (de) 1997-04-12 1998-06-25 Daimler Benz Ag Magnetventilgesteuertes direkteinspritzendes Kraftstoffeinspritzventil für Speichereinspritzsysteme von mehrzylindrigen Brennkraftmaschinen
DE19734354A1 (de) * 1997-08-08 1999-02-11 Mtu Friedrichshafen Gmbh Kraftstoffeinspritzsystem für eine Brennkraftmaschine
US5915361A (en) * 1997-10-10 1999-06-29 Robert Bosch Gmbh Fuel injection device
DE19812010C1 (de) * 1998-03-19 1999-09-30 Mtu Friedrichshafen Gmbh Kraftstoffeinspritzventil für eine Brennkraftmaschine
EP0994248A2 (de) 1998-10-13 2000-04-19 Caterpillar Inc. Brennstoffeinspritzventil mit piezoelektrischer Einspritzverlaufregelung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015078629A1 (de) * 2013-11-28 2015-06-04 Robert Bosch Gmbh Kraftstoffinjektor

Also Published As

Publication number Publication date
DE10131631A1 (de) 2003-01-16
EP1436498A1 (de) 2004-07-14

Similar Documents

Publication Publication Date Title
EP0657642B1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP1485609B1 (de) Vorrichtung zum einspritzen von kraftstoff an stationären verbrennungskraftmaschinen
EP1831540B1 (de) Kraftstoffinjektor mit direkt angesteuertem einspritzventilglied
EP0898650A1 (de) Kraftstoffeinspritzeinrichtung für brennkraftmaschinen
WO2008138800A1 (de) Injektor mit piezoaktor
WO2002084106A1 (de) Ventil zum steuern von flüssigkeiten
DE102004053421A1 (de) Kraftstoffeinspritzvorrichtung
EP2102486A1 (de) Injektor mit axial-druckausgeglichenem steuerventil
EP1865192B1 (de) Kraftstoffinjektor mit Servounterstützung
EP1867868B1 (de) Kraftstoffeinspritzventil mit Sicherheitssteuerventil
EP1910663B1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine mit kraftstoff-direkteinspritzung
EP1402170B1 (de) Steuermodul für einen injektor eines speichereinspritzsystems
WO2008049699A1 (de) Kraftstoffinjektor
EP1117922B1 (de) Common-rail-injektor
EP1144842B1 (de) Injektor für ein kraftstoffeinspritzsystem für brennkraftmaschinen mit in den ventilsteuerraum ragender düsennadel
EP2011995A2 (de) Injektor mit nach außen öffnendem Ventilelement
WO2001011219A1 (de) Common-rail-injektor
WO2003004856A1 (de) Kraftstoffinjektor mit einspritzverlaufsformung durch schaltbare drosselelemente
EP1404963A1 (de) Kraftstoffinjektor mit variabler steuerraumdruckbeaufschlagung
EP1436498A1 (de) Kraftstoffinjektor mit hochdruckfestigkeitsoptimiertem steuerraum
EP1415082A1 (de) Kraftstoffinjektor mit 2-wege-ventilsteuerung
EP1671029A2 (de) Kraftstoff-einspritzvorrichtung, insbesondere f r eine brenn kraftmaschine mit kraftstoff-direkteinspritzung
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer
EP2047095A1 (de) Kraftstoffinjektor
DE19945314A1 (de) Common-Rail-Injektor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2002748598

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2002748598

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002748598

Country of ref document: EP