WO2003003626A1 - Messsystem mit einem referenzsignal zwischen einem signalgenerator und einem signalanalysator - Google Patents

Messsystem mit einem referenzsignal zwischen einem signalgenerator und einem signalanalysator Download PDF

Info

Publication number
WO2003003626A1
WO2003003626A1 PCT/EP2002/003861 EP0203861W WO03003626A1 WO 2003003626 A1 WO2003003626 A1 WO 2003003626A1 EP 0203861 W EP0203861 W EP 0203861W WO 03003626 A1 WO03003626 A1 WO 03003626A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ref
measuring system
reference signal
analyzer
Prior art date
Application number
PCT/EP2002/003861
Other languages
English (en)
French (fr)
Inventor
Wolfgang Kernchen
Original Assignee
Rohde & Schwarz Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde & Schwarz Gmbh & Co. Kg filed Critical Rohde & Schwarz Gmbh & Co. Kg
Priority to US10/480,323 priority Critical patent/US7933321B2/en
Priority to DE50204405T priority patent/DE50204405D1/de
Priority to EP02730120A priority patent/EP1402665B1/de
Publication of WO2003003626A1 publication Critical patent/WO2003003626A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/24Testing correct operation
    • H04L1/242Testing correct operation by comparing a transmitted test signal with a locally generated replica
    • H04L1/244Testing correct operation by comparing a transmitted test signal with a locally generated replica test sequence generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31703Comparison aspects, e.g. signature analysis, comparators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31708Analysis of signal quality

Definitions

  • the invention relates to a measuring system with a signal generator that generates a digitally modulated high-frequency measurement signal by modulation with modulation data, which is fed to the input of a test object, and a signal analyzer that is connected to the output of the test object and the output signal of the test object after its demodulation analyzed.
  • the signal analyzers are, for example, spectrum analyzers, vector signal analyzers, time domain analyzers, code domain analyzers or
  • the signal generators generate high-frequency measurement signals in accordance with the transmission standard, for example the GSM (Global System for Mobile Communication) standard or a wide-band CDMA (Code Division Multiple Access) standard for the third generation of mobile radio UMTS (Universal Mobile Communication Standard).
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • UMTS Universal Mobile Communication Standard
  • To measure the bit error rate or the EVM (error ector magnitude, error vector size) or the phase or frequency offset error it is necessary to determine the actual symbol sequence or actual bit sequence with the target symbol sequence or the actual bit sequence determined by demodulating the output signal of the device under test to compare the target bit sequence with which the measurement signal supplied to the test object was modulated in the signal generator.
  • the user data are provided with error protection data before the modulation in the transmitter, which data is limited to the receiver Dimensions enable error correction, ie the bits or symbols received incorrectly can be corrected to a limited extent.
  • Another problem with the prior art is that different partial signal sections of the measurement signal have to be synchronized.
  • TDMA frame Time Division Multiple Access frame
  • it must be synchronized to a training sequence in the middle of each slot as a synchronous bit sequence.
  • the signal bit analyzer In order to be able to synchronize itself with these training sequences, the signal bit analyzer must know the synchronous bit sequences that the signal generator generates. Until now, this was only possible by manually entering the synchronous bit sequences into the signal analyzer using a keyboard. This is cumbersome, leads to input errors and, if the synchronous bit sequence is changed frequently, leads to a longer measurement time.
  • the invention is therefore based on the object of providing a measuring system which can be used for a wide variety of operating standards and with a high signal / noise ratio at a reasonable cost.
  • a direct connection is provided between the signal generator and the signal analyzer, via which a reference signal of the signal generator is fed directly to the signal analyzer.
  • This connection can be used to transmit signals or data which enables a simple reconstruction of the target bit sequence or target symbol sequence in the signal analyzer without the need for a reconstruction from the measurement signal using error correction methods.
  • the reference signal can be the modulation data, the I / Q output signal of the I / Q modulator or, for example, the sequence of the frequency values of an FSK method.
  • a synchronous bit sequence for synchronization with partial signals of the measurement signal can also advantageously be transmitted via the direct connection between the signal generator and the signal analyzer according to the invention.
  • a corresponding correlator can be provided in the signal analyzer. Furthermore, a time shift device can be provided which corrects this time offset.
  • Fig. 1 is a block diagram of an embodiment of the measuring system according to the invention.
  • Fig. 2 is a block diagram of one in the embodiment of the invention.
  • Fig. 3 is a block diagram of a signal analyzer used in the embodiment of the measuring system according to the invention.
  • Fig. 4 is a timing diagram for explaining a GSM signal.
  • 1 shows a block diagram of the measuring system 1 according to the invention.
  • a signal generator 2 generates a digitally modulated high-frequency measuring signal MS, for example a mobile radio signal according to the GSM standard or a W-CDMA standard.
  • the measurement signal MS is fed to an input 3 of a test object (DUT device under test) 4 in the high-frequency position.
  • the device under test 4 is, for example, a component of mobile radio technology, for example an amplifier of a base station.
  • a signal analyzer 5 is connected to the output 6 of the device under test 4 and receives its output signal OS.
  • the signal analyzer 5 transforms the high-frequency output signal OS into the baseband, performs demodulation and analyzes the demodulated signal, for example to determine the bit error rate (BER bit error rate) or the error vector size (EVM error vector magnitude). to determine a phase or frequency offset error.
  • BER bit error rate bit error rate
  • EVM error vector magnitude error vector magnitude
  • a direct connection 7 is provided between the signal generator 2 and the signal analyzer 5.
  • the direct connection 7 can either be wired or wireless, for example via transmitters and receivers that work according to the blue tooth principle.
  • a reference signal Ref is supplied to the signal analyzer 5 by the signal generator 2 via the direct connection.
  • pseudorandom modulation data MD are generated by a data source 6.
  • the modulation data MD can also be supplied to the signal generator 2 via an external interface.
  • the modulation data MD is a sequence of data bits or data symbols or else a sequence of chips of a W-CDMA signal which arise from the data bits after multiplication by a spreading sequence.
  • This modulation data MD is a modulator, preferably an I / Q modulator 8 fed.
  • the I (in-phase) signal and the Q (quadrature phase) signal are available at the output of the I / Q modulator 8 and are fed to a high-frequency unit 10.
  • the high-frequency unit 10 first brings the signal from the baseband to an intermediate frequency position and then to the high-frequency position in which the device under test 7 operates.
  • the modulation data MD are used as the reference signal Ref.
  • the reference signal Ref it is also conceivable to use the I / Q output signals of the I / Q modulator 9 as the reference signal Ref, which is indicated by dashed lines in FIG. 2.
  • an intermediate frequency signal from the high-frequency unit 10 as the reference signal Ref, which is also indicated by dashed lines in FIG. 2.
  • the 3 shows a highly simplified block diagram of the signal analyzer 5, which is limited to the components according to the invention.
  • the reference signal Ref supplied by the signal generator 2 is its modulation data MD.
  • the signal analyzer 5 has a high-frequency unit 11, which transforms the output signal OS of the device under test 4 from the high-frequency position into the baseband and feeds it to a demodulator, preferably an I / Q demodulator 12.
  • the demodulation data DD are available at the output of the demodulator 12; this is the actual symbol sequence or actual bit sequence of the output signal OS received by the device under test 4.
  • a comparison device 13 which compares the actual bit sequence or actual symbol sequence represented by the demodulation data DD with a target bit sequence or target Compare symbol sequence.
  • This target bit sequence or target symbol sequence is generated by the reference signal Ref supplied to the signal analyzer 5 directly by the signal generator 2 via the connection 7. If the modulation data MD are transmitted via the connection 7 such that they arrive at the comparison unit 13 in synchronism with the corresponding demodulation data DD, the reference signal Ref can be fed directly to the comparison unit 13. In general, however, there are runtime differences between the signal path via the device under test 7 on the one hand and the direct connection 7 on the other.
  • the time offset ⁇ resulting from the time difference can be determined by a correlator 14, the inputs of which are supplied with the demodulation data DD on the one hand and the reference signal Ref on the other.
  • a time shift device 15 for example a buffer memory
  • the reference signal Ref can be shifted by a time shift ⁇ t which corresponds to the time offset ⁇ determined by the correlator 14. It is advantageous to transmit the modulation data MD via the connection 7 such that the modulation data MD arrive at the signal analyzer 5 before the corresponding demodulation data DD have been demodulated by the demodulator 12.
  • the output of the time shift device 15 is fed to an input of the comparison device 13.
  • the comparison device 13 compares the desired bit sequence or desired symbol sequence given by the modulation data with the actual bit sequence or actual symbol sequence given by the demodulation data DD and can thus determine faulty bits or faulty symbols and, for example, as a bit error rate BER or as an EVM Evaluate (Error Vector Magnitude). Due to the fact that an error-free reference signal Ref is always available via the connection 7, the measurement can also be carried out with severely disturbed signals and an evaluation of the error correction code (e.g. with the help of a complex Viterbi decoder) is not necessary.
  • BER bit error rate
  • EVM Evaluate Error Vector Magnitude
  • the reference signal Ref can optionally with additional signals that mark certain points in time in the data stream, for example the position of a frame Time slot of a burst or the beginning of a synchronization sequence can be expanded.
  • the synchronization sequence currently used by the signal generator 2 can also be transmitted directly to the signal analyzer 5 via the reference signal Ref.
  • the previously cumbersome manual input of the synchronization sequence in the signal analyzer 5 is eliminated.
  • the signal analyzer 5 is thus also able to compare a large number of synchronization sequences with the demodulation data DD, since the signal analyzer 5 is always informed about which synchronization sequence the signal generator 2 is currently using. The analysis is thus faster and / or the effort in the signal analyzer 5 is reduced.
  • the parallel observation of all possible training sequences TS is omitted.
  • FIG. 4 shows a TDMA (Time Division Multiple Access) frame.
  • a TDMA frame is divided into eight timeslots (time slots) SL0, SL1, SL2, SL3, SL4, SL5, SL6 and SL7.
  • a training sequence TS with 26 bits is located in the middle of each timeslot between the data bits DB. This training sequence TS can be used when synchronizing to a specific point in the demodulation data DD.
  • the total number of possible training sequences TS is relatively large.
  • the signal analyzer 5 If the signal analyzer 5 does not know which training sequence TS the signal generator 2 uses for a specific timeslot, the signal analyzer 5 must compare the demodulation data DD against all possible training sequences TS. However, if the signal analyzer 5 receives information from the signal generator 2 via the connection 7 about the training sequence TS currently used for a specific timeslot, only a comparison against a single training sequence TS is necessary. The signal generator 2 changes the Training sequence TS, the signal analyzer 5 experiences this via the reference signal Ref.
  • the sequence of frequency values that are jumped to by the FSK modulator can also be transmitted as reference signal Ref.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

Ein Messsystem (1) umfasst einen Signalgenerator (2), der ein digital moduliertes Hochfrequenz-Messsignal (MS) erzeugt, das dem Eingang (3) eines Prüflings (4) zugeführt wird. Ein Signalanalysator (5), der mit dem Ausgang (6) des Prüflings (4) verbunden ist, analysiert nach einer Demodulation das Ausgangssignal (OS) des Prüflings (4). Zwischen dem Signalgenerator (2) und dem Signalanalysator (5) ist eine direkte Verbindung (7) vorgesehen, über welche ein Referenzsignal (Ref) des Signalgenerators (2) dem Signalanalysator (5) direkt zugeführt wird.

Description

Meßsystem mit einem Referenzsignal zwischen einem Signalgenerator und einem Signalanalysator
Die Erfindung betrifft ein Meßsystem mit einem Signalgenerator, der ein digital moduliertes Hochfrequenz- Meßsignal durch Modulation mit Modulationsdaten erzeugt, das dem Eingang eines Prüflings zugeführt wird, und einem Signalanalysator, der mit dem Ausgang des Prüflings verbunden ist und das Ausgangssignal des Prüflings nach dessen Demodulation analysiert .
Solche Meßsysteme werden beispielsweise bei der Entwicklung und Produktion von Komponenten der Mobilfunktechnik eingesetzt. Die Signalanalysatoren sind beispielsweise Spektrumanalysatoren, Vektorsignalanalysatoren, Time-Domain- Analysatoren, Code-Domain-Analysatoren oder
Systemprotokolltester. Mit diesen werden neben den allgemeinen Messungen etwa des Pegels, des Spektrums usw. auch Messungen durchgeführt, bei welchen das empfangene Signal vor der Analyse demoduliert werden muß. Die Signalgeneratoren erzeugen Hochfrequenz-Meßsignale entsprechend dem Übertragungsstandard, beispielsweise dem GSM (Global System for Mobile Communication) -Standard oder einem Weitband-CDMA (Code Division Multiple Access) -Standard für die dritte Generation Mobilfunk UMTS (Universal Mobile lelecommunication Standard) . Zur Messung der Bitfehlerrate bzw. des EVM (Error ector Magnitude, Fehlervektorgröße) oder des Phasen- oder Frequenz-Versatzfehlers ist es erforderlich, die durch die Demodulation des Ausgangssignals des Prüflings ermittelte Ist-Symbolfolge bzw. Ist-Bitfolge mit der Soll -Symbolfolge bzw. der Soll-Bitfolge, mit welcher das dem Prüfling zugeführte Meßsignal in dem Signalgenerator moduliert wurde, zu vergleichen.
In Betriebsgeräten (Mobilstationen, Basisstationen, etc.) werden die Nutzdaten vor der Modulation in dem Sender mit Fehlerschutzdaten versehen, die dem Empfänger in begrenztem Maße eine Fehlerkorrektur ermöglichen, d. h. die fehlerhaft empfangenen Bits bzw. Symbole können in begrenztem Maße korrigiert werden.
Diese Vorgehensweise wäre grundsätzlich auch bei Signalanalysatoren möglich. Nachteilig wäre jedoch die Signalanalysatoren eine große Vielfalt von Betriebsstandards beispielsweise sowohl für die zweite Generation als auch dritte Generation Mobilfunk beherrschen müssen und es aus Aufwandsgründen nicht möglich ist, die sehr unterschiedlichen Fehlerkorrekturverfahren sämtlicher Betriebsstandards in einem universellen Signalanalysator zu implementieren. In universell einsetzbaren Signalanalysatoren können deshalb nur universelle Demodulatoren eingesetzt werden, die die Fehlerschutzmechanismen nicht auswerten können. Somit können jedoch bei universellen Signalanalysatoren die Fehlerschutzmethoden nicht zur Generierung der Soll- Symbolfolge bzw. Soll-Bitfolge benutzt werden, d. h. das Signal kann nicht in allen Betriebsfällen analysiert werden.
Selbst wenn in den Signalanalysatoren mit dem dafür notwendigen erheblichen Aufwand Demodulatoren eingesetzt würden, die die unterschiedlichen Fehlerschutzmethoden für sämtliche in der Praxis vorkommenden Betriebsstandards beherrschten, besteht ein weiteres Problem darin, daß auch Messungen durchgeführt werden müssen, bei welchen der Prüfling mit einem im normalen Betriebsfall nicht vorkommenden gestörten Signal beaufschlagt wird, um den Prüfling in Grenzsituationen zum Testen des Ubergangsverhaltens zu testen. Beispielsweise sind in dem Signalgeneratoren Rauscheinheiten und Verzerrungseinheiten vorhanden, die das Meßsignal mit einem Rauschen und einer Verzerrung beaufschlagen können, das bzw. die größer als der im Betriebsfall vorkommende Rauschanteil oder die im Betriebsfall vorkommende Verzerrung ist. Somit ist im Meßfall die Energie pro Bit E^ im Verhältnis zu der Rauschleistung NQ kleiner, so daß die Fehlerkorrekturverfahren keine vollständige Korrektur der Bit- bzw. Symbolfehler mehr zulassen und die Soll-Bitfolge bzw. Soll-Symbolfolge auch durch Ausnutzung der Fehlerkorrekturverfahren nicht vollständig wiederhergestellt werden kann.
Ein weiteres Problem beim Stand der Technik besteht darin, daß auf verschiedene Teilsignalabschnitte des Meßsignals synchronisiert werden müssen. Beispielsweise muß bei einem GSM-Signal, dessen TDMA-Frame (Time Division Multiple Access -Rahmen) sich in acht Time-Slots (Zeitschlitze) gliedert, auf eine in der Mitte jedes Slots vorhandene Trainingssequenz als Synchronbitfolge synchronisiert werden. Um sich auf diese Trainingssequenzen synchronisierten zu können, müssen dem Signalanalysator die Synchronbitfolgen, die der Signalgenerator erzeugt, bekannt sein. Bislang war dies nur möglich, indem die Synchronbitfolgen über eine Tastatur in den Signalanalysator händisch eingegeben wurden. Dies ist umständlich, führt zu Eingabefehlern und bei einem häufigen Wechsel der Synchronbitfolge zu einer längeren Meßzeit.
Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Meßsystem zu schaffen, das mit vertretbarem Aufwand für unterschiedlichste Betriebsstandards und bei einem hohen Signal/Rausch-Verhältnis einsetzbar ist.
Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst .
Erfindungsgemäß ist zwischen dem Signalgenerator und dem Signalanalysator eine direkte Verbindung vorgesehen, über welche ein Referenzsignal des Signalgenerators dem Signalanalysator direkt zugeführt wird. Über diese Verbindung können Signale oder Daten übertragen werden, die in dem Signalanalysator eine einfache Rekonstruktion der Soll-Bitfolge bzw. Soll -Symbolfolge ermöglicht, ohne daß hierzu eine Rekonstruktion aus dem Meßsignal unter Verwendung von Fehlerkorrekturverfahren notwendig ist . Die Unteransprüche betreffen vorteilhafte Weiterbildungen der Erfindung.
Bei dem Referenzsignal kann es sich um die Modulationsdaten, daß I/Q-Ausgangssignal des I/Q-Modulators oder beispielsweise um die Folge der Frequenzwerte eines FSK- Verfahrens handeln.
Vorteilhaft kann über die erfindungsgemäße direkte Verbindung zwischen dem Signalgenerator und dem Signalanalysator auch eine Synchronbitfolge zur Synchronisation auf Teilsignale des Meßsignals übertragen werden.
Um einen möglichen Zeitversatz zwischen dem Demodulationssignals des Prüflings und dem Referenzsignal zu bestimmen, kann in dem Signalanalysator ein entsprechender Korrelator vorgesehen sein. Ferner kann eine Zeitverschiebungseinrichtung vorgesehen sein, die diesen Zeitversatz korrigiert.
Ein Ausführungsbeispiel der Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnung näher beschrieben. In der Zeichnung zeigen:
Fig. 1 ein Blockschaltbild eines Ausführungsbeispiels des erfindungsgemäßen Meßsystems;
Fig. 2 ein Blockschaltbild eines bei dem Ausführungsbeispiel des erfindungsgemäßen
Meßsystems verwendeten Signalgenerators;
Fig. 3 ein Blockschaltbild eines bei dem Ausführungsbeispiel des erfindungsgemäßen Meßsystems verwendeten Signalanalysators und
Fig. 4 ein ZeitSchema zur Erläuterung eines GSM-Signals. Fig. 1 zeigt ein Blockschaltbild der erfindungsgemäßen Meßsystems 1. Ein Signalgenerator 2 erzeugt ein digital moduliertes Hochfrequenz-Meßsignal MS, beispielsweise ein Mobilfunksignal nach dem GSM-Standard oder einem W-CDMA- Standard. Das Meßsignal MS wird in Hochfrequenzlage einem Eingang 3 eines Prüflings (DUT Device Under Test) 4 zugeführt. Bei dem Prüfling 4 handelt es sich beispielsweise um eine Komponente der Mobilfunktechnik, beispielsweise einen Verstärker einer Basisstation. Ein Signalanalysator 5 steht mit dem Ausgang 6 des Prüflings 4 in Verbindung und empfängt dessen Ausgangssignal OS. Der Signalanalysator 5, beispielsweise ein Spektrumanalysator oder ein Vektoranalysator, transformiert das Hochfrequenz- Ausgangssignal OS in das Basisband, führt eine Demodulation durch und analysiert das demodulierte Signal, um beispielsweise die Bitfehlerrate (BER Bit Error Rate) oder die Fehlervektorgröße (EVM Error Vector Magnitude) eines Phasen- oder Frequenzablagefehlers zu ermitteln.
Erfindungsgemäß ist zwischen dem Signalgenerator 2 und dem Signalanalysator 5 eine direkte Verbindung 7 vorgesehen. Die direkte Verbindung 7 kann entweder kabelgebunden oder auch drahtlos, beispielsweise über Sender und Empfänger die nach dem Blue-Tooth-Prinzip arbeiten, ausgebildet sein. Über die direkte Verbindung wird dem Signalanalysator 5 von dem Signalgenerator 2 ein Referenzsignal Ref zugeführt.
Fig. 2 zeigt ein stark vereinfachtes Blockdiagramm des Signalgenerators 2, wobei nur die für die Erfindung relevanten Komponenten dargestellt sind. Von einer Datenquelle 6 werden beispielsweise pseudozufällige Modulationsdaten MD erzeugt. Die Modulationsdaten MD können dem Signalgenerator 2 jedoch auch über eine externe Schnittstelle zugeführt werden. Bei den Modulationsdaten MD handelt es sich um eine Folge von Datenbits oder Datensymbolen oder auch um eine Folge von Chips eines W- CDMA-Signals, die aus den Datenbits nach Multiplikation mit einer Spreizsequenz entstehen. Diese Modulationsdaten MD werden einem Modulator, bevorzugt einem I/Q-Modulator 8 zugeführt. Am Ausgang des I/Q-Modulators 8 steht das I (Inphase) -Signal und das Q (Quadraturphase) -Signal zur Verfügung, das einer Hochfrequenzeinheit 10 zugeführt wird. Die Hochfrequenzeinheit 10 bringt das Signal vom Basisband zunächst in eine Zwischenfrequenzlage und dann in die Hochfrequenzlage, in welcher der Prüfling 7 arbeitet.
Bei einen bevorzugten Ausführungsbeispiel werden als Referenzsignal Ref die Modulationsdaten MD verwendet. Es ist jedoch auch denkbar, als Referenzsignal Ref die I/Q- Ausgangssignale des I/Q-Modulators 9 zu verwenden, was in Fig. 2 gestrichelt angedeutet ist. Weiterhin ist es auch denkbar, als Referenzsignal Ref ein Zwischenfrequenzsignal der Hochfrequenzeinheit 10 zu verwenden, was in Fig. 2 ebenfalls gestrichelt angedeutet ist.
Fig. 3 zeigt ein stark vereinfachtes, auf die erfindungsgemäßen Komponenten beschränktes Blockschaltbild des Signalanalysators 5. Bei diesem Ausführungsbeispiel wird davon ausgegangen, daß es sich bei dem von dem Signalgenerator 2 zugeführten Referenzsignal Ref um dessen Modulationsdaten MD handelt. Der Signalanalysator 5 hat eine Hochfrequenzeinheit 11, die das Ausgangssignal OS des Prüflings 4 von der Hochfrequenzlage in das Basisband transformiert und einem Demodulator, vorzugsweise einem I/Q- Demodulator 12, zuführt. Am Ausgang des Demodulators 12 stehen die Demodulationsdaten DD zur Verfügung; hierbei handelt es sich um die Ist-Symbolfolge bzw. Ist-Bitfolge des von dem Prüfling 4 empfangenen Ausgangssignals OS. Zur Bewertung der Bitfehlerrate BER oder zum Bestimmen einer anderen Fehlergröße, beispielsweise des EVM (Error Vector Magnitude) ist eine Vergleichseinrichtung 13 vorgesehen, die die durch die Demodulationsdaten DD repräsentierte Ist- Bitfolge bzw. Ist -Symbolfolge mit einer Soll-Bitfolge bzw. Soll -Symbolfolge vergleicht. Diese Soll-Bitfolge bzw. Soll- Symbolfolge wird durch das dem Signalanalysator 5 direkt von dem Signalgenerator 2 über die Verbindung 7 zugeführte Referenzsignal Ref erzeugt. Werden die Modulationsdaten MD so über die Verbindung 7 übertragen, daß sie synchron zu den entsprechenden Demodulationsdaten DD an der Vergleichseinheit 13 eintreffen, so kann das Referenzsignal Ref direkt der Vergleichseinheit 13 zugeführt werden. Im allgemeinen sind jedoch Laufzeitunterschiede zwischen dem Signalpfad über den Prüfling 7 einerseits und die direkte Verbindung 7 andererseits vorhanden. Der sich durch die Laufzeitunterschiede ergebende Zeitversatz τ kann durch einen Korrelator 14 ermittelt werden, dessen Eingängen die Demodulationsdaten DD einerseits und das Referenzsignal Ref andererseits zugeführt werden. In einer Zeitverschiebungseinrichtung 15, beispielsweise einem Pufferspeicher, kann das Referenzsignal Ref um eine Zeitverschiebung Δt verschoben werden, welche dem von dem Korrelator 14 bestimmten Zeitversatz τ entspricht. Es ist vorteilhaft, die Modulationsdaten MD über die Verbindung 7 so zu übertragen, daß die Modulationsdaten MD an dem Signalanalysator 5 eintreffen, bevor die entsprechenden Demodulationsdaten DD von dem Demodulator 12 demoduliert sind. Der Ausgang der Zeitverschiebungseinrichtung 15 wird einem Eingang der Vergleichseinrichtung 13 zugeführt .
Die Vergleichseinrichtung 13 vergleicht die durch die Modulationsdaten gegebene Soll-Bitfolge bzw. Soll- Symbolfolge mit der durch die Demodulationsdaten DD gegebene Ist-Bitfolge bzw. Ist-Symbolfolge und kann somit fehlerhafte Bits bzw. fehlerhafte Symbole feststellen und beispielsweise als Bitfehlerrate BER oder als EVM (Error Vector Magnitude) auswerten. Aufgrund der Tatsache, daß über die Verbindung 7 stets ein fehlerfreies Referenzsignal Ref zur Verfügung steht, kann die Messung auch bei stark gestörten Signalen durchgeführt werden und eine Auswertung des Fehlerkorrekturcodes (z. B. mit Hilfe eines aufwendigen Viterbi-Decoders) ist nicht erforderlich.
Das Referenzsignal Ref kann optional mit Zusatzsignalen, die bestimmte Zeitpunkte in dem Datenstrom markieren, beispielsweise die Position eines Rahmens (Frame) eines Zeitschlitzes (Time Slot) eines Bursts oder den Beginn einer Synchronisationssequenz, erweitert werden. Die von dem Signalgenerator 2 aktuell verwendete Synchronisationssequenz kann außerdem über das Referenzsignal Ref direkt dem Signalanalysator 5 übermittelt werden. Das bisher übliche, umständlich manuelle Eingeben der Synchronisationssequenz in dem Signalanalysator 5 entfällt. Der Signalanalysator 5 ist somit in der Lage auch eine große Anzahl von Synchronisationssequenzen mit dem Demodulationsdaten DD zu vergleichen, da der Signalanalysator 5 stets darüber informiert ist, welche Synchronisationssequenz der Signalgenerator 2 aktuell verwendet. Somit wird die Analyse schneller und/oder der Aufwand in dem Signalanalysator 5 wird erniedrigt. Die parallele Beobachtung aller möglichen Trainingssequenzen TS entfällt.
Der Vorteil der Übermittlung der Synchronisationssequenz über die Verbindung 7 wird an dem Beispiel eines GSM-Signals nachfolgend anhand von Fig. 4 erläutert. Fig. 4 zeigt einen TDMA(Time Division Multiple Access) -Rahmen (Frame). Ein TDMA-Rahmen gliedert sich in acht Timeslots (Zeitschlitze) SL0, SL1, SL2, SL3, SL4 , SL5 , SL6 und SL7. Wie im unteren Teilbild von Fig. 4 dargestellt, befindet sich in der Mitte eines jeden Timeslots zwischen den Datenbits DB jeweils eine Trainingssequenz TS mit 26 Bits. Beim Aufsynchronisieren auf eine bestimmte Stelle der Demodulationsdaten DD kann diese Trainingssequenz TS verwendet werden. Die Anzahl der insgesamt möglichen Trainingssequenzen TS ist relativ groß. Ist dem Signalanalysator 5 nicht bekannt, welche Trainingssequenz TS der Signalgenerator 2 für einen bestimmten Timeslot verwendet, so muß der Signalanalysator 5 die Demodulationsdaten DD gegen alle möglichen Trainingssequenzen TS vergleichen. Erhält der Signalanalysator 5 von dem Signalgenerator 2 über die Verbindung 7 jedoch eine Information über die für einen bestimmten Timeslot aktuelle verwendete Trainingssequenz TS, so ist nur ein Vergleich gegen eine einzige Trainingssequenz TS notwendig. Ändert der Signalgenerator 2 die Trainingssequenz TS, so erfährt dies der Signalanlysator 5 über das Referenzsignal Ref.
Als Referenzsignal Ref kann bei einem FSK (Frequency Shift Keying) -System auch die Folge der Frequenzwerte, die von dem FSK-Modulator angesprungen werden, übertragen werden.

Claims

Patentansprüche
1. Meßsystem (1) mit einem Signalgenerator (2), der ein digital moduliertes Hochfrequenz-Meßsignal (MS) durch Modulation mit Modulationsdaten (MD) erzeugt, das dem Eingang (3) eines Prüflings (4) zugeführt wird, und einem Signalanalysator (5) , der mit dem Ausgang (6) des Prüflings (4) verbunden ist und das Ausgangssignal (OS) des Prüflings (4) nach dessen Demodulation analysiert, dadurch gekennzeichnet, daß zwischen dem Signalgenerator (2) und dem Signalanalysator (5) eine direkte Verbindung (7) besteht, über welche ein Referenzsignal (Ref) des Signalgenerator (2) dem Signalanalysator (5) direkt zugeführt wird.
2. Meßsystem nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei dem Referenzsignal (Ref) um die Modulationsdaten (MD) handelt, mit welchen der Signalgenerator (2) das Hochfrequenz-Meßsignal (MS) moduliert .
3. Meßsystem nach Anspruch 1, dadurch gekennzeichnet, daß der Signalgenerator (2) einen I/Q-Modulator (8) aufweist und daß es sich bei dem Referenzsignal (Ref) im die I/Q- Ausgangssignale (I/Q) des I/Q-Modulators (8) handelt.
4. Meßsystem nach Anspruch 1, dadurch gekennzeichnet, daß der Signalgenerator (2) einen Frequenzsprung (FSK) - Modulator aufweist und daß es sich bei dem Referenzsignal (Ref) um die Folge der Frequenzwerte handelt, die von dem Frequenzsprung (FSK) -Modulator angesprungen werden.
5. Meßsystem nach Anspruch 1, dadurch gekennzeichnet, daß das Referenzsignal (Ref) eine Synchronisationssequenz (TS) beinhaltet, mit der ein Signalabschnitt (SL0-SL7) des von dem Signalgenerator (2) erzeugten Hochfrequenz- Meßsignals (MS) identifizierbar ist.
6. Meßsystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Signalanalysator (5) eine Vergleichseinrichtung (13) aufweist, in welcher das demodulierte Ausgangssignal (DD) des Prüflings (4) zur Ermittlung einer Fehlerrate (BER) mit dem Referenzsignal (Ref) verglichen wird.
7. Meßsystem nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß der Signalanalysator (5) eine
Zeitverschiebungseinrichtung (15) aufweist, welche das
Referenzsignal (Ref) oder das demodulierte Ausgangssignal
(DD) des Prüflings (4) um eine Zeitverschiebung (Δt) verschiebt, die dem Zeitversatz (τ) zwischen dem demodulierte Ausgangssignal (DD) des Prüflings (4) und dem Referenzsignal (Ref) entspricht.
8. Meßsystem nach Anspruch 7, dadurch gekennzeichnet, daß der Signalanalysator (5) einen Korrelator (14) aufweist, der das demodulierte Ausgangssignal (DD) des Prüflings (4) mit dem Referenzsignal (Ref) korreliert, um den Zeitversatz
(τ) zwischen dem demodulierte Ausgangssignal (DD) des
Prüflings (4) und dem Referenzsignal (Ref) zu bestimmen.
PCT/EP2002/003861 2001-06-26 2002-04-08 Messsystem mit einem referenzsignal zwischen einem signalgenerator und einem signalanalysator WO2003003626A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/480,323 US7933321B2 (en) 2001-06-26 2002-04-08 Measuring system with a reference signal between a signal generator and a signal analyzer
DE50204405T DE50204405D1 (de) 2001-06-26 2002-04-08 Messsystem mit einem referenzsignal zwischen einem signalgenerator und einem signalanalysator
EP02730120A EP1402665B1 (de) 2001-06-26 2002-04-08 Messsystem mit einem referenzsignal zwischen einem signalgenerator und einem signalanalysator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10130687.3 2001-06-26
DE10130687A DE10130687A1 (de) 2001-06-26 2001-06-26 Meßsystem mit einem Referenzsignal zwischen einem Signalgenerator und einem Signalanalysator

Publications (1)

Publication Number Publication Date
WO2003003626A1 true WO2003003626A1 (de) 2003-01-09

Family

ID=7689447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/003861 WO2003003626A1 (de) 2001-06-26 2002-04-08 Messsystem mit einem referenzsignal zwischen einem signalgenerator und einem signalanalysator

Country Status (4)

Country Link
US (1) US7933321B2 (de)
EP (2) EP1608089B1 (de)
DE (3) DE10130687A1 (de)
WO (1) WO2003003626A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10151173B4 (de) * 2001-10-17 2012-07-12 Rohde & Schwarz Gmbh & Co. Kg Verfahren zum Messen des Modulationsfehlers von digital modulierten Hochfrequenzsignalen
JP4287778B2 (ja) * 2004-03-31 2009-07-01 株式会社ケンウッド 通信品質判定装置及び通信品質判定方法
WO2007013573A1 (ja) * 2005-07-26 2007-02-01 Advantest Corporation シンボル変調精度測定装置、方法、プログラムおよび記録媒体
US7564896B2 (en) * 2005-08-12 2009-07-21 Litepoint Corp. Method for measuring multiple parameters of a signal transmitted by a signal generator
DE102007006084A1 (de) 2007-02-07 2008-09-25 Jacob, Christian E., Dr. Ing. Verfahren zum zeitnahen Ermitteln der Kennwerte, Harmonischen und Nichtharmonischen von schnell veränderlichen Signalen mit zusätzlicher Ausgabe davon abgeleiteter Muster, Steuersignale, Ereignisstempel für die Nachverarbeitung sowie einer Gewichtung der Ergebnisse
DE502008002482D1 (de) 2008-07-31 2011-03-10 Rohde & Schwarz Verfahren und Vorrichtung zur Herstellung einer quantisierbaren Phasenkohärenz zwischen zwei Hochfrequenzsignalen
DE102010010349A1 (de) * 2010-03-05 2011-09-08 Rohde & Schwarz Gmbh & Co. Kg Verfahren und System zum Testen einer Relaisstation
US8386857B2 (en) * 2010-04-28 2013-02-26 Tektronix, Inc. Method and apparatus for measuring symbol and bit error rates independent of disparity errors
CN105307187B (zh) 2014-07-31 2019-06-25 深圳罗德与施瓦茨贸易有限公司 用于开始时间同步信号产生的测量装置和测量方法
US11474137B2 (en) * 2020-09-18 2022-10-18 Rohde & Schwarz Gmbh & Co. Kg Test system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5784406A (en) * 1995-06-29 1998-07-21 Qualcom Incorporated Method and apparatus for objectively characterizing communications link quality
WO2000007302A1 (en) * 1998-07-27 2000-02-10 Gte Government Systems Corporation Interference detection and avoidance technique
US6112067A (en) * 1996-03-27 2000-08-29 Anritsu Corporation Radio communication analyzer suited for measurement of plurality of types of digital communication systems
WO2000079708A1 (en) * 1999-06-18 2000-12-28 Societe Europeenne Des Satellites S.A. Method and apparatus for determining characteristics of components of a communication channel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794831A (en) * 1972-06-01 1974-02-26 Ibm Apparatus and method for monitoring the operation of tested units
JPH0630444B2 (ja) * 1985-05-02 1994-04-20 株式会社日立製作所 A/d変換器試験方式
JPH083507B2 (ja) * 1986-08-06 1996-01-17 株式会社アドバンテスト 信号除去装置
DE3917411A1 (de) * 1989-05-29 1990-12-06 Brust Hans Detlef Verfahren und anordnung zur schnellen spektralanalyse eines signals an einem oder mehreren messpunkten
DE68919690T2 (de) * 1989-07-28 1995-04-13 Hewlett Packard Co Messung der Charakteristika eines optischen Rundfunknetzwerkes.
JP3055085B2 (ja) * 1994-04-22 2000-06-19 株式会社アドバンテスト デジタル変調解析装置
FI945978A (fi) * 1994-12-20 1996-06-21 Nokia Telecommunications Oy Tukiasema
FI101256B (fi) * 1995-10-03 1998-05-15 Nokia Mobile Phones Ltd Menetelmä vastaanotetun signaalin ajoituksen mittaamiseksi tiedonsiirt ojärjestelmässä ja menetelmän toteuttava matkaviestin
US6775840B1 (en) * 1997-12-19 2004-08-10 Cisco Technology, Inc. Method and apparatus for using a spectrum analyzer for locating ingress noise gaps
JP4416273B2 (ja) 1999-06-09 2010-02-17 株式会社アドバンテスト 半導体試験装置
US6536006B1 (en) * 1999-11-12 2003-03-18 Advantest Corp. Event tester architecture for mixed signal testing
US6484124B1 (en) * 2000-05-22 2002-11-19 Technology Service Corporation System for measurement of selected performance characteristics of microwave components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5784406A (en) * 1995-06-29 1998-07-21 Qualcom Incorporated Method and apparatus for objectively characterizing communications link quality
US6112067A (en) * 1996-03-27 2000-08-29 Anritsu Corporation Radio communication analyzer suited for measurement of plurality of types of digital communication systems
WO2000007302A1 (en) * 1998-07-27 2000-02-10 Gte Government Systems Corporation Interference detection and avoidance technique
WO2000079708A1 (en) * 1999-06-18 2000-12-28 Societe Europeenne Des Satellites S.A. Method and apparatus for determining characteristics of components of a communication channel

Also Published As

Publication number Publication date
EP1608089A1 (de) 2005-12-21
EP1608089B1 (de) 2008-09-03
EP1402665B1 (de) 2005-09-28
DE10130687A1 (de) 2003-01-02
DE50212747D1 (de) 2008-10-16
US7933321B2 (en) 2011-04-26
DE50204405D1 (de) 2006-02-09
US20040233980A1 (en) 2004-11-25
EP1402665A1 (de) 2004-03-31

Similar Documents

Publication Publication Date Title
DE69512693T2 (de) CDMA/TDD-Funkkommunikationssystem
DE60110873T2 (de) Verfahren und Gerät zur Zeitschlitzerfassung und zur Frequenzversatzkorrektur
DE3023375C1 (de)
DE69636424T2 (de) Direktsequenz-Kodemultiplexvielfachzugriffsempfänger und Verfahren zur Synchronisierung dafür
DE69627587T2 (de) Soforterfassung kurzer Pakete in einem Direktsequenzspreizspektrumempfänger
DE69634496T2 (de) Verfahren, sender und empfänger zur übertragung von trainingssignalen in einem tdma-nachrichtenübertragungssystem
EP1608089B1 (de) Messsystem mit einem Referenzsignal zwischen einem Signalgenerator und einem Signalanalysator
DE69937597T2 (de) Verfahren zur automatischen Frequenzregelung in einer Mobilstation während eines Kommunikationsmodus
DE10025237B4 (de) Verfahren und Vorrichtung für zeitgleiche Synchronisation und verbesserte automatische Frequenznachführung in einer Kommunikationsvorrichtung
DE3787788T2 (de) Verfahren zum betrieb eines funkübertragung- oder kommunikationssystems einschliesslich einer zentralstation und eine mehrheit individueller fernstationen; funkübertragung oder kommunikationssystem, sowie ein fernstation.
DE112005000214T5 (de) Testen eines Empfängers eines drahtlosen Datentransfergeräts
EP1074129B1 (de) Vorverzerrung zur verringerung von intersymbolinterferenz sowie mehrfachzugriffsinterferenz
DE69711247T2 (de) Interferenzunterdrückung durch signalkombination mit einer frequenzkorrektur
DE102006003834A1 (de) Vorrichtung zum Erfassen eines Frequenzversatzes
DE69817534T2 (de) Demodulation mit aparten zweigen für phase sowie für amplitude
DE60016975T2 (de) Einrichtung und verfahren zur anzeige der leistung im codebereich
DE69737616T2 (de) Frequenzfehlermessgerät und Funkgerät
DE19625859C1 (de) Verfahren und Signalauswerteeinrichtung zur Ermittlung des Störanteils im Signalgemisch des Empfangssignals einer CDMA-Empfangseinrichtung
Angrisani et al. A measurement method based on time-frequency representations for testing GSM equipment
DE102006032961A1 (de) Verfahren und System zur Ermittlung der Abhängigkeit zwischen Geräteparametern eines Mobilfunkgeräts und Signalgrößen
EP1195015B1 (de) Verfahren und vorrichtung zur synchronisation von mobilfunkempfängern in einem mobilfunksystem
EP4068674A2 (de) Stromsparender sampling-empfänger mit nichtkohärenter abtastung mit einem sample pro bit
DE19961594A1 (de) Verfahren für die Übertragung von Datensignalen zwischen einer Sendestation und mehreren Empfangsstationen, Sendestation und Empfangsstation
DE10019116A1 (de) Pilotunterstützte Verkehrskanal-Bewertung für zellulare CDMA-Systeme
DE102006029183A1 (de) Synchronisationsverfahren und Vorrichtung für Polarmodulationssignale

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002730120

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002730120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10480323

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002730120

Country of ref document: EP