WO2003003429A1 - Systeme de projection optique, systeme d'exposition et procede - Google Patents

Systeme de projection optique, systeme d'exposition et procede Download PDF

Info

Publication number
WO2003003429A1
WO2003003429A1 PCT/JP2002/005878 JP0205878W WO03003429A1 WO 2003003429 A1 WO2003003429 A1 WO 2003003429A1 JP 0205878 W JP0205878 W JP 0205878W WO 03003429 A1 WO03003429 A1 WO 03003429A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
axis
light
projection optical
crystal
Prior art date
Application number
PCT/JP2002/005878
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Omura
Naomasa Shiraishi
Issei Tanaka
Soichi Owa
Toshihiko Ozawa
Shunsuke Niisaka
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2003509511A priority Critical patent/JPWO2003003429A1/ja
Publication of WO2003003429A1 publication Critical patent/WO2003003429A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0892Catadioptric systems specially adapted for the UV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • G03F7/70966Birefringence

Definitions

  • the present invention relates to a projection optical system, an exposure apparatus provided with the projection optical system, and an exposure method using the projection optical system, and more particularly to an exposure apparatus used when manufacturing a micro device such as a semiconductor device by a photolithographic process.
  • fluorite Stone Fluoride crystals such as CaF 2
  • BaF 2 barium fluoride
  • the birefringence of fluorite has the crystal axis [1 1 1] direction and its equivalent crystal axes [1 1 1 1], [1-1 1], [1 1-1], It is almost zero in the [100] crystal axis direction and the equivalent [010], [001] crystal axis directions, but has a substantially non-zero value in other directions.
  • the maximum is 6 for the wavelength of 157 nm. It has a maximum birefringence of 3.6 nmZcm for a wavelength of 5 nmZcm and a wavelength of 193 nm.
  • birefringence are substantially larger than the allowable value of 1 nmZcm, which is the allowable value of random birefringence, and the effect of birefringence may accumulate through multiple lenses to the extent that it is not random. There is.
  • Burnett et al Made the pair of fluorite lenses coincide with the optical axis and the crystal axis [111] and rotated the pair of fluorite lenses relative to each other by 60 °. Discloses a technique for correcting the effect of birefringence. However, in this method, as described later, the effect of birefringence can be reduced to some extent, but the effect of birefringence is not actively corrected by the effect of birefringence in the opposite direction. The correction effect was not enough.
  • a first object of the present invention is to achieve good optical performance without being substantially affected by birefringence, even though an optical material having an intrinsic birefringence such as fluorite is used. It is in.
  • a second object of the present invention is to effectively prevent contamination of a lens due to outgassing from a photoresist.
  • a first aspect of the present invention provides a projection apparatus that includes a plurality of lenses and at least one concave reflecting mirror, and forms a reduced image of the first surface on the second surface.
  • a projection apparatus that includes a plurality of lenses and at least one concave reflecting mirror, and forms a reduced image of the first surface on the second surface.
  • the non-scanning slit or Forming an arc-shaped exposure area on the second surface When used in an exposure apparatus that scans and exposes the image of the first surface on the second surface by moving the first surface and the second surface along a scanning direction, the non-scanning slit or Forming an arc-shaped exposure area on the second surface,
  • the working distance on the second surface side is Dw
  • the numerical aperture on the second surface side is Nw
  • the length along the direction orthogonal to the scanning direction in the slit-shaped or arc-shaped exposure area is E.
  • the slit shape in the present invention refers to a shape extending in a direction crossing the scanning direction, and includes, for example, a rectangular shape, a trapezoidal shape, and a hexagonal shape extending in a direction crossing the scanning direction.
  • the slit-shaped or arc-shaped exposure region is set so as not to include the optical axis of the projection optical system, and forms a first intermediate image of the first surface.
  • a first optical path bending mirror disposed in an optical path from the first image forming optical system to the second image forming optical system; and the second image forming optical system.
  • a second optical path bending mirror disposed in an optical path from the image optical system to the third imaging optical system.
  • the effective area of the first optical path bending mirror and the second optical path It is preferable that the effective area of the bending mirror has a reflecting surface formed in a planar shape over the whole, and the effective area of the first optical path bending mirror and the effective area of the second optical path bending mirror are spatially different. It is preferable that all the light beams from the first surface are arranged to be guided to the second surface without overlapping.
  • the projection optical system is a catadioptric imaging optical system that is disposed in an optical path between the first surface and the second surface and includes a concave reflecting mirror.
  • a refraction-type imaging optical system disposed in an optical path between the catadioptric imaging optical system and the second surface; and the first surface and the catadioptric imaging optical system.
  • a first optical path bending mirror disposed in an optical path between the first optical path bending mirror and a second optical path bending mirror disposed in an optical path between the catadioptric imaging optical system and the refractive imaging optical system. It is preferable to have it.
  • a projection optical system includes a plurality of lenses, a concave reflecting mirror, and a negative lens disposed near the concave reflecting mirror, and forms a reduced image of the first surface on the second surface.
  • the projection optics When used in an exposure apparatus that scans and exposes the image of the first surface on the second surface by moving the first surface and the second surface along a scanning direction, the projection optics is used when scanning is not performed. Forming a slit-shaped or arc-shaped exposure region set so as not to include the optical axis of the system on the second surface;
  • a projection optical system is provided, wherein the numerical aperture on the second surface side is 0.82 or more.
  • the concave reflecting mirror and the negative lens are disposed along an optical axis in a direction substantially different from the direction of gravity, and the effective diameter (diameter) of the concave reflecting mirror is S, and the radius of curvature of the concave reflecting mirror is R,
  • the projection optical system is a catadioptric system including a concave reflecting mirror disposed in an optical path between the first surface and the second surface.
  • a first optical path bending mirror disposed in an optical path between the first and second imaging optical systems; and a first optical path bending mirror disposed in an optical path between the catadioptric imaging optical system and the refraction imaging optical system. It is preferable to provide a second optical path bending mirror.
  • a projection optical system for forming a reduced image of a first surface on a second surface.
  • a projection optical system comprising at least one light transmitting member formed so that a crystal axis and an optical axis optically equivalent to [100] substantially coincide with each other.
  • a projection optical system for forming a reduced image of a first surface on a second surface.
  • At least one of the light transmitting members having a maximum value of an angle of the transmitted light beam with respect to the optical axis of more than 20 degrees has a characteristic of substantially transmitting light having a wavelength of 200 nm or less, and has a crystal characteristic.
  • a projection optical system wherein the optical axis is substantially the same as the axis [100] or a crystal axis optically equivalent to the crystal axis [100].
  • a projection optical system for forming a reduced image of a first surface on a second surface.
  • the first group of light transmitting members and the second group of light transmitting members are approximately centered on an optical axis. Has a relative rotation of approximately 45 °,
  • the first group of light transmitting members and the second group of light transmitting members are both arranged in an optical path between a pupil position on the second surface side and the second surface. Provide a projection optical system.
  • a projection optical system for forming a reduced image of a first surface on a second surface.
  • the first group of light transmitting members and the second group of light transmitting members have a positional relationship of being relatively rotated by about 45 ° about an optical axis
  • the maximum value of the angle of the passing light beam with respect to the optical axis exceeds 20 degrees. I do.
  • the first group of light transmitting members and the second group of light transmitting members have a positional relationship of being relatively rotated about 45 ° about the optical axis.
  • a predetermined crystal axis for example, crystal axes [0 10], [001], [0 1-]) oriented in a direction different from the optical axis of the first group of light transmitting members and the second group of light transmitting members. 1] or [01 1]
  • the relative angle between the optical axes is about 45 °.
  • the rotational asymmetry of the effect of birefringence around the optical axis appears in a 90 ° cycle. to have a relatively rotated position relationship by approximately 45 ° around the same meaning as it has a relatively rotated position relationship by approximately 45 ° + (n X 90 0 ) around the optical axis Yes (n is an integer).
  • the first group of light transmitting members At least one of the second group of light transmitting members has at least one aspheric surface. Further, the total thickness (center thickness) of the first group of light transmitting members along the optical axis is T1, and the total thickness of the second group of light transmitting members along the optical axis is T1.
  • T the total thickness of all the light transmitting members constituting the projection optical system along the optical axis
  • IT 1 ⁇ T 2 I ZTA ⁇ 0.025 is satisfied.
  • the first group of light transmitting members and the second group of light transmitting members are formed as one optical component by optical connection or bonding.
  • a seventh aspect of the present invention includes a plurality of lenses, a concave reflecting mirror, and a negative lens disposed near the concave reflecting mirror.
  • the negative lens has a property of substantially transmitting light having a wavelength of 200 nm or less, and the crystal axis [100] or a crystal axis optically equivalent to the crystal axis [100] substantially coincides with the optical axis.
  • a projection optical system characterized by being formed as follows.
  • a plurality of lenses, a concave reflecting mirror, and a first negative lens and a second negative lens disposed near the concave reflecting mirror are provided.
  • the first negative lens has a property of substantially transmitting light having a wavelength of 200 nm or less, and has a crystal axis. [100] or a crystal axis optically equivalent to the crystal axis [100] and an optical axis are formed so as to substantially coincide with each other;
  • the second negative lens has a property of substantially transmitting light having a wavelength of 200 nm or less, and has a crystal axis [100] or a crystal axis optically equivalent to the crystal axis [100] and an optical axis. It is formed to almost match,
  • a projection optical system wherein the first negative lens and the second negative lens have a positional relationship of being relatively rotated by about 45 ° about an optical axis.
  • the phrase that the first negative lens and the second negative lens have a positional relationship relatively rotated by approximately 45 ° about the optical axis means that the first negative lens and the second negative lens A predetermined crystal axis (eg, oriented in a direction different from the optical axis of the negative lens) For example, it means that the relative angle of the crystal axes [0 10], [001], [01-1], or [01 1]) around the optical axis is approximately 45 °.
  • a projection optical system for forming a reduced image of a first surface on a second surface.
  • a crystal axis disposed on the optical path between the pupil position on the second surface side and the second surface and having a characteristic of substantially transmitting light having a wavelength of 200 nm or less;
  • a projection optical system including at least one light transmitting member formed so that a crystal axis optically equivalent to the axis [110] and an optical axis substantially coincide with each other.
  • a projection optical system for forming a reduced image of a first surface on a second surface.
  • At least one of the light transmitting members having a maximum value of an angle of the transmitted light beam with respect to the optical axis of more than 20 degrees has a characteristic of substantially transmitting light having a wavelength of 200 nm or less, and has a crystal characteristic.
  • a projection optical system characterized in that the optical axis is formed so that the optical axis substantially coincides with the axis [1 10] or the crystal axis [1 10].
  • the third group of light transmitting members and the fourth group of light transmitting members have a positional relationship of being relatively rotated by about 90 ° about an optical axis
  • the third group of light transmitting members and the fourth group of light transmitting members are both arranged in an optical path between the pupil position on the second surface side and the second surface. Provide a projection optical system.
  • a projection optical system for forming a reduced image of a first surface on a second surface.
  • the third group of light transmitting members and the fourth group of light transmitting members have a positional relationship of being relatively rotated by about 90 ° about an optical axis
  • the maximum value of the angle of the passing light beam with respect to the optical axis exceeds 20 degrees. I do.
  • the third group of light transmitting members and the fourth group of light transmitting members have a positional relationship relatively rotated by about 90 ° about the optical axis.
  • predetermined crystal axes for example, crystal axes [00 1], [1-111], [11]
  • -1 10], or [1-1 1 1] means that the relative angle about the optical axis is almost 90 °.
  • At least one of the third group of light transmitting members and the fourth group of light transmitting members has at least one aspheric surface.
  • the total thickness (center thickness) of the third group of light transmitting members along the optical axis is T 3
  • the total thickness of the fourth group of light transmitting members along the optical axis is T 4
  • the condition of IT 3 ⁇ T4 I / TA ⁇ 0.025 is satisfied.
  • the third group of light transmitting members and the fourth group of light transmitting members are formed as one optical component by optical contact or adhesion.
  • a thirteenth aspect of the present invention includes a plurality of lenses, a concave reflecting mirror, and a negative lens disposed near the concave reflecting mirror.
  • a projection optical system that forms a reduced image on the second surface
  • the negative lens has a characteristic of substantially transmitting light having a wavelength of 200 nm or less, and has a crystal axis [1 10] or a crystal axis optically equivalent to the crystal axis [1 10] and an optical axis.
  • a projection optical system characterized by being formed so as to substantially coincide with each other is provided.
  • the fourteenth invention of the present invention is directed to a method of manufacturing a semiconductor device, comprising: a plurality of lenses; a concave reflecting mirror; and a first negative lens and a second negative lens disposed near the concave reflecting mirror.
  • a projection optical system for forming a reduced image of the first surface on the second surface wherein the first negative lens has a property of substantially transmitting light having a wavelength of 200 nm or less, and has a crystal axis [ Or a crystal axis optically equivalent to the crystal axis [1 10] or the optical axis,
  • the second negative lens has a characteristic of substantially transmitting light having a wavelength of 200 nm or less, and has a crystal axis [110] or a crystal axis optically equivalent to the crystal axis [110]. Are formed so as to approximately match
  • the projection optical system is characterized in that the first negative lens and the second negative lens have a positional relationship of being relatively rotated by about 90 ° about an optical axis.
  • the first negative lens and the second negative lens have a positional relationship of being relatively rotated by about 90 ° about the optical axis, which means that the first negative lens and the second negative lens A given crystal axis (eg, crystal axis [001], [—111], [—110], or [1-111]) oriented differently from the optical axis of the negative lens This means that the relative angle about the axis is approximately 90 degrees.
  • a projection optical system for forming a reduced image of a first surface on a second surface.
  • the fifth group of light transmitting members and the sixth group of light transmitting members have a positional relationship of being relatively rotated about 60 ° about the optical axis
  • the third group of light transmitting members and the fourth group of light transmitting members are both arranged in an optical path between the pupil position on the second surface side and the second surface. Provide a projection optical system.
  • a projection optical system for forming a reduced image of a first surface on a second surface.
  • a fifth group of light transmitting members formed as described above It has the property of substantially transmitting light having a wavelength of 200 nm or less, and the crystal axis [111] or the crystal axis optically equivalent to the crystal axis [111] almost coincides with the optical axis.
  • a fifth group of light transmitting members formed as described above It has the property of substantially transmitting light having a wavelength of 200 nm or less, and the crystal axis [111] or the crystal axis optically equivalent to the crystal axis [111] almost coincides with the optical axis.
  • the fifth group of light transmitting members and the sixth group of light transmitting members have a positional relationship of being relatively rotated about 60 ° about the optical axis
  • the maximum value of the angle of the passing light beam with respect to the optical axis exceeds 20 degrees. I do.
  • the fifth group of light transmitting members and the sixth group of light transmitting members have a positional relationship of being relatively rotated about 60 ° about the optical axis.
  • a predetermined crystal axis for example, a crystal axis [1-111], [11-1]), which is oriented in a direction different from the optical axis of the light transmission member of the fifth group and the light transmission member of the sixth group. Or [1-1 1]) means that the relative angle between the optical axes is about 60 °.
  • the crystal axis [1 1 1] is used as the optical axis, the rotational asymmetry of the effect of birefringence centered on the optical axis appears at a period of 120 °. Having a positional relationship relatively rotated by approximately 60 ° about the optical axis is the same meaning as having a positional relationship rotated relatively by approximately 60 ° + (nX 120 °) about the optical axis. Yes (n is an integer).
  • At least one of the fifth group of light transmitting members and the sixth group of light transmitting members has at least one aspheric surface.
  • the total thickness (center thickness) of the fifth group of light transmitting members along the optical axis is T5
  • the total thickness of the sixth group of light transmitting members along the optical axis is T6.
  • the condition of IT5 ⁇ T6IZTA ⁇ 0.025 is satisfied. Good.
  • the fifth group of light transmitting members and the sixth group of light transmitting members are formed as one optical component by optical connection or bonding.
  • the seventeenth invention of the present invention has a A projection optical system that includes a lens, a concave reflecting mirror, and a first negative lens and a second negative lens disposed near the concave reflecting mirror, and forms a reduced image of the first surface on the second surface;
  • the negative lens has a property of substantially transmitting light having a wavelength of 200 nm or less, and has a crystal axis [111] or a crystal axis optically equivalent to the crystal axis [111]. Are formed so as to approximately match
  • the second negative lens has a property of substantially transmitting light having a wavelength of 200 nm or less, and has a crystal axis [111] or a crystal axis optically equivalent to the crystal axis [111]. It is formed so that the optical axis substantially matches,
  • a projection optical system wherein the first negative lens and the second negative lens have a positional relationship relatively rotated by about 60 ° about an optical axis.
  • the first negative lens and the second negative lens have a positional relationship of being relatively rotated about 60 ° about the optical axis by the first negative lens and the second negative lens.
  • a certain crystal axis eg, crystal axis [—11 1], [1 1 1 1], or [1 1 1]
  • oriented in a direction different from the optical axis of the negative lens is centered on the optical axis. Means that the relative angle is approximately 60 °.
  • a projection optical system for forming a reduced image of a first surface on a second surface.
  • At least one light transmitting member formed of a crystal having a property of substantially transmitting light having a wavelength of 200 nm or less
  • a projection optical system characterized in that a film for reducing a phase difference generated between lights of the second polarization component is formed.
  • the film is configured to generate the first and second polarized light components when the first and second polarized light components pass through the light transmitting member. It is preferable to reduce the phase difference between these lights.
  • the projection optical system includes at least two light transmission members formed of crystals having a characteristic of substantially transmitting light having a wavelength of 200 nm or less,
  • the at least two light-transmitting members preferably have their crystal axis orientations determined so as to reduce the phase difference between the first and second polarized light components passing through the projection optical system.
  • the film further reduces a phase difference between the first and second polarized light components passing through the projection optical system and reduced by the at least two light transmitting members.
  • the film preferably has an antireflection film.
  • a crystal film formed of the crystal is formed on a surface of the light transmission member, and a crystal orientation of the light transmission member and a crystal orientation of the crystal film are determined. Are preferably substantially different.
  • a nineteenth invention of the present invention provides a projection optical system which forms a reduced image of a first surface on a second surface
  • a crystal film formed of the crystal is formed on a surface of the light transmitting member, and a crystal orientation of the light transmitting member is substantially different from a crystal orientation of the crystal film.
  • the crystal orientation of the light transmitting member along the optical axis is substantially different from the crystal orientation of the crystal film along the optical axis.
  • the crystal orientation along the optical axis of the light transmitting member substantially matches the crystal orientation of the crystal film along the optical axis, and the light transmitting member and the crystal film are centered on the optical axis. It is preferable to have a positional relationship relatively rotated by a predetermined angle.
  • the light transmitting member and the crystal film relatively rotate by a predetermined angle about the optical axis.
  • To have an inverted positional relationship means that the relative angle around the optical axis between specific crystal axes oriented in a direction different from the optical axis of the light transmitting member and the crystal film is a predetermined angle.
  • a projection optical system for forming a reduced image of a first surface on a second surface.
  • an exposure apparatus for moving the first surface and the second surface along a scanning direction to scan and expose an image of the first surface on the second surface.
  • a slit-shaped or arc-shaped exposure area is formed at a position not including the optical axis of the projection optical system at the time of non-scanning, and is a refraction type for forming a first intermediate image of the first surface.
  • a first imaging optical system comprising at least one negative lens and a concave reflecting mirror, the second intermediate image being substantially equal in magnification to the first intermediate image based on a light beam from the first intermediate image; (1) a second imaging optical system for forming near the formation position of the intermediate image, and a reduced image of the second intermediate image on the second surface based on a light beam from the second intermediate image.
  • a third imaging optical system of a refraction type and disposed in an optical path from the first imaging optical system to the second imaging optical system. It comprises a first optical path-bending mirror, and a second optical path folding mirror arranged in an optical path extending in the third imaging optical system from the second image-forming optical system.
  • the effective area of the first optical path bending mirror and the effective area of the second optical path bending mirror have a reflecting surface formed in a planar shape throughout. It is preferable that the effective area of the first optical path bending mirror and the effective area of the second optical path bending mirror have no spatial overlap, and that the light flux from the first surface is entirely on the second surface. It is preferable to be arranged so that it may lead to. In the above aspect, it is preferable that all the lenses constituting the first imaging optical system and the third imaging optical system are arranged along a single linear optical axis. In addition,
  • the projection optical system is arranged in an optical path between the first surface and the second surface, and includes a catadioptric imaging optical system including a concave reflecting mirror; A refraction-type imaging optical system arranged in an optical path between the catadioptric imaging optical system and the second surface; and a refraction-type imaging optical system between the first surface and the catadioptric imaging system. No. placed in the optical path
  • an illumination system for illuminating a mask set on the first surface is preferable to include a one-path bending mirror, and a second-path bending mirror disposed in an optical path between the catadioptric imaging optical system and the refraction imaging optical system.
  • an illumination system for illuminating a mask set on the first surface is preferable to include a one-path bending mirror, and a second-path bending mirror disposed in an optical path between the catadioptric imaging optical system and the refraction imaging optical system.
  • An exposure system comprising: the projection optical system according to any one of the first to twenty aspects of the present invention for forming an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. Provide equipment.
  • a mask on which a pattern is formed is illuminated, and an image of the illuminated pattern is formed on a photosensitive substrate via the projection optical system according to the first to twenty-second aspects.
  • An exposure method is provided.
  • FIG. 1 is a diagram for explaining the crystal axis orientation of fluorite.
  • 2A to 2C are diagrams for explaining the method of Burnett et al., And show the distribution of the birefringence index with respect to the incident angle of a light beam.
  • FIGS. 3A to 3C are diagrams for explaining the first method of the present invention, and show the distribution of the birefringence index with respect to the incident angle of a light beam.
  • FIGS. 4A to 4C are diagrams for explaining the third technique of the present invention, and show the distribution of the birefringence index with respect to the incident angle of a light beam.
  • FIG. 5 is a diagram schematically showing a configuration of an exposure apparatus including an optical system according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing a positional relationship between a rectangular exposure area (ie, an effective exposure area) formed on a wafer and a reference optical axis.
  • FIG. 7 is a diagram illustrating a lens configuration of the projection optical system PL according to the first example.
  • FIG. 8 is a diagram showing the lateral aberration in the first example.
  • FIG. 9 is a diagram illustrating a lens configuration of a projection optical system PL according to the second example.
  • FIG. 10 is a diagram showing lateral aberration in the second example.
  • FIG. 11 is a diagram illustrating a lens configuration of a projection optical system PL according to a third embodiment.
  • FIG. 12 is a view showing a rectangular exposure area (ie, an effective exposure area) formed on a wafer by the projection optical system PL according to the third example.
  • FIG. 13 is a diagram illustrating the incident angle dependence of the transmittance of the thin film RE according to the third example.
  • FIG. 14 is a diagram showing the incident angle dependence of the phase difference (polarization aberration) of the thin film RE according to the third example.
  • FIG. 15 is a diagram illustrating the wavefront aberration of the projection optical system according to the third example.
  • FIG. 16 is a flowchart of a method for obtaining a semiconductor device as a micro device.
  • FIG. 17 is a flowchart of a method for obtaining a liquid crystal display element as a micro device.
  • FIG. 1 is a diagram for explaining the crystal axis orientation of fluorite.
  • the crystal axis of fluorite is defined based on a cubic XYZ coordinate system. That is, a crystal axis [100] is defined along the + X axis, a crystal axis [0 10] is defined along the + Y axis, and a crystal axis [001] is defined along the + Z axis.
  • the crystal axis [100] and the crystal axis [001] are The crystal axis [101] is in the direction that forms, the crystal axis [1 10] is in a direction that forms 45 ° with the crystal axis [100] and the crystal axis [0 10] in the XY plane, and the crystal axis [010] and the crystal axis are in the YZ plane.
  • a crystal axis [011] is defined in a direction that forms an angle of 45 ° with the axis [00 1].
  • the crystal axis [1 1 1] is defined in a direction that forms an equal acute angle to the + X axis, the + Y axis, and the + Z axis.
  • FIG. 1 shows only the crystal axis in the space defined by the + X axis, + Y axis, and + Z axis
  • the crystal axis is similarly defined in other spaces.
  • 2A to 2C are diagrams for explaining the method of Burnett et al., And show the distribution of the birefringence index with respect to the incident angle of a light beam.
  • five concentric circles indicated by broken lines in the figures represent 10 ° on one scale. Therefore, the innermost circle represents the area at an incident angle of 10 ° to the optical axis, and the outermost circle represents the area at an incident angle of 50 ° to the optical axis.
  • Black circles indicate areas with relatively large refractive index and no birefringence
  • white circles indicate areas with relatively small refractive index and no birefringence
  • small hatched circles (see Figure 4C) A region without a birefringence having a typical refractive index is shown.
  • a thick circle and a long double arrow indicate the direction of a relatively large refractive index in a birefringent region
  • a thin circle and a short double arrow indicate a relatively small refractive index direction in a birefringent region. The same applies to the following notations in FIGS. 3A to 3C and FIGS. 4A to 4C.
  • Burnett et al.'S method uses the optical axis and crystal axis of a pair of fluorite lenses. [111] and a pair of fluorite lenses are relatively rotated about the optical axis by 60 °. Therefore, the distribution of birefringence in one fluorite lens is as shown in FIG. 2A, and the distribution of birefringence in the other fluorite lens is as shown in FIG. 2B. As a result, the distribution of the birefringence in the entire pair of fluorite lenses is as shown in FIG. 2C.
  • the crystal axis coincides with the optical axis.
  • the region corresponding to [1 1 1] is a region having a relatively small refractive index and no birefringence.
  • the regions corresponding to the crystal axes [100], [010], and [001] are regions having a relatively large refractive index and no birefringence.
  • the region corresponding to the crystal axes [1 10], [1 01], [01 1] is a birefringent region having a relatively small refractive index for circumferentially polarized light and a relatively large refractive index for radially polarized light.
  • each lens must be maximally affected by birefringence in the range of 35.26 ° from the optical axis (the angle between the crystal axis [1 1 1] and the crystal axis [1 1 0]). I understand.
  • FIG. 2C by rotating the pair of fluorite lenses relative to each other by 60 °, the crystal axis of the pair of fluorite lenses having the maximum birefringence [1 10],
  • the optical axis of the first lens element is made to coincide with the crystal axis [100] (or a crystal axis optically equivalent to the crystal axis [100])
  • the optical axis of the second group of lens elements is made to coincide with the crystal axis [100] (or a crystal axis optically equivalent to the crystal axis [100])
  • the first group of lens elements and the second group of lens elements are aligned. And are relatively rotated about the optical axis by 45 °.
  • the crystal axes that are optically equivalent to the crystal axis [100] are the crystal axes [010] and [001].
  • FIGS. 3A to 3C are diagrams for explaining the first method of the present invention, showing the distribution of the birefringence index with respect to the incident angle of a light ray (the angle between the light ray and the optical axis).
  • the region corresponding to the crystal axis [100] coincident with the optical axis is defined as a region having a relatively large refractive index and having no birefringence.
  • the regions corresponding to the crystal axes [1 1 1], [1-1 1], [—1 1 1 – 1], and [1 1 – 1] are the regions with relatively small refractive index and no birefringence.
  • the regions corresponding to the crystal axes [10 1], [10-1], [1 10], [1-10] have relatively large refractive indices for circumferentially polarized light and refractive indices for radially polarized light.
  • to relatively rotate the first lens unit and the second lens unit about 45 ° about the optical axis means that the first lens unit A predetermined crystal axis (eg, a crystal axis [0 1 0], [00 1], [0 1 1], or [0 1—1] oriented in a direction different from the optical axis of the element and the lens elements of the second group. ) c the relative angle around the optical axis between means that is approximately 45 ° For example, the relative angle of the crystal axis [0 10] of the first lens unit and the crystal axis [010] of the second lens unit about the optical axis is 45 °. Also, as is clear from FIGS.
  • relative rotation about the optical axis by about 45 ° means that relative rotation about the optical axis by about 45 ° + (n X 90 °) That is, it is equivalent to rotating relatively by 45 °, 135 °, 225 °, or 315 ° ... (where n is an integer).
  • each of the first group of lens elements and the second group of lens elements has one or more lens elements.
  • the plurality of lens elements are not necessarily continuous lens elements.
  • the concept of the lens element group is the same for the lens elements of the third to sixth groups hereinafter.
  • the total thickness T1 of the first group of lens elements along the optical axis is approximately equal to the total thickness T2 of the second group of lens elements along the optical axis. Is preferred.
  • the crystal axes [1 110], [ Areas corresponding to 10 1] and [01 1] exist at a pitch of 120 °, and the effect of birefringence having a distribution of 30 in the pupil plane, that is, the effect of generating coma on the image plane (wafer plane) Is considered to appear.
  • the effect of birefringence having a distribution of 30 in the pupil plane that is, the effect of generating coma on the image plane (wafer plane) Is considered to appear.
  • the optical axis of at least one lens element and the crystal axis [100] (or optically equal to the crystal axis [100])
  • the effect of birefringence can be suppressed well, and good imaging performance can be secured.
  • the optical axis of the lens element of the third group is made to coincide with the crystal axis [110] (or a crystal axis optically equivalent to the crystal axis [110]),
  • the optical axis of the lens unit of the fourth group is matched with the crystal axis [1 10] (or the crystal axis optically equivalent to the crystal axis [1 10]), and the lens element of the third group and the lens of the fourth group The element is rotated relative to the optical axis by 90 °.
  • the crystal axes optically equivalent to the crystal axis [1 10] are the crystal axes [—110], [101], [ ⁇ 101], [01 1], [01-1].
  • FIGS. 4A to 4C are diagrams for explaining the third method of the present invention, and show the distribution of the birefringence with respect to the incident angle of a light beam.
  • the distribution of birefringence in the third group of lens elements is as shown in FIG. 4A
  • the distribution of birefringence in the fourth group of lens elements is shown in FIG. 4B.
  • the distribution of the birefringence in the entire lens elements of the third and fourth groups is as shown in FIG. 4C.
  • the region corresponding to the crystal axis [1 10] which coincides with the optical axis has a relatively large refractive index for polarized light in one direction.
  • the birefringent region has a relatively small refractive index for polarized light in the other direction (direction orthogonal to one direction).
  • the region corresponding to the crystal axes [100] and [0 10] is a region having a relatively large refractive index and no birefringence.
  • the region corresponding to the crystal axes [1 1 1] and [1 1-1] is a region having a relatively small refractive index and no birefringence.
  • the third lens element and the fourth lens element are rotated.
  • the crystal axis [1 10] where the birefringence is maximum there is almost no effect of the crystal axis [1 10] where the birefringence is maximum, and the vicinity of the optical axis is an area having an intermediate refractive index and no birefringence. That is, when the third method is adopted, good imaging performance can be secured without being substantially affected by birefringence.
  • to relatively rotate the third lens unit and the fourth lens unit by about 90 ° about the optical axis means that the third lens unit is used.
  • a predetermined crystal axis eg, a crystal axis [001], [1-111], [—110], or [111] oriented in a direction different from the optical axis of the element and the fourth group of lens elements ) Means that the relative angle about the optical axis is about 90 °.
  • the relative angle of the crystal axis [00 1] of the third lens unit and the crystal axis [001] of the fourth lens unit about the optical axis is 90 °.
  • relative rotation about the optical axis by about 90 ° means that relative rotation about the optical axis by about 90 ° + (n X 180 °) is required. That is, it has the same meaning as relative rotation by 90 °, 270 ° ... (where n is an integer).
  • the total thickness T3 of the third lens unit along the optical axis is substantially equal to the total thickness T4 of the fourth lens unit along the optical axis. I like it.
  • the birefringent region is located at the center (the optical axis and its vicinity), it is more preferable to apply the method to a negative lens having a thin center.
  • the optical axis of at least one lens element and the crystal axis [1 10] (or the crystal axis [1 10])
  • the effect of birefringence can be suppressed well, and good imaging performance can be secured.
  • the optical axis of the lens element of the fifth group coincides with the crystal axis [111] (or a crystal axis optically equivalent to the crystal axis [111]).
  • the optical axis of the lens element of the sixth group is matched with the crystal axis [111] (or a crystal axis optically equivalent to the crystal axis [111]), and the lens element of the fifth group is The lens element of the sixth group is relatively rotated by 60 ° about the optical axis.
  • the crystal axes that are optically equivalent to the crystal axis [1 1 1] are the crystal axes [—1 1 1], [1—1 1], and [1 1–1].
  • the relative rotation of the lens elements of the fifth group and the lens elements of the sixth group by approximately 60 ° about the optical axis is defined as the lens elements of the fifth group and the sixth lens element.
  • the relative angle is approximately 60 °.
  • the relative angle around the optical axis between the crystal axis [—111 1] of the lens element of the fifth group and the crystal axis [-111 1] of the lens element of the sixth group is 60 °. .
  • relative rotation about the optical axis by only about 60 ° means that relative rotation about the optical axis by about 60 ° + (nX120 °), That is, it has the same meaning as relatively rotating by 60 °, 180 °, 300 °... (Where n is an integer).
  • the total thickness T5 of the lens elements of the fifth group along the optical axis is approximately equal to the total thickness T6 of the lens elements of the sixth group along the optical axis.
  • the sixth technique of the present invention a technique in which the first technique, the third technique, and the fifth technique are partially combined can be adopted.
  • the optical axis of the first lens unit is made to coincide with the crystal axis [100] (or a crystal axis optically equivalent to the crystal axis [100])
  • the optical axis of the element is made to coincide with the crystal axis [1 10] (or a crystal axis optically equivalent to the crystal axis [1 110])
  • the optical axis of the lens element of the fifth group is set to the crystal axis [1 1 1 (Or a crystal axis optically equivalent to the crystal axis [111]).
  • the effect of birefringence can be suppressed well, and good imaging performance can be secured.
  • one method selected from the above-described six methods is applied to a predetermined optical member of the projection optical system.
  • the above-described six methods Can be employed in combination.
  • a birefringent optical material such as fluorite for the projection optical system, it has good imaging performance without being substantially affected by birefringence.
  • a projection optical system can be realized.
  • the optical axis of the lens element of the fifth group is made to coincide with the crystal axis [111] (or a crystal axis optically equivalent to the crystal axis [111]), and
  • the optical axis of the lens element of the sixth group is made to coincide with the crystal axis [111] (or a crystal axis optically equivalent to the crystal axis [111]), and the lens element of the fifth group is By rotating the lens elements of the group relative to each other by 60 ° about the optical axis, aberrations caused by polishing errors of the lens surface at every azimuth of 120 ° centered on the optical axis can be corrected. There is an advantage that it is possible to substantially cancel (cancel) between the element and the lens element of the sixth group.
  • ⁇ 1 to ⁇ 6 are the total thickness (center thickness) along the optical axis of the first to sixth lens elements (light transmitting members) as described above.
  • is the total thickness along the optical axis of all the light transmitting members constituting the projection optical system.
  • a catadioptric projection optical system including a plurality of lenses and at least one concave reflecting mirror, and forming a reduced image of the first surface on the second surface.
  • the present invention moves the first surface and the second surface along the scanning direction to When used in an exposure apparatus that scans and exposes one image on the second surface, a slit-shaped or arc-shaped exposure area is formed on the second surface during non-scanning, and the following conditional expression (1) is satisfied. I'm satisfied.
  • Dw is the working distance on the second surface side (the distance between the optical surface closest to the second surface side and the second surface).
  • Nw is the numerical aperture on the second surface side (image side numerical aperture).
  • E w is the length along the non-scanning direction (the direction orthogonal to the scanning direction) in the slit-shaped or arc-shaped exposure area.
  • Conditional expression (1) specifies the relationship between the image-side working distance, image-side numerical aperture, and image field of view. C When the value falls below the lower limit of conditional expression (1), the photoresist applied to the photosensitive substrate Pollution due to degassing from this will increase. On the other hand, when the value exceeds the upper limit of the conditional expression (1), not only does it become difficult to correct chromatic aberration, but it is unavoidable to increase the size of the optical element, and it becomes difficult to manufacture an optical system. In order to further exert the effects of the present invention, it is preferable to set the lower limit of conditional expression (1) to 0.53 and the upper limit to 1.3.
  • the slit-shaped or arc-shaped exposure area is set so as not to include the optical axis of the projection optical system, and forms the first intermediate image on the first surface.
  • a second imaging optical system for forming near the formation position of the first intermediate image, and a refraction for forming a reduced image of the second intermediate image on the second surface based on a light beam from the second intermediate image
  • Third imaging optical system a first optical path bending mirror disposed in an optical path from the first imaging optical system to the second imaging optical system, and a third imaging optical system from the second imaging optical system A second optical path bending mirror disposed in the optical path leading to the system.
  • the effective area of the first optical path folding mirror and the effective area of the second optical path folding mirror have a reflecting surface formed in a planar shape over the whole, and the effective area of the first optical path folding mirror and the second optical path folding mirror It is preferable that the mirror is arranged so as to guide all the light beams from the first surface to the second surface without having a spatial overlap with the effective area of the mirror.
  • the mirror is arranged so as to guide all the light beams from the first surface to the second surface without having a spatial overlap with the effective area of the mirror.
  • a projection optical system of the present invention includes a plurality of lenses, a concave reflecting mirror, and a negative lens disposed near the concave reflecting mirror, and forms a reduced image of the first surface. Formed on the second surface.
  • the projection optical system is used.
  • a slit-shaped or arc-shaped exposed region set so as not to include the optical axis is formed on the second surface, and the numerical aperture on the second surface is 0.82 or more.
  • the concave reflecting mirror and the negative lens are arranged along the optical axis in a direction substantially different from the direction of gravity, and satisfy the following conditional expression (2).
  • S is the effective diameter (diameter) of the concave reflecting mirror
  • R is the radius of curvature of the concave reflecting mirror.
  • conditional expression (2) deformation of the concave reflecting mirror due to gravity can be suppressed to a small degree, and the manufacturing difficulty can be made realistic.
  • conditional expression (2) when the value goes below the lower limit value of conditional expression (2), the concave reflector is greatly deformed by gravity, and it is not preferable because assembly adjustment and processing become difficult.
  • the value exceeds the upper limit of conditional expression (2) it is not preferable because chromatic aberration correction and field curvature correction cannot be achieved while securing a large numerical aperture.
  • FIG. 5 is a diagram schematically showing a configuration of an exposure apparatus including a projection optical system according to an embodiment of the present invention.
  • the Z axis is in the normal direction of the wafer
  • the Y axis is in a plane perpendicular to the Z axis
  • the Y axis is in parallel to the plane of FIG. 5, and in the plane perpendicular to the Z axis.
  • the X-axis is set perpendicular to the page of Fig. 5.
  • the present invention is applied to a scanning projection exposure apparatus provided with a catadioptric projection optical system.
  • the exposure apparatus of the present embodiment includes an illumination device 51 for illuminating a reticle (mask) 50 arranged on the first surface.
  • the illuminating device 51 is, for example, a light source having an F 2 laser that supplies light having a wavelength of 157 nm. It has an optical integrator that forms a secondary light source, an illumination field stop for defining the irradiation range on the reticle 50, and the like, and the illumination area on the reticle 50 has an almost uniform illuminance distribution. Light up.
  • the illumination light path in the illumination device 51 is preferably purged with an inert gas, and in this embodiment, purged with nitrogen.
  • Reticle 50 is mounted on reticle stage 53, and reticle 50 and reticle stage 53 are isolated from the outside atmosphere by casing 52. It is preferable that the inner space of the casing 52 is also purged with an inert gas, and in this embodiment, it is purged with nitrogen.
  • the light from the reticle 50 illuminated by the illuminating device 51 includes a plurality of lens elements (1 to 7, 9, 10, 13 to 18) formed of fluorite crystals, a concave reflecting mirror 11,
  • the light is guided to a wafer 60 as a photosensitive substrate through a projection optical system 400 having an aperture stop 20 for controlling a coherence factor ( ⁇ value), and is exposed on the wafer 60.
  • a pattern image of the reticle 50 is formed therein.
  • the projection optical path in the projection optical system 400 is preferably purged with an inert gas. In the present embodiment, the projection optical path is purged with helium.
  • the wafer 60 is placed on the wafer stage 61 such that the surface thereof is positioned on the second surface as the image plane of the projection optical system 400, and the wafer 60 and the wafer stage 61 are connected to each other.
  • One thing is isolated from the outside atmosphere by 62. It is preferable that the inner space of the casing 62 is also purged with an inert gas, and in the present embodiment, it is purged with nitrogen.
  • reticle stage 53 and wafer stage 61 are moved relative to projection optical system 400 at a speed ratio corresponding to the magnification of projection optical system 400.
  • the pattern on the reticle 50 is transferred into the exposure area on the wafer 60.
  • FIG. 6 is a diagram showing a positional relationship between a rectangular exposure area (ie, an effective exposure area) formed on the wafer and an optical axis.
  • a rectangular exposure area ie, an effective exposure area
  • the off-axis amount A in the Y direction from the optical axis AX1 is defined.
  • a rectangular effective exposure area ER having a desired size is set at a position separated by only a distance.
  • the length in the X direction of the effective exposure area ER is LX (E w)
  • the length in the Y direction is LY.
  • a rectangular effective exposure area ER having a desired size is set at a position away from the optical axis AX1 by the off-axis amount A in the -Y direction in the -Y direction.
  • the radius B of the circular image circle IF is defined so as to cover the effective exposure area ER around AX1. Accordingly, although not shown, the effective exposure area ER on the reticle 50 corresponds to a distance corresponding to the off-axis amount A in one Y direction from the reference optical axis AX on the reticle 50.
  • a rectangular illumination area ie, an effective illumination area having the specified size and shape is formed.
  • the projection optical system 400 of the present embodiment is a refraction type first imaging device for forming a first intermediate image of the pattern of the reticle 50 arranged on the first surface. It is composed of optical system 100, concave reflecting mirror 11 and two negative lenses 9, 10 and has a second intermediate image that is almost the same magnification as the first intermediate image (substantially the same magnification as the first intermediate image).
  • a refraction-type third imaging optical system 300 for forming a final image of the pattern (a reduced image of the reticle pattern) is provided.
  • the first imaging optical system 100 In the optical path between the first imaging optical system 100 and the second imaging optical system 200, near the formation position of the first intermediate image, the first imaging optical system 100 A first optical path bending mirror 8 for deflecting the light toward the second imaging optical system 200 is arranged.
  • a second optical path bending mirror (12) for deflecting light from the second imaging optical system (200) toward the third imaging optical system (300) is arranged near the intermediate image forming position. ing.
  • the first intermediate image and the second intermediate image are located in the optical path between the first optical path bending mirror 8 and the second imaging optical system 200 and between the second imaging optical system 200 and the second optical path bending mirror 1. 2 in the optical path between them.
  • both the first imaging optical system 100 and the third imaging optical system G3 have a single optical axis extending linearly, that is, a reference optical axis AX1.
  • the reference optical axis A X 1 is positioned along the direction of gravity (ie, the vertical direction).
  • reticle 50 and wafer 60 are arranged parallel to each other along a plane orthogonal to the direction of gravity, that is, a horizontal plane.
  • all the lenses constituting the first imaging optical system 100 and all the lenses constituting the third imaging optical system 300 also extend along the horizontal plane on the reference optical axis AX1. Are located.
  • the second imaging optical system 200 also has an optical axis AX2 extending linearly, and this optical axis AX2 is set to be orthogonal to the reference optical axis AX1.
  • the first optical path bending mirror 8 and the second optical path bending mirror 12 both have a flat reflecting surface, and are integrally formed as one optical member (one optical path bending mirror FM) having two reflecting surfaces. It is configured.
  • the line of intersection of these two reflecting surfaces is the optical axis AX 1 of the first imaging optical system 100 and the third imaging optical system 300. It is set so that it intersects the optical axis AX 2 of the optical system 200 at one point.
  • the chromatic aberration and Petzval sum of positive values generated in the first imaging optical system 100 and the third imaging optical system 300, which are refractive optical systems including a plurality of lenses, are calculated by the second imaging optical system. Compensation is performed by the concave reflecting mirror 11 of the system 200 and the negative lens 9, 10. Further, the second intermediate optical image can be formed in the vicinity of the first intermediate image by the configuration in which the second imaging optical system 200 has an approximately equal magnification. In the present embodiment, by performing optical path separation in the vicinity of these two intermediate images, the distance of the exposure area (that is, the effective exposure area) from the optical axis, that is, the off-axis amount can be set small.
  • the second imaging optical system 200 can compensate for the chromatic aberration and the positive Petzval sum generated by the first imaging optical system 100 and the third imaging optical system 300 all at once. Take charge. For this reason, it is necessary to set both the power of the concave reflecting mirror 11 and the power of the negative lenses 9, 10 constituting the second imaging optical system 200 to be large. Therefore, when the symmetry of the second imaging optical system 200 is broken, asymmetric color aberration such as chromatic aberration of magnification and chromatic coma becomes large, and it becomes impossible to obtain a sufficient resolving power.
  • the imaging magnification of the second imaging optical system 200 is set to be approximately equal, and the concave reflecting mirror 11 can be arranged near the pupil position.
  • a lens (16 to 18) disposed in the optical path between the aperture stop 20 disposed at the pupil position on the wafer side (second surface side) and the wafer 60 transmits light rays passing therethrough.
  • the maximum angle of the lens with respect to the optical axis tends to be large, and is liable to be affected by birefringence. Therefore, in the present embodiment, the first lens of the present invention described above is applied to these lenses (16 to 18).
  • Method 6 By applying Method 6 to Method 6 alone or in combination, good optical performance can be secured without being substantially affected by birefringence.
  • FIG. 5 only three lenses are disposed between the aperture stop 20 and the wafer 60 for clarity of the drawing, but more lenses are disposed in an actual design.
  • a lens in which the maximum angle of the passing light beam with respect to the optical axis exceeds 20 ° is easily affected by birefringence regardless of the arrangement position. Therefore, in the present embodiment, the first to sixth methods of the present invention are applied singly or in combination to a lens in which the maximum angle of the passing light beam with respect to the optical axis exceeds 20 °. Accordingly, good optical performance can be secured without being substantially affected by birefringence.
  • the negative lenses 9 and 10 arranged in the vicinity of the concave reflecting mirror 11 have a maximum value with respect to the optical axis of the passing light beam. Angles tend to be large for aberration correction purposes. Therefore, in the present embodiment, by applying the first to fifth methods of the present invention to these negative lenses 9 and 10, good optical performance is obtained substantially without being affected by birefringence. Can be secured.
  • the first to sixth methods of the present invention can be applied alone or in combination.
  • the first lens group, the third lens group, and the fifth lens group, and the second lens group, the fourth lens group, and the fourth lens group are preferably formed as one optical component by optical contact or adhesion.
  • the number of optical surfaces on which the anti-reflection film is to be formed can be minimized, especially when the material of the anti-reflection film is limited, such as in an optical system using an F 2 laser. Very advantageous.
  • the first lens group (or the third lens group, the fifth lens group) and the second lens group (or the fourth lens group) It is necessary to specify the angle with the (6 lens groups). Therefore, the aspherical surface that originally needs to specify the angle, that is, the aspherical surface for aberration correction (rotationally asymmetrical aspherical surface) at the time of lens adjustment is replaced with the first lens group (or the third and fifth lens groups) or the second lens group. It is preferable to introduce the light into the group (or the fourth lens group and the sixth lens group).
  • the optical performance of the projection optical system is adjusted by measuring the aberrations such as wavefront aberration and adjusting the position and orientation of optical elements such as lenses and reflectors that constitute the projection optical system. Driving to the desired value is performed.
  • such adjustment of the position and orientation of the optical element alone is not sufficient for low-order aberration represented by Seidel's five aberrations. I can't correct it.
  • the remaining aberrations excluding components that can be corrected by adjusting the position and shape of the optical element are changed, and the surface shape of the optical element that constitutes the projection optical system is changed, that is, an aspheric surface By doing so, the correction is performed.
  • Such an aspheric surface for correcting residual aberration is referred to as an aspheric surface for correcting aberration at the time of lens adjustment, and a typical aspherical shape is rotationally asymmetric with respect to the optical axis. Therefore, in order to incorporate an optical element having an aspheric surface for correcting aberration during lens adjustment into a projection optical system, it is necessary to determine the azimuth around the optical axis, that is, to specify the angle. is there.
  • the polarization aberration that is, the first aberration passing through the projection optical system
  • the phase difference between the light of the first polarization component and the light of the second polarization component different from the first polarization component cannot be completely corrected.
  • a film for reducing the polarization aberration that is, a characteristic for reducing the phase difference between the light of the first and second polarization components, is provided on the surface of at least one of the optical members constituting the projection optical system.
  • a crystal film made of the same fluorite crystal is formed on the surface of the lens made of the fluorite crystal, and the crystal orientation of the fluorite lens and the crystal orientation of the crystal film are substantially changed.
  • a method of setting differently is also effective.
  • the crystal orientation along the optical axis of the fluorite lens is set to be substantially different from the crystal orientation along the optical axis of the crystal film.
  • the crystal orientation along the optical axis of the fluorite lens and the crystal orientation along the optical axis of the crystal film substantially match, and the fluorite lens and the crystal film are relative only at a predetermined angle about the optical axis. It is set so as to have a physically rotated positional relationship. With this configuration, good optical performance can be secured without being substantially affected by birefringence.
  • fluorite C a F 2 crystal
  • the oscillation center wavelength of the F 2 laser beam as the exposure light is 157.624 nm
  • the refractive index of C a F 2 near 157.66.44 nm is +1. one per wavelength change of pm 2.
  • dispersion of the refractive index of the C aF 2 (d nZd A) is 2. a 6 X 10- 6 pm.
  • the refractive index of ⁇ & F 2 for the center wavelength 1 57.624411] 11 is 1.5593067
  • the refraction of C a F 2 for 1 57. 6244 nm + 1 pm 1 57. 6254 nm.
  • the index is 1.5593041
  • the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance along the optical axis from the tangent plane at the vertex of the aspheric surface to the position on the aspheric surface at height y
  • the vertex radius of curvature is r
  • the conic coefficient is / c
  • the nth-order aspherical coefficient is Cn
  • an asterisk (*) is attached to the right side of the surface number for a lens surface formed in an aspherical shape.
  • FIG. 7 is a diagram illustrating a lens configuration of a projection optical system according to Example 1.
  • the present invention is applied to a projection optical system in which various aberrations including a color difference are corrected for exposure light having a wavelength width of 157.6244 nm ⁇ 1 pm.
  • the first imaging optical system G 1 (corresponding to 100 in FIG. 5) includes a biconvex lens LI 1 and a reticle R in order from the reticle R (corresponding to 50 in FIG. 5).
  • the second imaging optical system G 2 (corresponding to 200 in FIG. 5) has an aspheric concave surface on the reticle side in order from the reticle side (that is, the incident side) along the light traveling path. , A negative meniscus lens L 21 with a concave surface facing the reticle side, and a concave reflector CM with a concave surface facing the reticle side (corresponding to 11 in FIG. 5). ing.
  • the third imaging optical system G 3 (corresponding to 300 in FIG. 5) includes, in order from the reticle side along the light traveling direction, a positive meniscus lens L 31 having a concave surface facing the reticle side, Biconvex lens L32, positive meniscus lens L33 with convex surface facing reticle side, biconcave lens L34 with aspheric concave surface facing reticle side, and aspheric concave surface facing reticle side Positive meniscus lens L35, positive meniscus lens L36 with aspheric concave surface facing the wafer side, aperture stop AS, biconvex lens L37, and negative meniscus lens with concave surface facing the reticle side L38, a plano-convex lens L39 with a flat surface facing the reticle side, a biconvex lens L310, a positive meniscus lens L311 with an aspheric concave surface facing the wafer side, and a reticle side A positive meniscus lens L 3 1 2 with a conve
  • Table 1 below shows values of specifications of the projection optical system according to the first example.
  • is the center wavelength of the exposure light
  • / 3 is the projection magnification (imaging magnification of the entire system)
  • ⁇ ⁇ is the numerical aperture on the image side (wafer side)
  • is the Is the radius of the image circle IF
  • is the off-axis amount of the effective exposure area ER
  • LX (E w) is the dimension (long side dimension) of the effective exposure area ER along the X direction
  • LY is the effective exposure area The dimension (short side dimension) along the Y direction of ER is shown.
  • the surface number is the order of the surface from the reticle side along the direction in which light rays travel from the reticle surface, which is the object surface (first surface), to the wafer surface, which is the image surface (second surface).
  • the radius of curvature of the surface (vertical radius of curvature: mm in the case of an aspheric surface), d is the on-axis spacing of each surface That is, the surface spacing (mm) is shown, and n is the refractive index for the center wavelength.
  • the sign of the surface distance d changes each time it is reflected.
  • the sign of the surface distance d is negative in the optical path from the reflecting surface of the first optical path bending mirror 8 to the concave reflecting mirror CM and in the optical path from the reflecting surface of the second optical path bending mirror 12 to the image plane, Positive in other optical paths.
  • the radius of curvature of the convex surface toward the reticle side is positive, and the radius of curvature of the concave surface is negative.
  • the radius of curvature of the concave surface toward the reticle side is positive, and the radius of curvature of the convex surface is negative.
  • the radius of curvature of the concave surface toward the reticle side that is, the incident side
  • the radius of curvature of the convex surface is negative.
  • FIG. 8 is a view showing the lateral aberration in the first example.
  • Y is the image height
  • the solid line is the center wavelength of 157. 6244 nm
  • Each of 6234 nm is shown.
  • the chromatic aberration is favorably corrected for the exposure light having the wavelength width of 157.624 nm ⁇ 1 pm.
  • FIG. 9 is a diagram illustrating a lens configuration of a projection optical system according to Example 2.
  • the wavelength width of the second embodiment is 157.6244 nm ⁇ l, as in the first embodiment.
  • the present invention is applied to a projection optical system in which various aberrations including chromatic aberration are corrected for exposure light of pm.
  • the first imaging optical system G 1 includes, in order from the reticle side, a biconvex lens LI 1, a negative meniscus lens L 1 2 having an aspherical concave surface facing the reticle side, and a reticle.
  • Positive meniscus lens L 13 with concave surface facing the side, positive meniscus lens L 14 with aspheric concave surface facing the wafer side, biconcave lens L 15 and positive meniscus with concave surface facing the reticle side It consists of a lens L16, a positive meniscus lens L17 with a concave surface facing the reticle side, a biconvex lens L18, and a positive meniscus lens L19 with an aspheric concave surface facing the wafer side. ing.
  • the second imaging optical system G2 includes a negative meniscus lens L21 having a concave surface facing the reticle side and a non-convex lens facing the reticle side in order from the reticle side (that is, the incident side) along the light traveling path. It is composed of a negative meniscus lens L22 having a spherical concave surface and a concave reflector CM having a concave surface facing the reticle side.
  • the third imaging optical system G 3 includes, in order from the reticle side along the light traveling direction, a positive meniscus lens L 31 having a concave surface facing the reticle side, a biconvex lens L 32, and a convex surface facing the reticle side.
  • Positive meniscus lens L 33 with the aspheric concave surface facing the reticle side, positive meniscus lens L 35 with the aspheric concave surface facing the reticle side, and the wafer side A positive meniscus lens L 36 with an aspheric concave surface facing the lens, an aperture stop AS, a biconvex lens L 37, a negative meniscus lens L 38 with a concave surface facing the reticle side, and a flat surface on the reticle side Plano-convex lens L 3 9, bi-convex lens L 3 10, positive meniscus lens L 3 1 1 with an aspheric concave surface facing the wafer side, and positive meniscus lens L 3 1 with a convex surface facing the reticle side 2 and a plano-convex lens L 3 1 3 with the plane facing the wafer side It is configured.
  • Table 2 below summarizes the data values of the projection optical system according to the second embodiment.
  • FIG. 10 is a diagram showing lateral aberration in the second example.
  • Y is the image height
  • the solid line is the center wavelength of 157.6244 nm
  • chromatic aberration is favorably corrected for exposure light having a wavelength width of 157.624 nm ⁇ lpm.
  • each embodiment satisfies the conditional expression (1), it is possible to favorably avoid lens contamination due to degassing from the photoresist applied to the wafer W.
  • the concave reflecting mirror CM and the negative lenses are arranged along the optical axis AX2 in the direction orthogonal to the direction of gravity, but satisfy the conditional expression (2). As a result, the deformation of the concave reflector CM due to gravity is kept small, making assembly adjustment and processing easier.
  • a polarization aberration that is, a first aberration having a vibration direction in a predetermined direction
  • an isotropic optical material eg, fluorite
  • the projection optical system shown in FIG. 11 is considered in order to make the incident state of light incident on the thin film the same as in the actual case.
  • FIG. 11 is a diagram showing a lens configuration of a projection optical system according to Example 3. Unlike the first and second embodiments described above, the projection optical system shown in FIG. 11 applies the present invention to a refraction type projection optical system in which a plurality of refraction optical members are arranged along a linear optical axis. are doing.
  • the projection optical system shown in FIG. 11 includes, in order from the reticle R side, a meniscus negative lens L1 having a concave surface facing the wafer W side, a meniscus negative lens L2 having a concave surface facing the reticle R side, and a reticle R side.
  • FIG. 12 is a diagram showing a positional relationship between a rectangular exposure area (ie, an effective exposure area) formed on a wafer W by the projection optical system according to the third embodiment and an optical axis.
  • a rectangular exposure area ie, an effective exposure area
  • AX a desired position
  • a rectangular effective exposure area ER having a size of is set.
  • the length in the X direction of the effective exposure area ER is L X
  • the length in the Y direction is LY.
  • the off-axis amount A of the effective exposure area ER in the projection optical system of the third embodiment is zero.
  • Table 3 shows values of specifications of the projection optical system according to the third example.
  • is the wavelength of the exposure light
  • i3 is the projection magnification
  • NA is the numerical aperture on the image side (wafer side)
  • B is the radius of the image circle IF on the wafer W
  • LX is the effective
  • the dimension of the exposure area ER along the X direction (dimension of the long side) is shown
  • LY represents the dimension of the effective exposure area ER along the Y direction (dimension of the short side).
  • the surface number is the order of the surface from the reticle side along the direction in which light rays travel from the reticle surface, which is the object surface (first surface), to the wafer surface, which is the image surface (second surface).
  • the radius of curvature of the surface (vertical radius of curvature for aspheric surface: mm)
  • d is the on-axis spacing of each surface, that is, the surface spacing (mm)
  • the material is the material name of the light transmitting member
  • the coat is light. Transmission The type of the optical thin film provided on the surface of the conductive member is shown.
  • the radius of curvature of the convex surface toward the reticle side is positive, and the radius of curvature of the concave surface is negative.
  • the ID in the coating column indicates an ideal optical thin film (that is, a thin film that has a transmittance of 100% and does not give a phase difference to light transmitted therethrough), and RE indicates a phase difference described later. 2 shows a thin film having a reducing function.
  • optical members L21 and L22 are both formed such that their crystal axes [1 1 1] coincide with the optical axis AX1, and the crystal axes [1 1 1] of the optical members L 21 and L 22
  • the crystal axes are different from each other in that they have a positional relationship of being rotated by about 60 degrees about the optical axis AX1. That is, the fifth method of the present invention is applied to the optical members L21 and L22.
  • an ideal optical thin film is a virtual optical film that has a transmittance of 100% of the thin film ID itself and has an action of not giving any phase difference between light beams of a plurality of polarization components transmitted through the thin film. It is a thin film.
  • the thin film RE having the phase difference reducing function has the configuration shown in Table 4 below.
  • represents the center wavelength of the exposure light.
  • the layer number indicates the order of the layers from the substrate side on which the thin film is provided, D indicates the thickness ( ⁇ m) of each layer, and n indicates the refractive index of each layer with respect to the center wavelength.
  • FIG. 13 shows the incident angle characteristics of the transmittance of the thin film RE in Table 4 and FIG. 14 shows the incident angle characteristics of the phase difference of the thin film RE in Table 4.
  • the ordinate indicates the transmittance
  • the abscissa indicates the angle of incidence (0 for normal incidence) on the thin film RE.
  • the dashed line in FIG. 13 indicates a P-polarized component (a polarized component whose oscillation direction is in the plane of incidence, in other words, a polarized component having a plane of polarization along the radial direction of a circle centered on an axis parallel to the optical axis).
  • the solid line shows the S polarization component (the polarization component whose oscillation direction is in a plane perpendicular to the plane of incidence, in other words, the center of the axis parallel to the optical axis).
  • FIG. 6 shows the incident angle dependence of the transmittance of the thin film RE with respect to the polarization component having a polarization plane along the circumferential direction of the circle.
  • the vertical axis shows the phase difference (°) between the P-polarized light component and the S-polarized light component after passing through the thin film RE, and the horizontal axis shows the incident angle (0 at normal incidence). I have.
  • the light transmitted through the thin film RE has a phase of the P-polarized light component that advances more than the phase of the S-polarized light component as the incident angle increases.
  • the light transmitting members (optical members) L 21 and L 22 are both crystals. It has an optical axis AX 1 that coincides with the axis [1 1 1], and has almost the same thickness, and the crystal axes different from those crystal axes [1 1 1] are relative to each other with respect to the optical axis AX 1.
  • the phase of the S-polarized light component becomes larger than the phase of the P-polarized light component as the incident angle increases. It has a fast axis to go further.
  • the thin film RE has a fast axis orthogonal to the pair of optical members L 21 and L 22, it is possible to reduce the overall phase difference by the thin film RE.
  • FIG. 15 shows the wavefront aberration when the thin film RE is provided on the pair L21, L22 of the optical member closest to the wafer W in the projection optical system having the specifications shown in Table 3 and the wavefront aberration instead of the thin film RE.
  • 6 is a graph showing a comparison with a wavefront aberration when an ideal optical thin film ID is provided.
  • X indicates the wavefront aberration (mA RMS) of the polarized light component having a vibration direction (polarization plane) in the X direction in FIG. 12
  • Y indicates the vibration direction (polarization direction) in the Y direction in FIG.
  • phase difference correction capability of the thin film RE is sufficiently high, and it is also clear that the optical performance (imaging performance) of the projection optical system can be significantly improved. It is.
  • fluorite is used as the birefringent optical material.
  • the present invention is not limited to this, and other uniaxial crystals such as barium fluoride (BaF 2 ) and lithium fluoride are used. (L i F), sodium fluoride (Na F), strontium fluoride (S r F 2 ), etc. can also be used. In this case, preferably it is determined according to the crystal axis orientation also present invention, such as barium fluoride (B a F 2).
  • the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system (exposure step).
  • microdevices semiconductor devices, imaging devices, liquid crystal display devices, thin-film magnetic heads, etc.
  • a semiconductor device as a microdevice is obtained by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment.
  • a metal film is deposited on one lot of wafers.
  • a photoresist is applied on the metal film on the wafer of the lot.
  • an image of the pattern on the mask is sequentially exposed and transferred to each shot area on the wafer of the lot through the projection optical system.
  • the photoresist on the one lot of wafers is developed, and in step 304, etching is performed on the one lot of wafers using the resist pattern as a mask.
  • a circuit pattern corresponding to the pattern on the mask is formed in each shot area on each wafer.
  • a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like.
  • a semiconductor device manufacturing method a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput.
  • steps 301 to 305 a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the respective steps of exposure, development, and etching are performed.
  • a resist may be applied on the silicon oxide film, and each step of exposure, development, etching and the like may be performed.
  • a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate).
  • a predetermined pattern circuit pattern, electrode pattern, etc.
  • a plate glass substrate
  • FIG. 17 in a pattern forming step 401, a so-called optical liquid crystal is used to transfer and expose a mask pattern onto a photosensitive substrate (eg, a glass substrate coated with a resist) using the exposure apparatus of the present embodiment. The process is executed.
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate is subjected to various steps such as an imaging step, an etching step, and a reticle peeling step, so that a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming step 402. I do.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or , G and B, a color filter is formed by arranging a plurality of sets of three stripe filters in the horizontal scanning line direction.
  • a cell assembling step 403 is performed.
  • the liquid crystal is formed using the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. Assemble the panel (liquid crystal cell).
  • liquid crystal liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. Then, a liquid crystal panel (liquid crystal cell) is manufactured.
  • a module assembling step 404 components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.
  • components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.
  • the present invention is applied to the projection optical system mounted on the exposure apparatus.
  • the present invention is not limited to this, and may be applied to other general projection optical systems. Can also be applied.
  • the F 2 laser light source that supplies the light having the wavelength of 157 nm is used.
  • the present invention is not limited thereto. and F excimer laser light source, 1 2 6 nm a r 2 laser light source for supplying wavelength light, 1 4 wavelength light 6 nm can also be used, such as K r 2 laser primary light source supplies.
  • the influence of the birefringence is substantially reduced even though an optical material having an intrinsic birefringence such as fluorite is used. It is possible to realize a projection optical system having good optical performance without being affected by the above. Further, it is possible to realize a projection optical system capable of satisfactorily avoiding contamination of the lens due to degassing from the photoresist. Therefore, by incorporating the projection optical system of the present invention into an exposure apparatus, it is possible to manufacture a good microphone opening device by performing high-precision projection exposure through a high-resolution projection optical system.

Description

明 細 書 投影光学系、 露光装置および方法 技術分野
本発明は、 投影光学系、 該投影光学系を備えた露光装置および該投影光学系を 用いた露光方法に関し、 特に半導体素子などのマイクロデバイスをフォトリソグ ラフイエ程で製造する際に使用される露光装置に好適な反射屈折型の投影光学系 に関するものである。 背景技術
近年、 半導体素子の製造や半導体チップ実装基板の製造では、 微細化がますま す進んでおり、 パターンを焼き付ける露光装置ではより解像力の高い投影光学系 が要求されてきている。 この高解像の要求を満足するには、 露光光を短波長化し、 且つ NA (投影光学系の開口数) を大きくしなければならない。 しかしながら、 露光光の波長が短くなると、 光の吸収のため実用に耐える光学ガラスの種類が限 られてくる。
たとえば波長が 200 nm以下の真空紫外域の光、 特に F2レーザ光 (波長 1 57 nm) を露光光として用いる場合、 投影光学系を構成する光透過性光学材料 としては、 フッ化カルシウム (蛍石: C aF2) やフッ化バリウム (B aF2) 等のフッ化物結晶を多用せざるを得ない。 実際には、 露光光として F2レーザ光 を用いる露光装置では、 基本的に蛍石だけで投影光学系を形成する設計が想定さ れている。 蛍石は、 立方晶系であり、 光学的には等方的で、 複屈折が実質的にな いと思われていた。 また、 従来の可視光域の実験では、 蛍石について小さい複屈 折 (内部応力起因のランダムなもの) しか観測されていなかった。
しかしながら、 200 1年 5月 15日に開かれたリソグラフィに関するシンポ ジュゥム (2nd International Symposium on 157nm Lithography) 【こおレ て、 米 国 N I S丁の 〗ohn H. Burnett らにより、 蛍石には固有複屈折 (intrinsic birefringence) が存在することを実験および理論の両面から確認したことが発 表された。
この発表によれば、 蛍石の複屈折は、 結晶軸 [1 1 1] 方向およびこれと等価 な結晶軸 [一 1 1 1], [1 - 1 1], [1 1 - 1] 方向、 並びに結晶軸 [100] 方向およびこれと等価な結晶軸 [010], [001] 方向ではほぼ零であるが、 その他の方向では実質的に零でない値を有する。 特に、 結晶軸 [1 10], [— 1 10], [10 1], [ - 101], [01 1], [01— 1] の 6方向では、 波長 15 7 nmに対して最大で 6. 5 nmZc m、 波長 193 nmに対して最大で 3. 6 n mZ c mの複屈折の値を有する。 これらの複屈折の値はランダムな複屈折の許 容値とされる 1 nmZcmよりも実質的に大きい値であり、 しかもランダムでな い分だけ複数のレンズを通して複屈折の影響が蓄積する可能性がある。
従来技術では、 投影光学系の設計において蛍石の複屈折性を考慮していないの で、 加工の容易さなどの観点から結晶軸 [1 1 1] と光軸とを一致させるのが一 般的である。 この場合、 投影光学系では、 NA (開口数) が比較的大きいため、 結晶軸 [1 1 1] からある程度傾いた光線もレンズを通過するので、 複屈折の影 響により結像性能が悪化する可能性がある。
ところで、 Burnett らは上述の発表において、 一対の蛍石レンズの光軸と結晶 軸 [1 1 1] とを一致させ且つ光軸を中心として一対の蛍石レンズを 60° 相対 的に回転させることにより、 複屈折の影響を補正する手法を開示している。 しか しながら、 この手法では、 後述するように、 複屈折の影響をある程度薄めること はできるが、 複屈折の影響をこれと反対方向の複屈折の影響で積極的に補正して いないので、 その補正効果は十分ではなかった。
また、 F2レーザ光 (波長 157 nm) を露光光として用いる場合、 フオトレ ジストからの露光による脱ガス (アウトガス) は避けられない状況にある。 した がって、 従来から提案されている大きな開口数を有する投影光学系では、 特段の 策を講じない限り脱ガスによるレンズの汚染を回避することができない。 発明の開示 本発明の第 1の目的は、 たとえば蛍石のような固有複屈折を持つ光学材料を用 いているにもかかわらず、 複屈折の影響を実質的に受けることなく良好な光学性 能を達成することにある。
本発明の第 2の目的は、 フォトレジストからの脱ガスによるレンズの汚染を良 好に回避することにある。
上述の第 2の目的を達成するために、 本発明の第 1発明では、 複数のレンズと 少なくとも 1つの凹面反射鏡とを含み、 第 1面の縮小像を第 2面上に形成する投 影光学系において、
前記第 1面および前記第 2面を走査方向に沿って移動させて前記第 1面の像を 前記第 2面上に走査露光する露光装置に用いられたときに、 非走査時にはスリッ ト状または円弧状の露光領域を前記第 2面上に形成し、
前記第 2面側の作動距離を D wとし、 前記第 2面側の開口数を Nwとし、 前記 スリット状または円弧状の露光領域における前記走査方向と直交する方向に沿つ た長さを E wとするとき、
0 . 5 < (Dw - Nw) / E w< 1 . 4 ( 1 )
の条件を満足することを特徴とする投影光学系を提供する。 なお、 本発明でい うスリット状とは、 走査方向を横切る方向に延びた形状を指し、 たとえば走査方 向を横切る方向に延びた長方形状、 台形状、 六角形状などが挙げられる。
第 1発明の好ましい態様によれば、 前記スリット状または円弧状の露光領域は、 前記投影光学系の光軸を含まないように設定され、 前記第 1面の第 1中間像を形 成するための屈折型の第 1結像光学系と、 少なくとも 1つの負レンズと凹面反射 鏡とを有し、 前記第 1中間像からの光束に基づいて前記第 1中間像とほぼ等倍の 第 2中間像を前記第 1中間像の形成位置の近傍に形成するための第 2結像光学系 と、 前記第 2中間像からの光束に基づいて前記第 2中間像の縮小像を前記第 2面 上に形成するための屈折型の第 3結像光学系と、 前記第 1結像光学系から前記第 2結像光学系に至る光路中に配置された第 1光路折り曲げ鏡と、 前記第 2結像光 学系から前記第 3結像光学系に至る光路中に配置された第 2光路折り曲げ鏡とを 備えている。 この場合、 前記第 1光路折り曲げ鏡の有効領域および前記第 2光路 折り曲げ鏡の有効領域は、 全体に亘つて平面状に形成された反射面を有すること が好ましく、 前記第 1光路折り曲げ鏡の有効領域と前記第 2光路折り曲げ鏡の有 効領域とは空間的な重なりを有することなく、 前記第 1面からの光束をすベて前 記第 2面へ導くように配置されていることが好ましい。
また、 第 1発明の好ましい態様によれば、 前記第 1結像光学系および前記第 3 結像光学系を構成するすべてのレンズが単一の直線状の光軸に沿って配置されて いる。 さらに、 本発明の第 1発明において、 前記投影光学系は、 前記第 1面と前 記第 2面との間の光路中に配置されて凹面反射鏡を含む反射屈折型の結像光学系 と、 前記反射屈折型の結像光学系と前記第 2面との間の光路中に配置された屈折 型の結像光学系と、 前記第 1面と前記反射屈折型の結像光学系との間の光路中に 配置された第 1光路折り曲げ鏡と、 前記反射屈折型の結像光学系と前記屈折型の 結像光学系との間の光路中に配置された第 2光路折り曲げ鏡とを備えていること が好ましい。
本発明の第 2発明では、 複数のレンズと凹面反射鏡と該凹面反射鏡の近傍に配 置された負レンズとを含み、 第 1面の縮小像を第 2面上に形成する投影光学系に おいて、
前記第 1面および前記第 2面を走査方向に沿って移動させて前記第 1面の像を 前記第 2面上に走査露光する露光装置に用いられたときに、 非走査時には前記投 影光学系の光軸を含まないように設定されたスリット状または円弧状の露光領域 を前記第 2面上に形成し、
前記第 2面側の開口数は 0 . 8 2以上であることを特徴とする投影光学系を提 供する。
第 2発明の好ましい態様によれば、 前記凹面反射鏡および前記負レンズは、 重 力の方向と実質的に異なる方向の光軸に沿って配置され、 前記凹面反射鏡の有効 径 (直径) を Sとし、 前記凹面反射鏡の曲率半径を Rとするとき、
1 . 0 < S / I R I < 1 . 8 ( 2 )
の条件を満足する。 また、 本発明の第 2発明において、 前記投影光学系は、 前 記第 1面と前記第 2面との間の光路中に配置されて凹面反射鏡を含む反射屈折型 の結像光学系と、 前記反射屈折型の結像光学系と前記第 2面との間の光路中に配 置された屈折型の結像光学系と、 前記第 1面と前記反射屈折型の結像光学系との 間の光路中に配置された第 1光路折り曲げ鏡と、 前記反射屈折型の結像光学系と 前記屈折型の結像光学系との間の光路中に配置された第 2光路折り曲げ鏡とを備 えていることが好ましい。
また、 上述の第 1の目的を達成するために、 本発明の第 3発明では、 第 1面の 縮小像を第 2面上に形成する投影光学系において、
前記第 2面側の瞳位置と前記第 2面との間の光路中に配置され、 波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [100] または該結晶 軸 [1 00] と光学的に等価な結晶軸と光軸とがほぼ一致するように形成された 少なくとも 1つの光透過部材を備えていることを特徴とする投影光学系を提供す る。
また、 上述の第 1の目的を達成するために、 本発明の第 4発明では、 第 1面の 縮小像を第 2面上に形成する投影光学系において、
通過する光線の光軸に対する角度の最大値が 20度を超える光透過部材のうち の少なくとも 1つの光透過部材は、 波長が 200 nm以下の光を実質的に透過さ せる特性を有し、 結晶軸 [100] または該結晶軸 [100] と光学的に等価な 結晶軸と光軸とがほぼ一致するように形成されていることを特徴とする投影光学 系を提供する。
また、 上述の第 1の目的を達成するために、 本発明の第 5発明では、 第 1面の 縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 0 0] または該結晶軸 [100] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 1群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 0 0] または該結晶軸 [100] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 2群の光透過部材とを備え、
前記第 1群の光透過部材と前記第 2群の光透過部材とは、 光軸を中心としてほ ぼ 45° だけ相対的に回転した位置関係を有し、
前記第 1群の光透過部材および前記第 2群の光透過部材の双方が、 前記第 2面 側の瞳位置と前記第 2面との間の光路中に配置されていることを特徴とする投影 光学系を提供する。
また、 上述の第 1の目的を達成するために、 本発明の第 6発明では、 第 1面の 縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 0 0] または該結晶軸 [100] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 1群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 0 0] または該結晶軸 [100] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 2群の光透過部材とを備え、
前記第 1群の光透過部材と前記第 2群の光透過部材とは、 光軸を中心としてほ ぼ 45° だけ相対的に回転した位置関係を有し、
前記第 1群の光透過部材および前記第 2群の光透過部材の双方において、 通過 する光線の光軸に対する角度の最大値が 20度を超えていることを特徴とする投 影光学系を提供する。
なお、 本発明の第 5及び第 6発明において、 第 1群の光透過部材と第 2群の光 透過部材とが光軸を中心としてほぼ 45° だけ相対的に回転した位置関係を有す るとは、 第 1群の光透過部材および第 2群の光透過部材における光軸とは異なる 方向に向けられた所定の結晶軸 (たとえば結晶軸 [0 10]、 [001]、 [0 1 - 1]、 または [01 1]) 同士の光軸を中心とした相対的な角度がほぼ 45° であ ることを意味する。 なお、 結晶軸 [100] を光軸とする場合には、 光軸を中心 とした複屈折の影響の回転非対称性が 90° の周期で現れるため、 第 5及び第 6 発明において、 光軸を中心としてほぼ 45° だけ相対的に回転した位置関係を有 することは、 光軸を中心としてほぼ 45 ° + (n X 900 ) だけ相対的に回転し た位置関係を有することと同じ意味である (nは整数である)。
第 5発明および第 6発明の好ましい態様によれば、 前記第 1群の光透過部材ぉ よび前記第 2群の光透過部材のうちの少なくとも一方は、 少なくとも 1つの非球 面を有する。 また、 前記第 1群の光透過部材の光軸に沿った厚さ (中心厚) の総 計を T 1とし、 前記第 2群の光透過部材の光軸に沿った厚さの総計を T 2とし、 前記投影光学系を構成するすべての光透過部材の光軸に沿った厚さの総計を T A とするとき、 I T 1—T 2 I ZTA<0. 025の条件を満足することが好まし い。 さらに、 前記第 1群の光透過部材と前記第 2群の光透過部材とは、 ォプティ カルコン夕クトまたは接着により 1つの光学部品として形成されていることが好 ましい。
また、 上述の第 1の目的を達成するために、 本発明の第 7発明では、 複数のレ ンズと凹面反射鏡と該凹面反射鏡の近傍に配置された負レンズとを含み、 第 1面 の縮小像を第 2面上に形成する投影光学系において、
前記負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [100] または該結晶軸 [100] と光学的に等価な結晶軸と光軸とが ほぼ一致するように形成されていることを特徴とする投影光学系を提供する。 また、 上述の第 1の目的を達成するために、 本発明の第 8発明では、 複数のレ ンズと凹面反射鏡と該凹面反射鏡の近傍に配置された第 1負レンズおよび第 2負 レンズとを含み、 第 1面の縮小像を第 2面上に形成する投影光学系において、 前記第 1負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を 有し、 結晶軸 [100] または該結晶軸 [100] と光学的に等価な結晶軸と光 軸とがほぼ一致するように形成され、
前記第 2負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を 有し、 結晶軸 [100] または該結晶軸 [100] と光学的に等価な結晶軸と光 軸とがほぼ一致するように形成され、
前記第 1負レンズと前記第 2負レンズとは、 光軸を中心としてほぼ 45° だけ 相対的に回転した位置関係を有することを特徴とする投影光学系を提供する。 なお、 本発明の第 8発明において、 第 1負レンズと第 2負レンズとが光軸を中 心としてほぼ 45° だけ相対的に回転した位置関係を有するとは、 第 1負レンズ および第 2負レンズにおける光軸とは異なる方向に向けられた所定の結晶軸 (た とえば結晶軸 [0 10]、 [001]、 [0 1— 1]、 または [01 1]) 同士の光軸 を中心とした相対的な角度がほぼ 45 ° であることを意味する。 なお、 結晶軸 [100] を光軸とする場合には、 光軸を中心とした複屈折の影響の回転非対称 性が 90° の周期で現れるため、 第 8発明において、 光軸を中心としてほぼ 4 5° だけ相対的に回転した位置関係を有することは、 光軸を中心としてほぼ 4 5° + (nX 90° ) だけ相対的に回転した位置関係を有することと同じ意味で ある (nは整数である)。
また、 上述の第 1の目的を達成するために、 本発明の第 9発明では、 第 1面の 縮小像を第 2面上に形成する投影光学系において、
前記第 2面側の瞳位置と前記第 2面との間の光路中に配置され、 波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [1 10] または該結晶 軸 [1 10] と光学的に等価な結晶軸と光軸とがほぼ一致するように形成された 少なくとも 1つの光透過部材を備えていることを特徴とする投影光学系を提供す る。
また、 上述の第 1の目的を達成するために、 本発明の第 10発明では、 第 1面 の縮小像を第 2面上に形成する投影光学系において、
通過する光線の光軸に対する角度の最大値が 20度を超える光透過部材のうち の少なくとも 1つの光透過部材は、 波長が 200 nm以下の光を実質的に透過さ せる特性を有し、 結晶軸 [1 10] または該結晶軸 [1 10] と光学的に等価な 結晶軸と光軸とがほぼ一致するように形成されていることを特徴とする投影光学 系を提供する。
また、 上述の第 1の目的を達成するために、 本発明の第 1 1発明では、 第 1面 の縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 0] または該結晶軸 [1 10] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 3群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 0] または該結晶軸 [1 10] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 4群の光透過部材とを備え、
前記第 3群の光透過部材と前記第 4群の光透過部材とは、 光軸を中心としてほ ぼ 90° だけ相対的に回転した位置関係を有し、
前記第 3群の光透過部材および前記第 4群の光透過部材の双方が、 前記第 2面 側の瞳位置と前記第 2面との間の光路中に配置されていることを特徴とする投影 光学系を提供する。
また、 上述の第 1の目的を達成するために、 本発明の第 12発明では、 第 1面 の縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 0] または該結晶軸 [1 10] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 3群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 0] または該結晶軸 [1 10] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 4群の光透過部材とを備え、
前記第 3群の光透過部材と前記第 4群の光透過部材とは、 光軸を中心としてほ ぼ 90° だけ相対的に回転した位置関係を有し、
前記第 3群の光透過部材および前記第 4群の光透過部材の双方において、 通過 する光線の光軸に対する角度の最大値が 20度を超えていることを特徴とする投 影光学系を提供する。
なお、 本発明の第 1 1及び第 12発明において、 第 3群の光透過部材と第 4群 の光透過部材とが光軸を中心としてほぼ 90° だけ相対的に回転した位置関係を 有するとは、 第 3群の光透過部材および第 4群の光透過部材における光軸とは異 なる方向に向けられた所定の結晶軸 (たとえば結晶軸 [00 1]、 [一 1 1 1 ]、 [- 1 10], または [1— 1 1]) 同士の光軸を中心とした相対的な角度がほぼ 90° であることを意味する。 なお、 結晶軸 [1 10] を光軸とする場合には、 光軸を中心とした複屈折の影響の回転非対称性が 180° の周期で現れるため、 第 1 1及び第 12発明において、 光軸を中心としてほぼ 90° だけ相対的に回転 した位置関係を有することは、 光軸を中心としてほぼ 90° + (nX 180° ) だけ相対的に回転した位置関係を有することと同じ意味である (nは整数であ る)。
第 1 1発明および第 12発明の好ましい態様によれば、 前記第 3群の光透過部 材および前記第 4群の光透過部材のうちの少なくとも一方は、 少なくとも 1つの 非球面を有する。 また、 前記第 3群の光透過部材の光軸に沿った厚さ (中心厚) の総計を T 3とし、 前記第 4群の光透過部材の光軸に沿った厚さの総計を T 4と し、 前記投影光学系を構成するすべての光透過部材の光軸に沿った厚さの総計を TAとするとき、 I T 3— T4 I /TA<0. 025の条件を満足することが好 ましい。 さらに、 前記第 3群の光透過部材と前記第 4群の光透過部材とは、 ォプ ティカルコンタクトまたは接着により 1つの光学部品として形成されていること が好ましい。
また、 上述の第 1の目的を達成するために、 本発明の第 13発明では、 複数の レンズと凹面反射鏡と該凹面反射鏡の近傍に配置された負レンズとを含み、 第 1 面の縮小像を第 2面上に形成する投影光学系において、
前記負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [1 10] または該結晶軸 [1 10] と光学的に等価な結晶軸と光軸とが ほぼ一致するように形成されていることを特徴とする投影光学系を提供する。 また、 上述の第 1の目的を達成するために、 本発明の第 14発明では、 複数の レンズと凹面反射鏡と該凹面反射鏡の近傍に配置された第 1負レンズおよび第 2 負レンズとを含み、 第 1面の縮小像を第 2面上に形成する投影光学系において、 前記第 1負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を 有し、 結晶軸 [1 10] または該結晶軸 [1 10] と光学的に等価な結晶軸と光 軸とがほぼ一致するように形成され、
前記第 2負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を 有し、 結晶軸 [1 10] または該結晶軸 [1 10] と光学的に等価な結晶軸と光 軸とがほぼ一致するように形成され、
前記第 1負レンズと前記第 2負レンズとは、 光軸を中心としてほぼ 90° だけ 相対的に回転した位置関係を有することを特徴とする投影光学系を提供する。 なお、 本発明の第 14発明において、 第 1負レンズと第 2負レンズとが光軸を 中心としてほぼ 90° だけ相対的に回転した位置関係を有するとは、 第 1負レン ズおよび第 2負レンズにおける光軸とは異なる方向に向けられた所定の結晶軸 (たとえば結晶軸 [001]、 [— 1 1 1]、 [— 1 10]、 または [1— 1 1]) 同 士の光軸を中心とした相対的な角度がほぼ 90 ° であることを意味する。 なお、 結晶軸 [1 10] を光軸とする場合には、 光軸を中心とした複屈折の影響の回転 非対称性が 180° の周期で現れるため、 第 14発明において、 光軸を中心とし てほぼ 90° だけ相対的に回転した位置関係を有することは、 光軸を中心として ほぼ 90° + (nX 180° ) だけ相対的に回転した位置関係を有することと同 じ意味である (nは整数である)。
また、 上述の第 1の目的を達成するために、 本発明の第 1 5発明では、 第 1面 の縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 5群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 6群の光透過部材とを備え、
前記第 5群の光透過部材と前記第 6群の光透過部材とは、 光軸を中心としてほ ぼ 60° だけ相対的に回転した位置関係を有し、
前記第 3群の光透過部材および前記第 4群の光透過部材の双方が、 前記第 2面 側の瞳位置と前記第 2面との間の光路中に配置されていることを特徴とする投影 光学系を提供する。
また、 上述の第 1の目的を達成するために、 本発明の第 16発明では、 第 1面 の縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 5群の光透過部材と、 波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 6群の光透過部材とを備え、
前記第 5群の光透過部材と前記第 6群の光透過部材とは、 光軸を中心としてほ ぼ 60° だけ相対的に回転した位置関係を有し、
前記第 5群の光透過部材および前記第 6群の光透過部材の双方において、 通過 する光線の光軸に対する角度の最大値が 20度を超えていることを特徴とする投 影光学系を提供する。
なお、 本発明の第 15及び第 16発明において、 第 5群の光透過部材と第 6群 の光透過部材とが光軸を中心としてほぼ 60° だけ相対的に回転した位置関係を 有するとは、 第 5群の光透過部材および第 6群の光透過部材における光軸とは異 なる方向に向けられた所定の結晶軸 (たとえば結晶軸 [一 1 1 1]、 [1 1 - 1], または [1— 1 1]) 同士の光軸を中心とした相対的な角度がほぼ 60 ° である ことを意味する。 なお、 結晶軸 [1 1 1] を光軸とする場合には、 光軸を中心と した複屈折の影響の回転非対称性が 120° の周期で現れるため、 第 1 1及び第 12発明において、 光軸を中心としてほぼ 60° だけ相対的に回転した位置関係 を有することは、 光軸を中心としてほぼ 60° + (nX 120° ) だけ相対的に 回転した位置関係を有することと同じ意味である (nは整数である)。
第 15発明および第 16発明の好ましい態様によれば、 前記第 5群の光透過部 材および前記第 6群の光透過部材のうちの少なくとも一方は、 少なくとも 1つの 非球面を有する。 また、 前記第 5群の光透過部材の光軸に沿った厚さ (中心厚) の総計を T 5とし、 前記第 6群の光透過部材の光軸に沿った厚さの総計を T 6と し、 前記投影光学系を構成するすべての光透過部材の光軸に沿った厚さの総計を TAとするとき、 I T 5— T 6 I ZTA<0. 025の条件を満足することが好 ましい。 さらに、 前記第 5群の光透過部材と前記第 6群の光透過部材とは、 ォプ ティカルコン夕クトまたは接着により 1つの光学部品として形成されていること が好ましい。
また、 上述の第 1の目的を達成するために、 本発明の第 17発明では、 複数の レンズと凹面反射鏡と該凹面反射鏡の近傍に配置された第 1負レンズおよび第 2 負レンズとを含み、 第 1面の縮小像を第 2面上に形成する投影光学系において、 前記第 1負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を 有し、 結晶軸 [1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光 軸とがほぼ一致するように形成され、
前記第 2負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を 有し、 結晶軸 [1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光 軸とがほぼ一致するように形成され、
前記第 1負レンズと前記第 2負レンズとは、 光軸を中心としてほぼ 60° だけ 相対的に回転した位置関係を有することを特徴とする投影光学系を提供する。 なお、 本発明の第 17発明において、 第 1負レンズと第 2負レンズとが光軸を 中心としてほぼ 60° だけ相対的に回転した位置関係を有するとは、 第 1負レン ズおよび第 2負レンズにおける光軸とは異なる方向に向けられた所定の結晶軸 (たとえば結晶軸 [— 1 1 1]、 [1 1— 1]、 または [1— 1 1]) 同士の光軸を 中心とした相対的な角度がほぼ 60° であることを意味する。 なお、 結晶軸 [1 1 1] を光軸とする場合には、 光軸を中心とした複屈折の影響の回転非対称性が 1 20° の周期で現れるため、 第 1 7発明において、 光軸を中心としてほぼ 6 0 ° だけ相対的に回転した位置関係を有することは、 光軸を中心としてほぼ 6 0° + (nx i 20° ) だけ相対的に回転した位置関係を有することと同じ意味 である (nは整数である)。
また、 上述の第 1の目的を達成するために、 本発明の第 18発明では、 第 1面 の縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有する結晶で形成され た少なくとも 1つの光透過部材を備え、
前記光透過部材の表面には、 第 1の偏光成分の光と該第 1の偏光成分の光とは 異なる第 2の偏光成分の光とが前記投影光学系を通過する際に、 前記第 1および 第 2の偏光成分の光の間で発生する位相差を低減させる膜が形成されることを特 徴とする投影光学系を提供する。 第 1 8発明の好ましい態様によれば、 前記膜は、 前記第 1および第 2の偏光成 分の光が前記光透過部材を通過する際に発生する、 前記第 1および第 2の偏光成 分の光の間の位相差を低減することが好ましい。
また、 第 1 8発明では、 前記投影光学系は、 波長が 2 0 0 n m以下の光を実質 的に透過させる特性を有する結晶で形成された少なくとも 2つの光透過部材を備 えることが好ましく、 前記少なくとも 2つの光透過性部材は、 前記投影光学系を 通過する第 1および第 2の偏光成分の光の間の位相差を低減させるように、 それ らの結晶軸方位が定められることが好ましく、 前記膜は、 前記少なくとも 2つの 光透過性部材により低減された前記投影光学系を通過する第 1および第 2の偏光 成分の光の間の位相差をさらに低減させることが好ましい。
また、 第 1 8発明において、 前記膜は、 反射防止膜を有していることが好まし い。
また、 第 1 8発明では、 前記光透過部材の表面には、 前記結晶で形成された結 晶膜が形成されることが好ましく、 前記光透過部材の結晶方位と前記結晶膜の結 晶方位とが実質的に異なることが好ましい。
上述の第 1の目的を達成するために、 本発明の第 1 9発明では、 第 1面の縮小 像を第 2面上に形成する投影光学系において、
波長が 2 0 0 n m以下の光を実質的に透過させる特性を有する結晶で形成され た光透過部材を備え、
前記光透過部材の表面には、 前記結晶で形成された結晶膜が形成され、 前記光透過部材の結晶方位と前記結晶膜の結晶方位とが実質的に異なることを 特徴とする投影光学系を提供する。
第 1 9発明の好ましい態様によれば、 前記光透過部材の光軸に沿った結晶方位 と前記結晶膜の前記光軸に沿った結晶方位とが実質的に異なる。 あるいは、 前記 光透過部材の光軸に沿った結晶方位と前記結晶膜の前記光軸に沿った結晶方位と がほぼ一致し、 前記光透過部材と前記結晶膜とは、 前記光軸を中心として所定の 角度だけ相対的に回転した位置関係を有することが好ましい。
ここで、 光透過部材と結晶膜とが光軸を中心として所定の角度だけ相対的に回 転した位置関係を有するとは、 光透過部材および結晶膜における光軸とは異なる 方向に向けられた特定の結晶軸同士の光軸を中心とした相対的な角度が所定の角 度であることを意味する。
上述の第 1の目的を達成するために、 本発明の第 2 0発明では、 第 1面の縮小 像を第 2面上に形成する投影光学系において、
波長が 2 0 0 n m以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 0 0 ] または該結晶軸 [ 1 0 0 ] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 1群の光透過部材と、
波長が 2 0 0 n m以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 0 ] または該結晶軸 [ 1 1 0 ] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 3群の光透過部材と、
波長が 2 0 0 n m以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 1 ] または該結晶軸 [ 1 1 1 ] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 5群の光透過部材とを備えていることを特徴とする投影光学 系を提供する。
第 3発明〜第 2 0発明の好ましい態様によれば、 前記第 1面および前記第 2面 を走査方向に沿って移動させて前記第 1面の像を前記第 2面上に走査露光する露 光装置に用いられ、 非走査時にはスリツト状または円弧状の露光領域を前記投影 光学系の光軸を含まない位置に形成し、 前記第 1面の第 1中間像を形成するため の屈折型の第 1結像光学系と、 少なくとも 1つの負レンズと凹面反射鏡とを有し、 前記第 1中間像からの光束に基づいて前記第 1中間像とほぼ等倍の第 2中間像を 前記第 1中間像の形成位置の近傍に形成するための第 2結像光学系と、 前記第 2 中間像からの光束に基づいて前記第 2中間像の縮小像を前記第 2面上に形成する ための屈折型の第 3結像光学系と、 前記第 1結像光学系から前記第 2結像光学系 に至る光路中に配置された第 1光路折り曲げ鏡と、 前記第 2結像光学系から前記 第 3結像光学系に至る光路中に配置された第 2光路折り曲げ鏡とを備えている。 なお、 上述の態様において、 前記第 1光路折り曲げ鏡の有効領域および前記第 2光路折り曲げ鏡の有効領域は、 全体に亘つて平面状に形成された反射面を有す ることが好ましく、 前記第 1光路折り曲げ鏡の有効領域と前記第 2光路折り曲げ 鏡の有効領域とは空間的な重なりを有することなく、 前記第 1面からの光束をす ベて前記第 2面へ導くように配置されていることが好ましい。 また、 上述の態様 において、 前記第 1結像光学系および前記第 3結像光学系を構成するすべてのレ ンズが単一の直線状の光軸に沿って配置されていることが好ましい。 さらに、 第
3発明〜第 2 0発明において、 前記投影光学系は、 前記第 1面と前記第 2面との 間の光路中に配置されて凹面反射鏡を含む反射屈折型の結像光学系と、 前記反射 屈折型の結像光学系と前記第 2面との間の光路中に配置された屈折型の結像光学 系と、 前記第 1面と前記反射屈折型の結像光学系との間の光路中に配置された第
1光路折り曲げ鏡と、 前記反射屈折型の結像光学系と前記屈折型の結像光学系と の間の光路中に配置された第 2光路折り曲げ鏡とを備えていることが好ましい。 本発明の第 2 1発明では、 前記第 1面に設定されたマスクを照明するための照 明系と、
前記マスクに形成されたパターンの像を前記第 2面に設定された感光性基板上 に形成するための第 1発明〜第 2 0発明の投影光学系とを備えていることを特徴 とする露光装置を提供する。
本発明の第 2 2発明では、 パターンが形成されたマスクを照明し、 照明された 前記パターンの像を第 1発明〜第 2 0発明の投影光学系を介して感光性基板上に 形成することを特徴とする露光方法を提供する。 図面の簡単な説明
第 1図は、 蛍石の結晶軸方位について説明する図である。
第 2 A図〜第 2 C図は、 Burne t t らの手法を説明する図であって、 光線の入射 角に対する複屈折率の分布を示している。
第 3 A図〜第 3 C図は、 本発明の第 1の手法を説明する図であって、 光線の入 射角に対する複屈折率の分布を示している。
第 4 A図〜第 4 C図は、 本発明の第 3の手法を説明する図であって、 光線の入 射角に対する複屈折率の分布を示している。 第 5図は、 本発明の実施形態にかかる光学系を備えた露光装置の構成を概略的 に示す図である。
第 6図は、 ウェハ上に形成される矩形状の露光領域 (すなわち実効露光領域) と基準光軸との位置関係を示す図である。
第 7図は、 第 1実施例にかかる投影光学系 P Lのレンズ構成を示す図である。 第 8図は、 第 1実施例における横収差を示す図である。
第 9図は、 第 2実施例にかかる投影光学系 PLのレンズ構成を示す図である。 第 10図は、 第 2実施例における横収差を示す図である。
第 1 1図は、 第 3実施例にかかる投影光学系 PLのレンズ構成を示す図である。 第 12図は、 第 3実施例にかかる投影光学系 PLによるウェハ上に形成される 矩形状の露光領域 (すなわち実効露光領域) を示す図である。
第 13図は、 第 3実施例にかかる薄膜 REの透過率の入射角度依存性を示す図 である。
第 14図は、 第 3実施例にかかる薄膜 REの位相差 (偏光収差) の入射角度依 存性を示す図である。
第 1 5図は、 第 3実施例にかかる投影光学系の波面収差を示す図である。
第 16図は、 マイクロデバイスとしての半導体デバイスを得る際の手法のフロ 一チヤ一卜である。
第 1 7図は、 マイクロデバイスとしての液晶表示素子を得る際の手法のフロー チヤ一卜である。 発明を実施するための最良の形態
まず、 複屈折の影響を実質的に回避するための本発明の基本的手法について説 明する。 第 1図は、 蛍石の結晶軸方位について説明する図である。 第 1図を参照 すると、 蛍石の結晶軸は、 立方晶系の XYZ座標系に基づいて規定される。 すな わち、 +X軸に沿って結晶軸 [100] が、 +Y軸に沿って結晶軸 [0 10] が、 + Z軸に沿って結晶軸 [001] がそれぞれ規定される。
また、 XZ平面において結晶軸 [ 100] および結晶軸 [001] と 45° を なす方向に結晶軸 [101] が、 XY平面において結晶軸 [100] および結晶 軸 [0 10] と 45° をなす方向に結晶軸 [1 10] が、 YZ平面において結晶 軸 [010] および結晶軸 [00 1] と 45 ° をなす方向に結晶軸 [ 01 1 ] が それぞれ規定される。 さらに、 +X軸、 +Y軸および +Z軸に対して等しい鋭角 をなす方向に結晶軸 [1 1 1] が規定される。
なお、 第 1図では、 +X軸、 +Y軸および + Z軸で規定される空間における結 晶軸のみを図示しているが、 他の空間においても同様に結晶軸が規定される。 前 述したように、 蛍石では、 第 1図中実線で示す結晶軸 [1 1 1] 方向、 およびこ れと等価な不図示の結晶軸 [— 1 1 1], [1 - 1 1], [1 1 - 1] 方向では、 複 屈折がほぼ零 (最小) である。
同様に、 第 1図中実線で示す結晶軸 [100], [0 10], [001] 方向にお いても、 複屈折がほぼ零 (最小) である。 一方、 第 1図中破線で示す結晶軸 [1 10], [1 01], [01 1], およびこれと等価な不図示の結晶軸 [一 1 1 0], [ - 101], [01— 1] 方向では、 複屈折が最大である。
以下、 本発明の手法を説明する前に、 前述の Burnett らの手法の補正効果につ いて検証する。 第 2 A図〜第 2 C図は、 Burnett らの手法を説明する図であって、 光線の入射角に対する複屈折率の分布を示している。 第 2 A図〜第 2 C図では、 図中破線で示す 5つの同心円が 1目盛り 10° を表している。 したがって、 最も 内側の円が光軸に対して入射角 10° の領域を、 最も外側の円が光軸に対して入 射角 50° の領域を表している。
また、 黒丸は比較的大きな屈折率を有する複屈折のない領域を、 白丸は比較的 小さな屈折率を有する複屈折のない領域を、 ハッチングを施した小さな円 (第 4 C図を参照) は中間的な屈折率を有する複屈折のない領域を表している。 一方、 太い円および長い両矢印は複屈折のある領域における比較的大きな屈折率の方向 を、 細い円および短い両矢印は複屈折のある領域における比較的小さな屈折率の 方向を表している。 以降の第 3 A図〜第 3 C図および第 4 A図〜第 4 Cにおいて も、 上述の表記は同様である。
前述したように、 Burnett らの手法では、 一対の蛍石レンズの光軸と結晶軸 [1 1 1] とを一致させ、 且つ光軸を中心として一対の蛍石レンズを 60° 相対 的に回転させる。 したがって、 一方の蛍石レンズにおける複屈折率の分布は第 2 A図に示すようになり、 他方の蛍石レンズにおける複屈折率の分布は第 2 B図に 示すようになる。 その結果、 一対の蛍石レンズ全体における複屈折率の分布は、 第 2 C図に示すようになる。
この場合、 第 2 A図および第 2 B図を参照すると、 光軸と一致している結晶軸
[1 1 1] に対応する領域は、 比較的小さな屈折率を有する複屈折のない領域と なる。 また、 結晶軸 [100], [010], [001] に対応する領域は、 比較的 大きな屈折率を有する複屈折のない領域となる。 さらに、 結晶軸 [1 10], [1 01], [01 1] に対応する領域は、 周方向の偏光に対する屈折率が比較的小さ く径方向の偏光に対する屈折率が比較的大きい複屈折領域となる。 このように、 個々のレンズでは、 光軸から 35. 26 ° (結晶軸 [ 1 1 1 ] と結晶軸 [ 1 1 0] とのなす角度) の領域において、 複屈折の影響を最大に受けることがわかる。 一方、 第 2 C図を参照すると、 一対の蛍石レンズを 60° 相対的に回転させる ことにより、 一対の蛍石レンズ全体では、 複屈折が最大である結晶軸 [1 10],
[101], [01 1] の影響が薄められることがわかる。 しかしながら、 光軸か ら 35. 26 ° の領域すなわち光軸から比較的近い領域において、 径方向の偏光 に対する屈折率よりも周方向の偏光に対する屈折率が小さい複屈折領域が残るこ とになる。 その結果、 Burnett らの手法では、 複屈折の影響をある程度受けるこ とになる。
本発明の第 1の手法では、 第 1群のレンズ素子 (光透過部材) の光軸を結晶軸 [100] (または該結晶軸 [ 100] と光学的に等価な結晶軸) と一致させ、 第 2群のレンズ素子の光軸を結晶軸 [100] (または該結晶軸 [100] と光 学的に等価な結晶軸) と一致させ、 第 1群のレンズ素子と第 2群のレンズ素子と を光軸を中心として 45° だけ相対的に回転させる。 ここで、 結晶軸 [100] と光学的に等価な結晶軸とは、 結晶軸 [010], [001] である。
第 3 A図〜第 3 C図は、 本発明の第 1の手法を説明する図であって、 光線の入 射角 (光線と光軸とのなす角度) に対する複屈折率の分布を示している。 第 1の 手法では、 第 1群のレンズ素子における複屈折率の分布は第 3 A図に示すように なり、 第 2群のレンズ素子における複屈折率の分布は第 3 B図に示すようになる。 その結果、 第 1群のレンズ素子と第 2群のレンズ素子との全体における複屈折率 の分布は、 第 3 C図に示すようになる。
第 3 A図および第 3 B図を参照すると、 第 1の手法では、 光軸と一致している 結晶軸 [100] に対応する領域は、 比較的大きな屈折率を有する複屈折のない 領域となる。 また、 結晶軸 [1 1 1], [1 - 1 1], [— 1 1— 1], [1 1— 1] に対応する領域は、 比較的小さな屈折率を有する複屈折のない領域となる。 さら に、 結晶軸 [10 1], [10- 1], [1 10], [1 - 10] に対応する領域は、 周方向の偏光に対する屈折率が比較的大きく径方向の偏光に対する屈折率が比較 的小さい複屈折領域となる。 このように、 各群のレンズ素子では、 光軸から 4 5° (結晶軸 [100] と結晶軸 [10 1] とのなす角度) の領域において、 複 屈折率の影響を最大に受けることがわかる。
一方、 第 3 C図を参照すると、 第 1群のレンズ素子と第 2群のレンズ素子とを 光軸を中心として 45° だけ相対的に回転させることにより、 第 1群のレンズ素 子と第 2群のレンズ素子との全体では、 複屈折が最大である結晶軸 [ 10 1],
[10 - 1], [1 10], [1 - 10] の影響がかなり薄められ、 光軸から 45° の領域すなわち光軸から離れた領域において径方向の偏光に対する屈折率よりも 周方向の偏光に対する屈折率が大きい複屈折領域が残ることになる。 この場合、 一般の投影光学系において各レンズ素子における光軸と光束との最大角度は 3 5° 〜40° 程度である。 したがって、 第 1の手法を採用することにより、 結晶 軸 [1 01], [10- 1], [1 10], [1— 10] の複屈折の影響を実質的に受 けることなく、 良好な結像性能を確保することができる。
なお、 本発明の第 1の手法において、 第 1群のレンズ素子と第 2群のレンズ素 子とを光軸を中心としてほぼ 45 ° だけ相対的に回転させるとは、 第 1群のレン ズ素子および第 2群のレンズ素子における光軸とは異なる方向に向けられる所定 の結晶軸 (たとえば結晶軸 [0 1 0]、 [00 1]、 [0 1 1]、 または [0 1— 1]) 同士の光軸を中心とした相対的な角度がほぼ 45° であることを意味する c たとえば第 1群のレンズ素子における結晶軸 [0 10] と、 第 2群のレンズ素子 における結晶軸 [010] との光軸を中心とした相対的な角度が 45° である。 また、 第 3 A図および第 3B図からも明らかな通り、 結晶軸 [100] を光軸 とする場合には、 光軸を中心とした複屈折の影響の回転非対称性が 90° の周期 で現れる。 したがって、 第 1の手法において、 光軸を中心としてほぼ 45° だけ 相対的に回転させるということは、 光軸を中心としてほぼ 4 5 ° + (n X 9 0° ) だけ相対的に回転させること、 すなわち 45° 、 1 35° 、 225° 、 ま たは 315° ... だけ相対的に回転させることと同じ意味である (ここで、 nは 整数である)。
なお、 上述の説明において、 第 1群のレンズ素子および第 2群のレンズ素子は、 それぞれ 1つまたは複数のレンズ素子を有する。 そして、 第 1群のレンズ素子ま たは第 2群のレンズ素子が複数のレンズ素子を含む場合、 複数のレンズ素子は必 ずしも連続するレンズ素子ではない。 レンズ素子の群の概念は、 以降の第 3群〜 第 6群のレンズ素子についても同様である。 第 1の手法では、 第 1群のレンズ素 子の光軸に沿った厚さの総計 T 1と第 2群のレンズ素子の光軸に沿った厚さの総 計 T 2とがほぼ等しいことが好ましい。
また、 第 2 A図および第 2 B図を参照すると、 レンズ素子の光軸と結晶軸 [1 1 1] とを一致させているので、 複屈折が最大の結晶軸 [ 1 1 0], [10 1], [01 1] に対応する領域が 120° ピッチで存在し、 瞳面内で 30の分布を有 する複屈折の影響すなわち像面 (ウェハ面) においてコマ収差が発生するような 影響が現れるものと考えられる。 これに対して、 第 3 A図および第 3 B図を参照 すると、 レンズ素子の光軸と結晶軸 [100] とを一致させているので、 複屈折 が最大の結晶軸 [101], [10— 1], [1 10], [1 - 10] に対応する領域 が 90° ピッチで存在し、 瞳面内で 4 Θの分布を有する複屈折の影響が現れる。 この場合、 ウェハに投影すべきパターンにおいて縦横パターンが支配的である ため、 40の分布であれば縦横パターンに対して非点収差が発生するような影響 が現れることなく、 像の崩れも顕著にならない。 したがって、 少なくとも 1つの レンズ素子の光軸と結晶軸 [ 100] (または該結晶軸 [ 100] と光学的に等 価な結晶軸) と一致させる第 2の手法を採用することにより、 複屈折の影響を良 好に抑えて、 良好な結像性能を確保することができる。
また、 本発明の第 3の手法では、 第 3群のレンズ素子の光軸を結晶軸 [ 1 1 0] (または該結晶軸 [1 10] と光学的に等価な結晶軸) と一致させ、 第 4群 のレンズ素子の光軸を結晶軸 [ 1 10] (または該結晶軸 [1 10] と光学的に 等価な結晶軸) と一致させ、 第 3群のレンズ素子と第 4群のレンズ素子とを光軸 を中心として 90° だけ相対的に回転させる。 ここで、 結晶軸 [1 10] と光学 的に等価な結晶軸とは、 結晶軸 [— 1 10], [101], [ - 101], [01 1], [01 - 1] である。
第 4A図〜第 4C図は、 本発明の第 3の手法を説明する図であって、 光線の入 射角に対する複屈折率の分布を示している。 第 3の手法では、 第 3群のレンズ素 子における複屈折率の分布は第 4 A図に示すようになり、 第 4群のレンズ素子に おける複屈折率の分布は第 4 B図に示すようになる。 その結果、 第 3群のレンズ 素子と第 4群のレンズ素子との全体における複屈折率の分布は、 第 4 C図に示す ようになる。
第 4 A図および第 4 B図を参照すると、 第 3の手法では、 光軸と一致している 結晶軸 [1 10] に対応する領域は、 一方の方向の偏光に対する屈折率が比較的 大きく他方の方向 (一方の方向に直交する方向) の偏光に対する屈折率が比較的 小さい複屈折領域となる。 また、 結晶軸 [100], [0 10] に対応する領域は、 比較的大きな屈折率を有する複屈折のない領域となる。 さらに、 結晶軸 [ 1 1 1], [1 1 - 1] に対応する領域は、 比較的小さな屈折率を有する複屈折のない 領域となる。
一方、 第 4 C図を参照すると、 第 3群のレンズ素子と第 4群のレンズ素子とを 光軸を中心として 90° だけ相対的に回転させることにより、 第 3群のレンズ素 子と第 4群のレンズ素子との全体では、 複屈折が最大である結晶軸 [1 10] の 影響がほとんどなく、 光軸付近は中間的な屈折率を有する複屈折のない領域とな る。 すなわち、 第 3の手法を採用すると、 複屈折の影響を実質的に受けることな く、 良好な結像性能を確保することができる。 なお、 本発明の第 3の手法において、 第 3群のレンズ素子と第 4群のレンズ素 子とを光軸を中心としてほぼ 90° だけ相対的に回転させるとは、 第 3群のレン ズ素子および第 4群のレンズ素子における光軸とは異なる方向に向けられる所定 の結晶軸 (たとえば結晶軸 [001]、 [一 1 1 1]、 [— 1 10]、 または [ 1一 1 1]) 同士の光軸を中心とした相対的な角度がほぼ 90° であることを意味す る。 たとえば第 3群のレンズ素子における結晶軸 [00 1] と、 第 4群のレンズ 素子における結晶軸 [001] との光軸を中心とした相対的な角度が 90° であ る。
また、 第 4 A図および第 4 B図からも明らかな通り、 結晶軸 [1 10] を光軸 とする場合には、 光軸を中心とした複屈折の影響の回転非対称性が 180° の周 期で現れる。 したがって、 第 3の手法において、 光軸を中心としてほぼ 90° だ け相対的に回転させるということは、 光軸を中心としてほぼ 90 ° + (n X 18 0° ) だけ相対的に回転させること、 すなわち 90° 、 270 ° ... だけ相対的 に回転させることと同じ意味である (ここで、 nは整数である)。
第 3の手法においても、 第 3群のレンズ素子の光軸に沿った厚さの総計 T 3と 第 4群のレンズ素子の光軸に沿った厚さの総計 T 4とがほぼ等しいことが好まし い。 特に、 第 3の手法では、 複屈折領域が中央部 (光軸およびその近傍) にある ので、 中央部の薄い負レンズに適用することがさらに好ましい。
また、 前述の第 2の手法において説明した理由と同様の理由により、 少なくと も 1つのレンズ素子の光軸と結晶軸 [1 10] (または該結晶軸 [1 1 0] と光 学的に等価な結晶軸) と一致させる第 4の手法を採用することにより、 複屈折の 影響を良好に抑えて、 良好な結像性能を確保することができる。
また、 本発明の第 5の手法として、 前述の Burnett らの手法を採用する。 この 場合、 本発明の第 5の手法では、 第 5群のレンズ素子の光軸を結晶軸 [1 1 1] (または該結晶軸 [1 1 1] と光学的に等価な結晶軸) と一致させ、 第 6群のレ ンズ素子の光軸を結晶軸 [1 1 1] (または該結晶軸 [ 1 1 1] と光学的に等価 な結晶軸) と一致させ、 第 5群のレンズ素子と第 6群のレンズ素子とを光軸を中 心として 60° だけ相対的に回転させる。 前述したように、 第 5の手法を採用することにより、 複屈折の影響を良好に抑 えて、 良好な結像性能を確保することができる。 ここで、 結晶軸 [1 1 1] と光 学的に等価な結晶軸とは、 結晶軸 [— 1 1 1], [1— 1 1], [1 1 - 1] である。 なお、 第 5の手法において、 第 5群のレンズ素子と第 6群のレンズ素子とを光 軸を中心としてほぼ 60° だけ相対的に回転させるとは、 第 5群のレンズ素子お よび第 6群のレンズ素子における光軸とは異なる方向に向けられる所定の結晶軸 (たとえば結晶軸 [— 1 1 1]、 [1 1 - 1], または [1— 1 1]) 同士の光軸を 中心とした相対的な角度がほぼ 60° であることを意味する。 たとえば第 5群の レンズ素子における結晶軸 [— 1 1 1〗 と、 第 6群のレンズ素子における結晶軸 [- 1 1 1] との光軸を中心とした相対的な角度が 60° である。
また、 第 2A図および第 2B図からも明らかな通り、 結晶軸 [11 1] を光軸 とする場合には、 光軸を中心とした複屈折の影響の回転非対称性が 120° の周 期で現れる。 したがって、 第 5の手法において、 光軸を中心としてほぼ 60° だ け相対的に回転させるということは、 光軸を中心としてほぼ 60 ° + (nX 12 0° ) だけ相対的に回転させること、 すなわち 60° 、 180° 、 300° ..· だけ相対的に回転させることと同じ意味である (ここで、 nは整数である)。
第 5の手法では、 第 5群のレンズ素子の光軸に沿った厚さの総計 T 5と第 6群 のレンズ素子の光軸に沿った厚さの総計 T 6とがほぼ等しいことが好ましい。 さらに、 本発明の第 6の手法として、 第 1の手法と第 3の手法と第 5の手法と を部分的に組み合わせた手法を採用することができる。 すなわち、 第 6の手法で は、 第 1群のレンズ素子の光軸を結晶軸 [100] (または該結晶軸 [100] と光学的に等価な結晶軸) と一致させ、 第 3群のレンズ素子の光軸を結晶軸 [1 10] (または該結晶軸 [1 1 0] と光学的に等価な結晶軸) と一致させ、 第 5 群のレンズ素子の光軸を結晶軸 [1 1 1] (または該結晶軸 [ 1 1 1] と光学的 に等価な結晶軸) と一致させる。 この場合も、 複屈折の影響を良好に抑えて、 良 好な結像性能を確保することができる。
本発明では、 後述するように、 上述の 6つの手法から選択した 1つの手法を、 投影光学系の所定の光学部材に適用する。 また、 本発明では、 上述の 6つの手法 から選択した複数の手法を組み合わせて採用することもできる。 こうして、 本発 明では、 投影光学系に蛍石のような複屈折性の光学材料を用いているにもかかわ らず、 複屈折の影響を実質的に受けることなく良好な結像性能を有する投影光学 系を実現することができる。
なお、 結晶軸 [1 1 1] を光軸方向に設定したレンズにおいては、 その結晶構 造に起因して光軸を中心とした方位角 1 20° 毎にレンズ面の研磨誤差が現れや すい。 しかしながら、 上記第 5の手法のように第 5群のレンズ素子の光軸を結晶 軸 [ 1 1 1] (または該結晶軸 [ 1 1 1] と光学的に等価な結晶軸) と一致させ、 第 6群のレンズ素子の光軸を結晶軸 [ 1 1 1] (または該結晶軸 [1 1 1] と光 学的に等価な結晶軸) と一致させ、 第 5群のレンズ素子と第 6群のレンズ素子と を光軸を中心として 60° だけ相対的に回転させることによって、 光軸を中心と した方位角 1 20° 毎のレンズ面の研磨誤差に起因する収差を第 5群のレンズ素 子と第 6群のレンズ素子との間でほぼキャンセル (相殺) することが可能となる 利点がある。
ところで、 本発明では、 上述の第 1の手法、 第 3の手法および第 5の手法にお いて、 次の条件式 (3) 〜 (5) を満足することが望ましい。
I T 1 -T 2 I /ΎΑ<0. 025 (3)
I Τ 3 -Τ4 I /TA<0. 025 (4)
I Τ 5— Τ 6 I /ΤΑ<0. 02 5 (5)
ここで、 Τ 1~Τ6は、 前述したように、 第 1群〜第 6群のレンズ素子 (光透 過部材) の光軸に沿った厚さ (中心厚) の総計である。 また、 ΤΑは、 投影光学 系を構成するすべての光透過部材の光軸に沿った厚さの総計である。 条件式 (3) 〜 (5) を満足しないと、 複屈折の影響が大きくなり、 光学系の結像性能 が悪化するので好ましくない。
次に、 本発明の別の局面によれば、 複数のレンズと少なくとも 1つの凹面反射 鏡とを含み、 第 1面の縮小像を第 2面上に形成する反射屈折型の投影光学系にお いて、 フォトレジストからの脱ガスによるレンズの汚染を良好に回避する。 この 目的のため、 本発明では、 第 1面および第 2面を走査方向に沿って移動させて第 1面の像を第 2面上に走査露光する露光装置に用いられたときに、 非走査時には スリット状または円弧状の露光領域を第 2面上に形成し、 次の条件式 (1 ) を満 足する。
0 . 5 < (D w · Nw) Z E w< 1 . 4 ( 1 )
ここで、 Dwは、 第 2面側の作動距離 (最も第 2面側の光学面と第 2面との距 離) である。 また、 Nwは、 第 2面側の開口数 (像側開口数) である。 さらに、 E wは、 スリット状または円弧状の露光領域における非走査方向 (走査方向と直 交する方向) に沿った長さである。
条件式 (1 ) は、 像側作動距離と像側開口数と像視野との関係を規定している c 条件式 (1 ) の下限値を下回ると、 感光性基板上に塗布されるフォトレジストか らの脱ガスによる汚染が大きくなる。 一方、 条件式 (1 ) の上限値を上回ると、 色収差の補正が困難になるばかりでなく、 光学素子の大型化を避けることができ ず、 光学系の製造が困難になる。 なお、 本発明の効果をさらに良好に発揮するに は、 条件式 (1 ) の下限値を 0 . 5 3とし、 その上限値を 1 . 3とすることが好 ましい。
また、 上述の反射屈折型の投影光学系では、 スリット状または円弧状の露光領 域は、 投影光学系の光軸を含まないように設定され、 第 1面の第 1中間像を形成 するための屈折型の第 1結像光学系と、 少なくとも 1つの負レンズと凹面反射鏡 とを有し、 第 1中間像からの光束に基づいて第 1中間像とほぼ等倍の第 2中間像 を第 1中間像の形成位置の近傍に形成するための第 2結像光学系と、 第 2中間像 からの光束に基づいて第 2中間像の縮小像を第 2面上に形成するための屈折型の 第 3結像光学系と、 第 1結像光学系から第 2結像光学系に至る光路中に配置され た第 1光路折り曲げ鏡と、 第 2結像光学系から第 3結像光学系に至る光路中に配 置された第 2光路折り曲げ鏡とを備えている。
そして、 第 1光路折り曲げ鏡の有効領域および第 2光路折り曲げ鏡の有効領域 は、 全体に亘つて平面状に形成された反射面を有し、 第 1光路折り曲げ鏡の有効 領域と第 2光路折り曲げ鏡の有効領域とは空間的な重なりを有することなく、 第 1面からの光束をすベて第 2面へ導くように配置されていることが好ましい。 こ の構成により、 像側作動距離を十分確保しつつ、 蛍石等の単一種類の光透過部材 のみで色収差補正を良好に行うことができる。 さらに、 上述の反射屈折型の投影 光学系では、 第 1結像光学系および第 3結像光学系を構成するすべてのレンズが 単一の直線状の光軸に沿って配置されていることが好ましい。 この構成により、 組み立て調整が比較的容易になり、 精度良く光学系を製造することができる。 次に、 さらに別の局面によれば、 本発明の投影光学系は、 複数のレンズと凹面 反射鏡と該凹面反射鏡の近傍に配置された負レンズとを含み、 第 1面の縮小像を 第 2面上に形成する。 そして、 第 1面および第 2面を走査方向に沿って移動させ て第 1面の像を第 2面上に走査露光する露光装置に用いられたときに、 非走査時 には投影光学系の光軸を含まないように設定されたスリット状または円弧状の露 光領域を第 2面上に形成し、 第 2面側の開口数は 0 . 8 2以上である。
この場合、 凹面反射鏡および負レンズは重力の方向と実質的に異なる方向の光 軸に沿って配置され、 次の条件式 (2 ) を満足することが望ましい。 条件式 ( 2 ) において、 Sは凹面反射鏡の有効径 (直径) であり、 Rは凹面反射鏡の曲 率半径である。
1 . 0 < S / I R I < 1 . 8 ( 2 )
条件式 (2 ) を満足することにより、 凹面反射鏡の重力による変形を小さく抑 えて、 製造の難易度を現実的なものとすることができる。 すなわち、 条件式 ( 2 ) の下限値を下回ると、 重力による凹面反射鏡の変形が大きく、 組み立て調 整や加工の難易度が高くなるので好ましくない。 一方、 条件式 (2 ) の上限値を 上回ると、 大きな開口数を確保しつつ、 色収差補正と像面湾曲補正とを両立する ことができなくなるので好ましくない。 なお、 本発明の効果をさらに良好に発揮 するには、 条件式 (2 ) の下限値を 1 · 1とし、 その上限値を 1 . 6 5とするこ とが好ましい。
本発明の実施形態を、 添付図面に基づいて説明する。
第 5図は、 本発明の実施形態にかかる投影光学系を備えた露光装置の構成を概 略的に示す図である。 なお、 第 5図において、 ウェハの法線方向に Z軸を、 Z軸 に垂直な面内において第 5図の紙面に平行に Y軸を、 Z軸に垂直な面内において 第 5図の紙面に垂直に X軸を設定している。 本実施形態では、 反射屈折型の投影 光学系を備えた走査型の投影露光装置に本発明を適用している。
第 5図を参照すると、 本実施形態の露光装置は、 第 1面に配置されるレチクル (マスク) 5 0を照明するための照明装置 5 1を備えている。 照明装置 5 1は、 たとえば 1 5 7 n mの波長光を供給する F 2レーザ一を有する光源、 この光源か らの光により所定形状 (円形状、 輪帯状、 二極状、 四極状など) の二次光源を形 成するオプティカルインテグレー夕、 レチクル 5 0上での照射範囲を規定するた めの照明視野絞りなどを有し、 レチクル 5 0上の照明領域をほぼ均一な照度分布 のもとで照明する。
ここで、 照明装置 5 1内の照明光路は不活性ガスでパージされることが好まし く、 本実施形態では窒素でパージしている。 レチクル 5 0はレチクルステージ 5 3上に載置されており、 レチクル 5 0およびレチクルステージ 5 3はケ一シング 5 2によって外部の雰囲気と隔離されている。 このケ一シング 5 2の内部空間も 不活性ガスでパージされることが好ましく、 本実施形態では窒素でパージしてい る。
照明装置 5 1により照明されたレチクル 5 0からの光は、 蛍石結晶で形成され た複数のレンズ素子 (1〜7, 9, 1 0 , 1 3〜 1 8 )、 凹面反射鏡 1 1、 コヒ 一レンスファクタ (σ値) を制御するための開口絞り 2 0などを有する投影光学 系 4 0 0を介して、 感光性基板としてのウェハ 6 0へ導かれ、 ウェハ 6 0上の露 光領域内にレチクル 5 0のパターン像を形成する。 この投影光学系 4 0 0内の投 影光路は不活性ガスでパージされることが好ましく、 本実施形態ではヘリウムで パージしている。
ウェハ 6 0は、 その表面が投影光学系 4 0 0の像面としての第 2面に位置決め されるようにウェハステージ 6 1上に載置されており、 ウェハ 6 0およびウェハ ステージ 6 1はケ一シング 6 2によって外部の雰囲気と隔離されている。 このケ 一シング 6 2の内部空間も不活性ガスでパージされることが好ましく、 本実施形 態では窒素でパージしている。 そして、 レチクルステージ 5 3とウェハステージ 6 1とを投影光学系 4 0 0の倍率に応じた速度比で投影光学系 4 0 0に対して走 査方向である Y方向に沿って相対的に移動させつつ、 レチクル 5 0を照明するこ とにより、 ウェハ 6 0上の露光領域内にレチクル 5 0上のパターンが転写される。 第 6図は、 ゥェ八上に形成される矩形状の露光領域 (すなわち実効露光領域) と光軸との位置関係を示す図である。 第 6図に示すように、 本実施形態では、 光 軸 A X 1を中心とした半径 Βを有する円形状の領域 (イメージサークル) I F内 において、 光軸 A X 1から— Y方向に軸外し量 Aだけ離れた位置に所望の大きさ を有する矩形状の実効露光領域 E Rが設定されている。 ここで、 実効露光領域 E Rの X方向の長さは L X ( E w) であり、 その Y方向の長さは L Yである。
換言すると、 各実施形態では、 ウェハ 6 0において、 光軸 A X 1から— Y方向 に軸外し量 Aだけ離れた位置に所望の大きさを有する矩形状の実効露光領域 E R が設定され、 光軸 A X 1を中心として実効露光領域 E Rを包括するように円形状 のイメージサークル I Fの半径 Bが規定されている。 したがって、 図示を省略し たが、 これに対応して、 レチクル 5 0上では、 基準光軸 A Xから一 Y方向に軸外 し量 Aに対応する距離だけ離れた位置に実効露光領域 E Rに対応した大きさおよ び形状を有する矩形状の照明領域 (すなわち実効照明領域) が形成されているこ とになる。
再び第 5図を参照すると、 本実施形態の投影光学系 4 0 0は、 第 1面に配置さ れたレチクル 5 0のパターンの第 1中間像を形成するための屈折型の第 1結像光 学系 1 0 0と、 凹面反射鏡 1 1と 2つの負レンズ 9, 1 0とから構成されて第 1 中間像とほぼ等倍の第 2中間像 (第 1中間像のほぼ等倍像であってレチクルパタ ーンの 2次像) を形成するための第 2結像光学系 2 0 0と、 第 2中間像からの光 に基づいて第 2面に配置されたウェハ 6 0上にレチクルパターンの最終像 (レチ クルパターンの縮小像) を形成するための屈折型の第 3結像光学系 3 0 0とを備 えている。
なお、 第 1結像光学系 1 0 0と第 2結像光学系 2 0 0との間の光路中において 第 1中間像の形成位置の近傍には、 第 1結像光学系 1 0 0からの光を第 2結像光 学系 2 0 0に向かって偏向するための第 1光路折り曲げ鏡 8が配置されている。 また、 第 2結像光学系 2 0 0と第 3結像光学系 3 0 0との間の光路中において第 2中間像の形成位置の近傍には、 第 2結像光学系 2 0 0からの光を第 3結像光学 系 3 0 0に向かって偏向するための第 2光路折り曲げ鏡 1 2が配置されている。 第 1中間像および第 2中間像は、 第 1光路折り曲げ鏡 8と第 2結像光学系 2 0 0 との間の光路中および第 2結像光学系 2 0 0と第 2光路折り曲げ鏡 1 2との間の 光路中にそれぞれ形成される。
また、 第 1結像光学系 1 0 0および第 3結像光学系 G 3はともに、 直線状に延 びた単一の光軸すなわち基準光軸 A X 1を有する。 基準光軸 A X 1は、 重力方向 (すなわち鉛直方向) に沿って位置決めされている。 その結果、 レチクル 5 0お よびウェハ 6 0は、 重力方向と直交する面すなわち水平面に沿って互いに平行に 配置されている。 加えて、 第 1結像光学系 1 0 0を構成するすべてのレンズおよ び第 3結像光学系 3 0 0を構成するすべてのレンズも、 基準光軸 A X 1上におい て水平面に沿って配置されている。
一方、 第 2結像光学系 2 0 0も直線状に延びた光軸 A X 2を有し、 この光軸 A X 2は基準光軸 A X 1と直交するように設定されている。 さらに、 第 1光路折り 曲げ鏡 8および第 2光路折り曲げ鏡 1 2はともに平面状の反射面を有し、 2つの 反射面を有する 1つの光学部材 (1つの光路折り曲げ鏡 F M) として一体的に構 成されている。 この 2つの反射面の交線 (厳密にはその仮想延長面の交線) が第 1結像光学系 1 0 0および第 3結像光学系 3 0 0の光軸 A X 1および第 2結像光 学系 2 0 0の光軸 A X 2と一点で交わるように設定されている。
本実施形態では、 複数のレンズを含む屈折光学系である第 1結像光学系 1 0 0 および第 3結像光学系 3 0 0で生じる色収差および正値のペッツバール和を、 第 2結像光学系 2 0 0の凹面反射鏡 1 1および負レンズ 9, 1 0により補償する。 また、 第 2結像光学系 2 0 0がほぼ等倍の結像倍率を有する構成により、 第 1中 間像の近傍に第 2中間像を形成することが可能となる。 本実施形態では、 この 2 つの中間像の近傍において光路分離を行うことにより、 露光領域 (すなわち実効 露光領域) の光軸からの距離すなわち軸外し量を小さく設定することができる。 これは、 収差補正の点で有利となるだけでなく、 光学系の小型化、 光学調整、 機 械設計、 製造コストなどの点でも有利となる。 上述したように、 第 2結像光学系 2 0 0は、 第 1結像光学系 1 0 0および第 3 結像光学系 3 0 0で生じる色収差および正値のペッツバール和の補償を一手に負 担する。 このため、 第 2結像光学系 2 0 0を構成する凹面反射鏡 1 1および負レ ンズ 9, 1 0のパワーを共に大きく設定する必要がある。 したがって、 第 2結像 光学系 2 0 0の対称性が崩れると、 倍率色収差や色コマ収差のような非対称色収 差の発生が大きくなり、 十分な解像力を得ることができなくなってしまう。 そこ で、 本実施形態では、 第 2結像光学系 2 0 0の結像倍率をほぼ等倍に設定し且つ その瞳位置の近傍に凹面反射鏡 1 1を配置することのできる構成を採用すること により、 良好な対称性を確保し、 上述の非対称色収差の発生を防ぐことに成功し ている。
以下、 複屈折の影響を実質的に回避する本発明の手法の本実施形態に対する適 用について説明する。 まず、 ウェハ側 (第 2面側) の瞳位置に配置された開口絞 り 2 0とウェハ 6 0との間の光路中に配置されたレンズ ( 1 6〜 1 8 ) では、 通 過する光線の光軸に対する最大角度が大きい傾向にあり、 複屈折の影響を受け易 レ^ そこで、 本実施形態では、 これらのレンズ (1 6〜1 8 ) に対して、 前述し た本発明の第 1手法〜第 6手法を単独であるいは組み合わせて適用することによ り、 複屈折の影響を実質的に受けることなく良好な光学性能を確保することがで きる。 なお、 第 5図では、 図面の明瞭化のために開口絞り 2 0とウェハ 6 0との 間に 3つのレンズしか配置していないが、 実際の設計ではさらに多くのレンズが 配置される。
また、 通過する光線の光軸に対する最大角度が 2 0 ° を超えるようなレンズで は、 その配置位置にかかわらず複屈折の影響を受け易い。 そこで、 本実施形態で は、 通過する光線の光軸に対する最大角度が 2 0 ° を超えるようなレンズに対し て、 本発明の第 1手法〜第 6手法を単独であるいは組み合わせて適用することに より、 複屈折の影響を実質的に受けることなく良好な光学性能を確保することが できる。
さらに、 像側開口数の大きい本実施形態の投影光学系では、 凹面反射鏡 1 1の 近傍に配置された負レンズ 9 , 1 0において、 通過する光線の光軸に対する最大 角度が収差補正の目的のために大きくなりがちである。 そこで、 本実施形態では、 これらの負レンズ 9 , 1 0に対して本発明の第 1手法〜第 5手法を適用すること により、 複屈折の影響を実質的に受けることなく良好な光学性能を確保すること ができる。 なお、 凹面反射鏡 1 1の近傍に配置された負レンズの数がさらに多い 場合には、 本発明の第 1手法〜第 6手法を単独であるいは組み合わせて適用する こともできる。
なお、 前述したように、 本発明の第 1手法、 第 3手法および第 5手法を適用す る場合、 第 1レンズ群、 第 3レンズ群および第 5レンズ群と、 第 2レンズ群、 第 4レンズ群および第 6レンズ群との間で、 条件式 (3 ) 〜 (5 ) を満足するよう に設定することが好ましい。 また、 本発明の第 1手法、 第 3手法および第 5手法 を適用する場合、 第 1レンズ群 (あるいは第 3レンズ群、 第 5レンズ群) と第 2 レンズ群 (あるいは第 4レンズ群、 第 6レンズ群) とをオプティカルコンタクト または接着により 1つの光学部品として形成することが好ましい。 この構成によ り、 反射防止膜を形成すべき光学面の数を最小限に抑えることができるので、 特 に F 2レーザーを用いる光学系のように反射防止膜の材料が限られる場合には非 常に有利である。
ところで、 本発明の第 1手法、 第 3手法および第 5手法を適用する場合、 第 1 レンズ群 (あるいは第 3レンズ群、 第 5レンズ群) と第 2レンズ群 (あるいは第 4レンズ群、 第 6レンズ群) との間で角度指定が必要になる。 そこで、 本来的に 角度指定が必要な非球面すなわちレンズ調整時の収差補正用非球面 (回転非対称 な非球面) を第 1レンズ群 (あるいは第 3レンズ群、 第 5レンズ群) または第 2 レンズ群 (あるいは第 4レンズ群、 第 6レンズ群) に導入することが好ましい。 この場合、 複屈折により回転非対称なスカラ収差が発生しても、 非球面の作用に より補正することができる。 なお、 レンズ調整時の収差補正用の非球面について 簡単に説明する。 投影光学系を製造する際には、 波面収差等の収差を計測しつつ、 投影光学系を構成するレンズや反射鏡などの光学素子の位置 ·姿勢を調整して、 投影光学系の光学性能を所望の値に追い込むことが行われる。 ただし、 このよう な光学素子の位置 ·姿勢の調整だけでは、 ザイデルの 5収差に代表される低次収 差しか補正できない。 そこで、 計測された投影光学系の収差のうち、 光学素子の 位置 ·姿努の調整で補正できる成分を除いた残存収差を、 投影光学系を構成する 光学素子の表面形状を変更、 すなわち非球面とすることによって補正することが 行われる。 このような残存収差補正用の非球面をレンズ調整時の収差補正用の非 球面と呼び、 典型的な非球面形状は光軸に関して回転非対称な形状となる。 した がって、 このレンズ調整時の収差補正用の非球面を備えた光学素子を投影光学系 中へ組み込むためには、 光軸を中心とした方位角を定める、 すなわち角度指定を 行う必要がある。
また、 上述の Burne t t らの手法、 本発明の第 1〜第 6の手法を投影光学系の所 定の光学部材に適用した際においても、 偏光収差、 すなわち投影光学系を通過す る第 1の偏光成分の光と当該第 1の偏光成分とは異なる第 2の偏光成分の光との 間の位相差を完全には補正しきれない場合がある。
このとき、 投影光学系を構成する光学部材のうちの 1以上の光学部材の表面に、 偏光収差を低減させる膜、 すなわち第 1および第 2の偏光成分の光の間の位相差 を低減させる特性を有する膜を設けることにより、 さらに偏光収差を補正するこ とが可能である。
また、 本実施形態では、 蛍石結晶で形成されたレンズの表面に同じく蛍石結晶 で形成された結晶膜を形成し、 蛍石レンズの結晶方位と結晶膜の結晶方位とが実 質的に異なるように設定する手法も有効である。 この場合、 蛍石レンズの光軸に 沿った結晶方位と結晶膜の光軸に沿った結晶方位とが実質的に異なるように設定 する。 あるいは、 蛍石レンズの光軸に沿った結晶方位と結晶膜の光軸に沿った結 晶方位とがほぼ一致し、 蛍石レンズと結晶膜とが光軸を中心として所定の角度だ け相対的に回転した位置関係を有するように設定する。 この構成により、 複屈折 の影響を実質的に受けることなく良好な光学性能を確保することができる。
以下、 具体的な数値に基づく実施例を説明する。 各実施例において、 投影光学 系を構成するすべての屈折光学部材 (レンズ成分) には蛍石 (C a F 2結晶) を 使用している。 また、 露光光である F 2レーザ光の発振中心波長は 1 5 7 . 6 2 4 4 n mであり、 1 5 7 . 6 2 4 4 n m付近において C a F 2の屈折率は、 + 1 pmの波長変化あたり一 2. 6 X 1 0—6の割合で変化し、 一 l pmの波長変化 あたり + 2. 6 X 1 0—6の割合で変化する。 換言すると、 1 57. 6244 η m付近において、 C aF2の屈折率の分散 (d nZd A) は、 2. 6 X 10— 6 p mである。
したがって、 各実施例において、 中心波長 1 57. 624411]11に対する〇 & F2の屈折率は 1. 5593067であり、 1 57. 6244 nm+ 1 pm= 1 57. 6254 nmに対する C a F2の屈折率は 1. 5593041であり、 1 57. 6244 nm- 1 pm= 1 57. 6234 n mに対する C a F 2の屈折率 は 1. 5593093である。
また、 各実施例において、 非球面は、 光軸に垂直な方向の高さを yとし、 非球 面の頂点における接平面から高さ yにおける非球面上の位置までの光軸に沿った 距離 (サグ量) を zとし、 頂点曲率半径を rとし、 円錐係数を/ cとし、 n次の非 球面係数を Cnとしたとき、 以下の数式 (a) で表される。
z = (y V r ) / [1 + { 1 - ( l + / ) · y2/ r 2} 1/2]
+ C4 - y4 + C6 - y6 + C8 - y8 + C10 - y10
+ C12 · y 12 + C14 · y 14 (a)
各実施例において、 非球面形状に形成されたレンズ面には面番号の右側に *印 を付している。
[第 1実施例]
第 7図は、 第 1実施例にかかる投影光学系のレンズ構成を示す図である。 なお、 第 1実施例では、 波長幅が 157. 6244 nm± 1 pmの露光光に対して色収 差を含む諸収差が補正された投影光学系に本発明を適用している。
第 7図の投影光学系において、 第 1結像光学系 G 1 (第 5図の 100に対応) は、 レチクル R (第 5図の 50に対応) 側から順に、 両凸レンズ L I 1と、 レチ クル側に非球面状の凹面を向けた負メニスカスレンズ L 12と、 レチクル側に凹 面を向けた正メニスカスレンズ L 13と、 ウェハ W (第 5図の 60に対応) 側に 非球面状の凹面を向けた正メニスカスレンズ L 14と、 レチクル側に凹面を向け た負メニスカスレンズ L 1 5と、 レチクル側に凹面を向けた正メニスカスレンズ L 1 6と、 レチクル側に凹面を向けた正メニスカスレンズ L 1 7と、 両凸レンズ L 1 8と、 ウェハ側に非球面状の凹面を向けた正メニスカスレンズ L 1 9とから 構成されている。
また、 第 2結像光学系 G 2 (第 5図の 2 0 0に対応) は、 光の進行往路に沿つ てレチクル側 (すなわち入射側) から順に、 レチクル側に非球面状の凹面を向け た負メニスカスレンズ L 2 1と、 レチクル側に凹面を向けた負メニスカスレンズ L 2 2と、 レチクル側に凹面を向けた凹面反射鏡 C M (第 5図の 1 1に対応) と から構成されている。
さらに、 第 3結像光学系 G 3 (第 5図の 3 0 0に対応) は、 光の進行方向に沿 つてレチクル側から順に、 レチクル側に凹面を向けた正メニスカスレンズ L 3 1 と、 両凸レンズ L 3 2と、 レチクル側に凸面を向けた正メニスカスレンズ L 3 3 と、 レチクル側に非球面状の凹面を向けた両凹レンズ L 3 4と、 レチクル側に非 球面状の凹面を向けた正メニスカスレンズ L 3 5と、 ウェハ側に非球面状の凹面 を向けた正メニスカスレンズ L 3 6と、 開口絞り A Sと、 両凸レンズ L 3 7と、 レチクル側に凹面を向けた負メニスカスレンズ L 3 8と、 レチクル側に平面を向 けた平凸レンズ L 3 9と、 両凸レンズ L 3 1 0と、 ウェハ側に非球面状の凹面を 向けた正メニスカスレンズ L 3 1 1と、 レチクル側に凸面を向けた正メニスカス レンズ L 3 1 2と、 ウェハ側に平面を向けた平凸レンズ L 3 1 3とから構成され ている。
次の第 1表に、 第 1実施例にかかる投影光学系の諸元の値を掲げる。 第 1表に おいて、 λは露光光の中心波長を、 /3は投影倍率 (全系の結像倍率) を、 Ν Αは 像側 (ウェハ側) 開口数を、 Βはウェハ W上でのイメージサークル I Fの半径を、 Αは実効露光領域 E Rの軸外し量を、 L X ( E w) は実効露光領域 E Rの X方向 に沿った寸法 (長辺の寸法) を、 L Yは実効露光領域 E Rの Y方向に沿った寸法 (短辺の寸法) をそれぞれ表している。
また、 面番号は物体面 (第 1面) であるレチクル面から像面 (第 2面) である ウェハ面への光線の進行する方向に沿ったレチクル側からの面の順序を、 rは各 面の曲率半径 (非球面の場合には頂点曲率半径: mm) を、 dは各面の軸上間隔 すなわち面間隔 (mm) を、 nは中心波長に対する屈折率をそれぞれ示している。 なお、 面間隔 dは、 反射される度にその符号を変えるものとする。 したがって、 面間隔 dの符号は、 第 1光路折り曲げ鏡 8の反射面から凹面反射鏡 C Mまでの光 路中および第 2光路折り曲げ鏡 1 2の反射面から像面までの光路中では負とし、 その他の光路中では正としている。
そして、 第 1結像光学系 G 1では、 レチクル側に向かって凸面の曲率半径を正 とし、 凹面の曲率半径を負としている。 一方、 第 3結像光学系 G 3では、 レチク ル側に向かって凹面の曲率半径を正とし、 凸面の曲率半径を負としている。 さら に、 第 2結像光学系 G2では、 光の進行往路に沿ってレチクル側 (すなわち入射 側) に向かって凹面の曲率半径を正とし、 凸面の曲率半径を負としている。 上述 の第 1表の表記は、 以降の第 2表においても同様である。
第 1表
(主要諸元)
λ= 1 57. 6244 nm
/3=- 0. 25
NA= 0. 84
B= 1 3. 7mm
A = 3 mm
LX (Ew) = 22mm
L Y= 5 mm
(光学部材諸元)
面番号 r d n
(レチクル面) 180.6367
1 338.1128 43.1828 1.5593067 (レンズし 1 1)
2 -344.9356 1.0000
3* -599.9988 18.0000 1.5593067 (レンズ L 1 2)
4 -750.0000 3.8448
5 -3025.0000 33.6610 1.5593067 (レンズ L 1 3 ) -248.3324 52.8928
123. 3512 50. 0000 1.5593067 (レンズ L 14)* 137. 9069 94. 2897
-79. 1554 50. 0000 1.5593067 (レンズ L 1 5)
-622. 2967 11. 3371
-184.1414 33. 8374 1.5593067 (レンズ 16)
-113. 4803 14. 3635
-449. 4836 38. 4631 1.5593067 (レンズし 1 7)
-145. 4454 1. 0000
990. 3950 35. 4539 1.5593067 (レンズし 1 8)
-266. 8459 13. 1001
230. 4657 43. 1276 1.5593067 (レンズし 1 9)* 905. 8792 86. 0000
oo -322. 8159 (第 1光路折り曲げ鏡 8)* 160. 0000 -20.0000 1.5593067 (レンズ 2 1)
1029. 3354 -39.7098
170. 0000 -27. 0000 1.5593067 (レンズし 22)
335. 4155 -25. 7429
211. 5661 25. 7429 (凹面反射鏡 CM)
335. 4155 27. 0000 1.5593067 (レンズし 22)
170. 0000 39. 7098
1029. 3354 20.0000 1.5593067 (レンズし 2 1)* 160. 0000 322. 8159
CO -109. 1661 (第 2光路折り曲げ鏡 12)
-2979. 2971 -27. 9776 1.5593067 (レンズ L 3 1)
259. 8472 - 1. 0000
-274. 0559 -32. 1994 1.5593067 (レンズし 32)
788. 0182 一 1. 0000 4 -226.6395 -40.0000 1.5593067 (レンズ I .33) 5 -775.7225 -17. 4073
6* 286.8379 -18. 0000 1.5593067 (レンズ I .34) 7 -220.3372 -218. 2160
8* 800.0000 -25. 0000 1.5593067 (レンズ I .35) 9 369.0625 -55. 3479
0 -246.4360 -31. 1478 1.5593067 (レンズ I .36) 1* -707.1086 -33. 8357
2 oo -5. 0000 (開口絞り AS)
3 -541.3470 - 46. 1825 1.5593067 (レンズ I .37) 4 339.2085 -20.2043
5 186.8545 -25. 0000 1.5593067 (レンズ I .38) 6 270.5486 -1. 0000
7 oo -27. 9903 1.5593067 (レンズ I .39) 8 513.9686 -1. 0000
9 -33. 6260 1.5593067 (レンズ I .3 10) 0 3025.0000 -1. 0000
1 -154.7547 -37. 2001 1.5593067 (レンズ I .3 1 1) 2* -576.9675 - 1. 0000
3 -139.4272 -33. 3665 1.5593067 (レンズ I .3 12) 4 -736.4201 -3. 6217
5 -1640.0282 -32. 3202 1.5593067 (レンズ I .3 13) 6 oo -17. 0000
(ゥェ八面)
(非球面データ)
3面
κ = 0 . 000000
=ー6. 00493 X 10 C 5. 77252 X 1 0 C 8= 1. 8 2 6 1 6 X 1 0一 1 8 C 10 = _ 4. 7 3 3 2 8 X 1 0— 22 C12= 5. 5 1 7 1 4 X 1 0 -27 C 14= 5. 0 8 9 8 5 X 1 0— 32 8面
κ = 0. 0 0 0 0 0 0
C4 = - 2. 0 3 2 4 0 X 1 0一7 C6 = - 2. 3 5 744 X 1 0一 12
C8= 2. 48 8 1 5 X 1 0 15
C 10 = - 3. 9 24 1 6 X 1 0一2 0
C12 = - 3. 3 7 6 0 3 X 1 0一2 3 C14= 3. 1 348 8 X 1 0一2 7 1 8面
A = 0. 0 0 0 0 0 0
C4= 1. 0 2 2 9 3 X 1 0一8 C 6 = - 3. 1 3 3 2 0 X 1 0一1 4 C8= 7. 1 340 1 X 1 0 -18 C 10 =- 1. 644 2 0 X 1 0一2 1 C 12= 3. 0 2 6 9 2 X 1 0 -25 C 14 = - 2. 1 84 6 0 X 1 0一2 9
2 0面 (2 8面と同一面)
c = 0. 0 0 0 0 0 0
C4 =— 1. 7 8 9 7 4 X 1 0一8 C6 = - 3. 1 446 9 X 1 0-" C 8 = - 1. 0 8 2 8 9 X 1 0 -17 C 10= 1. 6 1 2 7 9 X 1 0— 22 C 12 = - 3. 64 2 5 8 X 1 0一2 6 C 14= 2. 9 1 5 3 4 X 1 0—30
3 6面
κ = 0. 0 0 0 0 0 0
C4 =— 2. 1 0 0 8 7 X 1 0一8 C6 = - 4. 2 7 3 0 0 X 1 0一 1 4 C8= 7. 0 3 3 24 X 1 0一1 8 C 10 = - 8. 9 0 54 9 X 1 0一2 3 C 12 = - 5. 6 2 8 7 6 X 1 0 -26 C 14= 3. 8 5 2 5 1 X 1 0—30 3 8面
κ = 0. 0 0 0 0 0 0
C4= 2. 5 3 9 1 2 X 1 0一8 C 6= 3. 9 1 0 6 3 X 1 0— 13 C8= 7. 0 5 0 6 7 X 1 0— 18 C 10= 2. 9 74 94 X 1 0一2 2 C 12 = - 1. 0 9 9 8 9 X 1 0一2 6 C 14= 3. 64 1 9 9 X 1 0 _31 κ = . 000000
C4 =一 1. 1 5678 X 10 -8 C6 = - 1. 04478 X 10— 13
C 8 = - 1. 72165 X 10 -18 C10 3. 5 1 51 1 X 10_22
C 12 = - 2. 28722 X 10 -2 ^ 14 ' 1. 43968 X 10— 31
52面
κ = 0. 000000
C4 =一 3 26364X 1 0—8 C6 = - 5. 391 12 X 10 -13
CR=4. 63415 X 10 i o 一 6. 39744 X 10— 21
C12= 2. 45549 X 10ー25 14 — 5. 36486 X 1 O-30 (条件式対応値)
D w= 1 7 mm
Nw= 0. 84
E w= 22 mm
S = 283. 047 1 mm
R= 21 1. 566 1 mm
( 1 ) (Dw · Nw) /Ew= 0. 649
(2) I R I = 1. 338 第 8図は、 第 1実施例における横収差を示す図である。 収差図において、 Yは 像高を、 実線は中心波長 157. 6244 nmを、 破線は 157. 6244 nm + 1 pm= 1 57. 6254 nmを、 一点鎖線は 1 57. 6244 nm- 1 m = 1 57. 6234 nmをそれぞれ示している。 収差図から明らかなように、 第 1実施例では、 波長幅が 1 57. 624 nm± 1 p mの露光光に対して色収差が 良好に補正されていることがわかる。
[第 2実施例]
第 9図は、 第 2実施例にかかる投影光学系のレンズ構成を示す図である。 なお, 第 2実施例においても第 1実施例と同様に、 波長幅が 157. 6244 nm± l p mの露光光に対して色収差を含む諸収差が補正された投影光学系に本発明を適 用している。
第 9図の投影光学系において、 第 1結像光学系 G 1は、 レチクル側から順に、 両凸レンズ L I 1と、 レチクル側に非球面状の凹面を向けた負メニスカスレンズ L 1 2と、 レチクル側に凹面を向けた正メニスカスレンズ L 1 3と、 ウェハ側に 非球面状の凹面を向けた正メニスカスレンズ L 1 4と、 両凹レンズ L 1 5と、 レ チクル側に凹面を向けた正メニスカスレンズ L 1 6と、 レチクル側に凹面を向け た正メニスカスレンズ L 1 7と、 両凸レンズ L 1 8と、 ウェハ側に非球面状の凹 面を向けた正メニスカスレンズ L 1 9とから構成されている。
また、 第 2結像光学系 G 2は、 光の進行往路に沿ってレチクル側 (すなわち入 射側) から順に、 レチクル側に凹面を向けた負メニスカスレンズ L 2 1と、 レチ クル側に非球面状の凹面を向けた負メニスカスレンズ L 2 2と、 レチクル側に凹 面を向けた凹面反射鏡 C Mとから構成されている。
さらに、 第 3結像光学系 G 3は、 光の進行方向に沿ってレチクル側から順に、 レチクル側に凹面を向けた正メニスカスレンズ L 3 1と、 両凸レンズ L 3 2と、 レチクル側に凸面を向けた正メニスカスレンズ L 3 3と、 レチクル側に非球面状 の凹面を向けた両凹レンズ L 3 4と、 レチクル側に非球面状の凹面を向けた正メ ニスカスレンズ L 3 5と、 ウェハ側に非球面状の凹面を向けた正メニスカスレン ズ L 3 6と、 開口絞り A Sと、 両凸レンズ L 3 7と、 レチクル側に凹面を向けた 負メニスカスレンズ L 3 8と、 レチクル側に平面を向けた平凸レンズ L 3 9と、 両凸レンズ L 3 1 0と、 ウェハ側に非球面状の凹面を向けた正メニスカスレンズ L 3 1 1と、 レチクル側に凸面を向けた正メニスカスレンズ L 3 1 2と、 ウェハ 側に平面を向けた平凸レンズ L 3 1 3とから構成されている。
次の第 2表に、 第 2実施例にかかる投影光学系の諸元の値を掲げる。
第 2表
(主要諸元)
λ = 1 5 7 . 6 2 4 4 n m
i3 = - 0 . 2 5 NA= 0. 84
B= 1 3. 7 mm
A= 3 mm
L X (Ew) = 22mm
L Y= 5 mm
(光学部材諸元)
面番号 r d η
(レチクル面) 134.0611
1 262.9619 50. , 0000 1.5593067 (レンズし 1 1 )
2 -690.2912 114. , 9165
3* -599.9988 18. .0000 1.5593067 (レンズ L 12)
4 -750.0000 1. .0000
5 - -3025.0000 27. .9713 1.5593067 (レンズし 13)
6 -244.8589 43. ,6281
7 114.5751 28. .3042 1.5593067 (レンズ L 14)
8* 175.8195 92. .1920
9 -109.5355 45. .7658 1.5593067 (レンズし 1 5)
10 997.5337 10. .1935
11 44. .1807 1.5593067 (レンズ L 16)
12 -131.7230 43. , 6830
13 - -1519.9100 38. .6864 1.5593067 (レンズ 17)
14 -166.0874 44.0031
15 508.0358 27. .8372 1.5593067 (レンズ 18)
16 -487.9084 8.7669
17 265.5991 22. ,9898 1.5593067 (レンズ 19)
18* 1561.9630 86. ,0000
19 oo -264. .6314 (第 1光路折り曲げ鏡 8)
20 127.3620 -20. ,0000 1.5593067 (レンズし 2 1 ) 702.6119 - 31.1397
* 164. 9999 -27. 0000 1.5593067 (レンズし 22)
422. 8572 -43. 0899
196. 5261 43. 0899 (凹面反射鏡 CM)
422. 8572 27. 0000 1.5593067 (レンズ L 22)* 164.9999 31. 1397
702. 6119 20. 0000 1.5593067 (レンズ L 2 1)
127. 3620 264.6314
oo -85. 0000 (第 2光路折り曲げ鏡 12)
2164.9673 -24. 7566 1.5593067 (レンズ 3 1)
219. 1763 -1. 0000
-296. 9471 - 26. 3606 1.5593067 (レンズ L 32)
1129. 3092 -20. 0736
-243. 2548 -28. 2049 1.5593067 (レンズ L 33)
-1226. 1325 -37. 0789
* 249. 2995 -18.0000 1.5593067 (レンズ L 34)
-367. 2759 -192. 0672
* 800. 0000 -28. 4116 1.5593067 (レンズ L 35)
247. 6103 -30. 2659
-246. 9554 -33. 9672 1.5593067 (レンズ L 36)* -1000. 0000 -20. 9789
oo -5. 0000 (開口絞り AS)
-420. 5483 -47. 2146 1.5593067 (レンズ L 37)
412. 3925 -21. 7678
197. 9152 -25. 0000 1.5593067 (レンズし 38)
280.6330 -1. 0000
oo -27. 1468 1.5593067 (レンズし 39)
531. 5277 -1. 0000 49 3630 1• 5593067 (レンズ L 3 1 0)
50 3025.0000 -1. 0000
51 1678 1 • 5593067 (レンズ L 3 1 1)
52* -674.8686 -1. 0000
53 -128.0047 -34. 6343 1 • 5593067 (レンズし 3 1 2)
54 -583.8584 -7. 3608
55 -681.9357 -18. 0000 1 • 5593067 (レンズし 3 1 3)
56 oo -20. 0000
(ゥェ八面)
(非球面データ)
κ = 0. 0 0 0 0 0 0
c4=- 8. 56936 X 1 0 -8 C 6= 2. 46201 X 10 -12 c8 = - 1. 5 5 6 6 8 X 1 0 - 16 C 10— ^ · 4 3 3 8 6 X 1 0 -21
^ 12 — 6. 0 7 94 1 X 1 0_25 C 14 1 7 1 5 9 X 1 0 -29
8面
κ = 0. 0 0 0 0 0 0
c4 = - 1. 6 9 0 5 5 X 1 0-7 C 6= 2. 0 5 64 9 X 1 0一1 2
C8= 2 . 6 3 7 40 X 1 0一 15 C ιο = - 1 . 7 64 1 9 X 1 0一1 9 r =
12 - 5. 0 1 8 34 X 1 0- 24 C 14— ^ · 3 5 8 5 1 X 1 0 -28
1 8面
ί = 0. 0 0 0 0 0 0
C4= 1 . 24 3 1 1 X 1 0一 8
C 6 = - 6. 42 8 4 0 X 1 0 _14
C8= 3 . 5 2 8 7 1 X 1 0一 18 C ι0 = - 1 . 74 8 0 9 X 1 0一2 2 r 12 = 3. 5 1 8 1 5 X 1 ' 0- 26 C 14一— 3 . 5 3 9 2 5 X 1 0 -30
2 2面 (2 6面と同一面)
c = 0. 0 0 0 0 0 0
c4 = - 2. 4 3 8 0 2 X 1 0一8 C 6 = - 8. 6 0 9 0 3 X 1 0 "13 c 一 1. 8 0 24 7 X 1 0一 1
C 10 = - 2. 4 7 3 1 5 X 1 0 - 22
C 12 = - 6. 9 0 946 X 1 0 -29 C14 = - 1. 5 6 7 2 1 X 1 0一3 1 3 6面
κ = 0. 0 0 0 0 0 0
C4 = - 5. 2 6 0 8 8 X 1 0一9 Cfi= 8. 0 0 2 9 1 X 1 0 13
C8 = - 2. 0 2 5 1 4 X 1 0 16
C 10= 1. 4 5 5 2 4 X 1 0 -20
C 12 = - 5. 7 6 3 7 8 X 1 0 - 25 C 14 = - 1. 5 2 7 3 5 X 1 0一3 1 3 8面
κ = 0. 0 0 0 0 0 0
C4= 3. 2 0 2 1 7 X 1 0—8 Cfi = 4. 2 7 7 9 3 X 1 0 13
Cs =— 1. 7 5 5 5 3 X 1 0一 1
C 10= 8. 5 5 7 1 8 X 1 0 - 22
C 12 = - 2. 6 7 8 46 X 1 0 - 26 C 14= 4. 7 5 2 9 7 X 1 0— 31 4 1面
tc = 0. 0 0 0 0 0 0
C4 =一 1. 4 6 3 2 2 X 1 0 -8 C 6. 43 3 2 2 X 1 0— 14 C8 = - 2. 5 1 7 6 1 X 1 0一17 C10= 1. 3 7 244 X 1 0 -2 C 12 = - 2. 7 5 6 04 X 1 0 -26 C14= 3. 9 34 5 6 X 1 0一3 5 2面
κ = 0. 0 0 0 0 0 0
C4 =一 3. 1 3 7 6 1 X 1 0一 8
C6 =— 8. 7 8 2 7 6 X 1 0 - 13
C8= 9. 2 3 9 1 9 X 1 0一1 7 C 10 =— 1. 3 0 6 8 9 X 1 0一2 0 C 12= 7. 7 0 4 94 X 1 0一2 5 C 14 = - 2. 2 8 8 4 5 X 1 0一2 9 (条件式対応値)
D w= 2 0 mm
Nw= 0. 84
E w= 2 2 mm
S = 2 8 6. 7 8 3 1mm
R= 1 9 6. 5 2 6 1 mm (1) (Dw - Nw) Ew=0. 764
(2) S/ I R I = 1. 459 第 10図は、 第 2実施例における横収差を示す図である。 収差図において、 Y は像高を、 実線は中心波長 157. 6244 nmを、 破線は 157. 6244 η m+ 1 pm= 157. 6254 n mを、 一点鎖線は 1 57. 6244 nm- 1 p m= 157. 6234 nmをそれぞれ示している。 収差図から明らかなように、 第 2実施例においても第 1実施例と同様に、 波長幅が 157. 624 nm± l p mの露光光に対して色収差が良好に補正されていることがわかる。
以上のように、 各実施例では、 条件式 (1) を満足しているので、 ウェハ Wに 塗布されたフォトレジストからの脱ガスによるレンズの汚染を良好に回避するこ とができる。 また、 各実施例では、 凹面反射鏡 CMおよび負レンズ (L 21, L 22) が重力方向と直交する方向の光軸 AX 2に沿って配置されているが、 条件 式 (2) を満足しているので、 凹面反射鏡 CMの重力による変形を小さく抑えて、 組み立て調整や加工が容易になっている。
[第 3実施例]
第 3実施例にかかる投影光学系では、 投影光学系を構成する等方晶系の光学材 料 (たとえば蛍石) が有する固有複屈折によって生じる偏光収差 (すなわち所定 方向に振動方向を有する第 1の偏光成分の光と、 当該第 1の偏光方向とは異なる 方向に振動方向を有する第 2の偏光成分の光との位相差) を、 光学材料の表面上 に設けられる薄膜によって補正している。
第 3実施例では、 当該薄膜へ入射する光の入射状態を実際の場合と同じにする ために、 第 1 1図に示される投影光学系を考える。
第 1 1図は、 第 3実施例にかかる投影光学系のレンズ構成を示す図である。 第 1 1図の投影光学系は、 上述の第 1および第 2実施例とは異なり、 直線状の 光軸に沿って複数の屈折光学部材が配置された屈折型投影光学系に本発明を適用 している。 第 1 1図の投影光学系は、 レチクル R側から順に、 ウェハ W側に凹面を向けた メニスカス負レンズ L 1と、 レチクル R側に凹面を向けたメニスカス負レンズ L 2と、 レチクル R側に凹面を向けた 2枚のメニスカス正レンズ L 3、 L 4と、 レ チクル R側に凸面を向けた 3枚のメニスカス正レンズ L 5〜L 7と、 ウェハ W側 に凹面を向けたメニスカス負レンズ L 8と、 3枚の両凹レンズ L 9〜: L 1 1と、 両凸レンズ L 1 2と、 レチクル R側に凹面を向けたメニスカス正レンズ L 1 3と、 両凸レンズ L 1 4と、 開口絞り A Sと、 両凸レンズ L 1 5と、 レチクル R側に凹 面を向けたメニスカス負レンズ L 1 6と、 レチクル R側に凹面を向けたメニスカ ス正レンズ L 1 7と、 ウェハ W側に凹面を向けた 3枚のメニスカス正レンズ L 1 8〜L 2 0と、 レチクル R側に凹面を向けた平凹レンズ L 2 1と、 平行平面板 L 2 2とから構成されている。
第 1 2図は、 第 3実施例にかかる投影光学系によってウェハ W上に形成される 矩形状の露光領域 (すなわち実効露光領域) と光軸との位置関係を示す図である。 第 1 2図に示すように、 第 3実施例では、 光軸 A X 1を中心とした半径 Bを有す る円形状の領域 (イメージサークル) I F内において、 光軸 A X 1を含む位置に 所望の大きさを有する矩形状の実効露光領域 E Rが設定されている。 ここで、 実 効露光領域 E Rの X方向の長さは L Xであり、 その Y方向の長さは L Yである。 なお、 第 3実施例の投影光学系における実効露光領域 E Rの軸外し量 Aは 0であ る。
次の第 3表に、 第 3実施例にかかる投影光学系の諸元の値を掲げる。 第 3表に おいて、 λは露光光の波長を、 i3は投影倍率を、 N Aは像側 (ウェハ側) 開口数 を、 Bはウェハ W上でのイメージサークル I Fの半径を、 L Xは実効露光領域 E Rの X方向に沿った寸法 (長辺の寸法) を、 L Yは実効露光領域 E Rの Y方向に 沿った寸法 (短辺の寸法) をそれぞれ表している。
また、 面番号は物体面 (第 1面) であるレチクル面から像面 (第 2面) である ウェハ面への光線の進行する方向に沿ったレチクル側からの面の順序を、 rは各 面の曲率半径 (非球面の場合には頂点曲率半径: mm) を、 dは各面の軸上間隔 すなわち面間隔 (mm) を、 材料は光透過性部材の材料名を、 コートは、 光透過 性部材の表面に設けられる光学薄膜の種類を示す。 なお、 各面の曲率半径の欄に おいては、 レチクル側に向かって凸面の曲率半径を正とし、 凹面の曲率半径を負 としている。 また、 コートの欄における I Dは理想的な光学薄膜 (すなわち、 透 過率 100%であって、 それを透過する光に対して位相差を与えない薄膜) を表 し、 REは後述する位相差低減機能を有する薄膜を表している。
第 3実施例において、 露光光の波長 λに対する蛍石の屈折率 nは n= 1. 5 5 930666で与えられる。 第 3表
(主要諸元)
λ = 1 57. 62 nm
/3=- 0. 25
NA= 0. 8 5
B= 1 1. 3mm
A= 0
L X= 22 mm
L Y= 5 mm
(光学部材諸元)
面番号 r d 材料 コー卜
(レチクル面) 55.0000
1 1760.1477 13.0000 蛍石 I D
2* 154.1222 31.5550 I D
3 -100.0051 35.1768 蛍石 I D 2)
4 -204.4440 0.2632 I D
5* -229.9998 49.8862 蛍石 I D 3)
6 -205.2327 1.0000 I D
7 -1022.4100 43.9568 蛍石 I D (レンズ L 4)
8 -240.0184 1.0000 I D 305.3055 43.3393 蛍石 I D (レンズし 5)
13811.5160 1. 0000 I D
260.0366 49. 9927 蛍石 I D (レンズし 6)
1061.5609 1. 6965 I D
201.2791 44. 9989 蛍石 I D (レンズし 7)* 1264.2864 1. 0008 I D
746.2630 41. 9997 蛍石 I D (レンズ L 8)
554.5437 9. 6189 I D
-1904.6110 41. 9988 蛍石 I D (レンズ L 9)
100.8840 66. 1124 I D
* -133.6471 13. 1297 蛍石 I D (レンズ L 1 0)
347.1443 81. 4331 I D
-191.2608 47. 9972 蛍石 I D (レンズ 1 1)* 1567.7421 6. 8417 I D
2383.7446 45. 8049 蛍石 I D (レンズ L 1 2)
-254.2886 1. 0005 I D
* -826.9931 27. 1939 蛍石 I D (レンズ 1 3)
-318.6391 1. 0003 I D
812.6131 58. 9358 蛍石 I D (レンズ L 14)
-339.1799 3. 0000 I D
oo 35. 7374 I D (開口絞り AS)
1993.9339 60. 0000 蛍石 I D (レンズし 1 5)
-299.7702 14.3166 I D
-250.3567 31. 9046 蛍石 I D (レンズし 1 6)
-409.2235 1. 0000 I D
-3543.3950 36. 4233 蛍石 I D (レンズ L 1 7)
-493.5664 1. 0000 I D
326.4763 35. 6384 蛍石 I D (レンズ L 1 8) 37 2606.2523 1.0000 I D
38 150.1197 55. 0000 蛍石 I D (レンズし 1 9)
39* 339.1014 6. 3990 I D
40 213.3769 27. 0460 蛍石 I D (レンズし 20)
41 744.7389 4. 2700 I D
42 -17499.2300 26. 5000 蛍石(CI) RE (レンズ L 2 1)
43 oo 1. 5001 RE
44 oo 26. 5000 蛍石(C2) RE (レンズ L 22)
45 oo 8.0001 RE
(ゥェ八面)
(非球面データ)
第 2面
κ = 0. 0 0 0 0 0 0
=ー 2. 2 7 5 1 5 X 0一7 Cfi= 9. 94 9 2 1 X 1 0 12
C 4. 9 2 7 0 0 X 0- 16
C1 Q= 5. 54 6 3 6 X 1 0 20
C 12= 2. 1 1 0 3 5 X 1 0 .24
C 14= 3. 9 9 0 1 9 X 1 0一2 8 第 5面
κ = 0. 0 0 0 0 0 0
C4 = - 8. 0 3 9 5 6 X 1 0一 1 0 Cfi= 3. 1 9 0 0 3 X 1 0 13 C8= 2. 2 2 3 9 9 X 1 0一1 7 C 10= 5. 84 9 7 1 X 1 0 - 21 C,2 =— 3. 7 3 5 7 6 X 1 0一2 5 C 14= 7. 9 7 94 9 X 1 0一2 9 第 1 4面
κ = 0. 0 0 0 0 0 0
C4= 2. 2 5 5 9 8 X 1 0一8 C6 = - 2. 34 8 9 5 X 1 0 -13 Cs= 6. 2 4 1 7 6 X 1 0一 1 ; C 10= 3. 3 3 4 6 0 X 1 0一2 2 C 12 =- 1. 1 0 2 9 4 X 1 0 - 26
C 14= 9. 3 1 7 6 8 X 1 0一3 1 第 1 9面
c = 0. 0 0 0 0 0 0
C,= 2. 7 6 2 04 X 1 0一8 C6= 3. 44 2 84 X 1 0一1 2
CR= 2. 8 84 5 0 X 1 0一 16
C 10= 2. 6 9 64 1 X 1 0一 2 0
C 12= 2. 9 7 7 5 1 X 1 0 -24
C 14= 1. 9 0 6 3 7 X 1 0一28 第 2 2面
= 0. 0 0 0 0 0 0
C4 = 4. 3 2 1 0 3 X 1 0一8 C6 = - 5. 6 1 2 2 3 X 1 0— 13 C8 = - 2. 1 9 6 5 8 X 1 0一1 C 10= 9. 4 6 3 8 9 X 1 0一2 2
C 12= 8. 2 0 0 1 3 X 1 0 -27 C 14 = - 8. 4 7 7 7 9 X 1 0一3 第 2 5面
κ = 0. 0 0 0 0 0 0
C4 = - 1. 7 1 4 8 9 X 1 0 -8 Cfi= 5. 8 6 94 8 X 1 0 14
C8 = - 2. 4 2 1 6 3 X 1 0一1 8 C 10= 8. 0 2 9 1 3 X 1 0 "23 C12 = - 4. 4 5 7 9 0 X 1 0一2 C14= 2. 6 4 3 1 0 X 1 0一3 1 第 3 9面
κ = 0. 0 0 0 0 0 0
=— 4. 30405 X 10 -8 Cfi= 2. 4 7 6 9 0 X 1 0 12
Cfi = - 3. 6 0 1 8 6 X 1 0 C 10 = - 5. 2 2 5 5 5 X 1 0一2 1
C 4. 9 34 7 6 X 1 0 25
C 14 = - 1. 5 1 0 2 8 X 1 0一2 9 さて、 第 3実施例においては、 光透過部材に対する入射角度範囲が大きい最も ウェハ W側の 2枚の光透過部材 (レンズ L 2 1、 L 2 2) に関して、 薄膜による 偏光収差の補正効果について検討した。 第 3実施例では、 複数の光学部材 L l〜 L 22のうち、 最もウェハ W側にある 2枚の光学部材 L 21、 L 22のみが固有 複屈折を持つと仮定した。 これらの光学部材 L 2 1、 L 22を形成している蛍石 の固有複屈折は、 結晶軸 [1 10] の方向における露光光の波長での複屈折の値 と結晶軸 [100] の方向における露光光の波長での複屈折の値との差が一 3. 3 nm/cmとしている。 そして、 これらの光学部材 L 21、 L 22は共にその 結晶軸 [1 1 1] が光軸 AX 1と一致するように形成され、 光学部材 L 2 1、 L 22の結晶軸 [1 1 1] とは異なる結晶軸同士が光軸 AX 1を中心として相対的 に 60度だけ回転した位置関係を有する。 すなわち、 光学部材 L 21、 L 22に 対して本発明の第 5の手法を適用している。
次に、 これらの光学部材 L 2 1、 L 22の表面 (レンズ面) に理想的な光学薄 膜 I Dを設けた場合と、 位相差低減機能を有する薄膜 REを設けた場合とについ て比較する。
ここで、 理想的な光学薄膜とは、 当該薄膜 I D自体の透過率が 100%であつ て、 当該薄膜を透過する複数の偏光成分の光の間に位相差を全く与えない作用を 有する仮想的な薄膜である。 そして、 位相差低減機能を有する薄膜 REは、 次の 第 4表で示される構成を有する。
なお、 以下の第 4表において、 λは露光光の中心波長を表している。 そして、 層番号は、 薄膜が設けられる基材側からの層の順序を表し、 Dは各層の厚み (η m) を、 nは各層の中心波長に対する屈折率をそれぞれ示している。
第 4表
λ = 157. 62 nm
層番号 D n
1 1層 37.19 1.418
10層 21.41 1.78
9層 24.88 1.418
8層 15.37 1.78
7層 20.35 1.418
6層 16.64 1.78 5層 24.74 1.418
4層 17.76 1.78
3層 20.6 1.418
2層 10.68 1.78
1層 13.85 1.418
基板 第 13図に第 4表の薄膜 REの透過率の入射角特性を示し、 第 14図に第 4表 の薄膜 R Eの位相差の入射角特性を示す。
なお、 第 13図において、 縦軸に透過率をとり、 横軸に薄膜 REに対する入射 角 (垂直入射のとき 0) をとる。 そして、 第 13図の破線は P偏光成分 (振動方 向が入射面内である偏光成分、 言い換えると、 光軸と平行な軸を中心とした円の 径方向に沿って偏光面を有する偏光成分) に対する薄膜 REの透過率の入射角依 存性を示し、 実線は S偏光成分 (振動方向が入射面と直交する面内である偏光成 分、 言い換えると、 光軸と平行な軸を中心とした円の周方向に沿って偏光面を有 する偏光成分) に対する薄膜 REの透過率の入射角依存性を示す。
また、 第 14図においては、 縦軸に薄膜 REを透過した後の P偏光成分と S偏 光成分との位相差 (° ) をとり、 横軸に入射角 (垂直入射のとき 0) をとつてい る。
第 13図から明らかな通り、 薄膜 REは、 開口数 NA=0. 85に相当する入 射角範囲 (すなわち sin— 1 (0. 85) までの入射角範囲) において 98%以上 の透過率を確保しており、 実用上において十分に使用に耐えられる水準を示して いる。 そして、 第 14図から明らかな通り、 薄膜 REは開口数 NA= 0. 85に 相当する入射角において P偏光成分と S偏光成分との位相差が 8度近くあり、 こ こにおいて P偏光成分の位相が S偏光成分に対してより進んでいる。 すなわち、 この薄膜 R Eを透過する光は、 入射角が大きくなるにつれて P偏光成分の光の位 相が S偏光成分の光の位相に対してより進むようになる。
第 3実施例のように、 光透過部材 (光学部材) L 2 1、 L 22がともに、 結晶 軸 [1 1 1] と一致した光軸 AX 1を有し、 かつほぼ同じ厚みであって、 それら の結晶軸 [1 1 1] とは異なる結晶軸同士が光軸 AX 1を中心として相対的に 6 0度だけ回転した位置関係を有する場合、 これらの光学部材の対 L 21、 L 22 は、 入射角が大きくなるにつれて S偏光成分の光の位相が P偏光成分の光の位相 に対してより進むような進相軸を有する。
ここで、 上記薄膜 REは、 光学部材の対 L 2 1、 L 22と直交する進相軸を有 しているので、 この薄膜 REによって、 総合的な位相差を低減することが可能で ある。
第 15図は、 第 3表に示す諸元を有する投影光学系において、 最もウェハ W側 の光学部材の対 L 21、 L 22に薄膜 REを設けた場合の波面収差と、 薄膜 RE に代えて理想的な光学薄膜 I Dを設けた場合の波面収差をとの比較を示すグラフ である。 なお、 第 1 5図において、 Xは第 12図の X方向に振動方向 (偏光面) を持つ偏光成分の波面収差 (mA RMS) を示し、 Yは第 12図の Y方向に振動 方向 (偏光面) を持つ偏光成分の波面収差 (mA RMS) を示している。
この第 1 5図を参照すると、 薄膜 REによる位相差補正能力が十分に高いこと が明らかであり、 ひいては投影光学系の光学性能 (結像性能) を極めて向上する ことが可能であることも明らかである。
なお、 上述の実施形態では、 複屈折性の光学材料として蛍石を用いているが、 これに限定されることなく、 他の一軸性結晶、 たとえばフッ化バリウム (B aF 2)、 フッ化リチウム (L i F)、 フッ化ナトリウム (Na F)、 フッ化ストロン チウム (S r F2) などを用いることもできる。 この場合、 フッ化バリウム (B a F 2) などの結晶軸方位も本発明に従って決定されることが好ましい。
上述の実施形態の露光装置では、 照明装置によってレチクル (マスク) を照明 し (照明工程)、 投影光学系を用いてマスクに形成された転写用のパターンを感 光性基板に露光する (露光工程) ことにより、 マイクロデバイス (半導体素子、 撮像素子、 液晶表示素子、 薄膜磁気ヘッド等) を製造することができる。 以下、 本実施形態の露光装置を用いて感光性基板としてのウェハ等に所定の回路パター ンを形成することによって、 マイクロデバイスとしての半導体デバイスを得る際 の手法の一例につき第 1 6図のフローチャートを参照して説明する。
先ず、 第 1 6図のステップ 3 0 1において、 1ロットのウェハ上に金属膜が蒸 着される。 次のステップ 3 0 2において、 その 1 ロットのウェハ上の金属膜上に フォトレジストが塗布される。 その後、 ステップ 3 0 3において、 本実施形態の 露光装置を用いて、 マスク上のパターンの像がその投影光学系を介して、 その 1 ロットのウェハ上の各ショット領域に順次露光転写される。 その後、 ステップ 3 0 4において、 その 1ロットのウェハ上のフォトレジス卜の現像が行われた後、 ステップ 3 0 5において、 その 1ロットのウェハ上でレジストパターンをマスク としてエッチングを行うことによって、 マスク上のパターンに対応する回路パ夕 ーンが、 各ウェハ上の各ショット領域に形成される。
その後、 更に上のレイヤの回路パターンの形成等を行うことによって、 半導体 素子等のデバイスが製造される。 上述の半導体デバイス製造方法によれば、 極め て微細な回路パターンを有する半導体デバイスをスループット良く得ることがで きる。 なお、 ステップ 3 0 1〜ステップ 3 0 5では、 ウェハ上に金属を蒸着し、 その金属膜上にレジストを塗布、 そして露光、 現像、 エッチングの各工程を行つ ているが、 これらの工程に先立って、 ウェハ上にシリコンの酸化膜を形成後、 そ のシリコンの酸化膜上にレジストを塗布、 そして露光、 現像、 エッチング等の各 工程を行っても良いことはいうまでもない。
また、 本実施形態の露光装置では、 プレート (ガラス基板) 上に所定のパター ン (回路パターン、 電極パターン等) を形成することによって、 マイクロデバイ スとしての液晶表示素子を得ることもできる。 以下、 第 1 7図のフローチャート を参照して、 このときの手法の一例につき説明する。 第 1 7図において、 パター ン形成工程 4 0 1では、 本実施形態の露光装置を用いてマスクのパターンを感光 性基板 (レジストが塗布されたガラス基板等) に転写露光する、 所謂光リソダラ フイエ程が実行される。 この光リソグラフィー工程によって、 感光性基板上には 多数の電極等を含む所定パターンが形成される。 その後、 露光された基板は、 現 像工程、 エッチング工程、 レチクル剥離工程等の各工程を経ることによって、 基 板上に所定のパターンが形成され、 次のカラーフィルター形成工程 4 0 2へ移行 する。
次に、 カラーフィル夕一形成工程 4 0 2では、 R (Red) , G (Green)、 B (Bl ue) に対応した 3つのドットの組がマトリックス状に多数配列されたり、 ま たは R、 G、 Bの 3本のストライプのフィル夕一の組を複数水平走査線方向に配 列されたりしたカラーフィルターを形成する。 そして、 カラーフィルター形成ェ 程 4 0 2の後に、 セル組み立て工程 4 0 3が実行される。 セル組み立て工程 4 0 3では、 パターン形成工程 4 0 1にて得られた所定パターンを有する基板、 およ びカラーフィルター形成工程 4 0 2にて得られたカラ一フィルタ一等を用いて液 晶パネル (液晶セル) を組み立てる。 セル組み立て工程 4 0 3では、 例えば、 パ ターン形成工程 4 0 1にて得られた所定パターンを有する基板とカラーフィルタ 一形成工程 4 0 2にて得られたカラーフィルターとの間に液晶を注入して、 液晶 パネル (液晶セル) を製造する。
その後、 モジュール組み立て工程 4 0 4にて、 組み立てられた液晶パネル (液 晶セル) の表示動作を行わせる電気回路、 バックライト等の各部品を取り付けて 液晶表示素子として完成させる。 上述の液晶表示素子の製造方法によれば、 極め て微細な回路パターンを有する液晶表示素子をスループッ卜良く得ることができ る。
なお、 上述の実施形態では、 露光装置に搭載される投影光学系に対して本発明 を適用しているが、 これに限定されることなく、 他の一般的な投影光学系に対し て本発明を適用することもできる。 また、 上述の各実施形態では、 1 5 7 n mの 波長光を供給する F 2レーザー光源を用いているが、 これに限定されることなく、 たとえば 1 9 3 n mの波長光を供給する A r Fエキシマレーザー光源や、 1 2 6 n mの波長光を供給する A r 2レーザー光源、 1 4 6 n mの波長光を供給する K r 2レーザ一光源などを用いることもできる。 産業上の利用の可能性
以上説明したように、 本発明にかかる各実施形態では、 たとえば蛍石のような 固有複屈折を持つ光学材料を用いているにもかかわらず、 複屈折の影響を実質的 に受けることなく良好な光学性能を有する投影光学系を実現することができる。 また、 フォトレジス卜からの脱ガスによるレンズの汚染を良好に回避することの できる投影光学系を実現することができる。 したがって、 本発明の投影光学系を 露光装置に組み込むことにより、 高解像な投影光学系を介した高精度な投影露光 により、 良好なマイク口デバイスを製造することができる。

Claims

請 求 の 範 囲
1 . 複数のレンズと少なくとも 1つの凹面反射鏡とを含み、 第 1面の縮小像を 第 2面上に形成する投影光学系において、
前記第 1面および前記第 2面を走査方向に沿って移動させて前記第 1面の像を 前記第 2面上に走査露光する露光装置に用いられたときに、 非走査時にはスリッ ト状または円弧状の露光領域を前記第 2面上に形成し、
前記第 2面側の作動距離を D wとし、 前記第 2面側の開口数を Nwとし、 前記 スリツト状または円弧状の露光領域における前記走査方向と直交する方向に沿つ た長さを E wとするとき、
0 . 5 < (D w · Nw) / E w< 1 . 4 ( 1 )
の条件を満足することを特徴とする投影光学系。
2 . 請求の範囲第 1項に記載の投影光学系において、
前記スリット状または円弧状の露光領域は、 前記投影光学系の光軸を含まない ように設定され、
前記第 1面の第 1中間像を形成するための屈折型の第 1結像光学系と、 少なくとも 1つの負レンズと凹面反射鏡とを有し、 前記第 1中間像からの光束 に基づいて前記第 1中間像とほぼ等倍の第 2中間像を前記第 1中間像の形成位置 の近傍に形成するための第 2結像光学系と、
前記第 2中間像からの光束に基づいて前記第 2中間像の縮小像を前記第 2面上 に形成するための屈折型の第 3結像光学系と、
前記第 1結像光学系から前記第 2結像光学系に至る光路中に配置された第 1光 路折り曲げ鏡と、
前記第 2結像光学系から前記第 3結像光学系に至る光路中に配置された第 2光 路折り曲げ鏡とを備えていることを特徴とする投影光学系。
3 . 請求の範囲第 2項に記載の投影光学系において、 前記第 1結像光学系および前記第 3結像光学系を構成するすべてのレンズが単 一の直線状の光軸に沿って配置されていることを特徴とする投影光学系。
4. 複数のレンズと凹面反射鏡と該凹面反射鏡の近傍に配置された負レンズと を含み、 第 1面の縮小像を第 2面上に形成する投影光学系において、
前記第 1面および前記第 2面を走査方向に沿って移動させて前記第 1面の像を 前記第 2面上に走査露光する露光装置に用いられたときに、 非走査時には前記投 影光学系の光軸を含まないように設定されたスリット状または円弧状の露光領域 を前記第 2面上に形成し、
前記第 2面側の開口数は 0. 82以上であることを特徴とする投影光学系。
5. 請求の範囲第 4項に記載の投影光学系において、
前記凹面反射鏡および前記負レンズは、 重力の方向と実質的に異なる方向の光 軸に沿って配置され、
前記凹面反射鏡の有効径 (直径) を Sとし、 前記凹面反射鏡の曲率半径を尺と するとき、
1. 0<SZ I R I < 1. 8 (2)
の条件を満足することを特徴とする記載の投影光学系。
6. 第 1面の縮小像を第 2面上に形成する投影光学系において、
前記第 2面側の瞳位置と前記第 2面との間の光路中に配置され、 波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [100] または該結晶 軸 [100] と光学的に等価な結晶軸と光軸とがほぼ一致するように形成された 少なくとも 1つの光透過部材を備えていることを特徴とする投影光学系。
7. 第 1面の縮小像を第 2面上に形成する投影光学系において、
通過する光線の光軸に対する角度の最大値が 20度を超える光透過部材のうち の少なくとも 1つの光透過部材は、 波長が 200 nm以下の光を実質的に透過さ せる特性を有し、 結晶軸 [1 00] または該結晶軸 [1 00] と光学的に等価な 結晶軸と光軸とがほぼ一致するように形成されていることを特徴とする投影光学 系。
8. 第 1面の縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 0 0] または該結晶軸 [1 00] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 1群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 0 0] または該結晶軸 [1 00] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 2群の光透過部材とを備え、
前記第 1群の光透過部材と前記第 2群の光透過部材とは、 光軸を中心としてほ ぼ 45° だけ相対的に回転した位置関係を有し、
前記第 1群の光透過部材および前記第 2群の光透過部材の双方が、 前記第 2面 側の瞳位置と前記第 2面との間の光路中に配置されていることを特徴とする投影 光学系。
9. 第 1面の縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 0 0] または該結晶軸 [1 00] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 1群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 0 0] または該結晶軸 [1 00] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 2群の光透過部材とを備え、
前記第 1群の光透過部材と前記第 2群の光透過部材とは、 光軸を中心としてほ ぼ 45° だけ相対的に回転した位置関係を有し、
前記第 1群の光透過部材および前記第 2群の光透過部材の双方において、 通過 する光線の光軸に対する角度の最大値が 20度を超えていることを特徴とする投 影光学系。
10. 請求の範囲第 8項または第 9項に記載の投影光学系において、
前記第 1群の光透過部材および前記第 2群の光透過部材のうちの少なくとも一 方は、 少なくとも 1つの非球面を有することを特徴とする投影光学系。
1 1. 請求の範囲第 8項または第 9項に記載の投影光学系において、
前記第 1群の光透過部材の光軸に沿った厚さ (中心厚) の総計を T 1とし、 前 記第 2群の光透過部材の光軸に沿った厚さの総計を T 2とし、 前記投影光学系を 構成するすべての光透過部材の光軸に沿った厚さの総計を T Aとするとき、
I T 1 -T 2 Iノ TAく 0. 025 (3)
の条件を満足することを特徴とする投影光学系。
12. 請求の範囲第 8項または第 9項に記載の投影光学系において、
前記第 1群の光透過部材と前記第 2群の光透過部材とは、 オプティカルコン夕 クトまたは接着により 1つの光学部品として形成されていることを特徴とする投 影光学系。
13. 複数のレンズと凹面反射鏡と該凹面反射鏡の近傍に配置された負レンズ とを含み、 第 1面の縮小像を第 2面上に形成する投影光学系において、
前記負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [100] または該結晶軸 [100] と光学的に等価な結晶軸と光軸とが ほぼ一致するように形成されていることを特徴とする投影光学系。
14. 複数のレンズと凹面反射鏡と該凹面反射鏡の近傍に配置された第 1負レ ンズおよび第 2負レンズとを含み、 第 1面の縮小像を第 2面上に形成する投影光 学系において、
前記第 1負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を 有し、 結晶軸 [100] または該結晶軸 [100] と光学的に等価な結晶軸と光 軸とがほぼ一致するように形成され、
前記第 2負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を 有し、 結晶軸 [100] または該結晶軸 [100] と光学的に等価な結晶軸と光 軸とがほぼ一致するように形成され、
前記第 1負レンズと前記第 2負レンズとは、 光軸を中心としてほぼ 45° だけ 相対的に回転した位置関係を有することを特徴とする投影光学系。
15. 第 1面の縮小像を第 2面上に形成する投影光学系において、
前記第 2面側の瞳位置と前記第 2面との間の光路中に配置され、 波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [1 10] または該結晶 軸 [1 10] と光学的に等価な結晶軸と光軸とがほぼ一致するように形成された 少なくとも 1つの光透過部材を備えていることを特徴とする投影光学系。
16. 第 1面の縮小像を第 2面上に形成する投影光学系において、
通過する光線の光軸に対する角度の最大値が 20度を超える光透過部材のうち の少なくとも 1つの光透過部材は、 波長が 200 nm以下の光を実質的に透過さ せる特性を有し、 結晶軸 [1 1 0] または該結晶軸 [1 10] と光学的に等価な 結晶軸と光軸とがほぼ一致するように形成されていることを特徴とする投影光学 系。
17. 第 1面の縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 0] または該結晶軸 [1 10] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 3群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 0] または該結晶軸 [1 10] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 4群の光透過部材とを備え、 前記第 3群の光透過部材と前記第 4群の光透過部材とは、 光軸を中心としてほ ぼ 90° だけ相対的に回転した位置関係を有し、
前記第 3群の光透過部材および前記第 4群の光透過部材の双方が、 前記第 2面 側の瞳位置と前記第 2面との間の光路中に配置されていることを特徴とする投影 光学系。
18. 第 1面の縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 0] または該結晶軸 [1 10] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 3群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 0] または該結晶軸 [1 10] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 4群の光透過部材とを備え、
前記第 3群の光透過部材と前記第 4群の光透過部材とは、 光軸を中心としてほ ぼ 90° だけ相対的に回転した位置関係を有し、
前記第 3群の光透過部材および前記第 4群の光透過部材の双方において、 通過 する光線の光軸に対する角度の最大値が 20度を超えていることを特徴とする投 影光学系。
19. 請求の範囲第 17項または第 18項に記載の投影光学系において、 前記第 3群の光透過部材および前記第 4群の光透過部材のうちの少なくとも一 方は、 少なくとも 1つの非球面を有することを特徴とする投影光学系。
20. 請求の範囲第 17項または第 18項に記載の投影光学系において、 前記第 3群の光透過部材の光軸に沿った厚さ (中心厚) の総計を T 3とし、 前 記第 4群の光透過部材の光軸に沿った厚さの総計を T 4とし、 前記投影光学系を 構成するすべての光透過部材の光軸に沿った厚さの総計を T Aとするとき、 I T 3— T 4 I /TAく 0. 025 (4) の条件を満足することを特徴とする投影光学系。
2 1. 請求の範囲第 1 7項または第 18項に記載の投影光学系において、 前記第 3群の光透過部材と前記第 4群の光透過部材とは、 オプティカルコン夕 クトまたは接着により 1つの光学部品として形成されていることを特徴とする投 影光学系。
22. 複数のレンズと凹面反射鏡と該凹面反射鏡の近傍に配置された負レンズ とを含み、 第 1面の縮小像を第 2面上に形成する投影光学系において、
前記負レンズは、 波長が 2 00 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [1 1 0] または該結晶軸 [1 1 0] と光学的に等価な結晶軸と光軸とが ほぼ一致するように形成されていることを特徴とする投影光学系。
23. 複数のレンズと凹面反射鏡と該凹面反射鏡の近傍に配置された第 1負レ ンズおよび第 2負レンズとを含み、 第 1面の縮小像を第 2面上に形成する投影光 学系において、
前記第 1負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を 有し、 結晶軸 [1 1 0] または該結晶軸 [1 1 0] と光学的に等価な結晶軸と光 軸とがほぼ一致するように形成され、
前記第 2負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を 有し、 結晶軸 [1 10] または該結晶軸 [ 1 1 0] と光学的に等価な結晶軸と光 軸とがほぼ一致するように形成され、
前記第 1負レンズと前記第 2負レンズとは、 光軸を中心としてほぼ 90° だけ 相対的に回転した位置関係を有することを特徴とする投影光学系。
24. 第 1面の縮小像を第 2面上に形成する投影光学系において、
波長が 2 00 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 5群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 6群の光透過部材とを備え、
前記第 5群の光透過部材と前記第 6群の光透過部材とは、 光軸を中心としてほ ぼ 60° だけ相対的に回転した位置関係を有し、
前記第 3群の光透過部材および前記第 4群の光透過部材の双方が、 前記第 2面 側の瞳位置と前記第 2面との間の光路中に配置されていることを特徴とする投影 光学系。
25. 第 1面の縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 5群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 6群の光透過部材とを備え、
前記第 5群の光透過部材と前記第 6群の光透過部材とは、 光軸を中心としてほ ぼ 60° だけ相対的に回転した位置関係を有し、
前記第 5群の光透過部材および前記第 6群の光透過部材の双方において、 通過 する光線の光軸に対する角度の最大値が 20度を超えていることを特徴とする投 影光学系。
26. 請求の範囲第 24項または第 25項に記載の投影光学系において、 前記第 5群の光透過部材および前記第 6群の光透過部材のうちの少なくとも一 方は、 少なくとも 1つの非球面を有することを特徴とする投影光学系。
27. 請求の範囲第 24項または第 25項に記載の投影光学系において、 前記第 5群の光透過部材の光軸に沿った厚さ (中心厚) の総計を T 5とし、 前 記第 6群の光透過部材の光軸に沿った厚さの総計を T 6とし、 前記投影光学系を 構成するすべての光透過部材の光軸に沿った厚さの総計を T Aとするとき、 I T 5 -T 6 I /TA<0. 025 (5)
の条件を満足することを特徴とする投影光学系。
28. 請求の範囲第 24項または第 25項に記載の投影光学系において、 前記第 5群の光透過部材と前記第 6群の光透過部材とは、 ォプティカルコン夕 クトまたは接着により 1つの光学部品として形成されていることを特徴とする投 影光学系。
29. 複数のレンズと凹面反射鏡と該凹面反射鏡の近傍に配置された第 1負レ ンズおよび第 2負レンズとを含み、 第 1面の縮小像を第 2面上に形成する投影光 学系において、
前記第 1負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を 有し、 結晶軸 [1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光 軸とがほぼ一致するように形成され、
前記第 2負レンズは、 波長が 200 nm以下の光を実質的に透過させる特性を 有し、 結晶軸 [1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光 軸とがほぼ一致するように形成され、
前記第 1負レンズと前記第 2負レンズとは、 光軸を中心としてほぼ 60° だけ 相対的に回転した位置関係を有することを特徴とする投影光学系。
30. 第 1面の縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有する結晶で形成され た少なくとも 1つの光透過部材を備え、
前記光透過部材の表面には、 第 1の偏光成分の光と該第 1の偏光成分の光とは 異なる第 2の偏光成分の光とが前記投影光学系を通過する際に、 前記第 1および 第 2の偏光成分の光の間で発生する位相差を低減させる膜が形成されることを特 徵とする投影光学系。
3 1 . 請求の範囲第 3 0項に記載の投影光学系において、
前記膜は、 前記第 1および第 2の偏光成分の光が前記光透過部材を通過する際 に発生する、 前記第 1および第 2の偏光成分の光の間の位相差を低減することを 特徴とする投影光学系。
3 2 . 請求の範囲第 3 0項または第 3 1項に記載の投影光学系において、 前記投影光学系は、 波長が 2 0 0 n m以下の光を実質的に透過させる特性を有 する結晶で形成された少なくとも 2つの光透過部材を備え、
前記少なくとも 2つの光透過性部材は、 前記投影光学系を通過する第 1および 第 2の偏光成分の光の間の位相差を低減させるように、 それらの結晶軸方位が定 められ、
前記膜は、 前記少なくとも 2つの光透過性部材により低減された前記投影光学 系を通過する第 1および第 2の偏光成分の光の間の位相差をさらに低減させるこ とを特徴とする投影光学系。
3 3 . 請求の範囲第 3 0項または第 3 1項に記載の投影光学系において、 前記膜は、 反射防止膜を有することを特徴とする投影光学系。
3 4 . 請求の範囲第 3 0項または第 3 1項に記載の投影光学系において、 前記光透過部材の表面には、 前記結晶で形成された結晶膜が形成され、 前記光透過部材の結晶方位と前記結晶膜の結晶方位とが実質的に異なることを 特徴とする投影光学系。
3 5 . 第 1面の縮小像を第 2面上に形成する投影光学系において、
波長が 2 0 0 n m以下の光を実質的に透過させる特性を有する結晶で形成され た光透過部材を備え、
前記光透過部材の表面には、 前記結晶で形成された結晶膜が形成され、 前記光透過部材の結晶方位と前記結晶膜の結晶方位とが実質的に異なることを 特徴とする投影光学系。
36. 請求の範囲第 34項または第 35項に記載の投影光学系において、 前記光透過部材の光軸に沿った結晶方位と前記結晶膜の前記光軸に沿った結晶 方位とが実質的に異なることを特徴とする投影光学系。
37. 請求の範囲第 34項または第 35項に記載の投影光学系において、 前記光透過部材の光軸に沿った結晶方位と前記結晶膜の前記光軸に沿った結晶 方位とがほぼ一致し、
前記光透過部材と前記結晶膜とは、 前記光軸を中心として所定の角度だけ相対 的に回転した位置関係を有することを特徴とする投影光学系。
38. 第 1面の縮小像を第 2面上に形成する投影光学系において、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 10
0] または該結晶軸 [100] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 1群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1
0] または該結晶軸 [1 10] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 3群の光透過部材と、
波長が 200 nm以下の光を実質的に透過させる特性を有し、 結晶軸 [ 1 1
1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と光軸とがほぼ一致する ように形成された第 5群の光透過部材とを備えていることを特徴とする投影光学 系。
39. 前記第 1面および前記第 2面を走査方向に沿って移動させて前記第 1面 の像を前記第 2面上に走査露光する露光装置に用いられ、
非走査時にはスリット状または円弧状の露光領域を前記投影光学系の光軸を含 まない位置に形成し、
前記第 1面の第 1中間像を形成するための屈折型の第 1結像光学系と、 少なくとも 1つの負レンズと凹面反射鏡とを有し、 前記第 1中間像からの光束 に基づいて前記第 1中間像とほぼ等倍の第 2中間像を前記第 1中間像の形成位置 の近傍に形成するための第 2結像光学系と、
前記第 2中間像からの光束に基づいて前記第 2中間像の縮小像を前記第 2面上 に形成するための屈折型の第 3結像光学系と、
前記第 1結像光学系から前記第 2結像光学系に至る光路中に配置された第 1光 路折り曲げ鏡と、
前記第 2結像光学系から前記第 3結像光学系に至る光路中に配置された第 2光 路折り曲げ鏡とを備えていることを特徴とする請求の範囲第 6項乃至第 9項、 第 1 3項乃至第 1 8項、 第 2 2項乃至第 3 0項、 第 3 5項および第 3 8項のいずれ か 1項に記載の投影光学系。
4 0 . 請求の範囲第 1 0項に記載の投影光学系において、
前記第 1群の光透過部材の光軸に沿った厚さ (中心厚) の総計を T 1とし、 前 記第 2群の光透過部材の光軸に沿った厚さの総計を T 2とし、 前記投影光学系を 構成するすべての光透過部材の光軸に沿った厚さの総計を T Aとするとき、 I T 1 - T 2 I / T A< 0 . 0 2 5 ( 3 )
の条件を満足することを特徴とする投影光学系。
4 1 . 請求の範囲第 1 9項に記載の投影光学系において、
前記第 3群の光透過部材の光軸に沿った厚さ (中心厚) の総計を T 3とし、 前 記第 4群の光透過部材の光軸に沿った厚さの総計を T 4とし、 前記投影光学系を 構成するすべての光透過部材の光軸に沿った厚さの総計を T Aとするとき、 I T 3 - T 4 I /T A< 0 . 0 2 5 ( 4 ) の条件を満足することを特徴とする投影光学系。
4 2 . 請求の範囲第 2 6項に記載の投影光学系において、
前記第 5群の光透過部材の光軸に沿った厚さ (中心厚) の総計を T 5とし、 前 記第 6群の光透過部材の光軸に沿った厚さの総計を T 6とし、 前記投影光学系を 構成するすべての光透過部材の光軸に沿った厚さの総計を T Aとするとき、 I T 5 — T 6 I /T Aく 0 . 0 2 5 ( 5 )
の条件を満足することを特徴とする投影光学系。
4 3 . 前記第 1面に設定されたマスクを照明するための照明系と、
前記マスクに形成されたパターンの像を前記第 2面に設定された感光性基板上 に形成するための請求の範囲第 1項乃至第 4 2項のいずれか 1項に記載の投影光 学系とを備えていることを特徴とする露光装置。
4 4 . 前記第 1面に設定されたマスクを照明する工程と、
請求の範囲第 1項乃至第 4 2項のいずれか 1項に記載の投影光学系を用いて、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光性基板上に 形成する工程とを備えていることを特徴とする露光方法。
PCT/JP2002/005878 2001-06-28 2002-06-12 Systeme de projection optique, systeme d'exposition et procede WO2003003429A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003509511A JPWO2003003429A1 (ja) 2001-06-28 2002-06-12 投影光学系、露光装置および方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001196123 2001-06-28
JP2001-196123 2001-06-28
JP2001-243320 2001-08-10
JP2001243320 2001-08-10

Publications (1)

Publication Number Publication Date
WO2003003429A1 true WO2003003429A1 (fr) 2003-01-09

Family

ID=26617725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005878 WO2003003429A1 (fr) 2001-06-28 2002-06-12 Systeme de projection optique, systeme d'exposition et procede

Country Status (3)

Country Link
JP (1) JPWO2003003429A1 (ja)
TW (1) TW582056B (ja)
WO (1) WO2003003429A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077007A3 (de) * 2002-03-12 2004-04-08 Zeiss Carl Smt Ag Objektiv mit kristall-linsen
US6917458B2 (en) 2001-06-01 2005-07-12 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US6958864B2 (en) 2002-08-22 2005-10-25 Asml Netherlands B.V. Structures and methods for reducing polarization aberration in integrated circuit fabrication systems
US6970232B2 (en) 2001-10-30 2005-11-29 Asml Netherlands B.V. Structures and methods for reducing aberration in integrated circuit fabrication systems
US6995908B2 (en) 2001-10-30 2006-02-07 Asml Netherlands B.V. Methods for reducing aberration in optical systems
US7126765B2 (en) 2001-05-15 2006-10-24 Carl Zeiss Smt Ag Objective with fluoride crystal lenses
US7170585B2 (en) 2001-05-15 2007-01-30 Carl Zeiss Smt Ag Projection lens and microlithographic projection exposure apparatus
US7292388B2 (en) 2002-05-08 2007-11-06 Carl Zeiss Smt Ag Lens made of a crystalline material
US7453641B2 (en) 2001-10-30 2008-11-18 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems
JP2009507366A (ja) * 2005-09-03 2009-02-19 カール・ツァイス・エスエムティー・アーゲー マイクロリソグラフィック投影露光装置
JP2010097986A (ja) * 2008-10-14 2010-04-30 Nikon Corp 投影光学系、露光装置、及びデバイス製造方法
JP2010192914A (ja) * 2003-10-28 2010-09-02 Nikon Corp 照明光学装置及び投影露光装置
JP2012185503A (ja) * 2009-08-13 2012-09-27 Carl Zeiss Smt Gmbh 反射屈折投影対物系
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107060A (ja) * 1994-10-06 1996-04-23 Nikon Corp 光リソグラフィー用光学部材及び投影光学系
US5668672A (en) * 1994-12-16 1997-09-16 Nikon Corporation Catadioptric system and exposure apparatus having the same
US5861997A (en) * 1994-08-23 1999-01-19 Nikon Corporation Catadioptric reduction projection optical system and exposure apparatus having the same
JPH1154411A (ja) * 1997-07-29 1999-02-26 Canon Inc 投影光学系及びそれを用いた投影露光装置
WO2000041226A1 (fr) * 1999-01-06 2000-07-13 Nikon Corporation Systeme optique de projection, procede de fabrication associe et appareil d'exposition par projection utilisant ce systeme
WO2000064826A1 (fr) * 1999-04-21 2000-11-02 Nikon Corporation Element en verre de silice, procede de production et aligneur de projection l'utilisant
WO2000067303A1 (fr) * 1999-04-28 2000-11-09 Nikon Corporation Procede et appareil d'exposition
JP2000331927A (ja) * 1999-03-12 2000-11-30 Canon Inc 投影光学系及びそれを用いた投影露光装置
JP2002151397A (ja) * 2000-11-15 2002-05-24 Nikon Corp 投影光学系、露光装置及び露光方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861997A (en) * 1994-08-23 1999-01-19 Nikon Corporation Catadioptric reduction projection optical system and exposure apparatus having the same
JPH08107060A (ja) * 1994-10-06 1996-04-23 Nikon Corp 光リソグラフィー用光学部材及び投影光学系
US5668672A (en) * 1994-12-16 1997-09-16 Nikon Corporation Catadioptric system and exposure apparatus having the same
JPH1154411A (ja) * 1997-07-29 1999-02-26 Canon Inc 投影光学系及びそれを用いた投影露光装置
WO2000041226A1 (fr) * 1999-01-06 2000-07-13 Nikon Corporation Systeme optique de projection, procede de fabrication associe et appareil d'exposition par projection utilisant ce systeme
JP2000331927A (ja) * 1999-03-12 2000-11-30 Canon Inc 投影光学系及びそれを用いた投影露光装置
WO2000064826A1 (fr) * 1999-04-21 2000-11-02 Nikon Corporation Element en verre de silice, procede de production et aligneur de projection l'utilisant
WO2000067303A1 (fr) * 1999-04-28 2000-11-09 Nikon Corporation Procede et appareil d'exposition
JP2002151397A (ja) * 2000-11-15 2002-05-24 Nikon Corp 投影光学系、露光装置及び露光方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BURNETT JOHN H. ET AL.: "Intrinsic birefringence in calcium fluoride and barium fluoride", PHYSICAL REVIEW B, vol. 64, 29 November 2002 (2002-11-29), XP001098828 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126765B2 (en) 2001-05-15 2006-10-24 Carl Zeiss Smt Ag Objective with fluoride crystal lenses
US7180667B2 (en) 2001-05-15 2007-02-20 Carl Zeiss Smt Ag Objective with fluoride crystal lenses
US7170585B2 (en) 2001-05-15 2007-01-30 Carl Zeiss Smt Ag Projection lens and microlithographic projection exposure apparatus
US7075696B2 (en) 2001-06-01 2006-07-11 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US7009769B2 (en) 2001-06-01 2006-03-07 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US6947192B2 (en) 2001-06-01 2005-09-20 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US6917458B2 (en) 2001-06-01 2005-07-12 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US7453641B2 (en) 2001-10-30 2008-11-18 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems
US6995908B2 (en) 2001-10-30 2006-02-07 Asml Netherlands B.V. Methods for reducing aberration in optical systems
US6970232B2 (en) 2001-10-30 2005-11-29 Asml Netherlands B.V. Structures and methods for reducing aberration in integrated circuit fabrication systems
US7738172B2 (en) 2001-10-30 2010-06-15 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems
WO2003077007A3 (de) * 2002-03-12 2004-04-08 Zeiss Carl Smt Ag Objektiv mit kristall-linsen
US7672044B2 (en) 2002-05-08 2010-03-02 Carl Zeiss Smt Ag Lens made of a crystalline material
US7292388B2 (en) 2002-05-08 2007-11-06 Carl Zeiss Smt Ag Lens made of a crystalline material
US7072102B2 (en) 2002-08-22 2006-07-04 Asml Netherlands B.V. Methods for reducing polarization aberration in optical systems
US6958864B2 (en) 2002-08-22 2005-10-25 Asml Netherlands B.V. Structures and methods for reducing polarization aberration in integrated circuit fabrication systems
US7075720B2 (en) 2002-08-22 2006-07-11 Asml Netherlands B.V. Structures and methods for reducing polarization aberration in optical systems
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
JP2013191858A (ja) * 2003-10-28 2013-09-26 Nikon Corp 照明光学装置及び投影露光装置
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2010192914A (ja) * 2003-10-28 2010-09-02 Nikon Corp 照明光学装置及び投影露光装置
JP2013211558A (ja) * 2003-10-28 2013-10-10 Nikon Corp 照明光学装置及び投影露光装置
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2011211230A (ja) * 2003-10-28 2011-10-20 Nikon Corp 照明光学装置及び投影露光装置
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2009507366A (ja) * 2005-09-03 2009-02-19 カール・ツァイス・エスエムティー・アーゲー マイクロリソグラフィック投影露光装置
JP2010097986A (ja) * 2008-10-14 2010-04-30 Nikon Corp 投影光学系、露光装置、及びデバイス製造方法
US8873137B2 (en) 2009-08-13 2014-10-28 Carl Zeiss Smt Gmbh Catadioptric projection objective
US10042146B2 (en) 2009-08-13 2018-08-07 Carl Zeiss Smt Gmbh Catadioptric projection objective
US9279969B2 (en) 2009-08-13 2016-03-08 Carl Zeiss Smt Gmbh Catadioptric projection objective
US9726870B2 (en) 2009-08-13 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective
JP2012185503A (ja) * 2009-08-13 2012-09-27 Carl Zeiss Smt Gmbh 反射屈折投影対物系

Also Published As

Publication number Publication date
JPWO2003003429A1 (ja) 2004-10-21
TW582056B (en) 2004-04-01

Similar Documents

Publication Publication Date Title
US6831731B2 (en) Projection optical system and an exposure apparatus with the projection optical system
JP4333078B2 (ja) 投影光学系、該投影光学系を備えた露光装置および該投影光学系を用いた露光方法並びにデバイス製造方法
JP2002277742A (ja) 反射屈折光学系および該光学系を備えた露光装置
WO2003003429A1 (fr) Systeme de projection optique, systeme d&#39;exposition et procede
TW200305786A (en) Projection system, exposure device and espousing method
JP2004205698A (ja) 投影光学系、露光装置および露光方法
WO2003046634A1 (fr) Systeme optique de projection, dispositif d&#39;exposition et procede d&#39;exposition
JP2004333761A (ja) 反射屈折型の投影光学系、露光装置、および露光方法
WO2003088330A1 (fr) Systeme optique de projection, systeme d&#39;exposition et procede d&#39;exposition
WO2004097911A1 (ja) 投影光学系、露光装置、および露光方法
JPWO2003036361A1 (ja) 投影光学系および該投影光学系を備えた露光装置
JP2002372668A (ja) 反射屈折光学系および該光学系を備えた露光装置
JPWO2007086220A1 (ja) 反射屈折結像光学系、露光装置、およびデバイスの製造方法
WO2002097508A1 (fr) Systeme optique et systeme d&#39;exposition equipe du systeme optique
JP4706171B2 (ja) 反射屈折投影光学系、露光装置及び露光方法
JP2005115127A (ja) 反射屈折投影光学系、露光装置及び露光方法
JP2002072080A (ja) 投影光学系および該投影光学系を備えた露光装置
US7474380B2 (en) Projection optical system, exposure apparatus, and device fabrication method
WO2003001271A1 (fr) Systeme optique et systeme d&#39;exposition equipe dudit systeme optique
JP2004354555A (ja) 反射屈折型の投影光学系、露光装置および露光方法
JP5786919B2 (ja) 投影光学系、露光装置及び露光方法
JP2004004415A (ja) 投影光学系、露光装置および露光方法
JP2011049571A (ja) 反射屈折投影光学系、露光装置及び露光方法
JP2018010303A (ja) 露光装置およびデバイス製造方法
JP2019091057A (ja) 露光装置及びデバイス製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003509511

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

ENP Entry into the national phase

Ref document number: 2004109913

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase