WO2003001701A2 - System and method for power control calibration in a wireless communication device - Google Patents

System and method for power control calibration in a wireless communication device Download PDF

Info

Publication number
WO2003001701A2
WO2003001701A2 PCT/US2002/020377 US0220377W WO03001701A2 WO 2003001701 A2 WO2003001701 A2 WO 2003001701A2 US 0220377 W US0220377 W US 0220377W WO 03001701 A2 WO03001701 A2 WO 03001701A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
receiver
gain
amplifier
transmit power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2002/020377
Other languages
English (en)
French (fr)
Other versions
WO2003001701A3 (en
Inventor
Kamal Sahota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to AU2002322339A priority Critical patent/AU2002322339A1/en
Priority to CA002451320A priority patent/CA2451320A1/en
Priority to JP2003507979A priority patent/JP4095020B2/ja
Priority to EP02756324A priority patent/EP1400033A2/en
Publication of WO2003001701A2 publication Critical patent/WO2003001701A2/en
Publication of WO2003001701A3 publication Critical patent/WO2003001701A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/52Transmission power control [TPC] using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/13Monitoring; Testing of transmitters for calibration of power amplifiers, e.g. gain or non-linearity

Definitions

  • the RF amplifier gain is controlled in incremental steps.
  • the system further comprises a transmit power control circuit to generate a step gain control signal, based on the error signal, to control the incremental gain steps of the RF amplifier.
  • FIG. 6 is a more detailed functional block diagram of a portion of the block diagram of FIG. 4.
  • FIG. 7 is a functional block diagram of another exemplary embodiment of the presently disclosed subject matter.
  • the presently disclosed subject matter is directed to a technique to control the transmit power and overcome the inherent nonlinearities of control voltage of a variable gain amplifier.
  • a dynamic feedback loop is provided that permits precise control of transmit power without the need for a linearizer.
  • FIG. 4 is a functional block diagram of one exemplary embodiment of the presently disclosed subject matter to control transmit power.
  • the presently disclosed subject matter is embodied in a system 100 that dynamically adjusts the transmit power using a feedback loop.
  • the system 100 includes a receiver portion 104 and a transmitter portion 106.
  • the antenna 12 is coupled to the transmitter portion 104 and the receiver portion 106 through a diplexer 108.
  • the diplexer 108 permits the receiver portion 104 and the transmitter portion 106 to share a common antenna ⁇ i.e., the antenna 12).
  • the diplexer 108 is a common device and need not be described in greater detail herein.
  • the receiver portion 104 includes certain elements that have previously been discussed in the functional block diagram of FIG. 1. ' However, for the sake of clarity, the receiver portion 104 in FIG. 4 only includes certain elements from FIG. 1. Specifically, the RSSI is provided to the linearizer 40. The output of the linearizer 40 is coupled to the DAC 42 which, in turn, generates the control voltage V CONT . The control voltage V CONT controls the gain of the VGA 18.
  • the output of the linearizer 40 is provided to the transmitter portion 106.
  • the transmitter portion 106 is implemented using two different gain control factors.
  • the first gain control factor sometimes referred to as an open-loop gain control simply sets the gain of the transmitter at a predetermined level relative to the received signal level. This factor is sometimes referred to in the industry as a "turn- around constant.”
  • the transmit power is the received power plus the turn-around constant.
  • the turn-around constant is determined by industry standards and can vary based on the particular type of wireless technology.
  • the turn-around constant for cellular telephones is set by industry standard to be +73 dB. That is, the transmit power is set to 73 dB above the power of the received signal.
  • PCS personal communication systems
  • the presently disclosed subject matter is not limited by the particular level for the turn-around constant.
  • the system 100 includes a closed-loop power control. While open-loop power control depends only upon the industry standard ⁇ i.e., the turn-around constant) and the received signal strength ⁇ i.e., RSSI), closed-loop power control is based solely on commands from a base station transceiver system (BTS) (not shown).
  • BTS base station transceiver system
  • the BTS sends commands to the mobile unit ⁇ i.e., the system 100) to increase or decrease transmit power.
  • the BTS sends a command to increase the transmit power when the error rate of data received by the BTS is unacceptably high. Conversely, if the error rate is low, the BTS may send a command to the system 100 to decrease the transmit power.
  • FIG. 4 illustrates a transmit power reference 114, which represents both the open-loop power control signal ⁇ i.e., the turn-around constant) and the closed-loop power control signals based on commands received from the BTS (not shown).
  • the output of the linearizer 40 which is indicative of the received signal strength, is provided as an input to a summer 110.
  • the transmit power reference 114 provides a signal corresponding to the selected turn-around constant, and may be an AC signal or a DC signal depending on the particular circuit implementation.
  • the signal input to the VGA 122 comes from transmitter circuitry that, for the sake of clarity, is not illustrated in FIG. 4.
  • the transmitter circuitry which may typically include a microphone, vocoder, and transmitter modulator, operate in a conventional manner to provide an input signal that will actually be transmitted by the system 100.
  • the output of the RF power amplifier 124 is also provided as an input to the transmit power processor 116.
  • the transmit power processor 116 generates signals indicative of the actual transmit power and provides that indicator as negative feedback to the transmitter power control circuit 120.
  • the transmitter portion 106 includes dynamic power adjustments that are extremely accurate and which eliminates the linearization process required in conventional wireless systems.
  • the output of the adder 118 (see FIG. 4) is coupled as an input to the transmit power control circuit 120.
  • the signal from the adder 118 includes the desired transmit power signal and the negative feedback signal.
  • the signal from the adder 118 which is essentially an error signal, is provided to an integrator 144.
  • the integrator 144 averages out the error signal and also controls the response time of the feedback loop. As those skilled in the art can appreciate, a longer integration time for the integrator 144 results in slower response time for the feedback loop.
  • the actual selection of the integrator time is a matter of design choice that is within the knowledge of one skilled in the art based on the present disclosure.
  • the step gain control 148 may increase the transmit power of the RF power amplifier 124 to, by way of example, +20 dBm.
  • the output of the DAC 146 is adjusted correspondingly to provide any additional gain that is required beyond the gain of the power amplifier 124.
  • VGA 122 may be implemented as a series of amplifier gain stages that are coupled in series and controlled by the signal generated by the transmit power control circuit 120.
  • the two stages of amplification illustrated in FIG. 4 and controlled by the DAC 146 and step gain control 148, respectively, may be combined into a single amplification stage.
  • the step gain control 148 may use a different step size or a different number of gain steps. The actual step size may be based on the dynamic range of the DAC 146.
  • the presently disclosed subject matter is not limited by the specific architecture of the variable gain amplifier 122, RF power amplifier 124, and the specific control signals associated therewith.
  • the circuit of FIG. 4 provides a dynamic feedback loop that completely eliminates the need for linearization in the transmitter of a wireless device.
  • This approach eliminates a large number of calibration steps that must be performed on each wireless device during the manufacturing process.
  • the system 100 greatly increases productivity of the manufacturing process and may reduce the overall costs of the wireless device since costly and time-consuming calibration steps have been eliminated.
  • the transmitter portion 106 has a linearizer, but utilizes the calibrated receiver portion 104 to eliminate the need for external test equipment that would otherwise be required for calibration of the transmitter portion of the wireless device.
  • the un-calibrated output of the transmitter portion 106 is coupled to the calibrated receiver portion 104 so that the receiver portion can be used to accurately measure the actual transmitted power levels and allow linearization of the transmitter portion.
  • FIG. 7 This embodiment is illustrated in the functional block diagram of FIG. 7.
  • the demodulator 19 of FIG. 1 includes components, such as mixers 20 and 22, low-pass filters 24 and 26, and the like.
  • those components are illustrated in the functional block diagram of FIG. 7 as the demodulator 19.
  • the AGC 31, which comprises a number of components illustrated in FIG. 1, are merely shown in block diagram form as the AGC 31.
  • FIG. 7 illustrates additional components in the transmitter portion 106 that are not illustrated in the functional block diagram of FIG. 4.
  • FIG. 7 illustrates a mixer 160 and local oscillators 162 that modulate data, such as voice data from a vocoder circuit (not shown) to generate the desired radio frequencies.
  • the output of the mixer 160 is coupled to the VGA 122 whose output is coupled, in turn, to the RF power amplifier 124.
  • the output of the RF power amplifier 124 is coupled to the diplexer 108 via the isolator 126, as described above.
  • the system 100 of FIG. 7 includes a second mixer 164 coupled to the output of the variable gain amplifier 122 and the local oscillators 162.
  • the mixer 164 shifts the frequency of the transmitted output signal to IF frequencies compatible with the receiver portion 104.
  • a typical wireless communication device includes a single master oscillator from which the various local oscillator frequencies are derived.
  • the transmitter and receiver operate at different frequencies that are offset by a predetermined amount that is set by industry standards. For example, in a cellular telephone operation, the transmitter and receiver are offset by 45 MHz.
  • the circuitry used to derive the local oscillator frequencies to produce the desired offset is known in the art and need not be described herein.
  • the local oscillators 162 provide the necessary frequencies to the mixers 160 and 164, respectively.
  • the local oscillators 162 provide one frequency to the mixer 160 for the transmitter portion 106 and provide a second frequency to the mixer 164 to convert the transmitted signal to the receiver IF frequency.
  • the output of the mixer 164 is coupled through a band pass filter 168 to a VGA 170.
  • the band pass filter 168 operates in a conventional manner as an IF filter. It should be noted that the output of the band pass filter 168 is coupled to the input of the VGA 170 via a switch 172, such as an electronic switch.
  • the operation of the switch 172 which functions as a coupling circuit to couple the transmitter portion 106 to the receiver portion 104, will be described in greater detail below.
  • the output of the VGA 170 and the VGA 18 are combined by a summer 176.
  • the system 100 utilizes the calibration of the receiver portion 104 to calibrate the transmitter portion 106.
  • the calibration of the receiver portion 104 is performed in a manner known in the art and described above.
  • the switch 172 is deactivated so that no output from the band pass filter 168 is provided to the VGA 170.
  • the switch 172 is activated such that the signal from the band pass filter 168 is now provided as an input to the VGA 170.
  • the transmitter portion 106 is calibrated during the manufacturing process in the following manner.
  • Control signals set the gain of the VGA 122 at the predetermined transmit power level.
  • the signal from the output of the VGA 122 is mixed with the local oscillator signal 162 by the mixer 164 to produce an output signal compatible with the frequencies of the receiver portion 104.
  • the output of the mixer 164 is provided to the VGA 170 via the band pass filter 168 and the switch 172.
  • the system 100 utilizes the previously calibrated receiver portion 104 to accurately determine the received signal level, which is proportional to the transmitted power level from the VGA 122. If the transmitted signal level is greater than or less than the desired transmitted power level, the error is detected by the calibrated receiver circuitry and the deviation is stored in the form of interim results 180. The interim results the process may be repeated for numerous transmitter gain steps and different transmitter frequencies. In addition, calibration processes may be performed for different power supply levels and different temperature settings to provide an accurate characterization of the transmitter portion 106.
  • the interim results 180 are used to generate a transmitter linearizer 182.
  • the interium results 180 indicate an error difference between the desired transmit power level and the actual transmit power level. These interium data results are used to create the transmitter linearizer 182 and effectively determine the actual gain control curve for the VGA 122.
  • the transmitter linearizer 182 operates in a manner similar to that described above with respect to that described above with respect to the receiver linearizer 40. That is, the transmitter linearizer 182 breaks the variable gain curve for the VGA 122 into a plurality of piece-wise linear portions that describe the actual gain characteristics and provide sufficient gain resolution. Whenever the system 100 calls for a particular gain setting for the transmitter portion 102, the transmitter linearizer 182 is used to select the actual control voltage for the variable gain amplifier 122. It should be noted that the switch 172 is deactivated during normal operation of the wireless device. In the deactivated position, the switch 172 provides a desired degree of isolation between the receiver portion 104 and the transmitter portion 106.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Control Of Amplification And Gain Control (AREA)
PCT/US2002/020377 2001-06-26 2002-06-25 System and method for power control calibration in a wireless communication device Ceased WO2003001701A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2002322339A AU2002322339A1 (en) 2001-06-26 2002-06-25 System and method for power control calibration in a wireless communication device
CA002451320A CA2451320A1 (en) 2001-06-26 2002-06-25 System and method for power control calibration in a wireless communication device
JP2003507979A JP4095020B2 (ja) 2001-06-26 2002-06-25 無線通信装置における電力制御の較正のためのシステムおよび方法
EP02756324A EP1400033A2 (en) 2001-06-26 2002-06-25 System and method for power control calibration in a wireless communication device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30118401P 2001-06-26 2001-06-26
US60/301,184 2001-06-26
US10/177,057 US6819938B2 (en) 2001-06-26 2002-06-20 System and method for power control calibration and a wireless communication device
US10/177,057 2002-06-20

Publications (2)

Publication Number Publication Date
WO2003001701A2 true WO2003001701A2 (en) 2003-01-03
WO2003001701A3 WO2003001701A3 (en) 2003-03-27

Family

ID=26872885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/020377 Ceased WO2003001701A2 (en) 2001-06-26 2002-06-25 System and method for power control calibration in a wireless communication device

Country Status (7)

Country Link
US (3) US6819938B2 (cg-RX-API-DMAC7.html)
EP (1) EP1400033A2 (cg-RX-API-DMAC7.html)
JP (1) JP4095020B2 (cg-RX-API-DMAC7.html)
AU (1) AU2002322339A1 (cg-RX-API-DMAC7.html)
CA (1) CA2451320A1 (cg-RX-API-DMAC7.html)
RU (1) RU2297714C2 (cg-RX-API-DMAC7.html)
WO (1) WO2003001701A2 (cg-RX-API-DMAC7.html)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211845A (ja) * 2008-05-20 2008-09-11 Sony Corp 通信装置
US7496375B2 (en) 2004-02-12 2009-02-24 Panasonic Corporation Transmission power control device
WO2012008933A1 (en) 2010-07-15 2012-01-19 Novaplast Plastik Sanayi Ve Ticaret A.S (polypropylene) plastic pipe welding machine with special safety ring and a welding adaptor with special safety ring
US8265581B2 (en) 2008-12-16 2012-09-11 Electronics And Telecommunications Research Institute Transceiver using millimeter-wave
US8812048B2 (en) 2007-03-07 2014-08-19 Interdigital Technology Corporation Combined open loop/closed loop method for controlling uplink power of a mobile station
US10070397B2 (en) 2006-10-03 2018-09-04 Interdigital Technology Corporation Combined open loop/closed loop (CQI-based) uplink transmit power control with interference mitigation for E-UTRA
WO2020019876A1 (zh) * 2018-07-23 2020-01-30 Oppo广东移动通信有限公司 射频系统、天线切换控制方法及相关产品
CN111183601A (zh) * 2017-07-01 2020-05-19 艾锐势有限责任公司 分布式系统中的天线参数控制

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819938B2 (en) * 2001-06-26 2004-11-16 Qualcomm Incorporated System and method for power control calibration and a wireless communication device
US6804502B2 (en) * 2001-10-10 2004-10-12 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals
US7796969B2 (en) * 2001-10-10 2010-09-14 Peregrine Semiconductor Corporation Symmetrically and asymmetrically stacked transistor group RF switch
US7120401B2 (en) * 2001-10-12 2006-10-10 Kyocera Wireless Corp. System and method for controlling transmitter output levels in a wireless communications device
US6819910B2 (en) * 2002-03-08 2004-11-16 Broadcom Corp. Radio employing a self calibrating transmitter with reuse of receiver circuitry
US7079818B2 (en) * 2002-02-12 2006-07-18 Broadcom Corporation Programmable mutlistage amplifier and radio applications thereof
US7218905B1 (en) * 2002-06-14 2007-05-15 Skyworks Solutions, Inc. Gain compensation
US20040198261A1 (en) * 2002-06-28 2004-10-07 Wei Xiong Method of self-calibration in a wireless transmitter
US7248625B2 (en) * 2002-09-05 2007-07-24 Silicon Storage Technology, Inc. Compensation of I-Q imbalance in digital transceivers
KR20040033917A (ko) * 2002-10-16 2004-04-28 엘지전자 주식회사 휴대단말기의 출력전력 제어장치 및 그 운용방법
US8428181B2 (en) 2002-12-02 2013-04-23 Research In Motion Limited Method and apparatus for optimizing transmitter power efficiency
JP3970177B2 (ja) * 2002-12-26 2007-09-05 パナソニック モバイルコミュニケーションズ株式会社 無線通信装置
US7010330B1 (en) 2003-03-01 2006-03-07 Theta Microelectronics, Inc. Power dissipation reduction in wireless transceivers
US7236745B2 (en) * 2003-03-05 2007-06-26 Harris Stratex Networks Operating Corporation Transceiver power detection architecture
US7809393B2 (en) * 2003-05-09 2010-10-05 Nxp B.V. Method and arrangement for setting the transmission of a mobile communication device
US7761067B1 (en) 2003-05-15 2010-07-20 Marvell International Ltd. Iterative filter circuit calibration
US8461842B2 (en) 2003-07-18 2013-06-11 Mks Instruments, Inc. Methods and systems for stabilizing an amplifier
US7075366B2 (en) * 2003-07-18 2006-07-11 Mks Instruments, Inc. Methods and systems for stabilizing an amplifier
US7639015B2 (en) * 2003-07-18 2009-12-29 Mks Instruments, Inc. Methods and systems for stabilizing an amplifier
US7719343B2 (en) * 2003-09-08 2010-05-18 Peregrine Semiconductor Corporation Low noise charge pump method and apparatus
US7808944B2 (en) * 2003-11-21 2010-10-05 Interdigital Technology Corporation Wireless communication method and apparatus for controlling the transmission power of downlink and uplink coded composite transport channels based on discontinuous transmission state values
DE10361651B4 (de) * 2003-12-30 2013-12-05 Intel Mobile Communications GmbH Verfahren zum Kalibrieren einer Verstärkeranordnung
US7248890B1 (en) * 2004-02-06 2007-07-24 Vativ Technologies, Inc. Channel power balancing in a multi-channel transceiver system
US7333563B2 (en) * 2004-02-20 2008-02-19 Research In Motion Limited Method and apparatus for improving power amplifier efficiency in wireless communication systems having high peak to average power ratios
JP4336968B2 (ja) * 2004-02-20 2009-09-30 日本電気株式会社 移動体通信機器および送信電力制御方法
US7248120B2 (en) * 2004-06-23 2007-07-24 Peregrine Semiconductor Corporation Stacked transistor method and apparatus
EP1774620B1 (en) 2004-06-23 2014-10-01 Peregrine Semiconductor Corporation Integrated rf front end
KR101050625B1 (ko) * 2004-11-24 2011-07-19 삼성전자주식회사 무선 송수신기의 cm 노이즈 제거방법 및 장치
US7515884B2 (en) * 2005-03-02 2009-04-07 Cisco Technology, Inc. Method and system for self-calibrating transmit power
US7910993B2 (en) 2005-07-11 2011-03-22 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFET's using an accumulated charge sink
US20080076371A1 (en) * 2005-07-11 2008-03-27 Alexander Dribinsky Circuit and method for controlling charge injection in radio frequency switches
US7890891B2 (en) 2005-07-11 2011-02-15 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US9653601B2 (en) 2005-07-11 2017-05-16 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US8742502B2 (en) 2005-07-11 2014-06-03 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
USRE48965E1 (en) 2005-07-11 2022-03-08 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US7826864B2 (en) * 2005-09-09 2010-11-02 M-Stack Limited Apparatus and method for power measurement summation in mobile telecommunications system user equipment
US7623886B2 (en) * 2005-12-14 2009-11-24 NDSSI Holdings, LLC Method and apparatus for transmitter calibration
US8226003B2 (en) 2006-04-27 2012-07-24 Sirit Inc. Adjusting parameters associated with leakage signals
EP2027651B1 (en) 2006-06-14 2012-12-05 Research In Motion Limited Improved control of switcher regulated power amplifier modules
US8761305B2 (en) 2006-06-14 2014-06-24 Blackberry Limited Input drive control for switcher regulated power amplifier modules
WO2007143843A1 (en) * 2006-06-14 2007-12-21 Research In Motion Limited Input drive control for switcher regulated power amplifier modules
US7620373B2 (en) * 2006-06-23 2009-11-17 Sierra Monolithics, Inc. Apparatus and method for calibration of gain and/or phase imbalance and/or DC offset in a communication system
US7609781B2 (en) 2006-06-30 2009-10-27 St-Ericsson Sa Wireless communication device with self calibration feature for controlling power output
US20080169951A1 (en) * 2007-01-17 2008-07-17 Stmicroelectronics, Inc. Direct digital synthesis of transmitter gain and bias control curves
CN201167319Y (zh) * 2007-03-07 2008-12-17 美商内数位科技公司 用于控制移动站上行链路功率的无线发射接收单元
US7960772B2 (en) * 2007-04-26 2011-06-14 Peregrine Semiconductor Corporation Tuning capacitance to enhance FET stack voltage withstand
RU2394369C2 (ru) * 2007-05-02 2010-07-10 Александр Леонидович Куликов Способ широкополосной модуляции и передачи данных по электросети и устройство для его реализации
US8248212B2 (en) 2007-05-24 2012-08-21 Sirit Inc. Pipelining processes in a RF reader
JP5224733B2 (ja) 2007-06-19 2013-07-03 株式会社エヌ・ティ・ティ・ドコモ 基地局装置およびユーザ装置
EP2007167A3 (en) * 2007-06-21 2013-01-23 Funai Electric Advanced Applied Technology Research Institute Inc. Voice input-output device and communication device
US8140102B2 (en) 2007-08-14 2012-03-20 Motorola Mobility, Inc. Method and apparatus for transmit power calibration in a frequency division multiplexed wireless system
US8145127B2 (en) 2007-08-14 2012-03-27 Motorola Mobility, Inc. Method and apparatus for transmit power calibration in a frequency division multiplexed wireless system
US8224607B2 (en) * 2007-08-30 2012-07-17 Applied Materials, Inc. Method and apparatus for robot calibrations with a calibrating device
US8260461B2 (en) * 2007-08-30 2012-09-04 Applied Materials, Inc. Method and system for robot calibrations with a camera
FI20085158A0 (fi) * 2008-02-21 2008-02-21 Nokia Corp Laite ja menetelmä
US9024700B2 (en) 2008-02-28 2015-05-05 Peregrine Semiconductor Corporation Method and apparatus for use in digitally tuning a capacitor in an integrated circuit device
US8427316B2 (en) 2008-03-20 2013-04-23 3M Innovative Properties Company Detecting tampered with radio frequency identification tags
US8255009B2 (en) * 2008-04-25 2012-08-28 Apple Inc. Radio frequency communications circuitry with power supply voltage and gain control
US8446256B2 (en) 2008-05-19 2013-05-21 Sirit Technologies Inc. Multiplexing radio frequency signals
US8903374B2 (en) * 2008-05-28 2014-12-02 Apple Inc. System for calibrating wireless communications devices
US8165838B2 (en) * 2008-06-02 2012-04-24 Lumenis Ltd. Laser system calibration
US20100004016A1 (en) * 2008-07-07 2010-01-07 Hujun Yin Power control techniques
US9660590B2 (en) 2008-07-18 2017-05-23 Peregrine Semiconductor Corporation Low-noise high efficiency bias generation circuits and method
US9030248B2 (en) * 2008-07-18 2015-05-12 Peregrine Semiconductor Corporation Level shifter with output spike reduction
EP2346169A3 (en) 2008-07-18 2013-11-20 Peregrine Semiconductor Corporation Low-noise high efficiency bias generation circuits and method
US8463193B2 (en) * 2008-08-26 2013-06-11 Freescale Semiconductor, Inc. Calibration apparatus and method of calibrating a communications terminal
US8218493B2 (en) * 2008-09-08 2012-07-10 Wisconsin Alumni Research Foundation System and method for interference mitigation in wireless networks
US8315581B2 (en) * 2008-09-18 2012-11-20 Intel Mobile Communications GmbH Transmitter with hybrid closed loop power control
JP5255986B2 (ja) * 2008-10-20 2013-08-07 株式会社日立ハイテクノロジーズ パターンドメディアの検査方法及び検査装置
US8331883B2 (en) * 2008-10-30 2012-12-11 Apple Inc. Electronic devices with calibrated radio frequency communications circuitry
US20100113011A1 (en) * 2008-11-06 2010-05-06 Justin Gregg Wireless electronic device testing system
US8116703B2 (en) * 2008-12-08 2012-02-14 Apple Inc. Wireless transmitter calibration using device receiver
US8169312B2 (en) 2009-01-09 2012-05-01 Sirit Inc. Determining speeds of radio frequency tags
US8723260B1 (en) 2009-03-12 2014-05-13 Rf Micro Devices, Inc. Semiconductor radio frequency switch with body contact
US8165642B2 (en) * 2009-05-13 2012-04-24 Apple Inc. Electronic device with data-rate-dependent power amplifier bias
US8416079B2 (en) 2009-06-02 2013-04-09 3M Innovative Properties Company Switching radio frequency identification (RFID) tags
US9112452B1 (en) 2009-07-14 2015-08-18 Rf Micro Devices, Inc. High-efficiency power supply for a modulated load
US8437793B2 (en) * 2009-11-24 2013-05-07 Apple Inc. Wireless transmitter calibration using absolute power requests
US9431974B2 (en) 2010-04-19 2016-08-30 Qorvo Us, Inc. Pseudo-envelope following feedback delay compensation
US8633766B2 (en) 2010-04-19 2014-01-21 Rf Micro Devices, Inc. Pseudo-envelope follower power management system with high frequency ripple current compensation
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US8981848B2 (en) 2010-04-19 2015-03-17 Rf Micro Devices, Inc. Programmable delay circuitry
EP3376667B1 (en) 2010-04-19 2021-07-28 Qorvo US, Inc. Pseudo-envelope following power management system
US8519788B2 (en) 2010-04-19 2013-08-27 Rf Micro Devices, Inc. Boost charge-pump with fractional ratio and offset loop for supply modulation
US8866549B2 (en) 2010-06-01 2014-10-21 Rf Micro Devices, Inc. Method of power amplifier calibration
US8823493B2 (en) * 2010-06-11 2014-09-02 Intelleflex Corporation Devices employing modulator switching and methods thereof
US8620238B2 (en) 2010-07-23 2013-12-31 Blackberry Limited Method of power amplifier switching power control using post power amplifier power detection
US8571498B2 (en) 2010-08-25 2013-10-29 Rf Micro Devices, Inc. Multi-mode/multi-band power management system
US8913970B2 (en) 2010-09-21 2014-12-16 Apple Inc. Wireless transceiver with amplifier bias adjusted based on modulation scheme
US9954436B2 (en) 2010-09-29 2018-04-24 Qorvo Us, Inc. Single μC-buckboost converter with multiple regulated supply outputs
US8738066B2 (en) 2010-10-07 2014-05-27 Apple Inc. Wireless transceiver with amplifier bias adjusted based on modulation scheme and transmit power feedback
WO2012068260A1 (en) 2010-11-16 2012-05-24 Rf Micro Devices, Inc. Digital gain multiplier for envelop tracking systems and corresponding method
US8571497B1 (en) 2010-11-19 2013-10-29 Marvell International Ltd. Closed-loop power control in conjunction with adaptive power amplifier linearization
US8565806B2 (en) 2010-12-12 2013-10-22 St-Ericsson Sa Real time transmission power control
US8588713B2 (en) 2011-01-10 2013-11-19 Rf Micro Devices, Inc. Power management system for multi-carriers transmitter
US8686787B2 (en) 2011-05-11 2014-04-01 Peregrine Semiconductor Corporation High voltage ring pump with inverter stages and voltage boosting stages
US9264053B2 (en) 2011-01-18 2016-02-16 Peregrine Semiconductor Corporation Variable frequency charge pump
WO2012106437A1 (en) 2011-02-02 2012-08-09 Rf Micro Devices, Inc. Fast envelope system calibration
CN103444076B (zh) 2011-02-07 2016-05-04 射频小型装置公司 用于功率放大器包络跟踪的群延迟校准方法
US8624760B2 (en) 2011-02-07 2014-01-07 Rf Micro Devices, Inc. Apparatuses and methods for rate conversion and fractional delay calculation using a coefficient look up table
US9379826B2 (en) 2011-03-30 2016-06-28 Intel Deutschland Gmbh Calibration of a transmitter with internal power measurement
US9247496B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power loop control based envelope tracking
US9246460B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
US9379667B2 (en) 2011-05-05 2016-06-28 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
WO2012166992A1 (en) 2011-05-31 2012-12-06 Rf Micro Devices, Inc. Rugged iq receiver based rf gain measurements
US9019011B2 (en) 2011-06-01 2015-04-28 Rf Micro Devices, Inc. Method of power amplifier calibration for an envelope tracking system
US8760228B2 (en) 2011-06-24 2014-06-24 Rf Micro Devices, Inc. Differential power management and power amplifier architecture
US8952710B2 (en) 2011-07-15 2015-02-10 Rf Micro Devices, Inc. Pulsed behavior modeling with steady state average conditions
US8626091B2 (en) 2011-07-15 2014-01-07 Rf Micro Devices, Inc. Envelope tracking with variable compression
WO2013012787A2 (en) 2011-07-15 2013-01-24 Rf Micro Devices, Inc. Modified switching ripple for envelope tracking system
US9263996B2 (en) 2011-07-20 2016-02-16 Rf Micro Devices, Inc. Quasi iso-gain supply voltage function for envelope tracking systems
US8618868B2 (en) 2011-08-17 2013-12-31 Rf Micro Devices, Inc. Single charge-pump buck-boost for providing independent voltages
CN103858338B (zh) 2011-09-02 2016-09-07 射频小型装置公司 用于包络跟踪的分离vcc和共同vcc功率管理架构
US8957728B2 (en) 2011-10-06 2015-02-17 Rf Micro Devices, Inc. Combined filter and transconductance amplifier
CN103988406B (zh) 2011-10-26 2017-03-01 Qorvo美国公司 射频(rf)开关转换器以及使用rf开关转换器的rf放大装置
US9024688B2 (en) 2011-10-26 2015-05-05 Rf Micro Devices, Inc. Dual parallel amplifier based DC-DC converter
WO2013063387A2 (en) 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Inductance based parallel amplifier phase compensation
US9484797B2 (en) 2011-10-26 2016-11-01 Qorvo Us, Inc. RF switching converter with ripple correction
US8699972B2 (en) 2011-11-15 2014-04-15 Qualcomm Incorporated Transmit power calibration in a communication system
US9515621B2 (en) 2011-11-30 2016-12-06 Qorvo Us, Inc. Multimode RF amplifier system
US9250643B2 (en) 2011-11-30 2016-02-02 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US8975959B2 (en) 2011-11-30 2015-03-10 Rf Micro Devices, Inc. Monotonic conversion of RF power amplifier calibration data
US8947161B2 (en) 2011-12-01 2015-02-03 Rf Micro Devices, Inc. Linear amplifier power supply modulation for envelope tracking
US9256234B2 (en) 2011-12-01 2016-02-09 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US9041364B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. RF power converter
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
US9280163B2 (en) 2011-12-01 2016-03-08 Rf Micro Devices, Inc. Average power tracking controller
US9494962B2 (en) 2011-12-02 2016-11-15 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US9813036B2 (en) 2011-12-16 2017-11-07 Qorvo Us, Inc. Dynamic loadline power amplifier with baseband linearization
US9298198B2 (en) 2011-12-28 2016-03-29 Rf Micro Devices, Inc. Noise reduction for envelope tracking
RU2507674C2 (ru) * 2012-01-17 2014-02-20 Открытое акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский приборостроительный институт "Кварц" имени А.П. Горшкова" (ОАО "ФНПЦ "ННИПИ "Кварц" имени А.П. Горшкова") Способ повышения точности калибровки уровня выходного сигнала генераторов свч- и квч-диапазонов
US10062025B2 (en) 2012-03-09 2018-08-28 Neology, Inc. Switchable RFID tag
US8981839B2 (en) 2012-06-11 2015-03-17 Rf Micro Devices, Inc. Power source multiplexer
US8829967B2 (en) 2012-06-27 2014-09-09 Triquint Semiconductor, Inc. Body-contacted partially depleted silicon on insulator transistor
US9071300B2 (en) * 2012-07-23 2015-06-30 Wistron Neweb Corporation Signal transceiver with enhanced return loss in power-off state
WO2014018861A1 (en) 2012-07-26 2014-01-30 Rf Micro Devices, Inc. Programmable rf notch filter for envelope tracking
US8729952B2 (en) 2012-08-16 2014-05-20 Triquint Semiconductor, Inc. Switching device with non-negative biasing
US9225231B2 (en) 2012-09-14 2015-12-29 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a DC-DC converter
US9197256B2 (en) 2012-10-08 2015-11-24 Rf Micro Devices, Inc. Reducing effects of RF mixer-based artifact using pre-distortion of an envelope power supply signal
WO2014062902A1 (en) 2012-10-18 2014-04-24 Rf Micro Devices, Inc Transitioning from envelope tracking to average power tracking
US9185659B2 (en) * 2012-10-25 2015-11-10 Qualcomm Incorporated Two-dimensional transmit power compensation
US9559793B2 (en) 2012-10-25 2017-01-31 Microsoft Technology Licensing, Llc Wireless device test station calibration
US9627975B2 (en) 2012-11-16 2017-04-18 Qorvo Us, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
US9590674B2 (en) 2012-12-14 2017-03-07 Peregrine Semiconductor Corporation Semiconductor devices with switchable ground-body connection
US8847672B2 (en) 2013-01-15 2014-09-30 Triquint Semiconductor, Inc. Switching device with resistive divider
WO2014116933A2 (en) 2013-01-24 2014-07-31 Rf Micro Devices, Inc Communications based adjustments of an envelope tracking power supply
US9178472B2 (en) 2013-02-08 2015-11-03 Rf Micro Devices, Inc. Bi-directional power supply signal based linear amplifier
US9214932B2 (en) 2013-02-11 2015-12-15 Triquint Semiconductor, Inc. Body-biased switching device
US8923782B1 (en) 2013-02-20 2014-12-30 Triquint Semiconductor, Inc. Switching device with diode-biased field-effect transistor (FET)
US8977217B1 (en) 2013-02-20 2015-03-10 Triquint Semiconductor, Inc. Switching device with negative bias circuit
US9203396B1 (en) 2013-02-22 2015-12-01 Triquint Semiconductor, Inc. Radio frequency switch device with source-follower
WO2014152903A2 (en) 2013-03-14 2014-09-25 Rf Micro Devices, Inc Envelope tracking power supply voltage dynamic range reduction
WO2014152876A1 (en) 2013-03-14 2014-09-25 Rf Micro Devices, Inc Noise conversion gain limited rf power amplifier
US20150236798A1 (en) 2013-03-14 2015-08-20 Peregrine Semiconductor Corporation Methods for Increasing RF Throughput Via Usage of Tunable Filters
US9444417B2 (en) 2013-03-15 2016-09-13 Qorvo Us, Inc. Weakly coupled RF network based power amplifier architecture
US9294046B2 (en) 2013-03-15 2016-03-22 Rf Micro Devices (Cayman Islands), Ltd. RF power amplifier with PM feedback linearization
US9899133B2 (en) 2013-08-01 2018-02-20 Qorvo Us, Inc. Advanced 3D inductor structures with confined magnetic field
US12224096B2 (en) 2013-03-15 2025-02-11 Qorvo Us, Inc. Advanced 3D inductor structures with confined magnetic field
US9479118B2 (en) 2013-04-16 2016-10-25 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
US9214915B1 (en) 2013-06-12 2015-12-15 L-3 Communications Corp. Modifying an estimated gain profile of an amplifier
US9374005B2 (en) 2013-08-13 2016-06-21 Rf Micro Devices, Inc. Expanded range DC-DC converter
US9406695B2 (en) 2013-11-20 2016-08-02 Peregrine Semiconductor Corporation Circuit and method for improving ESD tolerance and switching speed
US9762271B2 (en) * 2014-01-03 2017-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Method for adjusting lo frequencies in receiver and associated receiver
US9379698B2 (en) 2014-02-04 2016-06-28 Triquint Semiconductor, Inc. Field effect transistor switching circuit
US9614476B2 (en) 2014-07-01 2017-04-04 Qorvo Us, Inc. Group delay calibration of RF envelope tracking
US9667312B2 (en) * 2015-01-13 2017-05-30 Hughes Network Systems, Llc Radio based automatic level control for linear radio calibration
US9831857B2 (en) 2015-03-11 2017-11-28 Peregrine Semiconductor Corporation Power splitter with programmable output phase shift
US9912297B2 (en) 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US9843294B2 (en) 2015-07-01 2017-12-12 Qorvo Us, Inc. Dual-mode envelope tracking power converter circuitry
KR101604477B1 (ko) * 2015-09-08 2016-03-25 엘아이지넥스원 주식회사 밀리미터파 탐색기 및 이의 수신 경로 오차 보정 방법
RU2619192C2 (ru) * 2015-10-22 2017-05-12 Публичное акционерное общество "Радиофизика" Способ управления усилителем мощности радиочастотного сигнала и приемо-передающий свч-модуль активной фазированной антенной решетки
DE102016108206B4 (de) * 2016-05-03 2020-09-10 Bury Sp.Z.O.O Schaltungsanordnung und Verfahren zur Dämpfungskompensation in einer Antennensignalverbindung
US9973147B2 (en) 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
US9948281B2 (en) 2016-09-02 2018-04-17 Peregrine Semiconductor Corporation Positive logic digitally tunable capacitor
US10128894B1 (en) * 2017-05-09 2018-11-13 Analog Devices Global Active antenna calibration
CN108880704B (zh) * 2017-05-15 2020-10-30 展讯通信(上海)有限公司 收发机iq不平衡的校准方法、装置、存储介质及终端
US10938491B2 (en) * 2017-10-30 2021-03-02 Sony Semiconductor Solutions Corporation Transmission/reception circuit, communication apparatus, and method of controlling transmission/reception circuit
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit
US10505530B2 (en) 2018-03-28 2019-12-10 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US10236872B1 (en) 2018-03-28 2019-03-19 Psemi Corporation AC coupling modules for bias ladders
US10886911B2 (en) 2018-03-28 2021-01-05 Psemi Corporation Stacked FET switch bias ladders
CN108988903B (zh) * 2018-07-23 2020-09-01 Oppo广东移动通信有限公司 射频系统及电子设备
CN110471013B (zh) * 2019-08-23 2022-01-11 武汉中科牛津波谱技术有限公司 一种核磁共振仪器的发射功率线性度校准系统及方法
US11431201B2 (en) 2019-09-16 2022-08-30 Analog Devices International Unlimited Company Techniques for improved wireless energy transmission efficiency
US11476849B2 (en) 2020-01-06 2022-10-18 Psemi Corporation High power positive logic switch
CN113950135B (zh) * 2020-06-30 2025-03-25 中兴通讯股份有限公司 发射功率控制方法、终端校准方法、终端、系统和存储介质
CN114915302B (zh) * 2021-02-09 2024-02-09 瑞昱半导体股份有限公司 用于发射机的增益控制电路及相关方法
CN113114284B (zh) * 2021-04-12 2023-01-06 维沃移动通信有限公司 射频电路的控制方法、控制装置和电子设备
JP7171952B1 (ja) 2022-02-16 2022-11-15 株式会社フジクラ 無線通信モジュールの出力調整方法、無線通信モジュールの製造方法および無線通信モジュールの出力調整装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523155A (en) * 1983-05-04 1985-06-11 Motorola, Inc. Temperature compensated automatic output control circuitry for RF signal power amplifiers with wide dynamic range
JPS63226124A (ja) * 1986-10-29 1988-09-20 Oki Electric Ind Co Ltd 無線装置用レベル制御回路
JP2637818B2 (ja) * 1989-03-20 1997-08-06 富士通株式会社 無線装置における送信パワー制御装置
US5126686A (en) * 1989-08-15 1992-06-30 Astec International, Ltd. RF amplifier system having multiple selectable power output levels
US5129098A (en) * 1990-09-24 1992-07-07 Novatel Communication Ltd. Radio telephone using received signal strength in controlling transmission power
US5222104A (en) * 1991-12-30 1993-06-22 Motorola, Inc. Gain control circuit for radio transmitter
JPH06196939A (ja) * 1992-12-25 1994-07-15 Sony Corp 高周波パワーアンプの歪み補償回路
JP2948054B2 (ja) * 1993-05-21 1999-09-13 アルプス電気株式会社 送受信機
US5371473A (en) * 1993-09-10 1994-12-06 Hughes Aircraft Company Thermally stable ALC for pulsed output amplifier
FI934197L (fi) 1993-09-24 1995-03-25 Nokia Telecommunications Oy Menetelmä solukkoradiojärjestelmän tukiaseman jakovahvistimen vahvistusvaihteluiden mittaamiseksi ja niiden vaikutuksen poistamiseksi sekä tukiasema
FI108765B (fi) * 1993-09-28 2002-03-15 Nokia Corp Menetelmä ja laitteisto solukkoradiojärjestelmän tukiaseman vastaanottimen vahvistusvirheen mittaamiseksi ja kentänvoimakkuusmittauksen tarkentamiseksi
US5452473A (en) 1994-02-28 1995-09-19 Qualcomm Incorporated Reverse link, transmit power correction and limitation in a radiotelephone system
JP3192323B2 (ja) * 1994-07-29 2001-07-23 沖電気工業株式会社 電力制御回路
US5548616A (en) * 1994-09-09 1996-08-20 Nokia Mobile Phones Ltd. Spread spectrum radiotelephone having adaptive transmitter gain control
JPH1022756A (ja) 1996-07-04 1998-01-23 Mitsubishi Electric Corp 無線送信機およびその送信制御方法
US5745006A (en) * 1996-11-12 1998-04-28 Motorola, Inc. Method of compensating for distortion in an amplifier
US6018650A (en) * 1996-12-18 2000-01-25 Aironet Wireless Communications, Inc. Cellular communication devices with automated power level adjust
US6285412B1 (en) * 1997-07-23 2001-09-04 Harris Corporation Adaptive pre-equalization apparatus for correcting linear distortion of a non-ideal data transmission system
US6311044B1 (en) * 1998-04-20 2001-10-30 Motorola, Inc. Method and apparatus for determining failure modes of a transceiver
JPH11312988A (ja) * 1998-04-30 1999-11-09 Nec Corp マイクロ波・ミリ波送信方法と送信装置
US6252915B1 (en) * 1998-09-09 2001-06-26 Qualcomm Incorporated System and method for gaining control of individual narrowband channels using a wideband power measurement
US6256483B1 (en) * 1998-10-28 2001-07-03 Tachyon, Inc. Method and apparatus for calibration of a wireless transmitter
US6370203B1 (en) * 1998-11-04 2002-04-09 Ericsson Inc. Power control for wireless communications system
CN1285985A (zh) 1998-11-30 2001-02-28 诺基亚网络有限公司 收发信站的测试设备
JP3618055B2 (ja) * 1999-02-05 2005-02-09 富士通株式会社 携帯移動端末および送信装置
US6265939B1 (en) * 2000-03-24 2001-07-24 International Business Machines Corporation Linear power detectors and methods for power amplifiers
US6751268B1 (en) * 2000-07-24 2004-06-15 Northrop Grumman Corporation Bandpass predistorting expansion method and apparatus for digital radio transmission
US6670849B1 (en) * 2000-08-30 2003-12-30 Skyworks Solutions, Inc. System for closed loop power control using a linear or a non-linear power amplifier
US6819938B2 (en) * 2001-06-26 2004-11-16 Qualcomm Incorporated System and method for power control calibration and a wireless communication device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7496375B2 (en) 2004-02-12 2009-02-24 Panasonic Corporation Transmission power control device
US10070397B2 (en) 2006-10-03 2018-09-04 Interdigital Technology Corporation Combined open loop/closed loop (CQI-based) uplink transmit power control with interference mitigation for E-UTRA
US10880842B2 (en) 2006-10-03 2020-12-29 Interdigital Technology Corporation Combined open loop/closed loop (CQI-based) uplink transmit power control with interference mitigation for E-UTRA
US10548094B2 (en) 2006-10-03 2020-01-28 Interdigital Technology Corporation Combined open loop/closed loop (CQI-based) uplink transmit power control with interference mitigation for E-UTRA
US8812048B2 (en) 2007-03-07 2014-08-19 Interdigital Technology Corporation Combined open loop/closed loop method for controlling uplink power of a mobile station
US9026169B2 (en) 2007-03-07 2015-05-05 Interdigital Technology Corporation Combined open loop/closed loop method for controlling uplink power of a mobile station
US9271240B2 (en) 2007-03-07 2016-02-23 Interdigital Technology Corporation Combined open loop/closed loop method for controlling uplink power of a mobile station
US9572112B2 (en) 2007-03-07 2017-02-14 Interdigital Technology Corporation Combined open loop/closed loop method for controlling uplink power of a mobile station
US10091740B2 (en) 2007-03-07 2018-10-02 Interdigital Technology Corporation Combined open loop/closed loop method for controlling uplink power of a mobile station
US10375650B2 (en) 2007-03-07 2019-08-06 Interdigital Technology Corporation Combined open loop/closed loop method for controlling uplink power of a mobile station
JP2008211845A (ja) * 2008-05-20 2008-09-11 Sony Corp 通信装置
US8265581B2 (en) 2008-12-16 2012-09-11 Electronics And Telecommunications Research Institute Transceiver using millimeter-wave
WO2012008933A1 (en) 2010-07-15 2012-01-19 Novaplast Plastik Sanayi Ve Ticaret A.S (polypropylene) plastic pipe welding machine with special safety ring and a welding adaptor with special safety ring
CN111183601A (zh) * 2017-07-01 2020-05-19 艾锐势有限责任公司 分布式系统中的天线参数控制
CN111183601B (zh) * 2017-07-01 2023-04-25 艾锐势有限责任公司 分布式系统中的天线参数控制
WO2020019876A1 (zh) * 2018-07-23 2020-01-30 Oppo广东移动通信有限公司 射频系统、天线切换控制方法及相关产品
US11431356B2 (en) 2018-07-23 2022-08-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Radio frequency system, method for controlling antenna switching, and related products

Also Published As

Publication number Publication date
JP4095020B2 (ja) 2008-06-04
US7076266B2 (en) 2006-07-11
US20050048938A1 (en) 2005-03-03
US20030002452A1 (en) 2003-01-02
AU2002322339A1 (en) 2003-01-08
RU2297714C2 (ru) 2007-04-20
JP2005502233A (ja) 2005-01-20
WO2003001701A3 (en) 2003-03-27
RU2004101967A (ru) 2005-03-27
CA2451320A1 (en) 2003-01-03
EP1400033A2 (en) 2004-03-24
US6819938B2 (en) 2004-11-16
US20050059424A1 (en) 2005-03-17
US8457570B2 (en) 2013-06-04

Similar Documents

Publication Publication Date Title
US6819938B2 (en) System and method for power control calibration and a wireless communication device
CN1666449B (zh) 通过收发信机中反馈进行的发射机和接收机增益校准
EP1654814B1 (en) Radio transmitter with accurate power control
US6603810B1 (en) Combined system for calibrating receiver gain and measuring antenna impedance match and method of operation
US8705595B2 (en) Digital output power measurement in radio communication systems
KR100794983B1 (ko) 캐리어 누설을 억제하는 방법 및 시스템
RU2393637C2 (ru) Способы самокалибровки в беспроводном передатчике
KR100414072B1 (ko) 이동통신 단말기의 송신 파워 보상장치 및 방법
US20090011730A1 (en) Methods and Apparatus for Controlling Power in a Polar Modulation Transmitter
US8270916B2 (en) Methods for tuning and controlling output power in polar transmitters
WO2004105236A1 (ja) 検波回路及び検波回路の調整方法
KR20050032810A (ko) 자동 이득 제어 루프를 위한 온도 보상 장치
US6904268B2 (en) Low noise linear transmitter using cartesian feedback
JPH11220410A (ja) 温度補償出力パワー・レベル制御回路を有するrf送信機および温度補償方法
JP3197467B2 (ja) 送信出力制御装置
EP1478111B1 (en) Transmission power calibration
EP1276232B1 (en) Transmitter power amplifier control
WO2003075484A1 (en) Power control device and method for controlling the transmission power of a transmitter in a mobile communication network
JPH09186538A (ja) ワイド・ダイナミック・レンジ電力増幅器
JP2010103791A (ja) 送信器及び携帯情報端末

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003507979

Country of ref document: JP

Ref document number: 2451320

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002756324

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002756324

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642