WO2003001578A1 - Dispositif de traitement au plasma par micro-ondes, procede de traitement au plasma, et organe de rayonnement de micro-ondes - Google Patents

Dispositif de traitement au plasma par micro-ondes, procede de traitement au plasma, et organe de rayonnement de micro-ondes Download PDF

Info

Publication number
WO2003001578A1
WO2003001578A1 PCT/JP2002/006110 JP0206110W WO03001578A1 WO 2003001578 A1 WO2003001578 A1 WO 2003001578A1 JP 0206110 W JP0206110 W JP 0206110W WO 03001578 A1 WO03001578 A1 WO 03001578A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
radiating member
microphone mouth
wave
plasma
Prior art date
Application number
PCT/JP2002/006110
Other languages
English (en)
French (fr)
Inventor
Tadahiro Ohmi
Masaki Hirayama
Tetsuya Goto
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US10/344,761 priority Critical patent/US6818852B2/en
Priority to KR10-2003-7002437A priority patent/KR100485235B1/ko
Priority to JP2003507875A priority patent/JP3828539B2/ja
Priority to EP02738770A priority patent/EP1398826A4/en
Publication of WO2003001578A1 publication Critical patent/WO2003001578A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge

Definitions

  • Microwave plasma processing apparatus plasma processing method and microwave radiating member
  • the present invention relates to a plasma processing apparatus and, more particularly, to a microwave plasma processing apparatus and a plasma processing method for applying a plasma generated by a microwave to a substrate to be processed such as a semiconductor wafer to perform processing.
  • a microwave plasma processing apparatus that generates plasma using microwaves can stably generate plasma even in a high vacuum state where the pressure is relatively low, such as about 0.1 to several 10 mTorr. .
  • a microwave plasma processing apparatus using a microwave of 2.45 GHz has attracted attention.
  • a dielectric plate that transmits the microphone mouth-wave is provided on the ceiling of a processing container that can be evacuated, and a disk-shaped flat plate is placed on the dielectric plate.
  • An antenna member microwave radiation member
  • a large number of through holes (slots) are formed in the antenna member, and microwaves supplied from the center of the antenna member and propagated in the radial direction are introduced into the processing chamber through the slots.
  • the plasma of the processing gas is generated by the microwave introduced into the processing container, and the semiconductor wafer placed in the processing container is subjected to plasma processing.
  • Japanese Patent No. 272,079,092 and Japanese Patent No. 2,922,577 disclose a microwave plasma processing apparatus having an antenna member for introducing a microphone mouth wave into a processing vessel. ing.
  • the antenna members disclosed in these patent publications have a circular shape, and a large number of slots or slot pairs are formed along a plurality of concentric circles. Also disclosed is an antenna member in which a number of slots or slot pairs are helically arranged. As described above, the microphone mouth wave supplied to the central portion of the circular antenna member is propagated in the radiation direction, changed its direction at right angles by the slot, passes through the dielectric plate, and is introduced into the processing vessel.
  • the surface wave propagating in the radiation direction between the antenna member and the plasma is reflected on the outer peripheral surface of the dielectric plate and returns to the central portion.
  • the surface waves reflected from the entire circumference of the dielectric plate concentrate on one point corresponding to the central portion of the antenna member. Therefore, the electric field of this surface wave is large in the central part of the antenna and decreases toward the peripheral part.
  • Fig. 1 is a diagram showing the propagation of surface waves in an antenna member having concentric slots and the distribution of electron density in plasma space.
  • Fig. 1 (a) shows the surface wave propagation of the dielectric plate corresponding to the antenna member
  • Fig. 1 (b) is a graph showing the distribution of the electron density in the plasma space in the radial direction of the antenna member.
  • the electron density n e of the plasma space in the central portion of the antenna member becomes maximum, the electron density n e toward the periphery of the antenna element decreases. Therefore, in the antenna member having the slots arranged concentrically, there is a problem that the plasma concentration corresponding to the central portion of the antenna member becomes higher than the surrounding plasma concentration, and the plasma density becomes non-uniform. Disclosure of the invention
  • a general object of the present invention is to provide an improved and useful microwave plasma processing apparatus and method which solve the above-mentioned problems.
  • a more specific object of the present invention is to provide a microphone mouth-wave plasma processing apparatus, a plasma processing method, and an antenna member that can make the plasma density distribution in the radial direction of the antenna member uniform.
  • a microphone mouth wave plasma processing apparatus for performing a plasma process on a substrate to be processed, wherein a mounting table on which the substrate to be processed is mounted is provided.
  • a processing container provided therein, a microwave generator for generating a microphone mouth wave and supplying the same to the processing container, and a microwave container provided between the microwave generator and the processing container, for transmitting the microphone mouth wave to the processing container.
  • a microwave radiating member for radiating into the interior space;
  • the mouthpiece radiating member has a plurality of slots arranged along a plurality of circumferences, and the plurality of circumferences are non-concentric circles.
  • the centers of the plurality of circumferences may be eccentric in directions different from each other with respect to the center of the microwave radiating member.
  • the centers of the plurality of circles are eccentric in the same direction with respect to the center of the microwave radiating member, and the eccentricity of the center of the plurality of circles increases toward the outer periphery of the microphone mouth wave radiating member. It may be.
  • one of the slots and a slot adjacent to the one slot may constitute a T-shaped slot pair, and the slot pairs may be arranged along a plurality of circumferences.
  • a processing container in which a mounting table on which a substrate to be processed is mounted is provided, a microphone mouth wave generator for generating a microphone mouth wave and supplying the microphone mouth wave to the processing container.
  • a microwave radiating member provided between the microwave generator and the processing vessel for radiating microwaves into a space in the processing vessel, wherein the microwave radiating member extends along a plurality of circumferences.
  • Microwaves are supplied to the microwave radiating member, and microwaves are introduced into the processing vessel from slots that are arranged non-concentrically.
  • Plasma introduced into the processing vessel by the introduced microwave A plasma processing method is provided, in which plasma is generated and plasma processing is performed on a substrate to be processed by the generated plasma.
  • microwave radiation used in a microwave plasma processing apparatus having a processing vessel for performing a plasma process and a microphone mouth wave generator for generating and supplying a microwave to the processing vessel.
  • the microwave radiating member is attached to the processing vessel and connected to the microwave generator, and has a plurality of slots arranged along a plurality of non-concentric circles. The plurality of slots provide a microphone mouthpiece radiating member for introducing the microphone mouthpiece into the processing container.
  • the centers of the plurality of circumferences may be eccentric in two different directions with respect to the center of the microwave radiating member.
  • the centers of the plurality of circumferences are eccentric in the same direction with respect to the center of the microwave radiating member, and the center of the plurality of circumferences is The amount of eccentricity may increase toward the outer periphery of the microwave radiating member.
  • one of the slots and a slot adjacent to the one slot may constitute a T-shaped slot pair, and the slot pairs may be arranged along a plurality of circumferences.
  • the density of the generated plasma can be made uniform by arranging the plurality of slots of the microphone mouthpiece radiating member in a plurality of non-concentric circles.
  • eccentrically arranging a plurality of non-concentric circles in different directions it is possible to reduce the electron density, which increases in the central portion of the microwave radiating member, and to make the plasma density uniform.
  • intentionally generating a bias in the electron density distribution and combining it with the bias in the plasma density due to other factors to make the plasma density uniform can do.
  • Fig. 1 is a diagram showing the propagation of surface waves in a dielectric plate and the distribution of electron density in a plasma space in an antenna member having a concentric slot.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a microphone mouth wave plasma processing apparatus provided with an antenna member according to a first embodiment of the present invention.
  • FIG. 3 is a plan view of the planar antenna member shown in FIG.
  • FIG. 4 is a graph showing an electron density distribution when the planar antenna member according to the first embodiment of the present invention is used.
  • 5A to 5F are views showing the planar shapes of the slots. .
  • FIG. 6 is a plan view of a planar antenna member using a pair of T-shaped slots.
  • FIG. 7 is a plan view of a planar antenna member according to a second embodiment of the present invention.
  • FIG. 8 is a graph showing a distribution of electron density generated by the planar antenna member shown in FIG.
  • FIG. 9 is a graph for explaining a configuration for correcting the bias of the electron density by the planar antenna member shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 2 is a sectional view showing a schematic configuration of a microwave plasma processing apparatus provided with an antenna member according to a first embodiment of the present invention.
  • the microwave plasma processing apparatus shown in FIG. 2 shows a plasma CVD processing apparatus as an example.
  • the plasma CVD apparatus 20 shown in FIG. 2 has a processing vessel 22 entirely formed in a cylindrical shape.
  • the processing container 22 is made of a conductor such as aluminum, and defines a processing space S that is tightly closed inside.
  • a mounting table 24 on which a semiconductor wafer W as a pair to be processed is mounted on the upper surface is accommodated in the processing container 22.
  • the mounting table 24 is formed in a substantially columnar shape with a central portion made of, for example, alumite-treated aluminum or the like and having a flat central portion.
  • the lower part of the mounting table 24 is supported by a supporting table 26 also formed in a column shape by aluminum or the like.
  • the support 26 is installed at the bottom of the processing container 22 via an insulating material 28.
  • An electrostatic chuck or a clamp mechanism (not shown) for holding the semiconductor wafer W is provided on the upper surface of the mounting table 24.
  • the mounting table 24 is connected to a matching box 32 and a bias high-frequency power supply 34 via a feeder line 30.
  • the high frequency power supply for bias generates and supplies a high frequency of 13.56 MH, for example, but is not necessarily provided.
  • a cooling jacket 36 through which cooling water for cooling the wafer W during the plasma processing is provided is provided on the support 26 supporting the mounting table 24. Note that a heater for heating may be incorporated in the mounting table 24 as necessary.
  • a processing gas supply nozzle 40 made of a quartz pipe for introduction is provided.
  • the nozzles 38, 40 are connected to the plasma gas source 54 and the processing gas source 56, respectively, via the mass flow controllers 46, 48 and the on-off valves 50, 52 via the gas supply paths 42, 44, respectively. Have been.
  • processing gas As the deposition gas, S i H 4 , O 2 , N 2 gas or the like is used.
  • a gate valve 58 is provided on the outer periphery of the side wall of the processing container 22 to open and close when the wafer W is loaded into and unloaded from the inside of the processing container 22. Further, an exhaust port 60 connected to a vacuum pump (not shown) is provided at the bottom of the processing container 22, and the inside of the processing container 22 is evacuated to a predetermined pressure as necessary. You can do it.
  • the ceiling portion of the processing chamber 2 2 is opened, wherein the dielectric plate ing of a ceramic material Ya oxide Kei containing S i 0 2 such as aluminum A 1 N and Sani ⁇ aluminum nitride A 1 2 O 3 62 is provided hermetically via a sealing member 64.
  • the thickness of the dielectric plate 62 is, for example, about 2 Omm, and is transparent to microwaves.
  • a disk-shaped planar antenna member (microwave radiation member) 66 is provided on the upper surface of the dielectric plate 62.
  • the planar antenna member 66 is configured as a bottom plate of a waveguide box 68 formed of a hollow cylindrical container integrally formed with the processing container 22.
  • the planar antenna member 66 is provided to face the mounting table 24 in the processing container 22.
  • the outer conductor 70 A of the coaxial waveguide 70 is connected to the center of the upper part of the waveguide box 68, and the inner conductor 70 B inside is connected to the center of the antenna member 66.
  • the coaxial waveguide 70 is connected via a mode converter 72 and a waveguide 74 to a microphone mouth wave generator 76 of, for example, 2.45 GHz. It is configured to propagate microwaves to 6.
  • the frequency of the microwave is not limited to 2.45 GHz, and for example, 8.35 GHz may be used.
  • a waveguide having a circular or rectangular cross section or a coaxial waveguide can be used as the waveguide. In the microwave plasma processing apparatus shown in FIG. 2, a coaxial waveguide is used.
  • a waveguide box 6 8 ⁇ on the upper surface of the planar antenna member 6 6, for example by providing a delay member 82 having a predetermined dielectric constant and a predetermined thickness consisting of A 1 2 O 3, this The wavelength shortening effect shortens the microwave guide wavelength.
  • the slow wave material 82 may be provided as needed.
  • FIG. 3 is a plan view of the planar antenna member 66.
  • the planar antenna member 66 is made of a metal disk having a diameter of, for example, 30 to 40 cm and a thickness of 1 to several mm in the case of an 8-inch wafer.
  • the planar antenna member 66 is made of a metal plate such as a copper plate or an aluminum plate having a silver plated surface.
  • a large number of slots 84 are formed in the planar antenna member 66 so as to penetrate in the thickness direction and have a planar shape curved. As shown in FIG. 3, each of the slots 84 is elongated and elliptical, and is arranged along a third different circumference P I, P 2, and P 3.
  • the slot 84 is provided over the entire circumference of each of the circumferences P I, P 2, and P 3, but FIG. 3 shows only a part thereof for simplification.
  • the centers of the circumferences P 1, P 2, and P 3 are shifted (eccentric) from the center of the outer shape of the planar antenna member 66, and the respective shifting directions (eccentric directions) are different.
  • the direction in which the center of the inner circumference P 1 is deviated from the center of the outer shape of the planar antenna 66 is 1 2 with respect to the direction in which the center of the inner circumference P 1 is deviated from the center of the outer shape of the planar antenna 66. 0 degrees different. Also, the direction in which the center of the outer circumference P 3 deviates from the center of the outer shape of the planar antenna 66 is 1 2 0 Different degrees. Thus, the centers of the circumferences P1, P2, and P3 are shifted in different directions.
  • the surface waves propagated in the radial direction on the surface of the dielectric plate 62 and reflected by the outer peripheral surface are reflected by the center of the planar antenna member 66. It returns to the center, but does not concentrate on one center of the planar antenna member 66. In other words, according to the deviation amounts of the circumferences Pl, P2, and P3, the range returns to the range of ⁇ .
  • the surface waves concentrate on one point, and the The non-uniformity is improved compared to the conventional planar antenna member in which the non-uniformity of the electron density in the space occurs, and the distribution of the plasma density can be made uniform to some extent.
  • Figure 4 is a graph showing the distribution of the electron density n e in the case of using a planar antenna member 6 6 according to the first embodiment of the present invention, the distribution of electron density when conventional slot are arranged concentrically Is indicated by a dotted line.
  • the electron density in the case of the conventional concentrically arranged slots is reduced.
  • the electron density in a region corresponding to the central portion of the planar antenna member 66 decreases, and the electron density in a region corresponding to the peripheral portion increases.
  • the plasma density in the radial direction of the planar antenna member 66 (that is, the radial direction of the wafer W) is made uniform as compared with the conventional art, A uniform plasma process can be performed on the wafer W.
  • the planar shape of the slot 84 is an elongated ellipse, but is not limited to this.
  • the slot 84 may have a circular shape as shown in FIG. 5A and different eccentricities as shown in FIG. 5B. It may be elliptical.
  • a pair of short sides of a rectangle may be formed in an arc shape, and as shown in FIGS. 5D, 5E and 5F, each corner of a triangle, square or rectangle may be formed.
  • 8 4 B may be formed in a curved shape.
  • each corner of a pentagon or more polygon may be formed in a curved shape.
  • the planar shape of the slot 84 does not include a corner at which an electric field is likely to be concentrated, so that an effect of suppressing abnormal discharge and supplying a large amount of power can be exhibited. it can.
  • the slots 84 shown in FIG. 3 are arranged so as to extend in the circumferential tangential direction, but are arranged at a predetermined angle, for example, 45 degrees with respect to the circumferential tangential direction. It may be that.
  • a pair of slots arranged in a T shape may be arranged non-concentrically.
  • a slot pair composed of slots 92A and 92B arranged in a T-shape along four pairs of circumferences (indicated by dashed lines in the figure).
  • FIG. 6 two circles which are close to each other form a pair, and the paired circles are concentric circles.
  • a slot pair 92 is formed by the slot 92A and the slot 92B arranged on the pair of circumferences.
  • the four pairs of circumferences have a displacement direction (eccentric direction) of 90 pairs. Different degrees. That is, the center of the innermost circumference pair is shifted downward from the center O of the outer shape of the planar-side antenna member 66A, and the center of the outer circumference pair is located at the center of the planar-side antenna member 66A. It is shifted to the left in the figure from the center O of the external shape.
  • the center of the pair of outer circumferences is shifted upward with respect to the center O of the outer shape of the planar side antenna member 66A. Further, The center of the pair of outermost circumferences is shifted to the right with respect to the center O of the outer shape of the planar side antenna member 66A. Therefore, as in the case of the planar antenna 66 shown in FIG. 3, the surface wave reflected on the side surface of the planar antenna member does not concentrate at one point at the center of the planar antenna 66, and the plasma density increases at the central portion. Is suppressed.
  • the longitudinal direction of the slot 92A and the longitudinal direction of the slot 92B are orthogonal to each other, and one end of the slot 92B is close to the longitudinal center of the slot 92A.
  • the longitudinal direction of the slot 92A is inclined at about 45 degrees with respect to a line connecting the center of the slot 92A and the center of the circumference where the slots 92A are arranged.
  • the longitudinal direction of the slot 92B is inclined at about 45 degrees with respect to the line connecting the center of the slot 92B and the center of the circumference where the slots 92B are arranged.
  • microwaves propagating in the radiation direction can be efficiently converted to a circularly polarized electric field, and uniform plasma can be generated efficiently. Can be.
  • FIG. 7 is a plan view of a planar antenna member 66B according to the second embodiment of the present invention.
  • the electron density in the plasma space is biased as shown in FIG. That is, the electron density on the upstream side in the direction in which the plasma gas is supplied decreases, and the electron density on the downstream side increases. Therefore, the plasma density becomes non-uniform.
  • the planar antenna member 66B according to the second embodiment of the present invention solves the above-mentioned problem by considering the arrangement of the slots.
  • the microphone mouth wave radiation distribution is intentionally biased, and the transmission of the plasma density distribution due to the plasma gas supply method is transferred to the micro antenna by the planar antenna member.
  • the detection is performed by the deviation of the wave radiation.
  • the planar antenna member 66B shown in FIG. 7 has a T-shaped slot pair 92 similar to the 'plane antenna member 66A shown in FIG. 6, and the center of the arranged circumferential pair is Plane Antenna member 6 Offset from center O of 6 B. However, in the planar antenna member 668, the centers of the four pairs of circumferences are all shifted in the same direction. In Figure 7, the innermost The center of the pair of circles is coincident with the center of the planar antenna member 66B, but the center of the pair of circles on the outer side is all shifted to the left, and the shift amount also goes to the outer side. It is getting bigger.
  • the density of the slot pairs 92 increases in the right part and decreases in the left part.
  • the intensity of the radiated microwave electric field increases in the right portion (portion with high slot density) of the planar antenna member 66B, and in the left portion (portion with low slot density) of the planar antenna member 66B. Become smaller.
  • the slot of the planar antenna member has a smaller diameter than the portion where the electron density is reduced due to the plasma gas supply method.
  • the bias of the electron density can be corrected by making the arrangement correspond to the portion where the microwave radiation intensity increases.
  • the electron density is improved by matching the directions of deviation of the respective circles. Deviation can be intentionally generated, the deviation of the electron density caused by other causes can be detected, and a uniform plasma density can be achieved.
  • the first As in the embodiment, a single slot may be used instead of the slot pair, and the planar shape may be various planar shapes as shown in FIGS. 5A to 5F.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Description

マイクロ波プラズマ処理装置、 プラズマ処理方法及びマイクロ波放射部材 技術分野
本発明はプラズマ処理装置に係り、 特に、 半導体ウェハ等の被処理基板に対し てマイクロ波により生成したプラズマを作用させて処理を施すためのマイクロ波 プラズマ処理装置及ぴプラズマ処理方法に関する。 背景技術
近年、 半導体製品の高密度化及び高微細化に伴い、 半導体製品の製^工程にお いて、 成膜、 エッチング、 アツシング等の処理のためにプラズマ処理装置が使用 されている.。 特に、 マイクロ波を用いてプラズマを発生させるマイクロ波プラズ マ処理装置は、 0 . 1〜数 1 0 mT o r r程度の比較的圧力が低い高真空状態で も安定してプラズマを発生させることができる。 このため、 例えば 2 . 4 5 GH zのマイクロ波を用いたマイクロ波プラズマ処理装置が注目されている。
マイク口波プラズマ処理装置では、 一般的に、 .真空引き可能になされた処理容器 の天井部にマイク口波を透過する誘電体板が設けられ、 誘電体板の上に円板状の 平坦なアンテナ部材 (マイクロ波放射部材) が取り付けられている。 アンテナ部 材には多数の貫通孔 (スロット) が形成されており、 アンテナ部材にその中心か ら供給されて放射方向に伝播するマイクロ波を、 スロットを介して処理容器内に 導入する。 処理容器内に導入されたマイクロ波により処理ガスのプラズマが生成 され、 処理容器内に载置された半導体ウェハにプラ マ処理が施される。
特許第 2 7 2 2 0 7 0 9号公報、 及び特許第 2 9 2 8 5 7 7号公報は、 マイク 口波を処理容器に導入するためのアンテナ部材を有するマイクロ波プラズマ処理 装置を開示している。 これらの特許公報に開示されたアンテナ部材は、 円形状で あり、 多数のスロット又はスロット対が複数の同心円に沿って形成されている。. また、 多数のスロット又はスロット対が螺旋状に配列されたアンテナ部材も開示 されている。 上述のように円形のアンテナ部材^中央部分に供給されたマイク口波は、.放射 方向に伝播してスロットにより直角に方向が変えられて誘電体板を透過して処理 容器に導入される。 この際、 アンテナ部材とプラズマとの間 (誘電体板) を放射 方向に伝播する表面波は、 誘電体板の外周面で反射され、 中央部分に戻ってくる 。 ここで、 アンテナ部材のスロットが複数の同心円に沿って配列されて形成され ている場合、 誘電体板の全周から反射された表面波がアンテナ部材の中央部分に 相当する一点に集中する。 よって、 この表面波の電界は、 アンテナ中央部分にお いて大きく、 周囲部分に向かって減少する。
図 1は同心円状のスロットを有するアンテナ部材における表面波の伝播と、 プ ラズマ空間における電子密度の分布を示す図である。 図 1 ( a ) は誘電体板の表 面波伝播をアンテナ部材に対応させて示し、 図 1 ( b ) はアンテナ部材の径方向 におけるプラズマ空間の電子密度の分布を示すグラフである。 図 1 ( b ) に示す ように、 アンテナ部材の中央部分においてプラズマ空間の電子密度 n eは最大と なり、 アンテナ部材の周囲に向けて電子密度 n eは減少する。 したがって、 同心 円状に配列されたスロッ トを有するアンテナ部材では、 アンテナ部材の中央部分 に相当するプラズマ濃度が周囲のプラズマ濃度に比べて高くなり、 プラズマ密度 が不均一となるといった問題がある。 発明の開示
本発明の総括的な目的は、 上述の問題を解消した改良された有用なマイクロ波' プラズマ処理装置及びプラズマ処理方法を提供することである。
本発明のより具体的な目的は、 アンテナ部材の径方向におけるプラズマ密度分 布を均一にすることができるマイク口波プラズマ処理装置、 ブラズマ処理方法及 びアンテナ部材を提供する'ことである。
上述の目的を達成するために、 本発明の一つの面によれば、 被処理基体にブラ ズマ処理を施すマイク口波プラズマ処理装置であって、 該被処理基体が載置され る載置台が内部に設けられた処理容器と、 マイク口波を発生して処理容器に供給 するマイクロ波発生器と、 該マイクロ波発生器と処理容器との間に設けられ、 マ ィク口波を処理容器内の空間に放射するためのマイクロ波放射部材とを有し、 マ イク口波放射部材は複数の円周に沿って配列された複数のスロットを有し、 該複 数の円周は互いに非同心円であるマイク口波プラズマ処理装置が提供される。 上述の発明において、 複数の円周の中心は、 マイクロ波放射部材の中心に対し て互いに異なる方向に偏心していてもよレ、。 また、 複数の円周の中心はマイクロ 波放射部材の中心に対して互いに同一の方向に偏心しており、 複数の円周の中心 の偏心量はマイク口波放射部材の外周に向かって大きくなることとしてもよい。 さらに、 スロットの一つとその一つのスロットに近接したスロットにより T字状 に配列されたスロット対を構成し、 該スロット対が複数の円周に沿って配列され ることとしてもよレ、。
また、 本発明の他の面によれば、 被処理基体が載置される載置台が内部に設け られた処理容器と、 マイク口波を発生して処理容器に供給するマイク口波発生器 と、 該マイクロ波発生器と処理容器との間に設けられ、 マイクロ波を処理容器内 の空間に放射するためのマイクロ波放射部材とを有し、 マイクロ波放射部材は複 数の円周に沿って配列された複数のスロットを有し、 該複数の円周は互いに非同 心円であるマイクロ波プラズマ処理装置を用いるプラズマ処理方法であって、 被 処理基体の処理面をマイク口波放射部材に対向するよう'に載置台に載置し、 マイ ク口波放射部材にマイク口波を供給して、 非同心円状に配列されたス口ット.から マイクロ波を処理容器内に導入し、 導入したマイクロ波により処理容器内にブラ ズマを発生させ、 発生したプラズマにより被処理基体にプラズマ処理を施すブラ ズマ処理方法が提供される。
ま i 本発明の他の面によれば、 プラズマ処理を施す処理容器と、 マイクロ波 を発生して処理容器に供給するマイク口波発生器とを有するマイクロ波プラズマ 処理装置に用いられるマイクロ波放射部材であって、 該マイクロ波放射部材は、 処理容器に取り付けられ且つマイクロ波発生器に接続され、 互いに非同心円であ る複数の円周に沿って配列された複数のスロットを有し、 該複数のスロットによ りマイク口波を処理容器に導入するマイク口波放射部材が提供される。
上述の発明において、 複数の円周の中心は、 マイクロ波放射部材の中心に対し て 2いに異なる方向に偏心していてもよい。 また、 複数の円周の中心はマイクロ 波放射部材の中心に対して互いに同一の方向に偏心しており、 複数の円周の中心 の偏心量はマイクロ波放射部材の外周に向かって大きくなることとしてもよレ、。 さらに、 スロットの一つとその一つのスロットに近接したスロッ トにより T字状 に配列されたスロット対を構成し、 該スロット対が複数の円周に沿って配列され ることとしてもよレ、。
上述の発明によれば、 マイク口波放射部材の複数のスロッ トを、 複数の非同心 円状に配列することにより、 発生するプラズマの密度を均一化することができる 。 複数の非同心円を異なる方向に偏心させることにより、 マイクロ波放射部材の 中央部分において高くなる電子密度下げることができ、 プラズマ密度を均一化す ることができる。 また、 複数の非同心円を同方向に偏心させることにより'、 意図 的に電子密度分布の偏りを発生させ、 他の要因によるプラズマ密度の偏りと合成 して補正することにより、 プラズマ密度を均一化することができる。
本発明の他の自的、 特徴及び利点は添付の図面を参照しながら以下の詳細な説 明を読むことにより、 一層明瞭となるであろう。 図面の簡単な説明
図 1は同心円状のス口ットを有するアンテナ部材における誘電体板中の表面波 の伝播と、 プラズマ空間における電子密度の分布を示す図である。
図 2は本発明の第 1実施例によるァンテナ部材が設けられたマイク口波プラズ マ処理装置の概略構成を示す断面図である。
図 3は図 2に示す平面アンテナ部材の平面図である。
図 4は本発明の第 1実施例による平面ァンテナ部材を用いた場合の電子密度の 分布を示すグラフである。
図 5 A〜 5 Fはスロッ トの平面形状を示す図である。 .
.図 6は T字状スロット対を用いた平面アンテナ部材の平面図である。
図 7は本発明の第 2実施例による平面アンテナ部材の平面図である。
図 8は図 7に示す平面ァンテナ部材により生じる電子密度の分布を示すグラフ である。
図 9は図 7に示す平面アンテナ部材により電子密度の偏りを補正する構成を説 明するためのグラフである。 発明を実施するための最良の形態
以下に、 本発明の実施例について図面を参照しながら説明する。 なお、 図中同 等の構成部品には同じ符号を付す。
図 2は本発明の第 1実施例によるアンテナ部材が設けられたマイクロ波プラズ マ処理装置の概略構成を示す断面図である。 なお、 図 2に示すマイクロ波プラズ マ処理装置は、 プラズマ C V D処理装置を例として示している。
図 2に示すプラズマ C V D装置 2 0は、 全体が筒状に形成された処理容器 2 2 を有している。 処理容器 2 2はアルミニウム等の導体により構成され、 内部に密 閉された処理空間 Sを画成する。
処理容器 2 2内には、 上面に被処理対としての半導体ウェハ Wを載置する載置 台 2 4が収容される。 載置台 2 4.は、 例えばアルマイト処理したアルミニウム等 により中央部が凸状に平坦になされた略円柱状に形成されている。 載置台 2 4の 下部は、 同じくアルミニウム等により円柱状に形成された支持台 2 6により支持 される。 支持台 2 6は、 処理容器 2 2内の底部に絶縁材 2 8を介して設置されて いる。
設置台 2 4の上面には、 半導体ウェハ Wを保持するための静電チャックあるい はクランプ機構 (図示せず) が設けられている。 載置台 2 4は、 給電線 3 0を介 してマッチングボックス 3 2及びバイアス用高周波電源 3 4に接続されている。 バイアス用高周波電源は、 例えば 1 3 . 5 6 MHの高周波を発生し供給するもの であるが、 必ずしも設ける必要はない。
載置台 2 4を支持する支持台 2 6には、 プラズマ処理時のゥェハ Wを冷却する ための冷却水が流れる冷却ジャケット 3 6が設けられる。 なお、 必要に応じて載 置台 2 4中に加熱用ヒータを組み込んでもよレ、。
処理容器 2 2の側壁には、 ガスの供給手段として、 容器内にプラズマ用ガス、 例えばアルゴンガスを供給する石英パイプ製のプラズマガス供給ノズル 3 8ゃ処 理ガス、 例え.ば出ポジションガスを導入するための例えば石英パイプ製の処理ガ ス供給ノズル 4 0が設けられる。 ノズル 3 8, 4 0はそれぞれのガス供給路 4 2 , 4 4によりマスフローコントローラ 4 6, 4 8及び開閉弁 5 0, 5 2を介して それぞれプラズマガス源 5 4及び処理ガス源 5 6に接続されている。 処理ガスと してのデポジションガスは、 S i H4, 02, N 2ガス等を用いる。
また、 処理容器 2 2の側壁の外周には、 この内部に対してウェハ Wを搬入 '搬 出するときに開閉するゲートバルブ 5 8が設けられる。 また、 処理容器 2 2の底 部には、 真空ポンプ (図示せず) に接続された排気口 6 0が設けられており、 必 要に応じて処理容器 2 2内を所定の圧力まで真空引きできるようになつている。 そして、 処理容器 2 2の天井部は開口されており、 ここに窒化アルミニウム A 1 Nや酸ィ匕アルミニウム A 1 2 O 3などのセラミック材ゃ酸化ケィ素 S i 02よりな る誘電体板 6 2がシール部材 6 4を介して気密に設けられる。 誘電体板 6 2の厚 さは例えば 2 O mm程度であり、 マイクロ波に対して透過性を有している。 誘電体板 6 2の上面には、 円板状の平面アンテナ部材 (マイクロ波放射部材) 6 6が設けられる。 具体的には、 この平面アンテナ部材 6 6は、 処理容器 2 2と 一体的に形成された中空円筒状容器よりなる導波箱 6 8の底板として構成される 。 平面アンテナ部材 6 6は処理容器 2 2内の載置台 2 4に対向して設けられる。 導波箱 6 8の上部の中心には、 同軸導波管 7 0の外導体 7 0 Aが接続され、 内部 の内導体 7 0 Bは、 アンテナ部材 6 6.の中心部に接続される。 そして、 同軸導波 管 7 0は、 モード変換器 7 2及び導波管 7 4を介して例えば 2 . 4 5 GH zのマ イク口波発生器 7 6に接続されており、 平面アンテナ部材 6 6へマイクロ波を伝 播するよう構成されている。 マイクロ波の周波数は、 2 . 4 5 GH zに限定され ることはなく、 例えば 8 . 3 5 GH zを用いてもよい。 導波管としては、 断面円 形あるいは矩形の導波管や、 同軸導波管を用いることができる。 図 2に示すマイ クロ波プラズマ処理装置では、 同軸導波管が用いられている。 そして、 導波箱 6 8內であって、 平面アンテナ部材 6 6の上面には、 例えば A 1 2O 3よりなる所定 の誘電率と所定の厚みを有する遅波材 8 2を設けて、 この波長短縮効果により、 マイクロ波の管内波長を短くしている。 なお、 遅波材 8 2は必要に応じて設ける こととしてもよレ、。
次に、 本発明の第 1実施例によるマイクロ波放射部材としての平面アンテナ部 材 6 6について、 図 3を参照しながら詳述する。 図 3は平面アンテナ部材 6 6の 平面図である。 平面アンテナ部材 6 6は、 8インチサイズのウェハ対応の場合は 、 例えば直径が 3 0〜4 0 c m、 厚みが 1〜数 mmの金属製円板よりなる。 より 具体的には、 平面アンテナ部材 6 6は、 表面が銀メツキされた銅板あるいはアル ミ板等の金属板よりなる。
平面アンテナ部材 6 6には、 その厚み方向に貫通し、 平面形状が曲線よりなる 多数のスロット 8 4が形成されている。 図 3に示すように、 スロット 8 4の各々 は細長レ、楕円状であり、 3つめ異なる円周 P I , P 2 , P 3に沿って配置されて いる。 なお、 スロット 8 4は円周 P I , P 2 , P 3の各々の全周にわたって設け られているが、 図 3では簡略化のためその一部のみを示している。 ここで、 円周 P 1 , P 2 , P 3の中心は、 平面アンテナ部材 6 6の外形の中心からずれており (偏心しており) 、 その各々のずれ方向 (偏心方向) は異なっている。
すなわち、 内側の円周 P 1の中心が平面アンテナ 6 6の外形の中心からずれる 方向に対して、 中央の円周 P 2の中心が平面アンテナ 6 6の外形の中心からずれ る方向は 1 2 0度異なっている。 また、 中央の円周 P 2の中心が平面アンテナ 6 6の外形の中心からずれる方向に対して、 外側の円周 P 3の中心が平面アンテナ 6 6の外形の中心からずれる方向は 1 2 0度異なっている。 このように、 円周 P 1, P 2, P 3の中心は互いに異なった方向へとずれている。
.このように、 複数の非同心円に沿ってスロット 8 4を配列すると、 誘電体板 6 2の表面を放射方向に伝播して外周面により反射された表面波は、 平面アンテナ 部材 6 6の中央部に向かって戻るが、 平面アンテナ部材 6 6の中心一点に集中す ることはない。 すなわち、 円周 P l, P 2 , P 3のずれ量に従ってある程库の大 きさの範囲に戻ることとなる。 したがって、 本実施の形態による平面アンテナ部 材 6 6のスロット 8 4の配置によれば、 円周 P l, P 2 , P 3が同心円である場 合に表面波が一点に集中することでブラズマ空間の電子密度に不均一性が発生し ていた従来の平面アンテナ部材に比べ、 不均一性が改善され、 プラズマ密度の分 布をある程度均一にすることができる。
図 4は本発明の第 1実施例による平面アンテナ部材 6 6を用いた場合の電子密 度 n eの分布を示すグラフであり、 従来のスロットが同心円状に配列された場合 の電子密度の分布を点線で示してある。 図 4からわかるように、 本発明の第 1実 施例による非同心円状に配置されたスロットを有する平面アンテナ部材 6 6によ れぱ、 従来の同心円状に配列されたスロットの場合の電子密度の分布に比べて、 平面アンテナ部材 6 6の中央部分に相当する領域の電子密度は低下し、 周囲部分 に相当する領域の電子密度は上昇している。 したがって、 本発明の第 1実施例に よる平面アンテナ 6 6によれば、 平面アンテナ部材 6 6の径方向 (すなわち、 ゥ ェハ Wの径方向) におけるプラズマ密度が従来と比べて均一化され、 ウェハ Wに 対して均一なプラズマ処理を施すことができる。
図 3に示す例では、 スロット 8 4の平面形状は細長い楕円形としたが、 これに 限定されず、 例えば図 5 Aに示すような円形としてもよく、 図 5 B示すような離 心率の異なる楕円形状としてもよい。 また、 図 5 Cに示すように、 長方形の一対 の短辺を円弧状に形成してもよく、 図 5 D, 図 5 E, 図 5 Fに示すように三角形 、 正方形又は長方形の各角部 8 4 Bを曲線形状に形成してもよい。 また、 図示し ないが、 5角形以上の多角形の各角部を曲線形状に形成してもよレ、。
以上の場合には、 スロット 8 4の平面形状において電界の集中が生じ易い角部 が含まれていないので、 異常放電を抑制して大電力を投入することができるとい う効果を発揮することもできる。
また、 図 3に示すスロット 8 4は、 円周接線方向に延在するよう配置されてい るが、 円周の接線方向に対して例えば 4 5度のように所定の角度を持って配置す ることとしてもよい。
' また、 T字状に配置した一対のスロッ トを非同心円状に配列することとしても よい。 図 6に示す平面アンテナ部材 6 6 Aでは、 4対の円周 (図中一点鎖線で示 す) に沿って T字型に配置じたスロッ ト 9 2 A及び 9 2 Bよりなるスロッ ト対 9
2が配列されている。 なお、 図 6中、 一点鎖線で示す円周のうち、 互いに近接し た 2つの円周が対をなし、 対をなす円周は同心円である。 この一対の円周上に配 置されたスロット 9 2 A及びスロット 9 2 Bによりスロッ ト対 9 2が構成される ここで、 4対の円周は、 互いにずれ方向 (偏心方向) が 9 0度異なっている。 すなわち、 最内周の円周の対の中心は平面辺アンテナ部材 6 6 Aの外形の中心 O から下方にずれており、 その外側の円周の対の中心は平面辺アンテナ部材 6 6 A の外形の中心 Oから図中左側にずれている。 また、 その外側の円周の対の中心は 平面辺アンテナ部材 6 6 Aの外形の中心 Oに対して上方にずれている。 さらに、 最外周の円周の対の中心は平面辺アンテナ部材 6 6 Aの外形の中心 Oに対して右 側にずれている。 したがって、 図 3に示す平面アンテナ 6 6と同様に、 平面アン テナ部材の側面にて反射された表面波が平面アンテナ 6 6の中心一点に集中する ことはなく、 中心部分においてプラズマ密度が大きくなることが抑制される。 'ここで、 スロット 9 2 Aの長手方向とスロット 9 2 Bの長手方向とは互いに直 交しており、 スロット 9 2 Bの一端は、 スロット 9 2 Aの長手方向の中央に近接 'している。 また、 スロッ ト 9 2 Aの長手方向は、 スロット 9 2 Aの中央部分とス ロット 9 2 Aが配列された円周の中心とを結ぶ線に対し 約 4 5度に傾斜してお り、 同様に、 スロッ ト 9 2 Bの長手方向は、 スロッ ト 9 2 B中央部分とスロッ ト 9 2 Bが配列された円周の中心とを結ぶ線に対して約 4 5度に傾斜している。 こ のような T字型のスロット対 9 2によれば、 放射方向に伝播してくるマイクロ波 を効率よく円偏波の電界に変換することができ、 一様なブラズマを効率よく発生 することができる。
次に、 本発明の第 2実施例について図 7を参照しながら説明する。 図 7は本発 明の第 2の実施例による平面アンテナ部材 6 6 Bの平面図である。
ここで、 図 2に示すように、 プラズマ処理装置内のウェハ Wに対して側方から プラズマ用ガスを供給した場合、 プラズマ空間の電子密度に図 8に示すような偏 りが生じる。 すなわち、 プラズマ用ガスが供給される方向の上流側での電子密度 が低くなり、 下流側の電子密度が高くなる。 したがってプラズマ密度が不均一と なってしまう。
本発明の第 2実施例による平面アンテナ部材 6 6 Bは、 スロットの配列を考慮 することにより上述の問題を解決するものである。 すなわち、 スロットの配列に 偏りを持たせることにより意図的にマイク口波放射分布に偏りを持たせ、 ブラズ マ用ガスの供給方法に起因するプラズマ密度分布の傳りを、 平面アンテナ部材に よるマイクロ波放射の偏りにより捕正するものである。
図 7に示す平面アンテナ部材 6 6 Bは、 図 6に示す'平面アンテナ部材 6 6 Aと 同様な T字状のスロット対 9 2を有しており、 配列される円周の対の中心は平面 アンテナ部材 6 6 Bの中心 Oに対してずれている。 ただし、 平面アンテナ部材 6 6 8では_、 4対の円周の中心は全て同じ方向にずれている。 図 7では、 最も内側 の円周の対の中心は、 平面アンテナ部材 6 6 Bの中心と一致しているが、 その外 側の円周の対の中心は全て左側にずれており、 そのずれ量も外周側にいくほど大 きくなつている。
したがって、 図 7に示す平面アンテナ部材 6 6 Bでは、 右側部分においてスロ ット対 9 2の密度が大きくなり、 左側部分において小さくなる。 これにより、 放 射されるマイクロ波電界強度は、 平面ァンテナ部材 6 6 Bの右側部分 (スロット 密度の大きい部分) において大きくなり、 平面アンテナ部材 6 6 Bの左側部分 ( スロット密度の小さい部分) において小さくなる。
. そこで、 図 9に示すように非同心円状のスロッ ト配置のアンテナ部材を用いた 場合、 プラズマ用ガスの供給方法に起因して電子密度が小さくなる部分に対して 、 平面アンテナ部材のスロットの配列によりマイクロ波放射強度が大きくなる部 分を対応させることにより、 電子密度の偏りを補正することができる。
以上のように、 本実施の形態においても、 非同心円である複数の円周状にスロ ットを配置する構成の平面アンテナ部材において、 各々の円周のずれ方向を一致 させることにより、 電子密度の偏りを意図的に発生させ、 他の原因で生じる電子 密度の偏りを捕正することができ、 均一なプラズマ密度を達成することができる なお、 本発明の第 2実施例においても、 第 1実施例と同様に、 スロット対では なく単独のスロットを用いて、 その平面形状を図.5 A〜 5 Fに示すような種々の 平面形状としてもよい。
本発明は上述の具体的に開示された実施例に限定されることなく、 本発明の範 囲内で様々な変形例及び改良例を成すことができる。

Claims

請求の範囲
1 . 被処理基体にプラズマ処理を施すマイク口波プラズマ処理装置であって、 該被処理基体が載置される載置台が内部に設けられた処理容器と、
マイクロ波を発生して前記処理容器に供給するマイクロ波発生器と
該マイク口波発生器と前記処理容器との間に設けられ、 マイク口波を前記処理 容器内の空間に放射するためのマイク口波放射部材と
を有し、
前記マイク口波放射部材は複数の円周に沿って配列された複数のスロットを有 し、 該複数の円周は互いに非同心円であることを特徴とするマイクロ波ブラズマ
2 . 請求の範囲第 1項記載のマイクロ波プラズマ処理装置であって、 前記複数の円周の中心は、 前記マイクロ波放射部材の中心に対して互いに異な る方向に偏心しているマイク口波プラズマ処理装置。
3 . 請求の範囲第 1項記載のマイクロ波プラズマ処理装置であって、 前記複数の円周の中心は前記マイク口波放射部材の中心に対して互いに同一の 方向に偏心しており、 前記複数の円周の中心の偏心量は前記マイク口波放射部材 の外周に向かって大きくなるマイク口波プラズマ処理装置。
4 . 請求の範囲第 1項乃至第 3項のうちいずれか一項記載のマイク口波プラズ マ処理装置であって、
前記スロットの一つとその一つのスロットに近接したスロットにより T字状に 配列されたスロット対を構成し、 該スロット対が前記複数の円周に沿って配列さ れるマイク口波プラズマ処理装置。
5 . 被処理基体が載置される載置台が内部に設けられた処理容器と、 マイクロ 波を発生して前記処理容器に供給するマイク口波発生器と、 該マイク口波発生器 と前記処理容器との間に設けられ、 マイク口波を前記処理容器内の空間に放射す るためのマイク口波放射部材とを有し、 前記マイク口波放射部材は複数の円周に 沿って配列された複数のスロットを有し、 該複数の円周は互いに非同心円である マイクロ波プラズマ処理装置を用いるプラズマ処理方法であって、
前記被処理基体の処理面を前記マイク口波放射部材に対向するように前記載置 台に載置し、
前記マイク口波放射部材にマイク口波を供給して、 前記非同心円状に配列され たスロットからマイク口波を前記処理容器内に導入し、 - 導入したマイクロ波により前記処理容器内にプラズマを発生させ、 発生したプ ラズマにより前記被処理基体にブラズマ処理を施す
ことを特徴とするプラズマ処理方法。
6 . プラズマ処理を施す処理容器と、 マイクロ波を発生して前記処理容器に供 給するマイク口波発生器とを有するマイク口波プラズマ処理装置に用いられるマ イク口波放射部材であつて、
該マイク口波放射部材は、 前記処理容器に取り付けられ且つ前記マイクロ波発 生器に接続され、 互いに非同心円である複数の円周に沿つて配列された複数のス ロットを有し、 該複数のスロットによりマイクロ波を前記処理容器に導入するこ とを特徴とするマイクロ波放射部材。
7 . 請求の範囲第 6項記載のマイク口波放射部材であって、
前記複数の円周の中心は、 前記マイクロ波放射部材の中心に対して互いに異な る方向に偏心しているマイクロ波放射部材。
8 . 請求の範囲第 6項記載のマイクロ波放射部材であって、 .' 前記複数の円周の中心は前記マイクロ波放射部材の中心に対して互いに同一の 方向に偏心しており、 前記複数の円周の中心の偏心量は前記マイク口波放射部材 の外周に向かって大きくなるマイクロ波放射部材。
9 . 請求の範囲第 6項乃至第 8項のうちいずれか一項記載のマイクロ波放射部 材であって、
前記スロットの一つとその一つのスロットに近接したスロットにより T字状に 配列されたスロット対を構成し、 該スロット対が前記複数の円周に沿って配列さ れるマイクロ波放射部材。
PCT/JP2002/006110 2001-06-20 2002-06-19 Dispositif de traitement au plasma par micro-ondes, procede de traitement au plasma, et organe de rayonnement de micro-ondes WO2003001578A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/344,761 US6818852B2 (en) 2001-06-20 2002-06-19 Microwave plasma processing device, plasma processing method, and microwave radiating member
KR10-2003-7002437A KR100485235B1 (ko) 2001-06-20 2002-06-19 마이크로파 플라즈마 처리 장치, 플라즈마 처리 방법 및마이크로파 방사 부재
JP2003507875A JP3828539B2 (ja) 2001-06-20 2002-06-19 マイクロ波プラズマ処理装置、プラズマ処理方法及びマイクロ波放射部材
EP02738770A EP1398826A4 (en) 2001-06-20 2002-06-19 MICROWAVE PLASMA PROCESSING DEVICE, PLASMA PROCESSING METHOD, AND MICROWAVE RADIATION MEMBER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001186915 2001-06-20
JP2001-186915 2001-06-20

Publications (1)

Publication Number Publication Date
WO2003001578A1 true WO2003001578A1 (fr) 2003-01-03

Family

ID=19026285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006110 WO2003001578A1 (fr) 2001-06-20 2002-06-19 Dispositif de traitement au plasma par micro-ondes, procede de traitement au plasma, et organe de rayonnement de micro-ondes

Country Status (7)

Country Link
US (1) US6818852B2 (ja)
EP (1) EP1398826A4 (ja)
JP (1) JP3828539B2 (ja)
KR (1) KR100485235B1 (ja)
CN (1) CN1235272C (ja)
TW (1) TW550703B (ja)
WO (1) WO2003001578A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099957A1 (ja) * 2006-02-28 2007-09-07 Tokyo Electron Limited プラズマ処理装置およびそれに用いる基板加熱機構
US8307781B2 (en) * 2003-11-07 2012-11-13 Shimadzu Corporation Surface wave excitation plasma CVD system

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4222707B2 (ja) * 2000-03-24 2009-02-12 東京エレクトロン株式会社 プラズマ処理装置及び方法、ガス供給リング及び誘電体
JP4026759B2 (ja) * 2002-11-18 2007-12-26 日本碍子株式会社 加熱装置
KR101088233B1 (ko) * 2004-08-13 2011-11-30 도쿄엘렉트론가부시키가이샤 반도체 장치의 제조 방법, 플라즈마 산화 처리 방법 및 플라즈마 처리 장치
US7584714B2 (en) * 2004-09-30 2009-09-08 Tokyo Electron Limited Method and system for improving coupling between a surface wave plasma source and a plasma space
JP2006294422A (ja) * 2005-04-11 2006-10-26 Tokyo Electron Ltd プラズマ処理装置およびスロットアンテナおよびプラズマ処理方法
US20060270066A1 (en) * 2005-04-25 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Organic transistor, manufacturing method of semiconductor device and organic transistor
TWI408734B (zh) * 2005-04-28 2013-09-11 Semiconductor Energy Lab 半導體裝置及其製造方法
US8318554B2 (en) * 2005-04-28 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Method of forming gate insulating film for thin film transistors using plasma oxidation
US7410839B2 (en) * 2005-04-28 2008-08-12 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and manufacturing method thereof
US7785947B2 (en) * 2005-04-28 2010-08-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising the step of forming nitride/oxide by high-density plasma
US7608490B2 (en) * 2005-06-02 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7820495B2 (en) * 2005-06-30 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7838347B2 (en) * 2005-08-12 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of display device
US7723205B2 (en) * 2005-09-27 2010-05-25 Semiconductor Energy Laboratory Co., Ltd Semiconductor device, manufacturing method thereof, liquid crystal display device, RFID tag, light emitting device, and electronic device
US8895388B2 (en) * 2006-07-21 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device and a non-volatile semiconductor storage device including the formation of an insulating layer using a plasma treatment
JP5157101B2 (ja) * 2006-08-04 2013-03-06 東京エレクトロン株式会社 ガス供給装置及び基板処理装置
US7938081B2 (en) * 2006-09-12 2011-05-10 Tokyo Electron Limited Radial line slot antenna having a conductive layer
US7998307B2 (en) * 2006-09-12 2011-08-16 Tokyo Electron Limited Electron beam enhanced surface wave plasma source
JP2008098474A (ja) * 2006-10-13 2008-04-24 Tokyo Electron Ltd プラズマ処理装置とその運転方法、プラズマ処理方法および電子装置の製造方法
KR101196075B1 (ko) * 2007-09-28 2012-11-01 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치
JP5422396B2 (ja) * 2008-01-31 2014-02-19 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
US8753475B2 (en) * 2008-02-08 2014-06-17 Tokyo Electron Limited Plasma processing apparatus
ES2342958B2 (es) * 2008-09-03 2011-07-04 Emite Ingenieria Slne Analizador de multiples entradas y multiples salidas.
JP2014160557A (ja) * 2013-02-19 2014-09-04 Tokyo Electron Ltd プラズマ処理装置
CN103628048B (zh) * 2013-11-19 2016-02-24 王宏兴 一种微波等离子体化学气相沉积装置
JP5805227B2 (ja) * 2014-01-28 2015-11-04 東京エレクトロン株式会社 プラズマ処理装置
JP6501493B2 (ja) * 2014-11-05 2019-04-17 東京エレクトロン株式会社 プラズマ処理装置
CN106803475B (zh) * 2015-11-26 2019-01-22 中芯国际集成电路制造(上海)有限公司 一种等离子体处理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024716A (en) * 1988-01-20 1991-06-18 Canon Kabushiki Kaisha Plasma processing apparatus for etching, ashing and film-formation
JPH03262119A (ja) * 1990-03-13 1991-11-21 Canon Inc プラズマ処理方法およびその装置
JPH08111297A (ja) * 1994-08-16 1996-04-30 Tokyo Electron Ltd プラズマ処理装置
US5698036A (en) * 1995-05-26 1997-12-16 Tokyo Electron Limited Plasma processing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2722070B2 (ja) 1988-01-20 1998-03-04 キヤノン株式会社 プラズマ処理装置及びプラズマ処理方法
US6358324B1 (en) * 1999-04-27 2002-03-19 Tokyo Electron Limited Microwave plasma processing apparatus having a vacuum pump located under a susceptor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024716A (en) * 1988-01-20 1991-06-18 Canon Kabushiki Kaisha Plasma processing apparatus for etching, ashing and film-formation
JPH03262119A (ja) * 1990-03-13 1991-11-21 Canon Inc プラズマ処理方法およびその装置
JPH08111297A (ja) * 1994-08-16 1996-04-30 Tokyo Electron Ltd プラズマ処理装置
US5698036A (en) * 1995-05-26 1997-12-16 Tokyo Electron Limited Plasma processing apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1398826A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8307781B2 (en) * 2003-11-07 2012-11-13 Shimadzu Corporation Surface wave excitation plasma CVD system
WO2007099957A1 (ja) * 2006-02-28 2007-09-07 Tokyo Electron Limited プラズマ処理装置およびそれに用いる基板加熱機構

Also Published As

Publication number Publication date
EP1398826A4 (en) 2006-09-06
US20030168436A1 (en) 2003-09-11
CN1463468A (zh) 2003-12-24
US6818852B2 (en) 2004-11-16
EP1398826A1 (en) 2004-03-17
JPWO2003001578A1 (ja) 2004-10-14
KR20030031166A (ko) 2003-04-18
CN1235272C (zh) 2006-01-04
KR100485235B1 (ko) 2005-04-27
TW550703B (en) 2003-09-01
JP3828539B2 (ja) 2006-10-04

Similar Documents

Publication Publication Date Title
WO2003001578A1 (fr) Dispositif de traitement au plasma par micro-ondes, procede de traitement au plasma, et organe de rayonnement de micro-ondes
JP5243457B2 (ja) マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法
KR101176061B1 (ko) 천판 및 플라즈마 처리 장치
JP3233575B2 (ja) プラズマ処理装置
TWI685015B (zh) 微波電漿源及電漿處理裝置
JP3136054B2 (ja) プラズマ処理装置
JP2000268996A (ja) 平面アンテナ部材、これを用いたプラズマ処理装置及びプラズマ処理方法
WO2006009213A1 (ja) プラズマ処理装置
JP3430959B2 (ja) 平面アンテナ部材、これを用いたプラズマ処理装置及びプラズマ処理方法
JP2007149878A (ja) マイクロ波導入装置及びプラズマ処理装置
US6656322B2 (en) Plasma processing apparatus
JP4910396B2 (ja) プラズマ処理装置
US6675737B2 (en) Plasma processing apparatus
JP5374853B2 (ja) プラズマ処理装置
JP3889280B2 (ja) プラズマ処理装置
JP6700128B2 (ja) マイクロ波プラズマ処理装置
JP2003303775A (ja) プラズマ処理装置
JP3899272B2 (ja) プラズマ装置
JP2002217185A (ja) プラズマ処理装置
JPH10233294A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2003 507875

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2003507875

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002738770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10344761

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 02802155X

Country of ref document: CN

Ref document number: 1020037002437

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020037002437

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2004107501

Country of ref document: RU

Kind code of ref document: A

Ref document number: 2004107847

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20040094

Country of ref document: UZ

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2002738770

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1020037002437

Country of ref document: KR