WO2002099032A1 - Dispositif et procede permettant de cultiver des micro-algues - Google Patents

Dispositif et procede permettant de cultiver des micro-algues Download PDF

Info

Publication number
WO2002099032A1
WO2002099032A1 PCT/JP2002/005264 JP0205264W WO02099032A1 WO 2002099032 A1 WO2002099032 A1 WO 2002099032A1 JP 0205264 W JP0205264 W JP 0205264W WO 02099032 A1 WO02099032 A1 WO 02099032A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
culture vessel
microalgae
culture solution
gas
Prior art date
Application number
PCT/JP2002/005264
Other languages
English (en)
French (fr)
Inventor
Toru Sato
Yoshihiro Tsuchiya
Shinsuke Usui
Seishiro Hirabayashi
Yutaka Kondo
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to JP2003502142A priority Critical patent/JP4079878B2/ja
Publication of WO2002099032A1 publication Critical patent/WO2002099032A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/26Constructional details, e.g. recesses, hinges flexible
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • C12M41/08Means for changing the orientation

Definitions

  • the present invention relates to a closed-type microalgae culturing apparatus for culturing microalgae, which is a photosynthetic organism, and a microalgae culturing method.
  • Microalgae which are photosynthetic organisms, are cultivated as feed for aquaculture because they absorb carbon dioxide and produce useful components such as vitamins, amino acids, pigments, proteins, polysaccharides, and fatty acids by photosynthesis. ing.
  • this kind of microalgae is also used as a means for treating carbon dioxide, which is one of the causes of global warming, and in recent years, a culturing apparatus for culturing the carbon dioxide in a large amount has been studied.
  • a culture device is for culturing microalgae in a culture solution, and the light necessary for photosynthesis mainly uses sunlight, and carbon dioxide is air or a mixed gas of carbon dioxide and air. Supply by blowing into.
  • the capacity per installation area of the closed type culture device is smaller than that of the open type culture system, and high concentration culture is necessary to increase high productivity.
  • microalgae adhere to the inner wall of the culture vessel, or microalgae form a colony in the culture vessel and precipitate. There is a problem of doing. Furthermore, precipitation of microalgae in the culture vessel becomes a breeding ground for bacteria and may cause the culture solution to spoil.
  • the present invention has been made in view of the above problems, and its purpose is to achieve sufficient productivity by achieving sufficient agitation of the culture solution, and to provide microalgae on the culture vessel wall.
  • An object of the present invention is to provide a microalgae culturing apparatus and a microalgae culturing method capable of maintaining high cultivation efficiency over a long period of time by preventing adhesion and precipitation on the bottom of a culture vessel.
  • the invention according to claim 1 includes, while introducing a culture solution into a culture vessel having an opening at the top, blowing a gas containing carbon dioxide into the culture solution,
  • a gas containing carbon dioxide into the culture solution
  • the culture vessel is formed into a parabolic shape with inner and outer double curved walls, and visible light is transmitted through at least the outer curved wall.
  • a gas blowing port for blowing a gas for forming a swirling flow of the culture solution into the culture vessel is opened at a lower portion in the culture vessel.
  • the invention according to claim 2 is the invention according to claim 1, wherein the outer shape of the culture vessel in a front view is a circle, an ellipse, or an ellipse.
  • the invention set forth in claim 3 is characterized in that, in the invention set forth in claim 1 or 2, the culture vessel is installed so as to be inclined with respect to a horizontal plane.
  • the invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the temperature-controlled water flowing along at least the outer surface of the curved wall on the outer side of the culture vessel is used. A sprinkling port for sprinkling water is opened at an upper portion of the culture vessel.
  • the invention according to claim 5 is characterized in that the culture solution is placed in a culture vessel having an opening at the top, and visible light is incident while blowing a gas containing carbon dioxide into the culture solution.
  • a culture vessel is formed in a parabolic shape with inner and outer double curved walls, and at least the outer curved wall is made of a transparent material that transmits visible light.
  • a swirling flow of the culture solution is formed, which rises along the center in the width direction, is divided into right and left parts at the upper part, and descends along the outer periphery.
  • the invention according to claim 6 is the invention according to claim 5, wherein the temperature of the culture solution is controlled by spraying temperature-regulated water onto the culture vessel. I do. Therefore, according to the invention set forth in claim 1, a gas blowing port for blowing gas for forming a swirling flow of the culture solution into the culture container is opened at a lower portion in the culture container. A swirling flow of the culture solution is formed in the culture vessel by blowing gas, and the culture solution is sufficiently agitated so that microalgae can be received fairly, thereby achieving high productivity. Can be.
  • the microalgae can be efficiently cultured since the microalgae can be efficiently and uniformly received without obstructing the permeation of the microalgae, and a high culture efficiency can be maintained for a long period of time.
  • the culture vessel is formed of a curved wall having a high pressure resistance, the thickness of the culture vessel can be kept small, and the weight and cost of the apparatus can be reduced.
  • the culture container has a bilaterally symmetrical shape such as a circle, an ellipse, or an ellipse as the external shape in a front view, the culture solution swirling inside the culture container along the outer periphery thereof. Can be easily formed, and the production of the culture vessel is facilitated.
  • the culture vessel is installed inclined with respect to the horizontal plane, the utilization efficiency of sunlight is enhanced, and the culture solution stays in the culture vessel more reliably.
  • the culture is performed.
  • the culture can be kept at an appropriate temperature year-round, regardless of the season.
  • the lower center of the culture vessel is formed in a parabolic shape with the inner and outer double curved walls, and at least the outer curved wall is made of a transparent material that transmits visible light.
  • a vortex is easily generated from the curved wall and the inner curved wall to the outer curved wall, and the vortex agitates the culture solution sufficiently without stagnation, so that microalgae adhere to the wall surface of the culture vessel.
  • No micro-algae can be efficiently cultured because the light transmission is not blocked by the micro-algae, and the micro-algae can be efficiently and uniformly received.
  • High cultivation efficiency can be maintained over a long period of time.
  • the temperature of the culture solution is controlled by spraying the temperature-regulated water to the culture container, the culture solution can be maintained at an appropriate temperature year round regardless of the season. In particular, it is possible to effectively eliminate the adverse effect on algal growth caused by excessive temperature rise of the culture solution particularly in summer.
  • FIG. 1 is a perspective view of a microalgae culturing apparatus according to the present invention.
  • FIG. 2 is a front view of the microalga culturing apparatus according to the present invention.
  • FIG. 3 is a side sectional view of the microalgae culturing apparatus according to the present invention.
  • FIG. 4 is an enlarged detail view of a portion A in FIG.
  • FIG. 5 is a perspective view showing an example of an actual production facility using the microalgae culturing apparatus according to the present embodiment.
  • 1 is a microalgae culture apparatus
  • 2 is a culture vessel
  • 4 is an inside curved wall
  • 5 is an outside curved wall
  • 6 is a culture solution
  • 14 is gas introduction.
  • a pipe, 17 is a gas discharge opening
  • 18 is a cap
  • 19 is a temperature control water introduction pipe.
  • Fig. 1 is a perspective view of the microalga culturing apparatus according to the present invention
  • Fig. 2 is a front view of the microalga culturing apparatus
  • Fig. 3 is a side sectional view of the microalga culturing apparatus
  • Fig. 4 is an enlarged detail of a portion A in Fig. 3. It is a figure.
  • the microalgae culturing apparatus 1 is configured such that a parabolic culture vessel 2 having a circular outer shape in a front view is placed on a support 3 at a predetermined angle ⁇ (see FIG. 3). .
  • the culture vessel 2 is formed in a parabolic shape by concentrically combining a curved surface wall 5 having a convex spherical shape with an outer surface of an inner curved wall 4 having a convex spherical shape at the center portion.
  • the culture solution 6 is injected into the space surrounded by the two curved walls 4 and 5 formed in Fig. 3 (see Fig. 3).
  • the outer shape of the culture vessel 2 is circular when viewed from the front, but may be elliptical or oblong when viewed from the front.
  • the inner and outer double curved walls 4 and 5 constituting the culture vessel 2 have a convex spherical shape, they may have a concave curved surface.
  • the side facing the sun is defined as the outside, and accordingly, 4 is the inside curved wall, and 5 is the outside curved wall.
  • the inner and outer curved walls 4 and 5 constituting the culture vessel 2 are made of a transparent material that transmits sunlight (visible light).
  • an acrylic resin is used as the transparent material.
  • any material can be used as long as it is excellent in light transmittance, high in weather resistance and ultraviolet light resistance 1, and can be any material, for example, polycarbonate, polypropylene, polyethylene, polyvinyl chloride, etc. Resin, glass, etc. can be selected.
  • the inner and outer curved walls 4 and 5 constituting the culture vessel 2 are formed by overlapping flat ring-shaped flange portions 4 a and 5 a formed on the respective outer peripheral edges with each other.
  • the overlapped flange portions 4a and 5a are sandwiched from both sides by ring-shaped metal back plates 7 and 8, and a plurality of bolts 9 passing therethrough and nuts 10 screwed to the flange portions 4a and 5a are used.
  • a, 5a are assembled by tightening them, whereby a parabolic culture vessel 2 is formed.
  • the four sets of flange portions 4 a and 5 a are fastened together with the support base 3 with bolts 9, so that the inner and outer curved walls 4 and 5 is fixed to the support 3.
  • An O-ring 11 is interposed between the overlapped flange portions 4a, 5a of the inner and outer curved walls 4, 5, and the O-ring 11 seals the culture vessel 6 for the culture solution 6. 2 Leaks to the outside are prevented.
  • a circular drain hole 4b is formed in the lower part of the inside of the curved wall 4 in the width direction at the center of the culture vessel 2, and the drain hole 4b has an outer side. Drain pipes 12 are inserted and bound. A drain valve 13 is provided in the middle of the drain pipe 12. By opening the drain valve 13, the culture solution 6 in the culture vessel 2 can be discharged to the outside.
  • gas is blown into a circular hole at three locations on the outer periphery of the lower part of the curved wall 5 on the outer side (light receiving side) of the culture vessel 2 (a vertically lower position passing through the center of the curved wall 5 and three positions on the left and right sides thereof).
  • a mouth 5b (only one is shown in Figure 4) is drilled.
  • a gas introduction pipe 14 extends horizontally in the left-right direction.
  • the three branch pipes 15 extending toward the two sides are inserted into and bound to the gas blowing ports 5b formed in the outer periphery of the lower part of the curved wall 5 on the outside of the culture vessel 2.
  • the gas introduction pipe 14 is connected to a gas supply source such as a compressor for supplying air or a mixed gas of carbon dioxide and air.
  • a cylindrical gas discharge tube 16 is attached to the top of the culture vessel 2 (that is, the top of the outer curved wall 5), and the inside of the gas discharge cylinder 16 opens into the culture vessel 2 for gas discharge.
  • An opening 17 is formed.
  • An inverted dish-shaped cap 18 that opens downward is attached to the upper part of the gas discharge cylinder 16, and the gas discharge opening 17 is covered by the cap 18 so that the culture vessel 2 is closed. It is possible to prevent dust and dirt or airborne microorganisms from entering the culture solution 6 in the inside. A similar effect can be obtained by providing a filter in the gas discharge opening 17 instead of the cap 18.
  • a temperature control water introduction pipe 19 extends in the left-right direction parallel to the gas introduction pipe 14 on the upper front side of the culture vessel 2.
  • the temperature control water introduction pipe 19 supports a pair of left and right supports. It is attached to the culture vessel 2 by a bracket 20.
  • a temperature control water supply pipe 19 is connected to a temperature control water supply source (not shown) such as a cooling water pump.
  • a gas supply source (not shown) is driven to supply gas (air or carbon dioxide) containing carbon dioxide.
  • the gas supplied into the culture vessel 2 rises along the inner surface of the outer curved wall 5 as bubbles from the three places at the bottom of the culture vessel 2 as shown in FIG. Supply carbon dioxide to microalgae. Due to the rise of the gas bubbles, the culture solution 6, which rises along the center in the width direction and splits right and left at the upper portion and descends along the outer periphery, as shown by the arrow in FIG. A swirling flow is formed.
  • the sunlight is transmitted through the curved wall 5 on the outside of the culture vessel 2 facing the sun and enters the culture vessel 2, and the direct and scattered light enters from the inside curved wall 4.
  • the amount of received light per cell of the microalgae in the container 2 increases, and the microalgae produces useful components such as vitamins, amino acids, pigments, proteins, polysaccharides, and fatty acids by photosynthesis, and global warming Absorb carbon dioxide, which contributes to air pollution.
  • the oxygen generated by the photosynthetic action is discharged to the atmosphere through the gas discharge opening 17 formed at the top of the culture vessel 2 and the gap between the gas discharge cylinder 16 and the cap 18. .
  • the temperature control water supply source is driven to flow the temperature control water (cooling water) to the temperature control water introduction pipe 19, and the temperature control water is drilled in the temperature control water introduction pipe 19
  • a plurality of sprinklers 1 9a were sprinkled and flowed along the outer surface of the outer curved wall 5, and the culture 6 was cooled to cool the culture 6 in the culture vessel 2 and to control its temperature. It can be kept at an appropriate temperature all year round regardless of the season, and especially microalgae caused by excessive temperature rise of the culture solution 6 in the summer It is possible to effectively eliminate the adverse effect on the kind of growth.
  • the swirling flow of the culture solution 6 is formed in the culture vessel 2 by blowing gas, so that the culture solution 6 is sufficiently stirred.
  • the microalgae can receive light fairly, thereby achieving high productivity.
  • the multi-phase turbulence during the passage of bubbles in the culture solution 6 and the turbulent boundary layer on the wall surface and the Gertruder vortex due to the flow of the culture solution 6 along the curved walls 4 and 5 of the parabolic culture vessel 2 Therefore, a vortex is generated from the outer curved wall 5 to the inner curved wall 4 and from the inner curved wall 4 to the outer curved wall 5, and the vortex causes sufficient agitation without stagnation of the culture solution 6.
  • the microalgae do not adhere to the wall surface of the culture vessel 2 or form a colony to precipitate, and the light transmission is not blocked by the microalgae. Algae can be cultured efficiently, and high culture efficiency can be maintained over a long period of time.
  • microalgae adhere to the wall surface of the culture vessel 2 or form a colony and settle, it is not preferable because light reception of the microalgae is hindered, but according to the microalgae culture device 1, different types of mixed-phase turbulence and turbulence Since a flow boundary layer and a Gertler vortex (described in detail below) are generated, vortices and turbulence are generated between the curved walls 4 and 5, and light transmission is not blocked by microalgae.
  • Multiphase turbulence Turbulence caused by bubbles moving in the liquid phase
  • Turbulent boundary layer When a flow passes near a wall, the Reynolds number, a parameter representing the similar side of the flow, increases (the flow over the wall increases, or the distance that the flow contacts the wall increases).
  • the boundary layer which is a slow layer formed near the wall surface, becomes turbulent. This turbulent layer is called a turbulent boundary layer.
  • Gertler vortex When there is a flow parallel to the curvature on a concave surface, the Reynolds number, a parameter that expresses the similarity law of the flow, increases (the flow over the wall becomes faster or the distance that the flow contacts the wall becomes longer) This produces a rotating vortex perpendicular to the flow. This rotating vortex is called the Gel-Toller vortex. Further, since the culture vessel 2 is composed of the curved walls 4 and 5 having high pressure resistance, the thickness of the culture apparatus 1 can be reduced, and the weight and cost of the culture apparatus 1 can be reduced.
  • the culture vessel 2 since the culture vessel 2 is installed at a predetermined angle ⁇ with respect to the horizontal plane, the utilization efficiency of sunlight is enhanced, and the culture solution 6 stays in the culture vessel 2 more. This reliably prevents microalgae from adhering to the wall surface. If the tilt angle of the culture vessel 2 is variable by adding a variable mechanism, the tilt angle ⁇ of the culture vessel 2 can be adjusted to follow the change in the solar altitude so that the solar light can always be received at maximum. Can be changed, and higher cultivation efficiency can be secured. In addition, when there is a possibility that light inhibition of photosynthesis occurs due to too strong light, such occurrence of light inhibition can be prevented by changing the inclination angle ⁇ of the culture vessel 2.
  • the flow of the culture solution 6 which rises along the center in the width direction of the culture vessel 2 and is divided into right and left at the upper portion and descends along the outer periphery is formed.
  • the easy generation of multiphase turbulence, turbulent boundary layers, and Gertler vortices which makes it possible to stir the culture solution 6 uniformly and easily to prevent stagnation, and to prevent any algae in the culture solution 6 It can also achieve high productivity with fair lighting.
  • FIG. 5 an example of an actual production facility using the microalgae culturing apparatus 1 according to the present embodiment is shown in FIG. 5, but in the actual production facility, a plurality of microalgae culturing apparatuses 1 are arranged in a row as shown in the figure.
  • the culture volume was 70 liters, and the culture result was an average growth rate of 0.09 g dry weight / liter Z days. Also, no microalgae adhered to the culture vessel wall during the culture period.
  • the microalgae culturing apparatus In another culture experiment, Spirul ina platencis was cultured as a microalgae. In contrast to 0.1 to 0.2 g / liter, the microalgae culturing apparatus according to the present invention has a culture concentration of 10 to 20 g / U, and a productivity of 1.8 to 4.0 g / day. A good result of 5 g / l was obtained. Industrial applicability>
  • a culture solution is put into a culture vessel having an opening at the top, and visible light is emitted while blowing gas containing carbon dioxide into the culture solution.
  • the culture vessel is formed into a parabolic shape with inner and outer double curved walls, and at least the outer curved wall transmits visible light. It is made of a transparent material, and a gas inlet for injecting a gas for forming a swirling flow of the culture solution into the culture container is opened at a lower portion of the culture container, thereby achieving sufficient stirring of the culture solution.
  • High productivity can be obtained, and the effect of maintaining high culture efficiency over a long period of time by preventing microalgae from adhering to the wall of the culture vessel and sedimentation on the bottom of the culture vessel can be obtained.
  • a culture solution is put into a culture container having an opening at a top portion, and while a gas containing carbon dioxide is blown into the culture solution, visible light is incident on the culture solution so that the inside of the culture container is formed.
  • the gas is formed from the lower central portion of a culture vessel formed of an inner and outer double curved wall in a parabolic shape and having at least an outer curved wall made of a transparent material that transmits visible light.

Description

明 細 書 微細藻類培養装置、 及び、 微細藻類培養方法 <技術分野〉
本発明は、 光合成生物である微細藻類を培養するためのクローズド型の微細藻 類培養装置、 及び、 微細藻類培養方法に関する。 ぐ背景技術 >
光合成生物である微細藻類は、 二酸化炭素を吸収して光合成作用によってビタ ミン類、 アミノ酸、 色素類、 タンパク質、 多糖類、 脂肪酸等の有用成分を製造す るため、 養殖の飼料用等として培養されている。 又、 この種の微細藻類は、 地球 温暖化の原因の 1つとされる二酸化炭素を処理する手段としても利用され、近年、 これを大量に培養する培養装置が研究されている。
ところで、 培養装置は、 培養液中で微細藻類を培養するものであって、 光合成 に必要な光は主に太陽光線を利用し、 二酸化炭素は空気又は二酸化炭素と空気と の混合気体を培養液に吹き込むことによって供給する。
而して、 培養装置において太陽エネルギーを効率良く利用して微細藻類を効率 良く培養するためには、
( 1 ) 受光量が多いこと
( 2 ) 培養液を十分に撹拌し、 微細藻類に効率良く光を当て、 栄養分と二酸化炭 素を均一に供給するとともに、 微細藻類から排出される酸素を除去すること
( 3 ) 培養液の滞留のない撹拌を実現し、 微細藻類の壁面付着による光透過の低 下やコ口 -一の形成による沈殿防止を図ること
が必要となる。
従来、 微細藻類の培養法として、 培養池やレースウェイ型培養池等を利用した オープン型培養方式が実施されているが、 この方式では培養液の十分な撹拌がで きないために光が表層にしか到達せず、 培養濃度が低く、 埃ゃゴミ或は空気中の 浮遊微生物等の混入を防ぐことができないために高 p H、 高塩分濃度等の特殊な 条件下での培養が可能な微細藻類しか培養できず、 更には培養液の温度調整が困 難である等の問題がある。
そこで、 培養容器の中に培養液を入れ、 該培養液中に二酸化炭素を含むガスを 吹き込みつつ、 可視光線を入射させることによって培養容器内で微細藻類を培養 するクローズド型の培養装置が種々提案されている。
ところで、 クローズド型の培養装置の設置面積当たりの容量はオープン方培養 方式のそれに比して小さく、 高い生産性を上げるには高濃度培養が必要である。
しかしながら、 クローズド型の培養装置においては、 光は受光壁面側から内部 に至るに連れて減衰するため、光に当たる藻類と当たらない藻類ができてしまい、 従って、 装置内での培養液の十分な撹拌がなければ公平に藻類に受光させること ができず、 高生産性を達成することができないという問題がある。
又、 クローズド型の培養装置においては、 培養容器の内壁に微細藻類が付着し たり、 培養容器内で微細藻類がコロニーを形成して沈殿するため、 光の透過が遮 られて培養効率が著しく低下するという問題がある。 更に、 培養容器内で微細藻 類が沈殿するとバクテリアの温床となり、 培養液が腐敗する原因にもなる。
本発明は上記問題に鑑みてなされたもので、 その目的とする処は、 培養液の十 分な撹拌を実現して高い生産性を得ることができるとともに、 微細藻類の培養容 器壁面への付着や培養容器底面への沈殿を防いで長期に亘つて高い培養効率を維 持することができる微細藻類培養装置、 及び、 微細藻類培養方法を提供すること こある。
<発明の開示 >
上記目的を達成するため、 請求の範囲第 1項に記載の発明は、 頂部に開口部を 有する培養容器の中に培養液を入れ、 該培養液中に二酸化炭素を含むガスを吹き 込みつつ、 可視光線を入射させることによって前記培養容器内で微細藻類を培養 する微細藻類培養装置において、 前記培養容器を内外二重曲面壁でパラボラ状に 成形するとともに、 少なくとも外側の曲面壁を可視光線を透過する透明材料で構 成し、 前記培養容器内に前記培養液の旋回流を形成するためのガスを吹き込むガ ス吹込口を培養容器内下部に開口せしめたことを特徴とする。 請求の範囲第 2項に記載の発明は、 請求の範囲第 1項に記載の発明において、 前記培養容器の正面視外形形状を円、 楕円又は長円としたことを特徴とする。 請求の範囲第 3項に記載の発明は、 請求の範囲第 1項又は第 2項記載の発明に おいて、 前記培養容器を水平面に対して傾斜させて設置したことを特徴とする。 請求の範囲第 4項に記載の発明は、 請求の範囲第 1項〜第 3項の何れかに記載 の発明において、 前記培養容器の少なくとも外側の曲面壁の外面に沿って流れる 温調水を散水するための散水口を前記培養容器の上部に開口せしめたことを特徴 とする。 請求の範囲第 5項に記載の発明は、 頂部に開口部を有する培養容器の中に培養 液を入れ、 該培養液中に二酸化炭素を含むガスを吹き込みつつ、 可視光線を入射 させることによって前記培養容器内で微細藻類を培養する微細藻類培養方法にお いて、 内外二重曲面壁でパラボラ状に成形され、 少なくとも外側の曲面壁を可視 光線を透過する透明材料で構成して成る培養容器の下部中央部から前記ガスを吹 き込むことによって、 幅方向中心に沿って上昇し、 上部で左右に分かれて外周に 沿って下降する培養液の旋回流を形成することを特徴とする。 請求の範囲第 6項に記載の発明は、 請求の範囲第 5項に記載の発明において、 前記培養容器への温調水の散水によつて前記培養液の温度をコントロールするこ とを特徴とする。 従って、 請求の範囲第 1項に記載の発明によれば、 前記培養容器内に前記培養 液の旋回流を形成するためのガスを吹き込むガス吹込口を培養容器内下部に開口 せしめるようにしたため、 ガスの吹き込みによって培養容器中に培養液の旋回流 を形成して、 培養液の十分な撹拌がなされて微細藻類が公平に受光することがで き、 これによつて高生産性を達成することができる。 又、 気泡通過時の混相乱流 と壁面における乱流境界層及びパラポラ状の培養容器の曲面壁に沿つて培養液が 流れることによるゲルトラー渦によって、 外側の曲面壁から内側の曲面壁及び内 側の曲面壁から外側の曲面壁に向かう渦が発生し、 この渦によって培養液が滞留 することなく十分に撹拌されるため、 微細藻類が培養容器の壁面に付着したりコ ロニーを形成して沈殿することがなくなり、 微細藻類によって光の透過が遮られ ることがなく、 微細藻類は効率良く且つ均一に受光するために微細藻類を効率良 く培養することができ、 長期に亘つて高い培養効率を維持することができる。 更 に、 培養容器を耐圧強度の高い曲面壁で構成したため、 その板厚を小さく抑えて 装置の軽量化及ぴコストダウンを図ることができる。 請求の範囲第 2項に記載の発明によれば、培養容器の正面視外形形状として円、 楕円又は長円の左右対称形状を採用したため、 該培養容器内にその外周に沿つて 旋回する培養液の流れを容易に形成することができるとともに、 培養容器の製造 が容易化する。 請求の範囲第 3項に記載の発明によれば、 培養容器を水平面に対して傾斜させ て設置したため、 太陽光線の利用効率が高められるとともに、 培養容器内での培 養液の滞留が一層確実に防がれ、 微細藻類の壁面への付着が確実に防がれる。 請求の範囲第 4項に記載の発明によれば、 培養容器の少なくとも外側の曲面壁 の外面に沿つて流れる温調水を散水するための散水口を培養容器の上部に開口せ しめたため、 培養容器への温調水の散水によって培養液の温度をコントロールす ることによって、 培養液を季節によらず一年中適温に保つことができ、 特に夏期 における培養液の過昇温による藻類成長への悪影響を効果的に解消することがで さる。 請求の範囲第 5項に記載の発明によれば、 内外二重曲面壁でパラボラ状に成形 され、 少なくとも外側の曲面壁を可視光線を透過する透明材料で構成して成る培 養容器の下部中央部から前記ガスを吹き込むことによって、 幅方向中心に沿って 上昇し、 上部で左右に分かれて外周に沿って下降する培養液の旋回流を形成する ため、 培養液の十分な撹拌が簡易になされて微細藻類が公平に受光することがで き、 これによつて高生産性を達成することができる。 又、 気泡通過時の混相乱流 と壁面における乱流境界層及びパラボラ状の培養容器の曲面壁に沿って培養液が 流れることによるゲルトラー渦を簡易に発生させることによって、 外側の曲面壁 から内側の曲面壁及び内側の曲面壁から外側の曲面壁に向かう渦を簡易に発生さ せ、 この渦によって培養液が滞留することなく十分に撹拌されるため、 微細藻類 が培養容器の壁面に付着したりコロニーを形成して沈殿することがなくなり、 微 細藻類によって光の透過が遮られることがなく、 微細藻類は効率良く且つ均一に 受光するために微細藻類を効率良く培養することができ、 長期に亘つて高い培養 効率を維持することができる。 請求の範囲第 6項に記載の発明によれば、 培養容器への温調水の散水によって 培養液の温度をコントロールするようにしたため、 培養液を季節によらず一年中 適温に保つことができ、 特に夏期における培養液の過昇温による藻類成長への悪 影響を効果的に解消することができる。
<図面の簡単な説明 >
図 1は、 本発明に係る微細藻類培養装置の斜視図である。
図 2は、 本発明に係る微細藻類培養装置の正面図である。
図 3は、 本発明に係る微細藻類培養装置の側断面図である。
図 4は、 図 3の A部拡大詳細図である。
図 5は、 本実施の形態に係る微細藻類培養装置を用いた実際の生産設備例を示 す斜視図である。
なお、図中の符号、 1は微細藻類培養装置、 2は培養容器、 4は内側の曲面壁、 5は外側の曲面壁、 5 bほガス吹込口、 6は培養液、 1 4はガス導入パイプ、 1 7はガス排出用開口部、 1 8はキャップ、 1 9は温調水導入パイプである。 く発明を実施するための最良の形態 > 以下に本発明の実施の形態を添付図面に基づいて説明する。
図 1は本発明に係る微細藻類培養装置の斜視図、 図 2は同微細藻類培養装置の 正面図、 図 3は同微細藻類培養装置の側断面図、 図 4は図 3の A部拡大詳細図で ある。
本発明に係る微細藻類培養装置 1は、 外形形状が正面視円形を成すパラボラ状 の培養容器 2を支持台 3上に所定角度 α (図 3参照) だけ傾けて設置して構成さ れている。
上記培養容器 2は、 中央部が凸球面状を成す内側の曲面壁 4の外側に同じく凸 球面状を成す曲面壁 5を同心的に組み合わせてパラボラ状に成形されており、 該 培養容器 2内に形成された両曲面壁 4, 5によって囲まれる空間内には培養液 6 が注入されている (図 3参照) 。
尚、 本実施の形態では、 培養容器 2の外形形状を正面視円形としたが、 正面視 楕円形又は長円形としても良い。 又、 培養容器 2を構成する内外二重曲面壁 4, 5を凸球面状としたが、 これらを凹曲面状としても良い。 更に、 本実施の形態で は、 太陽に対面する側を外側と定義することとし、 従って、 4が内側の曲面壁、 5が外側の曲面壁となる。
ここで、 培養容器 2を構成する内外の曲面壁 4, 5は太陽光 (可視光線) を透 過する透明材料で構成されており、 本実施の形態では、 透明材料としてアクリル 樹脂を用いている。 尚、 透明材料としては、 光透過性に優れ、 耐候性及び耐紫外 線の高 1、材料であれば任意のものを使用することができ、 例えばポリカーボネー ト、 ポリプロピレン、 ポリエチレン、 ポリ塩化ビニル等の樹脂、 ガラス等を選定 することができる。
而して、 培養容器 2を構成する内外の曲面壁 4, 5は、 図 4に示すように、 各 外周縁に形成された扁平なリング状のフランジ部 4 a , 5 a同士を重ね合わせ、 重ね合わされた両フランジ部 4 a , 5 aをリング状の金属製バックプレート 7, 8によって両側から挟み込み、 これらに揷通する複数のボルト 9とこれに螺合す るナツト 1 0によってフランジ部 4 a , 5 aを締着することによって組み付けら れ、 これによつてパラボラ状の培養容器 2が構成される。 また、 四組のフランジ 部 4 a , 5 aは支持台 3と共にボルト 9にて締着されており、 内外の曲面壁 4 , 5が支持台 3に対して固定されている。 尚、 内外の曲面壁 4 , 5の重ね合わされ たフランジ部 4 a, 5 aの間には〇リング 1 1が介設され、 この Oリング 1 1の シール作用によつて培養液 6の培養容器 2外への漏出が防がれている。
又、 図 4に詳細に示すように、 培養容器 2の内側の曲面壁 4の幅方向中央下部 には円孔状のドレン孔 4 bが穿設されており、 このドレン孔 4 bには外側からド レンパイプ 1 2が差し込まれて結着されている。 そして、 このドレンパイプ 1 2 の途中にはドレンバルブ 1 3が設けられており、 このドレンバルブ 1 3を開ける ことによつて培養容器 2内の培養液 6を外部に排出することができる。
更に、 培養容器 2の外側 (受光側) の曲面壁 5の下部外周の 3箇所 (曲面壁 5 の中心を通る鉛直下方位置とこれの左右の位置の 3箇所) には円孔状のガス吹込 口 5 b (図 4には 1つのみ図示) が穿設されている。
一方、 培養容器 2の下部前面側 (外側の曲面壁 5の外方) にはガス導入パイプ 1 4が左右方向に水平に延設されており、 このガス導入パイプ 1 4から分岐して 培養容器 2側に向かって延びる 3本の枝管 1 5は、 培養容器 2の外側の曲面壁 5 の下部外周に穿設された前記ガス吹込口 5 bに差し込まれて結着されている。尚、 図示しないが、 ガス導入パイプ 1 4は、 空気又は二酸化炭素と空気との混合気体 を供給するコンプレッサ等のガス供給源に接続されている。
他方、 培養容器 2の頂部 (つまり、 外側の曲面壁 5の頂部) には、 円筒状のガ ス排出筒 1 6が取り付けられており、 その内部は培養容器 2内に開口するガス排 出用開口部 1 7が形成されている。 そして、 ガス排出筒 1 6の上部には、 下向き に開口する逆皿状のキャップ 1 8が被着されており、 ガス排出用開口部 1 7がキ ヤップ 1 8によって覆われることによって培養容器 2内の培養液 6への埃ゃゴミ 或は空気中の浮遊微生物等の混入を防ぐことができる。 尚、 キャップ 1 8に代え てガス排出用開口部 1 7にフィルタを設けることによつても同様の効果が得られ る。
又、 培養容器 2の上部前面側には温調水導入パイプ 1 9が前記ガス導入パイプ 1 4と平行に左右方向に延設されており、 この温調水導入パイプ 1 9は左右一対 の支持ブラケット 2 0によって培養容器 2に取り付けられている。 そして、 この 温調水導入パイプ 1 9の下部には、 図 2に示すように、 複数 (図示例では、 5つ ) の散水口 1 9 aが穿設されており、 温調水導入パイプ 1 9は冷却水ポンプ等の 不図示の温調水供給源に接続されている。
而して、 以上の構成を有する培養容器 2は、 枠体構造を成す前記支持台 3の斜 面部に支持されており、 外側の曲面壁 5が太陽に対面するように所定角度 α (本 実施の形態では、 α = 6 0 ° ) だけ傾けて設置されている。 次に、 本実施の形態に係る微細藻類培養装置 1の作用について説明する。 当該微細藻類培養装置 1を屋外に設置するとともに、 培養容器 2に培養すべき 微細藻類と培養液 6を入れ、 不図示のガス供給源を駆動して二酸化炭素を含むガ ス (空気又は二酸化炭素と空気との混合気体) をガス導入パイプ 1 4に流すと、 ガスは 3本の枝管 1 5から培養容器 2内に供給される。
培養容器 2内に供給されたガスは、 培養容器 2の底部 3箇所から図 3に示すよ うに気泡となつて外側の曲面壁 5の内面に沿つて上昇し、 その過程で培養液 6中 の微細藻類に二酸化炭素を供給する。 このガスの気泡の上昇によって、 培養容器 2内には、 図 2に矢印にて示すように、 幅方向中心に沿って上昇し、 上部で左右 に分かれて外周に沿って下降する培養液 6の旋回流が形成される。
又、 太陽に対面する培養容器 2の外側の曲面壁 5を透過して太陽光線が培養容 器 2内に入射するとともに、 内側の曲面壁 4からも直射光及び散乱光が入射する ため、 培養容器 2内の微細藻類の各細胞当たりの受光量が多くなり、 微細藻類は 光合成作用によってビタミン類、 アミノ酸、 色素類、 タンパク質、 多糖類、 脂肪 酸等の有用成分を製造するとともに、 地球温暖化の一因となっている二酸化炭素 を吸収処理する。 そして、 光合成作用によって発生した酸素は、 培養容器 2の頂 部に形成されたガス排出用開口部 1 7及びガス排出筒 1 6とキャップ 1 8の間の 隙間を通って大気中に排出される。
そして、 必要に応じて、 温調水供給源を駆動して温調水 (冷却水) を温調水導 入パイプ 1 9に流せば、 温調水は温調水導入パイプ 1 9に穿設された複数の散水 口 1 9 aから散水されて外側の曲面壁 5の外面に沿って流れ、 培養容器 2内の培 養液 6を冷却等してその温度をコントロールするため、 培養液 6を季節によらず 一年中適温に保つことができ、 特に夏期における培養液 6の過昇温による微細藻 類成長への悪影響を効果的に解消することができる。
以上において、 本実施の形態に係る微細藻類培養装置 1においては、 ガスの吹 き込みによって培養容器 2中に培養液 6の旋回流を形成するようにしたため、 培 養液 6の十分な撹拌がなされて微細藻類が公平に受光することができ、 これによ つて高生産性を達成することができる。
又、 培養液 6における気泡通過時の混相乱流と壁面における乱流境界層及ぴパ ラボラ状の培養容器 2の曲面壁 4 , 5に沿つて培養液 6が流れることによるゲル トラー渦によつて、 外側の曲面壁 5から内側の曲面壁 4及び内側の曲面壁 4から 外側の曲面壁 5に向かう渦が発生し、 この渦によって培養液 6が滞留することな く十分に撹拌されるため、 微細藻類が培養容器 2の壁面に付着したりコロニーを 形成して沈殿することがなくなり、 微細藻類によって光の透過が遮られることが なく、 微細藻類は効率良く且つ均一に受光するために微細藻類を効率良く培養す ることができ、 長期に亘つて高い培養効率を維持することができる。
微細藻類が培養容器 2の壁面に付着したりコロニーを形成して沈殿すると、 微 細藻類の受光が妨げられるので好ましくないが、 微細藻類培養装置 1によれば、 種類の異なる混相乱流と乱流境界層とゲルトラー渦 (以下に詳述) とが発生する ので、 曲面壁 4 , 5の間に渦や乱れが発生して、 微細藻類によって光の透過が遮 られることがない。 混相乱流:液相中を運動する気泡が引き起こす乱流
乱流境界層:壁面付近を流れが通過するとき、 流れの相似側を表すパラメータで ある Reynolds数が高くなる (壁面上方の流れが速くなるか、 流れが壁面に接する 距離が長くなる) と、 壁面付近に形成される速度の遅い層である境界層が乱流化 する。 この乱流化された層を乱流境界層という。
ゲルトラー渦:凹曲面を曲率に並行に流れがあるとき、 流れの相似則を表すパラ メータである Reynolds数が高くなる (壁面上方の流れが速くなるか、 流れが壁面 に接する距離が長くなる) と、 流れに垂直な回転渦を生じる。 この回転渦をゲル トラー渦という。 更に、 培養容器 2を耐圧強度の高い曲面壁 4, 5で構成したため、 その板厚を 小さく抑えて培養装置 1の軽量化及ぴコス 1、ダウンを図ることができる。
又、 培養容器 2の正面視外形形状として円形の左右対称形状を採用したため、 該培養容器 2内にその外周に沿って旋回する培養液 6の流れを容易に形成するこ とができるとともに、 培養容器 2の製造が容易化する。
更に又、 本実施の形態では、 培養容器 2を水平面に対して所定角度 αだけ傾斜 させて設置したため、 太陽光線の利用効率が高められるとともに、 培養容器 2内 での培養液 6の滞留が一層確実に防がれ、 微細藻類の壁面への付着が更に確実に 防がれる。 尚、 可変機構を付設して培養容器 2の傾斜角度ひを可変とすれば、 太 陽光を常に最大限に受光することができるよう太陽高度の変化に追従して培養容 器 2の傾斜角度 αを変えることができ、 より高い培養効率を確保することができ る。 又、 光が強過ぎることによって光合成の光阻害が発生する可能性がある場合 には、 培養容器 2の傾斜角度 αを変えることによって、 そのような光阻害の発生 を防ぐことができる。 又、 本実施の形態では、 培養容器 2の幅方向中心に沿って上昇し、 上部で左右 に分かれて外周に沿つて下降する培養液 6の流れを形成したため、 培養液の旋回 流を容易に発生できるとともに、 混相乱流、 乱流境界層、 ゲルトラー渦の発生が 容易であるので、培養液 6を均一かつ簡易に攪拌してその滞留を防ぐことができ、 培養液 6中のどの藻類にも公平に光を当てて高生産性を実現することができる。 ここで、 本実施の形態に係る微細藻類培養装置 1を用いた実際の生産設備例を 図 5に示すが、 実際の生産設備においては、 図示のように複数の微細藻類培養装 置 1を一列に連続して繋げたものが数列に亘つて配設される。 この場合、 各列に おいてガス導入パイプ 1 4と温調水導入パイプ 1 9は各 1本ずつが各培養装置 1 について共用される。 次に、 本発明に係る微細藻類培養装置を用いて行った培養実験の結果について 説明する。 微細藻類としてクロロコッカムリ トラーレ (Chlorococcum l ittorale) を用い て培養実験を 1 3日間に亘つて行った。 この場合の日照時間は 1 0時間/日、 南 中時光量子量 8 0 0 μ m o 1
Figure imgf000013_0001
/ s、 培養液量 7 0リ ットルであり、 培養結果は平均増殖速度 0 . 0 9 g乾燥重 量/リットル Z日であった。 又、 培養期間中に微細藻類の培養容器壁面への付着 は発生しなかった。
又、 別の培養実験において、 微細藻類としてスピルリナ■プラテンシス ( Spirul ina platencis) を培養した結果、 従来の培養池方式では培養濃度 0 . 3〜 0 . 5 g Zリッ トル、 一日あたりの生産性 0 . 1〜0 . 2 g /リットルであるの に対して、本発明に係る微細藻類培養装置では培養濃度 1 0〜2 0 g / Uットル、 —日あたりの生産性 1 . 8〜4 . 5 g /リットルという好結果が得られた。 く産業上の利用可能性 >
以上の説明で明らかなように、 本発明によれば、 頂部に開口部を有する培養容 器の中に培養液を入れ、 該培養液中に二酸化炭素を含むガスを吹き込みつつ、 可 視光線を入射させることによって前記培養容器内で微細藻類を培養する微細藻類 培養装置において、 前記培養容器を内外二重曲面壁でパラボラ状に成形するとと もに、 少なくとも外側の曲面壁を可視光線を透過する透明材料で構成し、 前記培 養容器内に前記培養液の旋回流を形成するためのガスを吹き込むガス吹込口を培 養容器内下部に開口せしめたため、 培養液の十分な撹拌を実現して高い生産性を 得ることができるとともに、 微細藻類の培養容器壁面への付着や培養容器底面へ の沈殿を防いで長期に亘つて高い培養効率を維持することができるという効果が 得られる。
また、 本発明によれば、 頂部に開口部を有する培養容器の中に培養液を入れ、 該培養液中に二酸化炭素を含むガスを吹き込みつつ、 可視光線を入射させること によって前記培養容器内で微細藻類を培養する微細藻類培養方法において、 内外 二重曲面壁でパラボラ状に成形され、 少なくとも外側の曲面壁を可視光線を透過 する透明材料で構成して成る培養容器の下部中央部から前記ガスを吹き込むこと によって、 幅方向中心に沿って上昇し、 上部で左右に分かれて外周に沿って下降 する培養液の旋回流を形成するため、 培養液の十分な撹拌を簡易に実現して高い 生産性を得ることができるとともに、 微細藻類の培養容器壁面への付着や培養容 器底面への沈殿を防いで長期に亘つて高い培養効率を維持することができるとい う効果が得られる。

Claims

請 求 の 範 囲
1 . 頂部に開口部を有する培養容器の中に培養液を入れ、 該培養液中に二酸化 炭素を含むガスを吹き込みつつ、 可視光線を入射させることによって前記培養容 器内で微細藻類を培養する微細藻類培養装置において、
前記培養容器を内外二重曲面壁でパラボラ状に成形するとともに、 少なくとも 外側の曲面壁を可視光線を透過する透明材料で構成し、 前記培養容器内に前記培 養液の旋回流を形成するためのガスを吹き込むガス吹込口を培養容器内下部に開 口せしめたことを特徴とする微細藻類培養装置。
2 . 前記培養容器の正面視外形形状を円、 楕円又は長円としたことを特徴とす る請求の範囲第 1項に記載の微細藻類培養装置。
3 . 前記培養容器を水平面に対して傾斜させて設置したことを特徴とする請求 の範囲第 1項又は第 2項に記載の微細藻類培養装置。
4 . 前記培養容器の少なくとも外側の曲面壁の外面に沿って流れる温調水を散 水するための散水口を前記培養容器の上部に開口せしめたことを特徴とする請求 の範囲第 1項〜第 3項の何れかに記載の微細藻類培養装置。
5 . 頂部に開口部を有する培養容器の中に培養液を入れ、 該培養液中に二酸化 炭素を含むガスを吹き込みつつ、 可視光線を入射させることによつて前記培養容 器内で微細藻類を培養する微細藻類培養方法において、 内外二重曲面壁でパラポ ラ状に成形され、 少なくとも外側の曲面壁を可視光線を透過する透明材料で構成 して成る培養容器の下部中央部から前記ガスを吹き込むことによって、 幅方向中 心に沿って上昇し、 上部で左右に分かれて外周に沿って下降する培養液の旋回流 を形成することを特徴とする微細藻類培養方法。
6 . 前記培養容器への温調水の散水によつて前記培養液の温度をコントロール することを特徴とする請求の範囲第 5項に記載の微細藻類培養方法。
PCT/JP2002/005264 2001-06-01 2002-05-30 Dispositif et procede permettant de cultiver des micro-algues WO2002099032A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003502142A JP4079878B2 (ja) 2001-06-01 2002-05-30 微細藻類培養装置、及び、微細藻類培養方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-166650 2001-06-01
JP2001166650 2001-06-01

Publications (1)

Publication Number Publication Date
WO2002099032A1 true WO2002099032A1 (fr) 2002-12-12

Family

ID=19009160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005264 WO2002099032A1 (fr) 2001-06-01 2002-05-30 Dispositif et procede permettant de cultiver des micro-algues

Country Status (3)

Country Link
JP (1) JP4079878B2 (ja)
TW (1) TWI245797B (ja)
WO (1) WO2002099032A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149085A (ja) * 2004-11-19 2006-06-08 Toshiba Mitsubishi-Electric Industrial System Corp 回転電機の端子箱
JP2009106218A (ja) * 2007-10-31 2009-05-21 Yukio Yoneda 光合成ユニット装置
ITCE20090007A1 (it) * 2009-07-17 2011-01-18 M2M Engineering Sas Fotobioreattore industriale a basso cost, con elevata efficienza produttiva ed elevato assorbimento gassoso per colture massive di microalghe o di generici organismi fotosintetici unicellulari
JP2012191894A (ja) * 2011-03-17 2012-10-11 Ihi Corp 培養装置
WO2013030340A1 (de) * 2011-09-01 2013-03-07 Gicon Grossmann Ingenieur Consult Gmbh Verfahren und vorrichtung zur gezielten einspeisung von gasen oder gasgemischen in eine flüssigkeit, suspension oder emulsion in einem reaktor
WO2013037339A1 (de) * 2011-09-14 2013-03-21 Forschungszentrum Jülich GmbH Verfahren zum betrieb eines photobioreaktors sowie photobioreaktor
JP2014223024A (ja) * 2013-05-15 2014-12-04 日本電信電話株式会社 微細藻類の培養方法および培養装置
BE1021386B1 (fr) * 2013-05-07 2015-11-12 Agc Glass Europe Dispositif pour cultiver des organismes phototrophes.
CN115666610A (zh) * 2020-05-19 2023-01-31 瓦克萨科技有限公司 用于治疗细胞因子风暴综合征的光合控制的螺旋藻提取物
WO2023073454A1 (en) * 2021-10-29 2023-05-04 Bluemater, S.A. Photobioreactor for the culture of macro or microorganisms, liquid evaporation or liquid fermentation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517218B (zh) * 2011-12-28 2013-05-29 广东海洋大学 一种海面养殖微藻的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112481A (ja) * 1989-09-26 1991-05-14 Hiroyuki Kikuchi 藻類の培養装置
JPH09121835A (ja) * 1995-10-27 1997-05-13 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko チューブラ型フォトバイオリアクタ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112481A (ja) * 1989-09-26 1991-05-14 Hiroyuki Kikuchi 藻類の培養装置
JPH09121835A (ja) * 1995-10-27 1997-05-13 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko チューブラ型フォトバイオリアクタ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593244B2 (ja) * 2004-11-19 2010-12-08 東芝三菱電機産業システム株式会社 回転電機の端子箱
JP2006149085A (ja) * 2004-11-19 2006-06-08 Toshiba Mitsubishi-Electric Industrial System Corp 回転電機の端子箱
JP2009106218A (ja) * 2007-10-31 2009-05-21 Yukio Yoneda 光合成ユニット装置
ITCE20090007A1 (it) * 2009-07-17 2011-01-18 M2M Engineering Sas Fotobioreattore industriale a basso cost, con elevata efficienza produttiva ed elevato assorbimento gassoso per colture massive di microalghe o di generici organismi fotosintetici unicellulari
JP2012191894A (ja) * 2011-03-17 2012-10-11 Ihi Corp 培養装置
US9732312B2 (en) 2011-09-01 2017-08-15 Gicon Grossmann Ingenieur Consult Gmbh Method and device for feeding gases or gas mixtures into a liquid, suspension or emulsion in a reactor in a specific manner
WO2013030340A1 (de) * 2011-09-01 2013-03-07 Gicon Grossmann Ingenieur Consult Gmbh Verfahren und vorrichtung zur gezielten einspeisung von gasen oder gasgemischen in eine flüssigkeit, suspension oder emulsion in einem reaktor
CN103827287A (zh) * 2011-09-01 2014-05-28 智康工程顾问有限公司 以特定方式将气体或气体混合物进给到反应器中的液体、悬浮液或乳液中的方法和装置
DE102012215476B4 (de) * 2011-09-01 2017-09-07 GICON-Großmann Ingenieur Consult GmbH Verfahren und Vorrichtung zur gezielten Einspeisung von Gasen oder Gasgemischen in eine Fluessigkeit, Suspension oder Emulsion in einem Reaktor
WO2013037339A1 (de) * 2011-09-14 2013-03-21 Forschungszentrum Jülich GmbH Verfahren zum betrieb eines photobioreaktors sowie photobioreaktor
BE1021386B1 (fr) * 2013-05-07 2015-11-12 Agc Glass Europe Dispositif pour cultiver des organismes phototrophes.
JP2014223024A (ja) * 2013-05-15 2014-12-04 日本電信電話株式会社 微細藻類の培養方法および培養装置
CN115666610A (zh) * 2020-05-19 2023-01-31 瓦克萨科技有限公司 用于治疗细胞因子风暴综合征的光合控制的螺旋藻提取物
WO2023073454A1 (en) * 2021-10-29 2023-05-04 Bluemater, S.A. Photobioreactor for the culture of macro or microorganisms, liquid evaporation or liquid fermentation

Also Published As

Publication number Publication date
TWI245797B (en) 2005-12-21
JPWO2002099032A1 (ja) 2004-10-21
JP4079878B2 (ja) 2008-04-23

Similar Documents

Publication Publication Date Title
Assunção et al. Enclosed “non-conventional” photobioreactors for microalga production: A review
JP4079877B2 (ja) 微細藻類培養装置、及び、微細藻類培養方法
JP3462508B2 (ja) 微細藻類培養装置
US20210079325A1 (en) Large scale mixotrophic production systems
MX2008010770A (es) Fotobiorreactor y usos para el mismo.
CN101497473A (zh) 曝气式光生物反应器及其应用方法
EP1599570A2 (en) Reactor for industrial culture of photosynthetic micro-organisms
JP4079878B2 (ja) 微細藻類培養装置、及び、微細藻類培養方法
CN101405385A (zh) 光生物反应器及其用途
WO2010138571A1 (en) Photobioreactor and method for culturing and harvesting microorganisms
CN105143429A (zh) 用于光合作用微生物的批量生产的反应器
KR20190094622A (ko) 미세조류 배양장치
MX2008010831A (es) Dispositivo de enfriamiento para uso en un horno de arco electrico.
JP5800818B2 (ja) 高量産性の薄層光バイオリアクター
CN101760429B (zh) 一种微藻培养简易柱式反应器
EP2871228B1 (en) Microlalgae culture system under external conditions
CN204918572U (zh) U型跑道池光生物反应器
CN107709537B (zh) 微藻的生产方法和设备
CN203462055U (zh) 一种采用气升混合来防止微藻附壁的光生物反应器
JPH07289239A (ja) 光合成生物の培養方法
WO2015116963A1 (en) Air accordion bioreactor
CN219429975U (zh) 一种微藻光生物反应容器、装置及系统
JPH05344879A (ja) バイオリアクタ槽
CN1824766A (zh) 双向逆流式微藻培养装置
ITPG970017A1 (it) Processo per il controllo e la crescita di microorganismi fotosintetic attraverso fotobioreattore ad induzione d&#39;onda

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003502142

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase