WO2002097413A2 - Elektrochemischer dna-sensor, verfahren zur herstellung und betrieb eines solchen dna-sensors - Google Patents

Elektrochemischer dna-sensor, verfahren zur herstellung und betrieb eines solchen dna-sensors Download PDF

Info

Publication number
WO2002097413A2
WO2002097413A2 PCT/DE2002/001982 DE0201982W WO02097413A2 WO 2002097413 A2 WO2002097413 A2 WO 2002097413A2 DE 0201982 W DE0201982 W DE 0201982W WO 02097413 A2 WO02097413 A2 WO 02097413A2
Authority
WO
WIPO (PCT)
Prior art keywords
thiols
additional reaction
electrode
dna
dna sensor
Prior art date
Application number
PCT/DE2002/001982
Other languages
English (en)
French (fr)
Other versions
WO2002097413A3 (de
Inventor
Walter Gumbrecht
Manfred Stanzel
Konrad Mund
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2002097413A2 publication Critical patent/WO2002097413A2/de
Publication of WO2002097413A3 publication Critical patent/WO2002097413A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors

Definitions

  • Electrochemical DNA sensor method for producing and operating such a DNA sensor
  • the invention relates to an electrochemical DNA sensor with an arrangement of two comb electrodes on a silicon chip surface, the comb electrode arrangement forming interdigital structures with interdigitated electrode fingers.
  • the invention relates to
  • electrochemical sensors which have a microstructured electrode array, for example, for which the so-called redox cycling is the basis.
  • An interdigital structure with gold is used as the electrode material.
  • thiol compounds for example thiol-alkane-modified oligonucleotides (so-called thiol-ONTs or thiols for short), are attached to the electrode surface, which are anchored as long-chain molecules with their sulfur component on the gold surface and carry so-called oligos as probes on the head ,
  • the object of the invention is to provide improvements here and to provide a DNA sensor which does not have the above disadvantages.
  • a manufacturing method of such a DNA sensor and an associated operating method of the DNA sensor are to be specified.
  • the object is achieved according to the invention in a DNA sensor of the type mentioned at the outset by the entirety of the features of patent claim 1.
  • the associated manufacturing method is the subject of claim 12 and an associated operating method is the subject of claim 17.
  • Advantageous further developments are specified in the dependent claims which refer back to the independent main claims.
  • the invention is based on the knowledge that the gaps between the electrode fingers can additionally be provided with gold surfaces in comb-like structures, these areas being the immobilization basis for the thiols (thiol-ONTs).
  • thiol-ONTs thiol-ONTs
  • the sensor Since in the invention the sensor has comb electrodes with an interdigital structure in a known manner, the interdigital structure must be covered during the adsorption of the thiols in the manufacture of the sensor.
  • a “protective” metal layer made of a less noble metal than gold can be electrochemically deposited before adsorption on the gold surface. Copper is particularly suitable for this, but silver may also be considered.
  • the thiols can also partially adsorb on the “protective” metal layer, while the reactive gold surfaces of the electrodes are completely protected. After complete coverage is reached, the solvent containing the thiols is removed and the reaction space is rinsed. Then the reaction chamber is lyten filled, in which the "protective * metal that covers the gold electrodes is electrochemically oxidized and dissolved.
  • the DNA sensor according to the invention is manufactured in a particularly simple manner in that the electrode surface is temporarily covered, this process is realized by metal deposition and a suitable material, for example copper, is applied to it.
  • a suitable material for example copper
  • the copper deposition and subsequent dissolution restore the surface of the electrode to its original state. Since the bound thiols are not soluble in the aqueous electrolyte, they can no longer reach the surface due to their binding, or adsorb there.
  • the thiols are allowed to be adsorbed on the surface of the substrate from a solution of low concentration, it being possible to only partially cover them by stopping the adsorption process. This means that there is no complete so-called self-assembly of the molecules, so that in each
  • FIG. 1 the measurement methodology for the new DNA sensor
  • Figure 2 shows an arrangement for an oxidationsbestim te measurement and Figures 2 to 4 three alternatives for interdigital structures with additional immobilization area for attachment of the thiols.
  • a silicon chip sensor it can be achieved in bioanalytics that the sensor for measuring DNA (deoxiribonucleic acids), in which the signals can be read out electrically, can be used with the aid of electrochemical process steps.
  • This method is based on the fact that comb-like electrode structures, which are also referred to as interdigital electrodes and have interdigitated electrode fingers or tongues and consist of gold (Au) or another noble metal, are arranged on a silicon chip, followed by are anchored to the electrode fingers or electrode tongues thiols, which can later carry a marker.
  • Au gold
  • DNA sensors for optical readout processes are also known, the reaction blocking not interfering with the process.
  • the reading and processing of the optical signals can only be carried out with great effort.
  • FIG. 1 shows a measuring arrangement with two electrodes 2 and 3, in which a gold surface 5 is additionally present.
  • This gold surface 5 is the immobilization base for the thiols.
  • the electrode structure 2, 3 is covered during the adsorption of the thiols, for which purpose a metal is electrochemically deposited on the gold surface 5.
  • the metal is less noble than gold and preferably copper or silver.
  • the thiols can then partially adsorb on the copper or silver, but the reactive gold surfaces of the measuring electrodes are completely protected.
  • the thiols are attached to the metal surfaces, in particular the noble metal surfaces. 3 ⁇ - or 5 ⁇ -thiol-functionalized oligonucleotides, which are anchored as long-chain molecules with their sulfur components on the noble metal surface, can serve as thiols.
  • the solvent containing the thiols is removed and the reaction space is rinsed.
  • the entire reaction space is then filled with an electrolyte, in which the metal that covers the gold electrodes is electrochemically oxidized and dissolved.
  • buffer pH ⁇ 7 is used as the electrolyte.
  • the interdigital structure 1 is subsequently placed at a potential which is more positive than the formation potential of the copper ion, copper as the copper ion is dissolved in the electrolyte. The current goes to zero when the covering of the gold electrodes 5 with copper is completely reduced. The electrolyte is then removed. The next steps are then to set up the sensor system for DNA analysis.
  • the substrate 1 with a planar surface is formed, for example, by the crystallographic surface of a silicon chip.
  • An array of optical / electrical detectors, in particular electrodes 2, 2 ',... And 3, 3', is realized on substrate 1 at predetermined array positions, with which bioanalytical studies with enzyme-coupled reactions are carried out.
  • a catcher molecule is included for the bioanalytical investigations
  • the capture molecule 100 specifically reacts with a complementary analyte molecule 200 and thus immobilizes an enzyme label 300 specific to the array position.
  • Subsequently added enzyme substrate 400 is converted into a product 500 by the catalytic action of the enzyme label 300, which serves as a marker ,
  • the decrease / increase in substrate / product can be measured at each array position with the help of the optical or electrical detector located there.
  • the redox behavior is determined by diffusion.
  • An example of a redox couple is p-aminophenol / quinonimine:
  • alkaline phosphatase * is used as a label or reinforcing substance. Alkaline phosphatase is able to split p-aminophenyl phosphate into p-aminophenol and phosphate:
  • the resulting p-aminophenol is oxidized on the electrode system or the redox pair p-aminophenol / quinonimine is cyclized.
  • the additional reaction surface 5 made of gold is placed in such a way that a favorable localization in the There is proximity of the positive electrodes in the finger structures of the comb electrodes.
  • the additional reaction areas are adjacent to the anode electrode fingers of a comb electrode for an oxidation-determined process and the cathode electrode fingers of the comb electrode for a reduction-determined process.
  • FIGS. 3 to 5 show corresponding alternatives based on electrode arrangements 30, 40 and 50.
  • the two comb electrodes 31 and 33 have different periodicities.
  • the lower comb electrode 31 has a lower periodicity of the electrode fingers 32 ⁇ , ie a larger number of fingers per unit area. This means that each of the electrode fingers 32 of the upper comb electrode 31 is adjacent to two electrode fingers 32 of the lower comb electrode 33.
  • the additional surfaces 35 are then present in the gaps formed at a greater distance.
  • an electrode arrangement 40 consists of two identical comb electrodes 41 and 41 which engage with one another with their electrode fingers 42 and 42 x and thus form the interdigital structure.
  • an additional surface 45 is introduced, which corresponds to the surface 5 in FIGS. 1 and 2 carry the thiols. It is essential that each of the additional surfaces 45 is exactly one electrode finger 42 or 42 x adjacent. It is essential that the dimensions of the electrode fingers 42 and 42 ⁇ and the additional area are the same, so that there is a complete identity with respect to the areas in the longitudinal direction.
  • the periodicity of the two comb electrodes 51, 51 ⁇ with electrode fingers 52 52 ⁇ is likewise the same in an electrode arrangement 50, as in FIG. 4, but the period spacing is greater. This means that the areas in between are made wider in their width and have, for example, three times the width as the electrode fingers 52 ⁇ , 52- ⁇ .
  • the electrode structures according to FIGS. 3 to 5 are produced in accordance with the procedure described with reference to FIG. 1.
  • the comb structures are fully functional after the production described and are effective in the redox reaction for identifying the DNA fragments.
  • the free areas are covered by the thiols, the markers from FIGS. 1 and 2 being anchored to the head groups of the thiols.
  • the comb structures Function of the comb structures is limited to electrochemical detection.
  • the electrode fingers themselves are not used for marker placement. Instead, separate reaction areas are made available.
  • the specific design of the reaction surfaces is based on the individual case, depending on whether a diffusion inhibition or a penetration inhibition is speed-determining.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

DNA-Sensoren aus Elektrodenanordnungen mit Interdigitalstrukturen sind bekannt. Gemäss der Erfindung hat die Interdigitalstruktur zusätzliche Reaktionsflächen zur Anlagerung von Thiolen. Zur Herstellung eines solchen DNA-Sensors werden auf die Elektrodenflächen zunächst ein weiteres unedleres Metall, beispielsweise Kupfer abgeschieden und eine thiolhaltige Lösung auf die Sensoranordnung gebracht. Die Thiole werden auf den freien Flächen angelagert und anschliessend werden das Metall und die daran angelagerten Thiole durch verdünnte Schwefelsäure beseitigt. Beim Betrieb eines solchen Sensors werden an die von den Thiolen bedeckten Flächen sog. Marker angebracht.

Description

Beschreibung
Elektrochemischer DNA-Sensor, Verfahren zur Herstellung und Betrieb eines solchen DNA-Sensors
Die Erfindung bezieht sich auf einen elektrochemischen DNA- Sensor mit einer Anordnung aus zwei Kammelektroden auf einer Silizium-Chip-Oberfläche, wobei die Kammelektrodenanordnung Interdigitalstrukturen mit ineinandergreifenden Elektroden- fingern bildet. Daneben bezieht sich die Erfindung auf ein
Herstellungsverfahren und auf ein zugehöriges Betriebsverfahren eines solchen DNA-Sensors.
Für die DNA-Analyse werden elektrochemische Sensoren verwen- det, die beispielsweise ein mikrostrukturiertes Elektrodenar- ray haben, für die das sogenannte Redox-Cycling Basis ist. Dabei wird eine Interdigitalstruktur mit Gold als Elektrodenmaterial verwendet. Üblicherweise werden dabei auf der Elektrodenfläche Thiol-Verbindungen, beispielsweise Thiol-Alkan- modifizierte Oligonucleotide (sog. Thiol-ONTs oder kurz Thiole) , angelagert, die als langkettige Moleküle mit ihrer Schwefelkomponente auf der Goldoberfläche verankert werden und am Kopf sogenannte Oligos als Sonde tragen.
Verfahren und zugehörige Anordnungen letzterer Art sind in den älteren, nicht vorveröffentlichten deutschen Patentanmeldungen DE 100 58 394 AI und DE 100 58 397 AI beschrieben. Im vorbeschriebenen Fall kann es vorkommen, dass die Thiole bei einer vollständigen Bedeckung die Elektrodenoberflächen blo- ckieren und dadurch die für den DNA-Sensor notwendigen elektrochemischen Reaktionen verhindern.
Aufgabe der Erfindung ist es, hier für Verbesserungen zu sorgen und einen DNA-Sensor zu schaffen, der obige Nachteile nicht aufweist. Gleichermaßen soll ein Herstellungsverfahren eines solchen DNA-Sensors und ein zugehöriges Betriebsverfahren des DNA-Sensors angegeben werden. Die Aufgabe ist bei einem DNA-Sensor der eingangs genannten Art erfindungsgemäß durch die Gesamtheit der Merkmale des Patentanspruches 1 gelöst. Das zugehörige Herstellungsverfahren ist Gegenstand des Patentanspruches 12 und ein zugehöriges Betriebsverfahren Gegenstand des Patentanspruches 17. Jeweils vorteilhafte Weiterbildungen sind in den auf die unabhängigen Hauptansprüche zurückbezogenen abhängigen Ansprüchen angegeben.
Der Erfindung liegt die Erkenntnis zugrunde, dass in kammartigen Strukturen die Lücken zwischen den Elektrodenfingern zusätzlich mit Goldflächen versehen werden können, wobei diese Bereiche die Immobilisierung-Basis für die Thiole (Thiol- ONTs) sind. Aus der DE 196 10 115 AI ist zwar ein Verfahren zur Detektion von Molekülen und Molekülkomplexen bekannt, bei dem Gebrauch von Interdigitalstrukturen mit nahe beieinander liegenden Elektrodenfingern gemacht wird und bei dem auch Moleküle in den Elektrodenzwischenräumen durch physikalische und/oder chemische Bindungen fixiert und gemessen werden sollen. Damit sind aber keine Thiole immobilisierbar.
Da bei der Erfindung der Sensor in bekannter Weise Kammelektroden mit einer Interdigitalstruktur aufweist, muss bei der Herstellung des Sensors die Interdigitalstruktur während der Adsorption der Thiole abgedeckt werden. Beispielsweise kann vor der Adsorption auf der Goldoberfläche eine „Schutz* - Metallschicht aus einem unedleren Metall als Gold elektrochemisch abgeschieden werden. Hierfür ist in besonderem Maße Kupfer geeignet, ggf. kommt aber auch Silber infrage.
Bei der Erfindung können die Thiole auch auf der „Schutz* - Metallschicht teilweise adsorbieren, während die reaktiven Goldflächen der Elektroden vollständig geschützt sind. Nach Erreichen der vollständigen Bedeckung wird das Lösungsmittel, das die Thiole enthält, entfernt und der Reaktionsraum gespült. Anschließend wird der Reaktionsraum mit einem Elektro- lyten gefüllt, in dem das „Schutz*-Metall, das die Goldelektroden bedeckt, elektrochemisch oxidiert und gelöst wird.
Der DNA-Sensor gemäß der Erfindung wird dadurch in besonders einfacher Weise hergestellt, dass die Elektrodenoberfläche temporär abgedeckt wird, dieser Prozess durch Metallabschei- dung realisiert wird und ein geeignetes Material, beispielsweise Kupfer darauf aufgebracht wird. Durch die Kupferab- scheidung und spätere Auflösung wird die Oberfläche der Elektrode wieder in den Ausgangszustand versetzt. Da im wäss- rigen Elektrolyten die gebundenen Thiole nicht löslich sind, können sie aufgrund ihrer Bindung die Oberfläche nicht mehr erreichen, bzw. dort adsorbieren.
Beim erfindungsgemäßen Herstellungsverfahren lässt man die Thiole aus einer Lösung geringer Konzentration auf der Oberfläche des Substrates adsorbieren, wobei eine nur teilweise Bedeckung durch Abbruch des Adsorptionsvorganges erreicht werden kann. Dies führt dazu, dass es zu keinem vollständigen sog. Self-Assembling der Moleküle kommt, so dass in jedem
Fall, abhängig vom Bedeckungsgrad die katalytische Aktivität der Elektrode reduziert und die Effektivität des Sensors beschnitten wird. Trotzdem sind aber die Voraussetzungen für eine Messung gegeben.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit den Patentansprüchen. Es zeigen
Figur 1 die Messmethodik beim neuem DNA-Sensor,
Figur 2 eine Anordnung für eine oxidationsbestim te Messung und Figuren 2 bis 4 drei Alternativen für Interdigitalstrukturen mit zusätzlicher Immobilisierungsfläche zur Anlagerung der Thiole. Mit einem Silizium-Chip-Sensor kann in der Bioanalytik erreicht werden, dass mit Hilfe elektrochemischer Verfahrensschritte der Sensor zur Messung von DNA (Desoxiribonuclein- säuren) , bei dem die Signale elektrisch auslesbar sind, ein- setzbar wird. Dieses Verfahren beruht darauf, dass man kammartige Elektrodenstrukturen, die auch als Interdigitalelek- troden bezeichnet werden und ineinander greifende Elektrodenfinger oder -zungen aufweisen und aus Gold (Au) oder einem anderen Edelmetall bestehen, auf einem Silizium-Chip anord- net, wobei anschließend auf den Elektrodenfingern oder Elektrodenzungen Thiole verankert werden, die später einen Marker tragen können.
Es ist bekannt, dass Thiole mit ihrer Schwefelgruppe fest auf einer Elektrodenoberfläche aus Edelmetall gebunden sind und dass sie nachfolgende Elektrodenreaktionen in ihrer Geschwindigkeit senken. Dadurch tritt bei der vorgesehenen Redox- Reaktion anstelle einer Diffusionshemmung eine Durchtrittshemmung auf.
Bekannt sind weiterhin beispielsweise DNA-Sensoren für optische Ausleseverfahren, wobei die Reaktionsblockierung nicht in das Verfahren eingreift. Das Auslesen und Verarbeiten der optischen Signale kann aber nur mit hohem Aufwand erfolgen.
In der Figur 1 ist eine Messanordnung mit zwei Elektroden 2 und 3 dargestellt, bei der zusätzlich eine Goldfläche 5 vorhanden ist. Diese Goldfläche 5 ist Immobilisierungs-Basis für die Thiole.
Die Elektrodenstruktur 2, 3 ist während der Adsorption der Thiole abgedeckt, wofür vor der Adsorption auf der Goldoberfläche 5 ein Metall elektrochemisch abgeschieden wird. Das Metall ist unedler als Gold und vorzugsweise Kupfer oder Sil- ber. Auf dem Kupfer oder Silber können dann auch teilweise die Thiole adsorbieren, wogegen aber die reaktiven Goldflächen der Messelektroden vollständig geschützt sind. Die Thiole werden an den Metallflächen, und zwar insbesondere den Edelmetallflächen, angelagert. Als Thiole können 3 λ- oder 5 λ-thiolfunktionalisierte Oligonukleotide, die als langketti- ge Moleküle mit ihren Schwefelkomponenten auf der Edelmetallfläche verankert werden, dienen. Nach Erreichen einer vollständigen Bedeckung wird das Lösungsmittel, das die Thiole enthält, entfernt und der Reaktionsraum gespült. Im nächsten Schritt wird dann der gesamte Reaktionsraum mit einem Elek- trolyten gefüllt, in dem das Metall, das die Goldelektroden bedeckt, elektrochemisch oxidiert und gelöst wird. Für Kupfer als Metall wird beispielsweise Puffer pH < 7 als Elektrolyt verwendet .
Wird anschließend die Interdigitalstruktur 1 auf ein Potential positiver als das Bildungspotential des Kupfer-Ions gelegt, wird Kupfer als Kupfer-Ion im Elektrolyten gelöst. Der Strom geht gegen Null, wenn die Bedeckung der Goldelektroden 5 mit Kupfer vollständig abgebaut ist. Der Elektrolyt wird dann entfernt. Anschließend erfolgen die weiteren Schritte zum Aufbau des Sensorsystems für die DNA-Analyse.
In Figur 2 wird das Substrat 1 mit planarer Oberfläche beispielsweise durch die kristallographische Oberfläche eines Silizium-Chips gebildet. Auf dem Substrat 1 ist ein Array von optischen/elektrischen Detektoren, insbesondere den Elektroden 2, 2', ... und 3, 3' auf vorgegebenen Arraypositionen realisiert, mit denen bioanalytische Untersuchungen mit enzymgekoppelten Reaktionen vorgenommen werden. Im Einzelnen ist für die bioanalytischen Untersuchungen ein Fänger-Molekül mit
100, ein Analyt-Molekül mit 200 und ein sog. Enzym-Label mit 300 bezeichnet. Dabei reagieren das Fängermolekül 100 spezifisch mit einem komplementären Analytmolekül 200 und immobilisiert so array-positionsspezifisch einen Enzym-Label 300. Anschließend zugegebenes Enzym-Substrat 400 wird durch die katalytische Wirkung des Enzym-Labels 300, das als Marker dient, in ein Produkt 500 überführt. Auf jeder Arrayposition kann mit Hilfe des dort lokalisierten optischen oder elektrischen Detektors die Abnahme/Zunahme von Substrat/Produkt gemessen werden.
In bestimmten Fällen ist das Redox-Verhalten diffusionsbestimmt. Als Beispiel für ein Redoxpaar sei p-Aminophenol/ Chinonimin genannt:
Figure imgf000008_0001
p-Aminophenol Chinonimin
Am entsprechenden Redoxprozess sind 2 Elektronen sowie 2 H+- Ionen beteiligt.
Dieses System kommt z.B. bei Enzym-gekoppelten Nachweisreaktionen zum Einsatz. Dabei wird das Enzym „Alkalische Phosphatase* als Label- bzw. Verstärkungs-Substanz eingesetzt. Alkalische Phosphatase ist in der Lage, p-Aminophenyl-Phosphat in p-Aminophenol und Phosphat zu spalten:
O ,OH
Figure imgf000008_0002
p-Aminophenyl-Phosphat
Das entstehende p-Aminophenol wird am Elektroden-System oxi- diert bzw. das Redoxpaar p-Aminophenol/Chinonimin zyklisiert. Speziell für obigen Prozess ist also bei dem anhand der Figur 2 dargestellten Sensorsystem mit Elektroden 2, 2 ... und 3, 3λ, ... wesentlich, dass die zusätzliche Reaktionsfläche 5 aus Gold so platziert ist, dass eine günstige Lokalisierung in der Nähe der positiven Elektroden in den Fingerstrukturen der Kammelektroden vorliegt. Allgemein gilt, dass für einen oxidationsbestimmten Prozess die zusätzlichen Reaktionsflächen den Anoden-Elektrodenfingern einer Kammelektrode und für einen reduktionsbestimmten Prozess den Kathoden-Elektrodenfingern der Kammelektrode benachbart sind.
Im Einzelnen zeigen die Figuren 3 bis 5 entsprechende Alternativen anhand von Elektrodenanordnungen 30, 40 und 50.
In der ersten Ausführungsform gemäß Figur 3 zur Anwendung bei der Messanordnung gemäß Figur 2 haben die beiden Kammelektroden 31 und 33 unterschiedliche Periodizitäten. Beispielsweise hat die untere Kammelektrode 31 eine geringere Periodizität der Elektrodenfinger 32 λ, d.h. eine größere Anzahl von Fingern pro Flächeneinheit. Dies bedeutet, dass von den Elektrodenfingern 32 der oberen Kammelektrode 31 jeder Elektrodenfinger 32 von zwei Elektrodenfingern 32 der unteren Kammelektrode 33 benachbart ist. In den in größerem Abstand ge- bildeten Lücken sind dann die zusätzlichen Flächen 35 vorhanden.
Letztere Anordnung der Kammelektroden ist dann günstig, wenn die Reaktionshemmungen für den anodischen und für den katho- dischen Prozess unterschiedlich sind.
In Figur 4 besteht eine Elektrodenanordnung 40 aus zwei identischen Kammelektroden 41 bzw. 41 die mit ihren Elektrodenfingern 42 bzw. 42 x ineinander greifen und so die Interdigi- talstruktur bilden. Zwischen den benachbarten Elektrodenfingern 42 bzw. 42 ist jeweils eine zusätzliche Fläche 45 eingebracht, die entsprechend der Fläche 5 in den Figuren 1 und 2 die Thiole tragen. Wesentlich ist dabei, dass jede der zusätzliche Flächen 45 genau einen Elektrodenfinger 42 bzw. 42 x benachbart ist. Dabei ist wesentlich, dass die Dimensionierung der Elektrodenfinger 42 bzw. 42 λ und der zusätzlichen Fläche gleich sind, so dass sich in Längsrichtung hinsichtlich der Flächen eine vollständige Identität ergibt.
In Figur 5 ist bei einer Elektrodenanordnung 50 die Periodi- zität der beiden Kammelektroden 51, 51 λ mit Elektrodenfingern 52 52λ - wie in Figur 4 - ebenfalls gleich, jedoch der Periodenabstand größer. Dies bedeutet, dass die dazwischen liegenden Flächen in ihrer Breite größer ausgebildet sind und beispielsweise die dreifache Breite wie die Elektrodenfinger 52λ,52-λ aufweisen.
Die Herstellung der Elektrodenstrukturen entsprechend den Figuren 3 bis 5 erfolgt entsprechend der anhand Figur 1 beschriebenen Vorgehensweise. Die Kammstrukturen sind nach der beschriebenen Herstellung voll funktionsfähig und werden bei der Redox-Reaktion zur Identifikation der DNA-Fragmente wirksam. Die freien Flächen sind von den Thiolen bedeckt, wobei die Marker aus den Figuren 1 und 2 an den Kopfgruppen der Thiole verankert werden.
Wesentlich ist bei den beschriebenen Beispielen, dass die
Funktion der Kammstrukturen auf die elektrochemische Detek- tion beschränkt ist. Die Elektrodenfinger werden selbst also nicht für die Markerplatzierung genutzt. Stattdessen werden separate Reaktionsflächen zur Verfügung gestellt. Die konkre- te Ausbildung der Reaktionsflächen ergibt sich dabei anhand des Einzelfalls, je nachdem, ob eine Diffusionshemmung oder eine Durchtrittshemmung geschwindigkeitsbestimmend ist.

Claims

Patentansprüche
1. Elektrochemischer DNA-Sensor mit einer Anordnung aus zwei Kammelektroden auf einer Silicium-Chip-Oberflache, wobei die Kammelektrodenanordnung aus Anode und Kathode eine Interdigitalstruktur mit ineinandergreifenden Elektrodenfingern bildet, d a d u r c h g e k e n n z e i c h n e t , dass der Interdigitalstruktur (2, 3; 31, 33, 41, 41 \- 51, 51 ) zusätzliche Reaktionsflächen (5; 35, 45, 55) zur Anlagerung von Thiolen zugeordnet sind.
2. DNA-Sensor nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass für einen oxidationsbestimm- ten Prozess die zusätzlichen Reaktionsflächen (5; 35, 45, 55) den Anoden-Elektrodenfingern einer Kammelektrode benachbart sind.
3. DNA-Sensor nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass für einen reduktionsbestimm- ten Prozess die zusätzlichen Reaktionsflächen (5; 35, 45, 55) den Kathoden-Elektrodenfingern einer Kammelektrode benachbart sind.
4. DNA-Sensor nach Anspruch 1, d a d u r c h g e - k e n n z e i c h n e t , dass die kammartig ineinandergreifenden Elektrodenfinger (32, 34) der beiden Kammelektroden (21, 23) in der Interdigitalstruktur (30) unterschiedliche Periodizität haben und dass die zusätzliche Reaktionsfläche (25) zwischen jeweils zwei Elektrodenfingern (32, 34) ei- ner der Kammelektroden (31, 33) liegt.
5. DNA-Sensor nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die kammartig ineinandergreifenden Elektrodenfinger (42, 42 52, 52 x)) der beiden Kammelektroden (41, 41 x, 51, 51Λ) die gleiche Periodizität haben und dass jeder Elektrodenfinger (42, 42λ; 52, 52λ) je- weils von zwei zusätzlichen Reaktionsflächen (45, 55 x) benachbart ist.
6. DNA-Sensor nach Anspruch 1, d a d u r c h g e - k e n n z e i c h n e t , dass die jeweilige zusätzliche Reaktionsfläche (35, 45) die gleiche Größe wie die Elektrodenfinger (42, 42 λ) der Interdigitalstruktur (30, 40) hat.
7. DNA-Sensor nach Anspruch 1, d a d u r c h g e - k e n n z e i c h n e t , dass die jeweilige zusätzliche
Reaktionsfläche (55) größer als die Elektrodenfinger (44; 52, 52 λ) der Interdigitalstruktur (50) ist.
8. DNA-Sensor nach Anspruch 7, d a d u r c h g e - k e n n z e i c h n e t , dass die zusätzliche Reaktionsfläche (55) etwa die dreifache Fläche eines Elektrodenfingers (52, 52λ) hat.
9. DNA-Sensor nach Anspruch 8, d a d u r c h g e - k e n n z e i c h n e t , dass die zusätzliche Reaktionsfläche (55) die gleiche Länge und etwa die dreifache Breite wie ein Elektrodenfinger (52, 52 λ) hat.
10. DNA-Sensor nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die zusätzliche Reaktionsflächen (5; 35, 45, 55) aus Gold bestehen.
11. DNA-Sensor nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die zu- sätzlichen Reaktionsflächen (5; 35, 45, 55) und die Kammelektroden (2, 3; 31, 33, 41, 41 ; 51, 51 ) aus dem gleichen Material bestehen.
12. Herstellungsverfahren für einen DNA-Sensor entsprechend den Merkmalen einer Sensoranordnung gemäß Anspruch 1 oder einem der Ansprüche 2 bis 11, die Interdigitalstrukturen aus Kammelektroden und zusätzlichen Reaktionsflächen aufweist, mit folgenden Verfahrensschritten:
Auf den Kammelektroden mit Oberflächen aus Gold oder einem anderen Edelmetall wird ein weiteres, unedleres Metall ab- geschieden und eine thiolhaltige Lösung auf die Sensoranordnung gebracht; die Thiole werden auf den Metallflächen, vorzugsweise auf den Reaktionsflächen aus Edelmetall, angelagert; anschließend wird auf den Kammelektroden das abgeschiedene Metall und die darauf angelagerten Thiole durch einen elektrochemischen Prozess beseitigt.
13. Herstellungsverfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass für den elektrochemi- sehen Prozess ein Puffer pH < 7 verwendet wird.
14. Herstellungsverfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass als Elektroden Goldschichten verwendet werden.
15. Herstellungsverfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass als unedleres, abzuscheidendes Metall Kupfer verwendet wird.
16. Herstellungsverfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass als Thiole 3 λ- oder 5 - thiolfunktionalisierte Oligonukleotide, die als langkettige Moleküle mit ihren Schwefelkomponenten auf der Edelmetallfläche verankert werden, dienen.
17. Betriebsverfahren eines DNA-Sensors mit den Merkmalen einer Sensor-Anordnung gemäß Anspruch 1 oder einem der Ansprüche 2 bis 11, wobei die Sensor-Anordnung nach dem Verfahren gemäß Anspruch 12 bzw. einem der Ansprüche 13 bis 16 herge- stellt ist, d a d u r c h g e k e n n z e i c h n e t , dass beim Betrieb des Sensors auf die von den Thiolen bedeck- ten Flächen der Sensor-Anordnung sog. Marker angebracht werden .
18. Betriebsverfahren nach Anspruch 17, d a d u r c h g e k e n n z e i c h n e t , dass die Marker an den Kopfgruppen der Thiole verankert werden.
19. Betriebsverfahren nach Anspruch 17 oder Anspruch 18, d a d u r c h g e k e n n z e i c h n e t , dass ein Re- dox- (Re) Cycling ausgeführt wird.
PCT/DE2002/001982 2001-05-30 2002-05-29 Elektrochemischer dna-sensor, verfahren zur herstellung und betrieb eines solchen dna-sensors WO2002097413A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10126341A DE10126341A1 (de) 2001-05-30 2001-05-30 Elektrochemischer DNA-Sensor, Verfahren zur Herstellung und Betrieb eines solchen DNA-Sensors
DE10126341.4 2001-05-30

Publications (2)

Publication Number Publication Date
WO2002097413A2 true WO2002097413A2 (de) 2002-12-05
WO2002097413A3 WO2002097413A3 (de) 2003-03-13

Family

ID=7686649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001982 WO2002097413A2 (de) 2001-05-30 2002-05-29 Elektrochemischer dna-sensor, verfahren zur herstellung und betrieb eines solchen dna-sensors

Country Status (2)

Country Link
DE (1) DE10126341A1 (de)
WO (1) WO2002097413A2 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031370A1 (de) * 2004-06-29 2006-01-19 Infineon Technologies Ag Vorrichtung und Verfahren zur Emulation einer Gegenelektrode in einem monolithisch integrierten elektrochemischen Analysesystem
DE102004031371A1 (de) * 2004-06-29 2006-01-26 Infineon Technologies Ag Monolithisch integrierte Sensor-Anordnung, Sensor-Array und Verfahren zum Herstellen einer monolithisch integrierten Sensor-Anordnung
WO2009065711A1 (de) * 2007-11-20 2009-05-28 Siemens Aktiengesellschaft Verfahren und anordnung zur kalibrierung eines sensorelements
EP2065474A1 (de) 2007-11-28 2009-06-03 Siemens Healthcare Diagnostics GmbH Verfahren für die Prognose der Therapiereaktion zur endokrinen Behandlung
EP2065475A1 (de) 2007-11-30 2009-06-03 Siemens Healthcare Diagnostics GmbH Verfahren zur Therapievorhersage für Tumoren mit Unregelmässigkeiten bei der Expression mindestens eines VEGF-Liganden und/oder mindestens eines ErbB-Rezeptors
US9932639B2 (en) 2007-11-30 2018-04-03 Ralph Markus Wirtz Method for predicting therapy responsiveness in basal like tumors
WO2020208260A1 (en) 2019-04-12 2020-10-15 Stratifyer Molecular Pathology Gmbh Method of classifying a sample based on determination of fgfr
WO2021004934A1 (en) 2019-07-05 2021-01-14 Intellexon Gmbh Determining individual hla patterns, use as prognosticators, target genes and therapeutic agents
EP4112746A1 (de) 2021-07-02 2023-01-04 STRATIFYER Molecular Pathology GmbH Verfahren zur vorhersage des klinischen ansprechens auf einen immunprüfpunktinhibitor basierend auf einer vorbehandlung damit
WO2023126421A1 (en) 2021-12-27 2023-07-06 Qiagen Gmbh Method of detecting urothelial or bladder cancer in a liquid sample

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025580A1 (de) 2004-05-25 2005-12-22 Infineon Technologies Ag Sensor-Anordnung, Sensor-Array und Verfahren zum Herstellen einer Sensor-Anordnung
DE102006027675B4 (de) 2006-06-14 2011-05-12 Siemens Ag Verfahren zur Bestimmung der Konzentration von Nukleinsäuren
DE102006028101B4 (de) 2006-06-19 2014-02-13 Siemens Aktiengesellschaft Verfahren zur Analyse von amplifizierten Nukleinsäuren
DE102006046776B4 (de) * 2006-09-29 2019-07-18 Siemens Aktiengesellschaft Anordnung und Verfahren zum Nachweis kleiner Stoffkonzentrationen
DE102006057300A1 (de) 2006-12-05 2008-06-19 Siemens Ag Anordnung zur Aufbereitung einer Mehrzahl von Proben für eine Analyse
DE102007017268A1 (de) 2007-04-12 2008-10-16 Siemens Ag Kombinierte Anordnung und Verfahren zur einstufigen molekularen Analyse
DE102008009185A1 (de) 2008-02-15 2009-09-24 Siemens Aktiengesellschaft Einrichtung und Verfahren zum Nachweis von Flüssigkeiten oder Substanzen aus Flüssigkeiten sowie Verwendung der Einrichtung
DE102008025992B4 (de) 2008-05-30 2011-01-27 Siemens Healthcare Diagnostics Gmbh Titerplatte und Verfahren zur Detektion eines Analyten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19610115A1 (de) * 1996-03-14 1997-09-18 Fraunhofer Ges Forschung Detektion von Molekülen und Molekülkomplexen
WO1999060399A1 (en) * 1998-05-21 1999-11-25 Cornell Research Foundation, Inc. Liposome-enhanced test device and method
WO2000062048A2 (de) * 1999-04-14 2000-10-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Sensoranordnung mit elektrisch ansteuerbaren arrays

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE462454B (sv) * 1988-11-10 1990-06-25 Pharmacia Ab Maetyta foer anvaendning i biosensorer
DE19860547C1 (de) * 1998-12-23 2000-10-12 Genetrix B V I O Affinitätssensor für den Nachweis spezifischer molekularer Bindungsereignisse und dessen Verwendung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19610115A1 (de) * 1996-03-14 1997-09-18 Fraunhofer Ges Forschung Detektion von Molekülen und Molekülkomplexen
WO1999060399A1 (en) * 1998-05-21 1999-11-25 Cornell Research Foundation, Inc. Liposome-enhanced test device and method
WO2000062048A2 (de) * 1999-04-14 2000-10-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Sensoranordnung mit elektrisch ansteuerbaren arrays

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DUAN C ET AL: "Separation-free sandwich enzyme immunoassays using microporous gold electrodes and self-assembled monolayer-immobilized capture antibodies" ANALYTICAL CHEMISTRY, Bd. 66, Nr. 9, 1. Mai 1994 (1994-05-01), Seiten 1369-1377, XP000446024 ISSN 0003-2700 *
NIWA O ET AL: "Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay" ANALYTICAL CHEMISTRY, Bd. 65, Nr. 11, 1993, Seiten 1559-1563, XP002082750 ISSN 0003-2700 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9645106B2 (en) 2004-06-29 2017-05-09 Boehringer Ingelheim Vetmedica Gmbh Monolithically integrated hybridisation sensor assembly and associated production method
DE102004031371A1 (de) * 2004-06-29 2006-01-26 Infineon Technologies Ag Monolithisch integrierte Sensor-Anordnung, Sensor-Array und Verfahren zum Herstellen einer monolithisch integrierten Sensor-Anordnung
DE102004031370A9 (de) * 2004-06-29 2006-06-01 Infineon Technologies Ag Vorrichtung und Verfahren zur Emulation einer Gegenelektrode in einem monolithisch integrierten elektrochemischen Analysesystem
DE102004031370A1 (de) * 2004-06-29 2006-01-19 Infineon Technologies Ag Vorrichtung und Verfahren zur Emulation einer Gegenelektrode in einem monolithisch integrierten elektrochemischen Analysesystem
DE102004031370B4 (de) 2004-06-29 2022-03-24 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Emulation einer Gegenelektrode in einem monolithisch integrierten elektrochemischen Analysesystem
WO2009065711A1 (de) * 2007-11-20 2009-05-28 Siemens Aktiengesellschaft Verfahren und anordnung zur kalibrierung eines sensorelements
US10081831B2 (en) 2007-11-20 2018-09-25 Boehringer Ingelheim Vetmedica Gmbh Method and arrangement for calibrating a sensor element
EP2065474A1 (de) 2007-11-28 2009-06-03 Siemens Healthcare Diagnostics GmbH Verfahren für die Prognose der Therapiereaktion zur endokrinen Behandlung
EP2065475A1 (de) 2007-11-30 2009-06-03 Siemens Healthcare Diagnostics GmbH Verfahren zur Therapievorhersage für Tumoren mit Unregelmässigkeiten bei der Expression mindestens eines VEGF-Liganden und/oder mindestens eines ErbB-Rezeptors
US9932639B2 (en) 2007-11-30 2018-04-03 Ralph Markus Wirtz Method for predicting therapy responsiveness in basal like tumors
WO2020208260A1 (en) 2019-04-12 2020-10-15 Stratifyer Molecular Pathology Gmbh Method of classifying a sample based on determination of fgfr
WO2021004934A1 (en) 2019-07-05 2021-01-14 Intellexon Gmbh Determining individual hla patterns, use as prognosticators, target genes and therapeutic agents
EP4112746A1 (de) 2021-07-02 2023-01-04 STRATIFYER Molecular Pathology GmbH Verfahren zur vorhersage des klinischen ansprechens auf einen immunprüfpunktinhibitor basierend auf einer vorbehandlung damit
WO2023275407A2 (en) 2021-07-02 2023-01-05 Stratifyer Molecular Pathology Gmbh Method for predicting a clinical response towards an immune checkpoint inhibitor based on pretreatment therewith
WO2023126421A1 (en) 2021-12-27 2023-07-06 Qiagen Gmbh Method of detecting urothelial or bladder cancer in a liquid sample

Also Published As

Publication number Publication date
DE10126341A1 (de) 2002-12-12
WO2002097413A3 (de) 2003-03-13

Similar Documents

Publication Publication Date Title
WO2002097413A2 (de) Elektrochemischer dna-sensor, verfahren zur herstellung und betrieb eines solchen dna-sensors
EP1272842B1 (de) Biosensor und verfahren zum ermitteln makromolekularer biopolymere mit einem biosensor
DE102004042729B4 (de) Bio-Chip mit einem Elektrodenarray auf einem Substrat
DE60127469T2 (de) Potentiometrischer dna-mikroarray, verfahren zu dessen herstellung und verfahren zur nukleinsäureanalyse
DE10049901C2 (de) Vorrichtung und Verfahren zur elektrisch beschleunigten Immobilisierung und zur Detektion von Molekülen
EP1030174B1 (de) Messeinrichtung sowie Verfahren zu deren Herstellung
EP1272672A2 (de) Verfahren zum erfassen von makromolekularen biopolymeren mittels einer elektrodenanordnung
WO2005116244A1 (de) Sensor-anordnung mit electrode zur erfassung von diffundierenden geladenen teilchen
DE102012217603A1 (de) Anordnung zur Nukleinsäure-Sequenzierung mittels Tunnelstromanalyse
EP1272671A2 (de) Biosensor, biosensor-array, verfahren zum herstellen einer elektrode eines biosensors, verfahren zum herstellen eines biosensors
WO2001075149A2 (de) Biosensor, biosensor-array und verfahren zum ermitteln makromolekularer biopolymere mit einem biosensor
EP1272850A2 (de) Biosenorchip
DE102009018364A1 (de) Vorrichtung zur Detektion eines Gases oder Gasgemisches und Verfahren zum Herstellen einer solchen
DE10211358B4 (de) Vertikal-Impedanz-Sensor-Anordnung und Verfahren zum Herstellen einer Vertikal-Impedanz-Sensor-Anordnung
EP1573328B1 (de) Bio-chip
DE102011010767A1 (de) Verfahren zur Herstellung einer Vorrichtung zum Nachweis eines Analyten sowie Vorrichtung und deren Verwendung
DE10319155B4 (de) Elektrisch auslesbare Bindungen von Analytmolekülen an immobilisierten Sondenmolekülen
EP1368498A2 (de) Biosensor, vorrichtung und verfahren zum erfassen von nukleinsäuren mittels mindestens zwei einheiten zum immobilisieren von nukleinsäuren
DE10214719A1 (de) Sensor zur qualitativen und quantitativen Bestimmung von (bio)organischen Oligomeren und Polymeren, Analyseverfahren hierzu sowie Verfahren zur Herstellung des Sensors
DE10256415B3 (de) Verfahren und Vorrichtung zum Transport bzw. zur bindungspezifischen Trennung elektrisch geladener Moleküle
DE10261528B4 (de) Elektrisches Substrat zum Einsatz als Träger von Biomolekülen
WO2002027319A1 (de) Vorrichtung zum nachweis geladener makromoleküle
WO2002064823A2 (de) Verfahren zum nachweis und/oder zur quantifizierung eines analyten
EP2141491A1 (de) Gassensor
DE102008025680A1 (de) Analyseeinrichtung und Verfahren zum Redoxcycling ohne Potentiostat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP