WO2002095857A1 - Verfahren zur kontinuierlichen herstellung einer polymerelektrolytmembran-elektrodenanordnung - Google Patents

Verfahren zur kontinuierlichen herstellung einer polymerelektrolytmembran-elektrodenanordnung Download PDF

Info

Publication number
WO2002095857A1
WO2002095857A1 PCT/EP2002/002370 EP0202370W WO02095857A1 WO 2002095857 A1 WO2002095857 A1 WO 2002095857A1 EP 0202370 W EP0202370 W EP 0202370W WO 02095857 A1 WO02095857 A1 WO 02095857A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
polymer
electrolyte membrane
membrane
temperature
Prior art date
Application number
PCT/EP2002/002370
Other languages
English (en)
French (fr)
Inventor
Walter Aichholzer
Hubertus Biegert
Verena Graf
Harald Tober
Gabor Toth
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2002095857A1 publication Critical patent/WO2002095857A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • H01M8/1074Sol-gel processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for the continuous production of a polymer electrolyte membrane electrode arrangement for a fuel cell according to the preamble of patent claim 1.
  • a method for producing a polymer electrolyte membrane electrode arrangement for a fuel cell in which a self-supporting ion-conducting membrane is placed on a substrate and thus an electrode-membrane composite body is formed, the self-supporting membrane being used an ion-conducting polymer is used, in which a metal-containing gel hydrolyzed and / or condensed from a metal alkoxide starting material is incorporated and / or chemically bonded to the polymer.
  • the object of the invention is to provide a continuous process for producing a polymer electrolyte membrane electrode assembly for a fuel cell, in which the closed process chain significantly improves the process reliability and thus also the quality of the membrane electrode assemblies (MEA).
  • Fig. 1 shows an example of a continuous manufacturing process of a polymer electrolyte membrane electrode assembly
  • the process according to the invention for producing a polymer electrolyte membrane electrode arrangement for a fuel cell comprises the following process steps: a) coating and / or impregnating a carbon-containing substrate with subsequent drying, b) producing a polymer electrolyte membrane by coating a carrier film with a solution or paste or suspension containing PEM subsequent drying or use of a finished polymer electrolyte membrane, c) bringing together the layers obtained from steps a) and b), d) and, if a carrier film is used in step b), then peeling off this film, steps a) and b) being carried out in parallel and simultaneously executed and the resulting layers are continuously processed in the third step c).
  • a flexible, porous, carbon-containing substrate 1 is preferably used as the substrate material for the production of a polymer electrolyte membrane electrode arrangement.
  • This can be a carbon-containing fabric, paper, felt or non-woven.
  • the substrate is coated or impregnated with at least one hydrophobic polymer in the range from 0 to 50 percent by weight in a manner known per se.
  • the substrate material can be provided with at least one buffer layer 2 for controlling the gas and water management. If at least one such buffer layer is present, the substrate is preferably not hydrophobic.
  • the at least one buffer layer contains carbon and / or carbon-containing material and at least one hydrophobic polymer. Teflon is preferably used as the hydrophobic polymer.
  • the teflon content is in the range between 0 and 60% by weight, preferably between 5 and 40% by weight, particularly preferably between 10 and 30% by weight.
  • at least one further buffer layer is contained on the at least one buffer layer.
  • the at least one further buffer layer contains at least one hydrophobic polymer and / or carbon and / or carbon-containing material.
  • the teflon content of the at least one further buffer layer is in the range between 0 and 40% by weight, preferably between 0.1 and 10% by weight, particularly preferably the last buffer layer adjacent to the catalyst layer contains no hydrophobic polymer.
  • these buffer layers can be applied to the substrate in a continuous manner via a metering unit by means of screen printing, by casting, brushing on, spraying on, spraying on, knife coating or the like.
  • One or more drying steps 3 and / or temperature treatment steps follow the coating process.
  • the drying process is carried out at temperatures around 80 to 250 ° C, preferably at temperatures around 100 to 200 ° C, the temperature treatment step at temperatures between around 300 ° C and 450 ° C, preferably at temperatures between around 370 ° C and 420 ° C , carried out. Subsequently, the surface roughness, the thickness and the basis weight of the substrate material can be measured online to ensure a constant quality.
  • the at least one buffer layer 2 or the at least one further buffer layer is provided with at least one catalyst or catalyst-containing layer.
  • This layer (s) is / are also applied to the buffer layer (s) in a continuous manner via a metering unit by means of screen printing, by casting, brushing on, spraying on, spraying on, knife coating or the like and subsequently dried at temperatures around 80 ° C to 450 ° C.
  • a polymer electrolyte-membrane-containing solution for forming a membrane on the at least one catalyst- or catalyst-containing layer likewise via a metering unit by means of screen printing, by pouring, brushing on, spraying on, spraying on, knife coating or the like in a continuous manner apply and then dry at temperatures around 60 ° C to 170 ° C, preferably at temperatures around 60 ° C to 170 ° C.
  • a polymer electrolyte membrane 5 is produced by coating a carrier film 4.
  • the carrier films used are, for example, polyethylene or polyethylene-containing, Teflon or Teflon-containing films, polyester or polyester-containing films which have a very homogeneous surface with a defined surface roughness for the purpose of adhesion between the carrier film and membrane, have a sufficient temperature resistance for temperatures greater than 120 ° C and a uniform layer thickness. Nevertheless, there must be no inseparable bond between the carrier film and the membrane, since the film must be removed again in a further process step. Before the membrane is applied, the carrier film 4 is heated to a temperature in a range from approximately 20 to 90 ° C.
  • the polymer electrolyte membrane 5 is then applied to the carrier film by pouring, knife coating, spraying, by means of screen printing or by means of a flat slot or flat slot nozzle with a melt pump.
  • a phase modification takes place in the range from about 110 ° C. to 150 ° C., preferably at about 120 ° C., ie the polymer is converted into a conductive form: the sulfonic acid groups fold in the preferred plane and act later than Proton channels.
  • the membrane passes through one to three drying zones 6 - 8, depending on the process, the first drying process taking place at a material and process-dependent low temperature and the drying being carried out with the ambient air, preferably in countercurrent, preferably at room temperature, the second Drying process at a material and process-dependent mean temperature and the third drying process takes place at a likewise material and process-dependent higher temperature, the drying at the middle and / or higher temperature preferably being carried out with the inclusion of IR radiators to form the material properties of the membrane ,
  • a finished membrane 12 produced in one or more upstream process step (s) can also be used, which also includes, for example, a membrane with at least one buffer layer, a membrane with at least one catalyst-containing layer or a membrane with at least one catalyst-containing layer with at least one buffer layer above it.
  • the starting materials which are located in separate reservoirs, are introduced together into the metering unit and briefly mixed with one another at room temperature before the mixture is passed into a doctor / roller trough transferred to a temperature of approx. 20 to 60 ° C, is applied to a preheated carrier film.
  • Polymer-forming hydrocarbon material for example the fluorinated hydrocarbon available under the brand name Nafion, and at least one metal alkoxide, for example tetraethoxysilane, can be used as starting materials.
  • the process steps and the formation of the resulting sol-gel membrane largely corresponds to the older, unpublished patent application PCT / EP 00/08465, the steps according to the invention being carried out continuously.
  • the drying times are about 10 to 15 minutes, the drying channel has a temperature between 110 to 150 ° C.
  • the starting materials for the production of a casting compound which, apart from the polymer can also contain other materials, such as, for example, reinforcing materials Form of fibers made of polymers, glass or textiles, prepared in separate reservoirs. They are introduced together into the dosing unit and briefly mixed together at room temperature. This mixture, which is transferred to a doctor blade / roller trough at a temperature of approx.
  • a preheated carrier film which can optionally contain a highly porous PTFE film, into which the PEM solution can be placed infiltrate, with the result of an improved swelling behavior of the membrane.
  • the first drying takes place in a closed volume at approximately 60 to 110 ° C., preferably at approximately 80 ° C., at which a saturation vapor pressure of the solvent used builds up over the material to be dried.
  • a dense, less porous cover film is formed on the surface in the area facing away from the carrier film, which consists of almost 100% pure polymer.
  • the material to be dried then passes through a well-ventilated drying zone at a drying temperature of approximately 60 to 110 ° C., preferably approximately 80 ° C., and structures also form in the lower layers on the side facing the carrier film.
  • the drying times in both zones are approximately 1 to 25 minutes, preferably 2 to 10 minutes.
  • the precipitation process is carried out with an organic solvent, preferably with NMP (N-methyl-2-pyrrolidone).
  • the precipitation bath 9 contains deionized water with a temperature in the range from about 0 to 30 ° C., preferably 0 ° C.
  • the structure formation within the membrane initiated by the previous drying cycle is frozen by the time of the fall, including the polymer distribution state present at that time, by expelling the solvent still present in the membrane layer.
  • the aqueous cooking bath 10 optionally connected downstream of the precipitation bath releases the pore formers which may be present in the membrane from the at a temperature of about 70 to 100 ° C. over a period of about 1 to 15 minutes Membrane out.
  • the remaining water and the NMP are removed in a further drying cycle 11 at about 20 to 110 ° C. in about 1 to 10 minutes.
  • the asymmetrical polymer electrolyte membrane produced in this process largely corresponds to the membrane described in the older, unpublished patent application PCT / EP 00/08465.
  • Polymer electrolytes based on National from DuPont, but also membranes based on at least one perfluorosulfonic acid-containing polymer, a fluorinated sulfonic acid group-containing polymer, a polymer based on polysulfones or on the basis of a polysulfone-containing polymer or a polymer based on polysulfone modifications can be used as the solid electrolyte -ones or modifications containing polysulfone, for example PES or PSU, a polymer based on polyether ketones, e.g.
  • PEEK, PEK or PEEKK or based on a polyether ketone-containing polymer, a polymer based on polybenzimidazoles, based on polyimides, a polymer based on trifluorostyrene, such as e.g. is described in WO 97/25369 from Ballard, or based on a composite membrane, as exemplified in an older, unpublished document DE19943244 from DaimlerChrysler, in WO 97/25369 or WO / 06337 from Gore / DuPont de Nemours is carried out.
  • polysulfone or polyether ketone is not only understood to mean polymers which contain alkyl groups in the chain, but also include those which contain aryl groups or generally aromatic groups in the chain.
  • a preferred membrane has one or more of the abovementioned polymers and / or copolymers and / or polymer blends.
  • the layers obtained from steps a) and b) are combined in a process step c) preferably by means of a continuously operating double belt press 13.
  • Double belt presses with isobaric pressure distribution are preferably used, so that the entire contact or lamination or reaction area of the press is used defined pressure can be set.
  • the pressure chamber is divided into individual, mutually independent, pressurizable, mutually sealed fluid cushions.
  • a double belt press in which a reaction or contact zone is divided into one or more areas, which is or are heated and / or cooled, and the one or more areas can be subjected to the same or different temperature.
  • the zones can be electrically heated directly or heated or cooled indirectly via a liquid heat transfer medium.
  • a temperature program is run through, in which, in a first step, the reaction zone or contact zone is heated to a material-dependent, predetermined temperature heated, this temperature is held for a defined time, which is dependent on the material, and if necessary the temperature is cooled to a further temperature in a second step, this temperature is held for a defined time before the device is cooled to room temperature in a last step becomes.
  • the double belt presses preferably operate at a speed of 0.5 to 30 m / min.
  • a so-called web buffer in the form of a pendulum deflection roller and / or controlled rewinder and / or unwinder can be connected upstream and / or downstream of the double belt press.
  • isochore double belt presses i.e. roller-based presses with a fixed roller bed
  • Normal roll-lamination units with one or more units connected in series, as known from the calendering sector, can also be used for lamination.
  • a catalyst material is applied by means of electrochemical deposition 15 through a polymer electrolyte membrane 5, 12, ie the catalyst material is n a transition region between membrane 5, 12 and buffer layer 2 (in the case of a plurality of buffer layers between the membrane and the buffer layer which is the most distant from substrate 1).
  • a deposition apparatus as shown in FIG. 2 is activated, which consists of a roller trough 23, which is also designed as a working electrode, that is to say a cathode.
  • the roller 22 rolling therein has a sealing ring 21 on its peripheral edges and is designed to be offset between the sealing rings, ie it has a taper.
  • the roller 22 itself is designed as a counterelectrode, here anode, and transports the continuous material web 20, which consists of substrate 1, at least one buffer layer 2 and composed of at least one polymer electrolyte-containing layer 5, 12.
  • the sealing ring 21 itself presses the material web 20 passing between the trough and roller against the working electrode and at the same time seals the substrate side 1 against the deposition solution 24.
  • the roller has perforations through which this separation solution runs in as a fresh solution or can be removed again as a used solution.
  • the separation solution consists of one or more complex salts, dissolved in a solvent, of one or more catalysts, which are primarily Group VIb, VHIb and / or Ib metals.
  • Hexachloroplatinic acid H 2 PtCl 6 x 6 H 2 0
  • the material web contains at least one buffer layer and at least one layer containing a polymer electrolyte membrane, the latter facing the counter electrode.
  • the catalyst contained in the solution is deposited electrochemically through the membrane into a transition region between the membrane and the buffer layer, specifically onto the buffer layer which is furthest away from the substrate.
  • the transition area can be fuzzy and irregular.
  • the deposition is preferably carried out at a given potential or voltage specification.
  • the separation takes place at room temperature or at temperatures up to 80 ° C.
  • the deposition time ranges from 2 to approx. 20 min depending on the temperature.
  • the deposition parameters include an offset range of at least 1.3 to at least 1.5 volts, an amplitude of at least 1.3 volts and a voltage profile (for example direct voltage with superimposed square-wave, sine or triangular voltage) in a frequency range between 6 Hz to max. 2 kHz.
  • the deposition can also be carried out by means of direct current with a voltage of approximately 1 to 3 volts, preferably approximately 1.3 to 1.5 volts.
  • the deposition can also be carried out by means of direct current with a voltage of approximately 1.5 volts.
  • a membrane electrode arrangement 16 designed according to claims 1 to 9 is provided with a further membrane electrode arrangement 17 which is parallel and simultaneously to the first membrane electrode arrangement or is produced in a separate working step according to claims 1 to 9, assembled on the membrane side.
  • This lamination step is also preferably carried out by means of a double belt press 18 with isobaric pressure distribution.
  • isochore double belt presses or normal roll laminating units can also be used.
  • a further layer 19 containing polymer electrolyte membranes can be fed in a method step g) in a continuous manner during the execution of method step f) between the two membrane electrode arrangements on the membrane side.
  • the lamination is also preferably carried out here by means of a double belt press.
  • a bond between two membrane electrode arrangements can be produced by spraying a solution containing polymer electrolyte and / or a solvent on the membrane side onto the membrane electrode arrangements and by joining the two membrane electrode arrangements together under pressure and temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

Verfahren zur kontinuierlichen Herstellung einer Polymerelektrolytmembran-Elektrodenanordnung für eine Brennstoffzelle, die folgende Verfahrensschritte umfasst: a) Beschichten und/oder Imprägnieren eines kohlenstoffhaltigen Substrates mit anschließender Trocknung, b) Herstellung einer Polymerelektrolytmembran durch Beschichtung eines Trägerfilms mit einer PEM-haltigen Lösung oder Paste oder Suspension mit nachfolgender Trocknung oder Verwendung einer fertigen Polymerelektrolytmembran, c) Zusammenführung der aus den Schritten, a) und b) erhaltenen Schichten, d) und bei Verwendung eines Trägerfilms in Schritt b) anschließendes Abziehen dieses Films, wobei die Schritte a) und b) parallel und gleichzeitig ausgeführt und die daraus resultierenden Schichten kontinuierlich im dritten Schritt c) weiterverarbeitet werden.

Description

Verfahren zur kontinuierlichen Herstellung einer Polymer- elektrolytmembran-Elektrodenanordnung
Die vorliegende Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung einer Polymerelektrolytmembran- Elektro-denanordnung für eine Brennstoffzelle nach dem Oberbegriff des Patentanspruchs 1.
Aus der alteren, nicht vorveroffentlichten Schrift DE 199 62 941 ist ein Verfahren zur Herstellung einer Polymerelektrolytmembran-Elektrodenanordnung für eine Brennstoffzelle bekannt, bei der auf ein Substrat eine freitragende ionenleitende Membran aufgelegt und so ein Elektroden-Membran-Verbundkorper gebildet wird, wobei als freitragende Membran ein ionenleitendes Polymer verwendet wird, in die ein aus einem Metallalkoxid- Ausgangsstoff hydrolysiertes und/oder kondensiertes metallhaltiges Gel eingelagert und/oder mit dem Polymer chemisch verbunden ist.
Aufgabe der Erfindung ist die Angabe eines kontinuierlichen Verfahrens zur Herstellung einer Polymerelektrolytmembran- Elektrodenanordnung für eine Brennstoffzelle, bei der die geschlossene Prozesskette die Prozeßsicherheit und somit auch die Qualität der Membran-Elektrodenanordnungen (MEA) deutlich verbessert .
Diese Aufgabe wird gelost durch ein Verfahren mit den Merkmalen des Patentanspruchs 1.
Vorteilhafte Ausgestaltungen des erfindungsgemaßen Verfahrens sind Gegenstand der Unteranspruche und der Beschreibung. Die Erfindung wird nun anhand der beigefugten Zeichnungen weiter beschrieben. In dieser zeigt in schematischer Weise
Fig. 1 beispielhaft einen kontinuierlichen Herstellprozeß einer Polymerelektrolytmembran-Elektrodenanordnung
Fig. 2 beispielhaft eine Abscheidungseinrichtung zur elektrochemischen Abscheidung eines Katalysators
Das erfindungsgemaße Verfahren zur Herstellung einer Polymerelektrolytmembran-Elektrodenanordnung für eine Brennstoffzelle umfasst folgende Verfahrensschritte: a) Beschichten und/oder Imprägnieren eines kohlenstoffhaltigen Substrates mit anschließender Trocknung, b) Herstellung einer Polymerelektrolytmembran durch Beschichtung eines Tragerfilms mit einer PEM-haltigen Losung oder Paste oder Suspension mit nachfolgender Trocknung oder Verwendung einer fertigen Polymerelektrolytmembran, c) Zusammenfuhrung der aus den Schritten a) und b) erhaltenen Schichten, d) und bei Verwendung eines Tragerfilms in Schritt b) anschließendes Abziehen dieses Films, wobei die Schritte a) und b) parallel und gleichzeitig ausgeführt und die daraus resultierenden Schichten kontinuierlich im dritten Schritt c) weiterverarbeitet werden.
Als Substratmaterial für die Herstellung einer Polymerelektrolytmembran-Elektrodenanordnung wird bevorzugt ein flexibles, poröses, kohlenstoffhaltiges Substrat 1 verwendet. Dies kann ein kohlenstoffhaltiges Gewebe, Papier, Filz oder Vlies sein. Das Substrat wird mit mindestens einem hydrophoben Polymer im Bereich von 0 bis 50 Gewichtsprozent in an sich bekannter Weise beschichtet oder imprägniert. Ferner kann das Substratmaterial mit mindestens einer Pufferschicht 2 zur Steuerung des Gas- und Wassermanagements versehen sein. Bei Vorhandensein mindestens einer solchen Pufferschicht ist das Substrat bevorzugt nicht hydrophobiert . Die mindestens eine Pufferschicht enthalt Kohlenstoff und/oder kohlenstoffhaltiges Material und mindestens ein hydrophobes Polymer. Als hydrophobes Polymer wird bevorzugt Teflon eingesetzt. Der Teflongehalt liegt im Bereich zwischen 0 und 60 Gewichtsprozent, bevorzugt zwischen 5 und 40 Gewιchts-%, besonders bevorzugt zwischen 10 und 30 Gewichts-%. In einer bevorzugten Ausfuhrungsform ist auf der mindestens einen Pufferschicht mindestens eine weitere Pufferschicht enthalten.
Die mindestens eine weitere Pufferschicht enthalt mindestens ein hydrophobes Polymer und/oder Kohlenstoff und/oder kohlenstoffhaltiges Material.
Der Teflongehalt der mindestens einen weiteren Pufferschicht ist im Bereich zwischen 0 und 40 Gewichts-% angesiedelt, bevorzugt zwischen 0,1 und 10 Gewichts-%, besonders bevorzugt enthalt die der Katalysatorschicht benachbarte letzte Pufferschicht kein hydrophobes Polymer. Diese Pufferschichten können im Verfahrensschritt a) über eine Dosiereinheit mittels Siebdruck, durch Gießen, Aufstreichen, Aufsprühen, Aufspritzen, Aufrakeln oder dergleichen in kontinuierlicher Art und Weise auf das Substrat aufgebracht werden. Dem Beschichtungsvorgang nachgeordnet folgen ein oder mehrere Trocknungsschritte 3 und/oder Temperaturbehandlungsschritte. Der Trocknungsvorgang wird bei Temperaturen um etwa 80 bis 250 °C, bevorzugt bei Temperaturen um etwa 100 bis 200°C, der Temperaturbehandlungsschritt bei Temperaturen zwischen etwa 300°C und 450°C, vorzugsweise bei Temperaturen zwischen etwa 370°C und 420°C, durchgeführt. Im Anschluß daran kann im online-Verfahren eine Messung der Oberflachenrauheit, der Dicke und des Flachengewichts am Substratmaterial zur Sicherstellung einer gleichbleibenden Qualität erfolgen. In einer anderen Ausfuhrungsform wird die mindestens eine Pufferschicht 2 bzw. die mindestens eine weitere Pufferschicht mit mindestens einer Katalysatoroder katalysatorhaltigen Schicht versehen. Diese Schicht (en) wird bzw. werden ebenfalls über eine Dosiereinheit mittels Siebdruck, durch Gießen, Aufstreichen, Aufsprühen, Aufspritzen, Aufrakeln oder dergleichen in kontinuierlicher Art und Weise auf die Pufferschicht (en) aufgebracht und nachfolgend bei Temperaturen um etwa 80°C bis 450°C getrocknet. Ferner besteht noch die Möglichkeit auf die mindestens eine Katalysator- oder katalysatorhaltigen Schicht noch eine Polymerelekt- rolyt-membranhaltige Losung zur Ausbildung einer Membran ebenso über eine Dosiereinheit mittels Siebdruck, durch Gießen, Aufstreichen, Aufsprühen, Aufspritzen, Aufrakeln oder dergleichen in kontinuierlicher Art und Weise aufzubringen und nachfolgend bei Temperaturen um etwa 60°C bis 170°C, bevorzugt bei Temperaturen um etwa 60°C bis 170°C, zu trocknen. Im Verfahrensschritt b) erfolgt die Herstellung einer Polymerelektrolytmembran 5 durch Beschichtung eines Tragerfilms 4. Als Tragerfilme werden beispielsweise Polyethylen- oder poly- ethylenhaltige, Teflon- oder teflonhaltige Folien, Polyesteroder polyesterhaltige Folien verwendet, die eine sehr homogene Oberflache mit definierter Oberflachenrauheit zwecks Haftung zwischen Tragerfolie und Membran, eine ausreichende Temperaturbeständigkeit für Temperaturen großer 120°C und eine gleichmaßige Schichtdicke aufweisen. Dennoch darf sich kein unlösbarer Verbund zwischen Tragerfolie und Membran ergeben, da die Folie in einem weiteren Verfahrensschritt wieder abgezogen werden muß. Vor dem Auftrag der Membran wird der Tragerfilm 4 auf eine Temperatur in einem Bereich von etwa 20 bis 90°C aufgeheizt. Die Polymerelektrolytmembran 5 wird anschließend durch Gießen, Rakeln, Spritzen, mittels Siebdruck oder mittels Breitschlitz- oder Flachschlitzduse mit Schmelzepumpe auf den Tragerfilm aufgebracht. Bei Verwendung eines sulfon- sauregruppenhaltigen Polymers erfolgt im Bereich von etwa 110°C bis 150°C, bevorzugt bei ca. 120°C, eine Phasenmodifikation, d.h. eine Überführung des Polymers in eine leitende Form: die Sulfonsauregruppen klappen in Vorzugsebene und fungieren spater als Protonenkanale .
Nach der Herstellung der Polymerelektrolytmembran durchlauft die Membran je nach Verfahren ein bis 3 Trocknungszonen 6 - 8, wobei der erste Trocknungsvorgang bei einer material- und ver- fahrensabhangigen niedrigen Temperatur stattfindet und die Trocknung mit der Umgebungsluft vorzugsweise im Gegenstrom durchgeführt wird, vorzugsweise bei Raumtemperatur, der zweite Trocknungsvorgang bei einer material- und verfahrensabhangigen mittleren Temperatur und der dritte Trocknungsvorgang bei einer ebenfalls material- und verfahrensabhangigen höheren Temperatur stattfindet, wobei die Trocknung bei der mittleren und/oder höheren Temperatur vorzugsweise unter Einbeziehung von IR-Strahlern zur Ausbildung der Materialeigenschaften der Membran vorgenommen wird.
Es kann selbstverständlich auch eine in einem oder mehreren vorgeschalteten Verfahrensschritt (en) hergestellte fertige Membran 12 verwendet werden, darunter zu verstehen ist beispielsweise auch eine Membran mit mindestens einer daruberbe- fmdlichen Pufferschicht, eine Membran mit mindestens einer katalysatorhaltigen Schicht oder eine Membran mit mindestens einer katalysatorhaltigen Schicht mit mindestens einer daru- berbefindlichen Pufferschicht.
Im Falle einer Membran, die nach dem Sol-Gel-Verfahren hergestellt wird, werden die Ausgangsstoffe, die sich in separaten Vorbehaltern befinden, gemeinsam in die Dosiereinheit eingeführt und bei Raumtemperatur kurz miteinander vermischt, bevor die Mischung, die in einen Rakel-/Walzentrog überfuhrt auf eine Temperatur von ca. 20 bis 60°C temperiert wird, auf einen vorgeheizten Tragerfilm aufgebracht wird. Als Ausgangsstoffe kann polymerbildendes Kohlenwasserstoffmaterial, z.B. den unter dem Markennamen Nafion erhältlichen fluorierten Kohlenwasserstoff, und mindestens ein Metallalkoxid, beispielsweise Tetraethoxysilan, genommen werden. Die Verfahrensschritte und die Ausbildung der daraus resultierenden Sol-Gel-Membran entspricht weitgehend der alteren, nicht vorveroffentlichten Patentanmeldung PCT/EP 00/08465, wobei die Schritte gemäß der Erfindung kontinuierlich durchgeführt werden. Die Trocknungszeiten liegen bei etwa 10 bis 15 Minuten, der Trocknungskanal weist eine Temperatur zwischen 110 bis 150°C auf. Im Falle einer Membran, die nach dem Phasenmversions- Verfahren hergestellt wird, werden die Ausgangsstoffe zur Herstellung einer Gießmasse, die außer dem Polymer noch weitere Stoffe enthalten können wie z.B. Verstarkungsmateπalien in Form von Fasern aus Polymeren, Glas oder dem Textilbereich, in separaten Vorbehaltern bevoratet. Sie werden gemeinsam in die Dosiereinheit eingeführt und bei Raumtemperatur kurz miteinander vermischt. Diese Mischung, die in einen Rakel-/Walzentrog überfuhrt auf eine Temperatur von ca. 70 bis 100 °C temperiert wird, wird auf einen vorgeheizten Tragerfilm aufgebracht, der optional noch daruberangeordnet eine hochporose PTFE-Folie enthalten kann, in die die PEM-Losung infiltrieren kann, mit dem Resultat eines verbesserten Quellverhaltens der Membran. Die erste Trocknung erfolgt in einem abgeschlossenen Volumen bei etwa 60 bis 110°C, bevorzugt bei etwa 80°C, bei dem sich über dem zu trocknenden Gut ein Sattigungsdampfdruck des verwendeten Losemittels aufbaut. Es bildet sich in dem zum Tragerfilm abgewandten Bereich an der Oberflache ein dichter weniger poröser Deckfilm aus, der fast zu 100% aus reinem Polymer besteht. Durch die Anhebung der Losemittelkonzentration über dem zu trocknenden Gut, wird die Trocknung in tieferen Schichten gehemmt, so daß sich keine Trockenrisse ausbilden. Anschließend durchlauft das zu trocknende Gut eine gut durchlüftete Trocknungszone bei einer Trocknungstemperatur von etwa 60 bis 110°C, bevorzugt etwa 80°C und es bilden sich auch in der zum Tragerfilm zugewandten Seite Strukturen innerhalb der unteren Schichten aus. Die Trocknungsdauern betragen in beiden Zonen ungefähr 1 bis 25 Minuten, bevorzugt 2 bis 10 Minuten. In einem nachgeordneten Fallungsbad 9 wird der Fallungsvorgang mit einem organischen Lösungsmittel, bevorzugt mit NMP (N- Methyl-2-Pyrrolidon) , vorgenommen. Das Fallungsbad 9 enthalt entionisiertes Wasser mit einer Temperatur im Bereich von etwa 0 bis 30°C, bevorzugt 0°C. Die durch den vorhergehenden Trocknungsgang eingeleitete Strukturbildung innerhalb der Membran wird durch den Fallungszeitpunkt eingefroren inclusive dem zu diesem Zeitpunkt vorhandenen Polymerverteilungszustand, indem das in der Membranschicht noch vorhandene Losungsmittel ausgetrieben wird. Das nach dem Fallungsbad optional nachgeschaltete wassrige Kochbad 10 lost bei einer Temperatur von etwa 70 bis 100 °C die eventuell in der Membran vorhandenen Porenbildner über einen Zeitraum von ungefähr 1 bis 15 Minuten aus der Membran heraus. Das restliche noch vorhandene Wasser und das NMP wird in einem weiteren Trocknungsgang 11 bei etwa 20 bis 110°C in etwa 1 bis 10 Minuten entfernt. Die bei diesem Verfahren hergestellte asymmetrische Polymerelektrolytmembran entspricht weitestgehend der in der alteren, nicht vorverof- fentlichten Patentanmeldung PCT/EP 00/08465 beschriebenen Membran.
Als Festelektrolyt können Polymerelektrolyte auf Basis von Nation der Fa. DuPont, aber auch Membranen auf Basis mindestens eines perfluorsulfonsäurehaltigen Polymers, eines fluorierten sulfonsauregruppenhaltigen Polymers, eines Polymers auf Basis von Polysulfonen oder auf Basis eines polysulfonhaltigen Polymeren bzw. eines Polymers auf Basis von Polysulfon- Modifikati-onen oder polysulfonhaltigen Modifikationen, z.B. PES oder PSU, eines Polymers auf Basis von Polyetherketonen, z.B. PEEK, PEK oder PEEKK, oder auf Basis eines polyetherke- tonhaltigen Polymeren, eines Polymeren auf Basis von Polyben- zimidazolen, auf Basis von Polyimiden, eines Polymers auf Basis von Trifluorstyrol, wie dies z.B. in WO 97/25369 der Fa. Ballard beschrieben ist, oder auf Basis einer Kompositmembran, wie dies als Beispiel in einer alteren, nicht vorveroffentlichten Schrift DE19943244 der Fa. DaimlerChrysler, in WO 97/25369 oder WO/06337 der Fa. Gore/DuPont de Nemours ausgeführt ist, Einsatz finden.
Die einzelnen Polymernamen sollen im erweiterten Sinne verstanden werden; so können z.B. unter dem Begriff Polysulfon oder Polyetherketon nicht nur Polymere verstanden werden, welche Alkylgruppen in der Kette beinhalten, sondern auch solche umfassen, die Arylgruppen bzw. generell aromatische Gruppen in der Kette enthalten.
Eine bevorzugte Membran weist eines oder mehrere der obengenannten Polymere und/oder Copolymere und/oder Polymerblends auf .
Zur Sicherung einer gleichbleibenden hohen Qualität wird vor dem Einlaufen der fertig getrockneten Membran in den Laminier- bereich kontinuierlich die Dicke und das Flachengewicht überprüft, deren Maßgenauigkeit für die nachfolgenden Arbeitsschritte von entscheidender Bedeutung ist. Diese Maßnahme ist notwendig, um die Ausschußquote am Ende des Prozesses äußerst niedrig zu halten.
Durch die optimale Einstellung der Verfahrensparameter im kontinuierlichen Verfahren und die Überprüfung der Qualität bereits bei der Herstellung der beiden Ausgangsmaterialien (Vlies und Membran) zur Herstellung einer Membranelektrodenanordnung, wird sichergestellt, daß die beim spateren Einsatz der MEA in der Brennstoffzelle geforderte Qualität sicher und kostenoptimiert erreicht wird.
Die Zusammenführung der aus den Schritten a) und b) erhaltenen Schichten in einem Verfahrensschritt c) erfolgt vorzugsweise mittels einer kontinuierlich arbeitenden Doppelbandpresse 13. Bevorzugt werden Doppelbandpressen mit isobarer Druckverteilung eingesetzt, damit im gesamten Kontakt- oder Laminier- o- der Reaktionsbereich der Presse ein definierter Druck eingestellt werden kann. Zur Erzeugung eines solchen Reaktionszonendrucks befindet sich in einer hinter dem Pressband angeordneten Druckkammer der Presse mindestens ein fluides Druckkissen. Um Druckzonen mit unterschiedlichen isobaren Drucken zu erhalten, wird die Druckkammer in einzelne und voneinander unabhängige mit Druck beaufschlagbare, gegeneinander abgedichtete Fluidkissen eingeteilt.
Ferner wird eine Doppelbandpresse eingesetzt, bei der eine Reaktions- oder Kontaktzone in ein oder mehrere Bereiche aufgeteilt wird, der bzw. die geheizt und/oder gekühlt wird bzw. werden und wobei die ein oder mehreren Bereiche mit gleicher oder unterschiedlicher Temperatur beaufschlagt werden können. Die Zonen können direkt elektrisch beheizt oder indirekt über ein flussiges Warmetragermedium beheizt oder gekühlt werden. Zur Herstellung einer Membranelektrodenanordnung mittels einer Doppelbandpresse wird ein Temperaturprogramm durchgefahren, bei dem in einem ersten Schritt die Reaktionszone oder Kontaktzone auf eine materialabhangige, vorgegebene Temperatur hochgeheizt, diese Temperatur eine definierte Zeit, die mate- rialabhangig ist, gehalten wird, und bei Bedarf in einem zweiten Schritt die Temperatur auf eine weitere Temperatur abgekühlt wird, diese Temperatur eine definierte Zeit gehalten, bevor in einem letzten Schritt die Vorrichtung auf Raumtemperatur abgekühlt wird.
Die Doppelbandpressen arbeiten vorzugsweise bei einer Geschwindigkeit von 0,5 bis 30 m/min.
Um ein Abreißen der Folienbahn zu verhindern und ein gleichmaßiges Durchlaufen zu gewahrleisten, kann der Doppelbandpresse ein sogenannter Bahnpuffer in Form einer Pendelumlenkrolle und/oder gesteuerter Auf- und/oder Abwickler vor- und/oder nachgeschaltet sein.
Generell können jedoch auch isochore Doppelbandpressen, d.h. rollengestutzte Pressen mit fest eingebautem Rollenbett, eingesetzt werden. Auch normale Rollen-Kaschieremheiten mit ein oder mehrfach hintereinander geschalteten Einheiten, wie aus dem Kalandπerbereich bekannt, können zur Laminierung verwendet finden.
Im Anschluß an Schritt c) und/oder d) (Abziehen 14 des Trager- films 4) wird in einem weiteren Schritt e) ein Katalysatormaterial mittels elektrochemischer Abscheidung 15 durch eine Polymerelektrolytmembran 5,12 hindurch aufgebracht, d.h. das Ka- talysatormateπal befindet sich n einem Ubergangsbereich zwischen Membran 5,12 und Pufferschicht 2 (bei mehreren Pufferschichten zwischen der Membran und der vom Substrat 1 am entferntesten liegenden Pufferschicht) . Dies kann in kontinuierlicher Weise oder in einem separaten Arbeitsschritt erfolgen. Hierzu wird eine Abscheidungsapparatur wie in Figur 2 dargestellt, zugeschaltet, die aus einem Walzentrog 23 besteht, der gleichzeitig als Arbeitselektrode, sprich Kathode, ausgelegt ist. Die darin rollierende Walze 22 weist an ihren Umfangsran- dern einen Dichtring 21 auf und ist zwischen den Dichtringen abgesetzt ausgebildet, d.h sie weist eine Verjüngung auf. Die Walze 22 selbst ist als Gegen-elektrode, hier Anode, ausgebildet und transportiert die durchlaufende Materialbahn 20, welche sich aus Substrat 1, mindestens einer Pufferschicht 2 und mindestens einer Polymerelektrolythaltige Schicht 5,12 zusammensetzt. Der Dichtring 21 selbst preßt die zwischen Trog und Walze durchlaufende Materialbahn 20 gegen die Arbeitselektrode und dichtet gleichzeitig die Substratseite 1 gegen die Abscheidelosung 24 ab. Die Walze weist Perforationen auf, durch die diese Abscheidelosung als frische Losung zulauft bzw. als verbrauchte Losung wieder abgezogen werden kann. Die Abscheidelosung besteht aus einem oder mehreren in einem Losungsmittel gelosten Komplexsalzen eines oder mehrerer Katalysatoren, die vornehmlich Metalle der Gruppe VIb, VHIb und/oder Ib sind. Bevorzugt wird als Abscheidelosung Hexachloroplatmsaure (H2PtCl6 x 6 H20) mit einem Gehalt von 5 g/1 in 0,1 M Schwefelsaure verwendet. Die Materialbahn enthalt neben einem Substrat, mindestens eine Pufferschicht und mindestens eine Poly- merelektrolytmembran-haltige Schicht, wobei letztere der Gegenelektrode zugewandt ist. Der in der Losung enthaltene Katalysator wird elektrochemisch durch die Membran hindurch in einen Ubergangsbereich zwischen Membran und Pufferschicht und zwar auf die von dem Substrat am entferntesten liegenden Pufferschicht abgeschieden. Der Ubergangsbereich kann unscharf und unregelmäßig ausgebildet sein. Die Abscheidung erfolgt bevorzugt bei vorgegebenem Potential bzw. Spannungsvorgabe. Die Abscheidung erfolgt bei Raumtemperatur oder bei Temperaturen bis zu 80°C. Die Abscheidedauer umfaßt e nach Temperatur 2 bis ca. 20 min. Die Abscheideparameter umfassen einen Offset- bereich von mindestens 1,3 bis mindestens 1,5 Volt, eine Amplitude von mindestens 1,3 Volt und ein Spannungsprofll (z.B. Gleichspannung mit überlagerter Rechteck-, Sinus- oder Drei- eckspannung) m einem Frequenzbereich zwischen 6 Hz bis max. 2 kHz. Die Abscheidung kann auch mittels Gleichstrom mit einer Spannung von etwa 1 bis 3 Volt, bevorzugt von etwa 1,3 bis 1,5 Volt, erfolgen. Die Abscheidung kann auch mittels Gleichstrom mit einer Spannung von etwa 1,5 Volt erfolgen. Je nach eingesetztem Katalysator oder Katalysatorlegierung müssen die Abscheideparameter variabel angepaßt werden. Im Anschluß an Schritt c) und/oder d) und/oder e) wird in einem weiteren Schritt f) des kontinuierlichen Verfahrens eine nach den Ansprüchen 1 bis 9 ausgeführte Membranelektrodenanordnung 16 mit einer weiteren Membranelektrodenanordnung 17, die parallel und gleichzeitig zur ersten Membranelektrodenanordnung oder in einem separaten Arbeitsschritt nach den Ansprüchen 1 bis 9 hergestellt wird, membranseitig zusammengefugt. Dieser Laminierschritt erfolgt ebenfalls vorzugsweise mittels Doppelbandpresse 18 mit isobarer Druckverteilung. Es können jedoch auch isochore Doppelbandpressen oder normale Rollenkaschiereinheiten eingesetzt werden.
In einer anderen Ausfuhrungsform kann ferner eine weitere Po- lymerelektrolytmembranhaltige Schicht 19 in einem Verfahrensschritt g) in kontinuierlicher Weise wahrend der Ausfuhrung des Verfahrensschrittes f) membranseitig zwischen beide Membranelektrodenanordnungen zugeführt werden. Die Laminierung erfolgt auch hier bevorzugt mittels Doppelbandpresse. In einer weiteren Ausfuhrungsform kann ein Verbund zwischen zwei Membranelektrodenanordnungen durch Aufsprühen einer poly- merelektrolythaltigen Losung und/oder eines Losungsmittels membranseitig auf die Membranelektrodenanordnungen und durch Zusammenfugen der beiden Membranelektrodenanordnungen unter Druck und Temperatur erzeugt werden.

Claims

Patentansprüche
1. Verfahren zur kontinuierlichen Herstellung einer Polymerelektrolytmembran-Elektrodenanordnung für eine Brennstoffzelle umfassend folgende Verfahrensschritte a) Beschichten und/oder Imprägnieren eines kohlenstoffhaltigen Substrates mit anschließender Trocknung, b) Herstellung einer Polymerelektrolytmembran durch Beschichtung eines Tragerfilms mit einer PEM-haltigen Losung oder Paste oder Suspension mit nachfolgender Trocknung oder Verwendung einer fertigen Polymerelektrolytmembran, c) Zusammenfuhrung der aus den Schritten a) und b) erhaltenen Schichten, d) und bei Verwendung eines Tragerfilms in Schritt b) anschließendes Abziehen dieses Films, wobei die Schritte a) und b) parallel und gleichzeitig ausgeführt und die daraus resultierenden Schichten kontinuierlich im dritten Schritt c) weiterverarbeitet werden.
2 . Verfahren nach Anspruch 1 , d a d u r c h g e k e n n z e i c h n e t , daß das Substrat mit mindestens einem hydrophoben Polymer im Bereich von 0 bis 50 Gewichtsprozent beschichtet oder imprägniert wird.
3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß das Substrat mit mindestens einer Pufferschicht zur Steuerung des Gas- und Wassermanagements versehen wird.
4. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß im Anschluß an Schritt c und/oder d in einem weiteren Schritt e ein Katalysatormaterial mittels elektrochemischer Abscheidung durch eine Polymerelektrolytmembran hindurch in einen Übergangsbereich zwischen Polymerelektrolytmembran und Pufferschicht (en) aufgebracht wird.
5. Verfahren nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, daß die mindestens eine Pufferschicht mit mindestens einer Katalysator- oder katalysatorhaltigen Schicht versehen wird.
6. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die Polymerelektrolytmembran durch Gießen, Rakeln, Spritzen, Siebdruck oder mittels Breitschlitz- oder Flachschlitzdüse mit Schmelzepumpe auf den Trägerfilm aufgebracht wird.
7. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß als Polymerelektrolytmembran Polymerelektrolyte auf Basis von Nation der Fa. DuPont, aber auch Membranen auf Basis mindestens eines perfluorsulfonsäurehaltigen Polymers, eines fluorierten sulfonsäuregruppenhaltigen Polymers, eines Polymers auf Basis von Polysulfonen oder auf Basis eines polysulfon- haltigen Polymeren bzw. eines Polymers auf Basis von Polysul- fon-Modifikationen oder polysulfonhaltigen Modifikationen, eines Polymers auf Basis von Polyetherketonen oder auf Basis eines polyetherketonhaltigen Polymeren, eines Polymeren auf Basis von Polybenzimidazolen, auf Basis von Polyimiden, eines Polymers auf Basis von Trifluorstyrol oder auf Basis einer Kompositmembran verwendet werden.
8. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß eine Polymerelektrolytmembran durch ein Sol-Gel-Verfahren oder durch Phaseninversion hergestellt wird.
9. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, daß bei der Herstellung der Polymerelektrolytmembran je nach Verfahren ein bis drei Trocknungszonen durchlaufen werden, wobei der erste Trocknungsvorgang bei einer material- und ver- fahrensabhangigen niedrigen Temperatur stattfindet und die Trocknung mit der Umgebungsluft vorzugsweise im Gegenstrom durchgeführt wird, der zweite Trocknungsvorgang bei einer material- und verfahrensabhangigen mittleren Temperatur und der dritte Trocknungsvorgang bei einer ebenfalls material- und verfahrensabhangigen höheren Temperatur stattfindet, wobei die Trocknung bei der mittleren und/oder höheren Temperatur vorzugsweise unter Einbeziehung von IR-Strahlern zur Ausbildung der Materialeigenschaften der Membran vorgenommen wird.
10. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die Zusammenfuhrung der aus den Schritten a) und b) erhaltenen Schichten in dem Verfahrensschritt c) mittels einer kontinuierlich arbeitenden Doppelbandpresse erfolgt.
11. Verfahren nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, daß eine Doppelbandpresse mit isobarer Druckverteilung eingesetzt wird.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, daß eine Doppelbandpresse eingesetzt wird, die in mehrere Druckzonen unterteilt ist, wobei die Druckzonen gleichen oder unterschiedlichen isobaren Druck aufweisen können.
13. Verfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t, daß eine Doppelbandpresse eingesetzt wird, bei der eine Reak- tions- oder Kontaktzone in ein oder mehrere Bereiche aufgeteilt wird, der bzw. die geheizt und/oder gekühlt wird bzw. werden und wobei die ein oder mehreren Bereiche mit gleicher oder unterschiedlicher Temperatur beaufschlagt werden können.
14. Verfahren nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t, daß die Doppelbandpresse mit einer Geschwindigkeit von 0,5 bis 30 m/mm arbeitet.
15. Verfahren nach Anspruch 10 bis 14, d a d u r c h g e k e n n z e i c h n e t, daß zur Herstellung einer Membranelektrodenanordnung ein Temperaturprogramm gefahren wird, bei der in einem ersten Schritt die Reaktionszone oder Kontaktzone auf eine materialabhangige, vorgegebene Temperatur hochgeheizt, diese Temperatur eine definierte Zeit, die mateπalabhangig ist, gehalten wird, und bei Bedarf in einem zweiten Schritt die Temperatur auf eine weitere Temperatur abgekühlt wird, diese Temperatur eine definierte Zeit gehalten, bevor in einem letzten Schritt die Vorrichtung auf Raumtemperatur abgekühlt wird.
16. Verfahren nach Anspruch 1 bis 15, d a d u r c h g e k e n n z e i c h n e t, daß im Anschluß an Schritt c) und/oder d) und/oder e) in einem weiteren Schritt f) des kontinuierlichen Verfahrens eine nach den Ansprüchen 1 bis 9 ausgeführte Membranelektrodenanordnung mit einer weiteren Membranelektrodenanordnung, die parallel und gleichzeitig zur ersten Membranelektrodenanordnung oder in einem separaten Arbeitsschritt nach den Ansprüchen 1 bis 9 hergestellt wird, membranseitig zusammengefugt wird.
17. Verfahren nach Anspruch 16, d a d u r c h g e k e n n z e i c h n e t, daß eine weitere Polymerelektrolytmembran-haltige Schicht in einem Verfahrensschritt g) in kontinuierlicher Weise wahrend der Ausfuhrung des Verfahrensschrittes f) membranseitig zwischen beide Membranelektrodenanordnungen zugeführt wird.
18. Verfahren nach Anspruch 16 und 17, d a d u r c h g e k e n n z e i c h n e t, daß der m Verfahrensschritt g erhaltene Verbund einem an der Auslaufseite der Anlage angeordneten Schneid- und/oder Stanzvorgang unterworfen wird, wobei die Stanzpresse gleichzeitig mit Stapeleinrichtung und Abfallstreifensammler versehen wird.
PCT/EP2002/002370 2001-05-18 2002-03-05 Verfahren zur kontinuierlichen herstellung einer polymerelektrolytmembran-elektrodenanordnung WO2002095857A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10124272A DE10124272A1 (de) 2001-05-18 2001-05-18 Verfahren zur kontinuierlichen Herstellung einer Polymerelektrolytmembran-Elektrodenanordnung
DE10124272.7 2001-05-18

Publications (1)

Publication Number Publication Date
WO2002095857A1 true WO2002095857A1 (de) 2002-11-28

Family

ID=7685287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/002370 WO2002095857A1 (de) 2001-05-18 2002-03-05 Verfahren zur kontinuierlichen herstellung einer polymerelektrolytmembran-elektrodenanordnung

Country Status (2)

Country Link
DE (1) DE10124272A1 (de)
WO (1) WO2002095857A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847974A (zh) * 2018-11-23 2019-06-07 一汽解放汽车有限公司 一种质子交换膜燃料电池膜电极喷涂夹具及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140684A1 (de) 2001-08-24 2003-03-06 Daimler Chrysler Ag Dichtungsaufbau für eine MEA und Verfahren zur Herstellung des Dichtungsaufbaus
CN1890828B (zh) 2003-12-02 2010-05-05 日产自动车株式会社 燃料电池的制造
DE102004058474B4 (de) * 2004-11-23 2018-03-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Herstellung einer Elektroden-Elektrolyt-Struktur
EP2735047B1 (de) 2011-09-15 2018-04-04 Siemens Aktiengesellschaft Verfahren zur trockenherstellung einer membran-elektroden-einheit, membran-elektroden-einheit sowie walzanordnung
CN114464820B (zh) * 2022-04-08 2022-07-12 湖南隆深氢能科技有限公司 一种用于燃料电池gdl疏水工艺的设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050142A1 (de) * 1996-06-26 1997-12-31 Siemens Aktiengesellschaft Verfahren zur herstellung von membran-elektrodeneinheiten (me) für polymer-elektrolyt-membran (pem)-brennstoffzellen
US5761793A (en) * 1995-03-17 1998-06-09 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Process for the production of a composite consisting of electrode material, catalyst material and a solid-electrolyte membrane
US5910378A (en) * 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
EP1037295A1 (de) * 1999-03-11 2000-09-20 Degussa-Hüls Aktiengesellschaft Verfahren zum Aufbringen von Elektrodenschichten auf eine bandförmige Polymerelektrolytmembran für Brennstoffzellen
DE19911413A1 (de) * 1999-03-15 2000-09-21 Siemens Ag Herstellung von Kationenaustauschermembran-Dünnschichten
US6197147B1 (en) * 1995-12-22 2001-03-06 Hoescht Research & Technology Deutschland Gmbh & Co. Kg Process for continuous production of membrane-electrode composites

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761793A (en) * 1995-03-17 1998-06-09 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Process for the production of a composite consisting of electrode material, catalyst material and a solid-electrolyte membrane
US6197147B1 (en) * 1995-12-22 2001-03-06 Hoescht Research & Technology Deutschland Gmbh & Co. Kg Process for continuous production of membrane-electrode composites
WO1997050142A1 (de) * 1996-06-26 1997-12-31 Siemens Aktiengesellschaft Verfahren zur herstellung von membran-elektrodeneinheiten (me) für polymer-elektrolyt-membran (pem)-brennstoffzellen
US5910378A (en) * 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
EP1037295A1 (de) * 1999-03-11 2000-09-20 Degussa-Hüls Aktiengesellschaft Verfahren zum Aufbringen von Elektrodenschichten auf eine bandförmige Polymerelektrolytmembran für Brennstoffzellen
DE19911413A1 (de) * 1999-03-15 2000-09-21 Siemens Ag Herstellung von Kationenaustauschermembran-Dünnschichten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GRESO A J ET AL: "Chemical modification of a Nafion@R sulfonyl fluoride precursor via in situ sol-gel reactions", POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 38, no. 6, 1 March 1997 (1997-03-01), pages 1345 - 1356, XP004055776, ISSN: 0032-3861 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847974A (zh) * 2018-11-23 2019-06-07 一汽解放汽车有限公司 一种质子交换膜燃料电池膜电极喷涂夹具及其制备方法
CN109847974B (zh) * 2018-11-23 2021-07-09 一汽解放汽车有限公司 一种质子交换膜燃料电池膜电极喷涂夹具及使用该夹具制备膜电极的方法

Also Published As

Publication number Publication date
DE10124272A1 (de) 2002-11-21

Similar Documents

Publication Publication Date Title
EP0868760B1 (de) Kontinuierliches verfahren zur herstellung von membran-elektroden-verbunden (mea)
EP1198021B1 (de) Verfahren zur Herstellung einer Membran-Elektrodeneinheit für Brennstoffzellen
DE10151458B4 (de) Verfahren zur Herstellung einer Elektrode auf einem Substrat, Verfahren zur Herstellung einer Membranelektrodensubstrat-Baugruppe und Membranelektrodensubstrat-Baugruppen
EP1037295B1 (de) Verfahren zum Aufbringen von Elektrodenschichten auf eine bandförmige Polymerelektrolytmembran für Brennstoffzellen
EP0672305B1 (de) Elektrodenmembran
DE19548422A1 (de) Materialverbunde und ihre kontinuierliche Herstellung
WO2007020258A1 (de) Verfahren zur herstellung von beidseitig katalysatorbeschichteten membranen
DE112015001388B4 (de) Verfahren zur Herstellung einer mit Katalysator beschichteten Membran-Versiegelungs-Anordnung
DE19611510A1 (de) Gasdiffusionselektrode für Membranbrennstoffzellen und Verfahren zu ihrer Herstellung
DE602004011066T2 (de) Prozess zur herstellung einer katalysatorbeschichteten polymer-elektrolyt-membran
DE102009004054A1 (de) Verfahren zur Herstellung einer Protonenaustauschmembran unter Verwendung einer Gasdiffusionselektrode als Substrat
EP1261057B1 (de) Verfahren zur Herstellung einer Membran-Elektrodeneinheit und dadurch hergestellte Membran-Elektrodeneinheit
DE112020001053T5 (de) Kathodenkatalysatorschicht für eine Brennstoffzelle, und Brennstoffzelle
DE112004002679B4 (de) Verfahren zum Herstellen einer Membranelektrodenanordnung
WO2002095857A1 (de) Verfahren zur kontinuierlichen herstellung einer polymerelektrolytmembran-elektrodenanordnung
DE10052224B4 (de) Gasdiffusionselektrode mit erhöhter Toleranz gegenüber Feuchteschwankung, eine diese aufweisende Membranelektrodenanordnung, Verfahren zur Herstellung der Gasdiffusionselektrode und der Membranelektrodenanordnung sowie Verwendung der Membranelektrodenanordnung
DE102004024844A1 (de) Elektrodenpaste zur Herstellung einer Katalysatorschicht für eine elektrochemische Zelle sowie Verfahren zur Herstellung einer Katalysatorschicht
DE10052190B4 (de) Gasdiffusionselektrode, Membranelektrodenanordnung, Verfahren zur Herstellung einer Gasdiffusionselektrode und Verwendung einer Membranelektrodenanordnung
EP0907980B1 (de) Verfahren zur herstellung von membran-elektrodeneinheiten (me) für polymer-elektrolyt-membran (pem)-brennstoffzellen
DE102020124217A1 (de) Verfahren zur Herstellung einer katalysatorbeschichteten Membran
DE10254732A1 (de) Formstabile protonenleitende Membran auf Basis einer mit Polymerelektrolyt gefüllten flexiblen Keramikmembran, Verfahren zu deren Herstellung und deren Verwendung
EP3760683B1 (de) Verfahren zur herstellung einer katalysator-beschichteten membran
WO2023117176A1 (de) Membranelektrodenanordnung und verfahren zu deren herstellung
DE60302932T2 (de) Verfahren zur kontinuierlichen Herstellung von Gasdiffusionsschichten für Brennstoffzellen
DE102004058474B4 (de) Verfahren zur Herstellung einer Elektroden-Elektrolyt-Struktur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP