WO2002091092A2 - Procede servant a gerer un processus de transformation de l'acier, en particulier d'un processus de laminage a chaud - Google Patents

Procede servant a gerer un processus de transformation de l'acier, en particulier d'un processus de laminage a chaud Download PDF

Info

Publication number
WO2002091092A2
WO2002091092A2 PCT/EP2002/005071 EP0205071W WO02091092A2 WO 2002091092 A2 WO2002091092 A2 WO 2002091092A2 EP 0205071 W EP0205071 W EP 0205071W WO 02091092 A2 WO02091092 A2 WO 02091092A2
Authority
WO
WIPO (PCT)
Prior art keywords
level
control
processes
automation
regulation
Prior art date
Application number
PCT/EP2002/005071
Other languages
German (de)
English (en)
Other versions
WO2002091092A3 (fr
Inventor
Mohieddine Jelali
Andreas Wolff
Original Assignee
BFI VDEh-Institut für angewandte Forschung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7684025&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002091092(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BFI VDEh-Institut für angewandte Forschung GmbH filed Critical BFI VDEh-Institut für angewandte Forschung GmbH
Priority to DE50203961T priority Critical patent/DE50203961D1/de
Priority to EP02742971A priority patent/EP1390821B1/fr
Priority to AT02742971T priority patent/ATE302440T1/de
Priority to JP2002588289A priority patent/JP2005509206A/ja
Publication of WO2002091092A2 publication Critical patent/WO2002091092A2/fr
Publication of WO2002091092A3 publication Critical patent/WO2002091092A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/44Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table

Definitions

  • Method for guiding a steel processing process, in particular a hot rolling process
  • the invention relates to a method for guiding a steel processing process, in particular a hot rolling process, according to the preamble of claim 1 and claims the priority of German patent application 101 22 322.6, to which reference is made in terms of content.
  • Level 4 relates to management (production planning) and level 3 to production coordination, such as material tracking, scheduling and quality control.
  • Process automation takes place at level 2.
  • the technological process is represented in models which, for example, allow the optimal calculation of the pass schedule and the most precise possible pre-setting (setup) of the system. These are mostly relatively complicated physical models with an adaptation algorithm that adapts these models to reality based on measurement data.
  • a special task of level 2 in many automation systems is the calculation of the static controlled system gain factors (control gains) from level 1, e.g. B. for feedforward controls.
  • Level 1 includes basic automation with all basic and technological controls and control loops as well as visualization.
  • the basic control loops include position, force and speed controls, for example.
  • Technological regulations are those that ensure compliance with the required product quality parameters (e.g. thickness, cross profile, flatness).
  • the drive systems and drive control are located on level 0.
  • the product quality, for example the flatness of rolled strips, of each steel processing stage is determined by the parameters of the strip used as the raw material, by the functional condition of the tools, for example the rollers, and by the technological conditions such as rolling speed, tension, degree of deformation and temperature distribution across the width of the Bond in this sub-process.
  • the classic process control structure described above with levels 0 to 4 does not take into account the relationships between the individual steel processing levels.
  • the present invention is based on the object of optimizing the performance of future automation solutions in the steel industry and of increasing the product quality for the end customer.
  • the aim of the entire processing chain is to achieve an optimal end product with the best quality and minimal costs.
  • the results of the intermediate stages must also meet certain cost and quality criteria.
  • the method for guiding a steel processing process provides a new, overarching, hierarchical control and regulation structure. This structure takes into account the relationships between the steel processing stages and aims to achieve an optimal end product by hierarchically optimizing the entire process.
  • the newly introduced common hierarchical level, called TechLevel in which individual automation, regulation and control processes of the steel processing process are combined, eliminates the existing separation between the levels (Level 0, Level 1 and Level 2).
  • the process automation, basic automation and drive control thus take place on one level.
  • This combination is preferably suitable for a steel processing process, in particular a rolling process, since there is a complex multi-size system with strict couplings, the information flow between the individual levels being hitherto made difficult by the multiple levels.
  • the combination of these individual levels to form the TechLevel advantageously means that this new type of process control goes hand in hand with the current trend of automation in the steel industry in the direction of complete systems. For some years now, many plant manufacturers have been trying to offer complete automation systems, including drive control, with more or less success.
  • the automation hardware also offers ever faster computing speeds, so that the entire TechLevel can run on a single hardware and it is no longer necessary, as in the prior art, to run the levels on separate hardware.
  • the combination of the individual automation, regulation and control processes of the steel processing process in a single common level also enables the exchange of numerous signals between the levels superfluous. This means that model-based controls can also be implemented more quickly and clearly.
  • the often existing, double modeling on the first levels (level 1 and level 2) can thus be eliminated or can be more closely interlinked than before.
  • SuperLevel which is a control, regulation and optimization level
  • the task of this further level is the coordination of the subordinate control levels based on a hierarchically coupled optimization, so that the required product quality of the end product is achieved.
  • SuperLevel it is achieved that the individual technological functions of the steel processing stages considered separately, which have so far been optimized with great effort, now give way to a consideration of the entire steel processing process from the starting material to the end product, including the relationships between the sub-stages. This uniform analysis has great potential for innovation and improvement.
  • the modified and new structure of the process for the management of a steel processing process, in particular for hot rolling processes, with the new common level TechLevel and the higher level SuperLevel is supplemented with the known higher levels of production coordination and management.
  • the steel processing process is regarded as a so-called "large control system".
  • With regard to the objective function there are sub-goals for the individual sub-systems, which help to determine an overall goal that exists for the entire system, whereby the sub-goals can conflict with each other and with the overall goal.
  • the control device the system also has a functionally decentralized or hierarchical structure of the control devices or control algorithms.
  • Fig. 2 is a schematic diagram of the control and regulation structure according to the invention applied to a hot rolling process
  • FIG. 3 shows a basic diagram of the control and regulation structure according to the invention when applied to a coordinated flatness and cooling control hot strip mill.
  • FIG. 1 shows a basic diagram of the control and regulation structure according to the invention, which essentially shows the superposition of a second SuperLevel level over a new first common TechLevel level.
  • the common TechLevel level has a large number of parallel sub-processes that are linked locally and globally and are each connected to setup controllers.
  • the setup controllers are locally optimized within the TechLevel level. This local optimization of the subsystems consisting of different sub-processes is then linked to a global optimization, regulation and control strategy within the SuperLevel level. An additional global coupling of the subsystems takes place within the TechLevel level.
  • This structure takes into account the fact that the sum of the individual optimizations of the sub-processes is generally not necessarily the total optimum.
  • the aim is to put the quality of the end product in the foreground and to consider and determine the quality of the intermediate products.
  • the coupling structure between the different sub-processes within the common TechLevel level must be taken into account.
  • the setpoint specifications for the sub-processes are to be reversed by the SuperLevel in such a way that the manipulated variable restrictions are observed.
  • the overall control structure thus reflects the internal physical structure of the process.
  • models of different levels of detail and areas of validity are necessary in order to reduce the complexity of the optimization task.
  • the level of detail of the models decreases from the TechLevel level to the SuperLevel, product coordination and management levels, whereas the scope of the models increases.
  • the models used for the SuperLevel thus describe the overall process behavior of the process, the interaction of the sub-processes (couplings) and therefore do not have to be as detailed. Suitable models for this would be qualitative models (eg Petri networks), deterministic or stochastic automata or models based on algebraic equations. In contrast, the models on the TechLevel describe the respective sub-process in great detail locally, for example using DGL or NN or fuzzy approaches.
  • the SuperLevel controller influences the subordinate TechLevel controller by specifying suitable coordination variables for the respective sub-process, so that the behavior of the overall process is optimal with regard to a criterion to be defined.
  • the SuperLevel controller should intervene in particular if actuator restrictions are reached in a sub-process or unexpected malfunctions occur there, which, for example, result in a shift in the working point as a result of thermal crowning. While the target values are determined from a static point of view in the planning phase, the SuperLevel controller dynamically intervenes during the process.
  • FIG. 2 shows a basic diagram of the control and regulation structure according to the invention applied to a hot rolling process WWW, which has a roughing train, a finishing train and a cooling section with a reel as subsystems. It is also possible, for example, to operate subsystems of a casting machine, a compact steel production (CSP, Compact Steel Production) and a cooling section with reel or subsystems of a continuous casting plant, a hot rolling mill and a cold rolling mill using the method according to the invention.
  • CSP Compact Steel Production
  • FIG. 3 shows a basic diagram of the overarching hierarchical control and regulation structure according to the invention when applied to a coordinated flatness and cooling control hot strip mill WB.
  • the goal of the coordinated flatness and cooling control is to optimize the flatness of the rolled hot strip, which is measured behind the cooling.
  • the WB hot strip mill and the cooling section are stabilized by subordinate WB model and cooling model controls. These subordinate regulations are part of the TechLevel.
  • the hot strip mill WB delivers a metal strip with a certain flatness error due to the subordinate regulation WB model. This flatness error is a disturbance variable y, for the subsequent cooling process.
  • the goal of the coordinated flatness control in the SuperLevel is the target values of the subordinate ones Adjust WB model and model cooling regulations in TechLevel so that the flatness behind the cooling section corresponds to the specified requirements.
  • the flatness behind the cooling section is a controlled variable of the SuperLevel
  • a model predictive control for example, is used to control the SuperLevel.
  • the MPC is embedded in an infernal model control (IMC) structure with feedforward control G stw and G stk .
  • IMC infernal model control
  • a prediction of the control variables is included in the dynamic optimization OPT, which go beyond dead time between the process stages.

Abstract

L'invention concerne un procédé servant à gérer un processus de transformation de l'acier, en particulier d'un processus de laminage à chaud, procédé selon lequel les opérations d'automatisation, de régulation et de commande sont classées selon des niveaux hiérarchiques. Ledit procédé est caractérisé en ce que les opérations distinctes d'automatisation, de régulation et de commande du processus de transformation de l'acier sont regroupées en un premier niveau commun où se déroulent l'automatisation du processus, l'automatisation de base et la régulation de l'entraînement.
PCT/EP2002/005071 2001-05-08 2002-05-08 Procede servant a gerer un processus de transformation de l'acier, en particulier d'un processus de laminage a chaud WO2002091092A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50203961T DE50203961D1 (de) 2001-05-08 2002-05-08 Verfahren zur führung eines stahlverarbeitungsprozesses, insbesondere eines warmwalzprozesses
EP02742971A EP1390821B1 (fr) 2001-05-08 2002-05-08 Procede servant a gerer un processus de transformation de l'acier, en particulier d'un processus de laminage a chaud
AT02742971T ATE302440T1 (de) 2001-05-08 2002-05-08 Verfahren zur führung eines stahlverarbeitungsprozesses, insbesondere eines warmwalzprozesses
JP2002588289A JP2005509206A (ja) 2001-05-08 2002-05-08 鋼処理、特にホットローリングプロセス、を行う方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10122322A DE10122322A1 (de) 2001-05-08 2001-05-08 Verfahren zur Führung eines Stahlverarbeitungsprozesses, insbesondere eines Warmwalzprozesses
DE10122322.6 2001-05-08

Publications (2)

Publication Number Publication Date
WO2002091092A2 true WO2002091092A2 (fr) 2002-11-14
WO2002091092A3 WO2002091092A3 (fr) 2003-05-01

Family

ID=7684025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/005071 WO2002091092A2 (fr) 2001-05-08 2002-05-08 Procede servant a gerer un processus de transformation de l'acier, en particulier d'un processus de laminage a chaud

Country Status (5)

Country Link
EP (1) EP1390821B1 (fr)
JP (1) JP2005509206A (fr)
AT (1) ATE302440T1 (fr)
DE (2) DE10122322A1 (fr)
WO (1) WO2002091092A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1488863A2 (fr) * 2003-06-20 2004-12-22 ABB PATENT GmbH Système et procédé pour l'optimisation du réglage de la qualité de l'épaisseur dans un processus de laminage
EP3798750A1 (fr) * 2019-09-25 2021-03-31 SMS Group GmbH Procédé de surveillance et de commande d'une installation de laminage de produits métalliques

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020202273A1 (de) * 2020-02-21 2021-08-26 Sms Group Gmbh Verfahren zur Automatisierung einer hüttentechnischen Anlage, insbesondere einer Anlage zum Walzen von Metallbändern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446036A2 (fr) * 1990-03-09 1991-09-11 Hitachi, Ltd. Dispositif de commande
DE19850492A1 (de) * 1997-11-10 1999-05-12 Siemens Ag Verfahren und Einrichtung zum Warmwalzen dünner Stahlbänder
DE19838469A1 (de) * 1998-08-25 2000-03-02 Abb Research Ltd Prozeßsteuer- und Regelsystem mit verteilter Verarbeitung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446036A2 (fr) * 1990-03-09 1991-09-11 Hitachi, Ltd. Dispositif de commande
DE19850492A1 (de) * 1997-11-10 1999-05-12 Siemens Ag Verfahren und Einrichtung zum Warmwalzen dünner Stahlbänder
DE19838469A1 (de) * 1998-08-25 2000-03-02 Abb Research Ltd Prozeßsteuer- und Regelsystem mit verteilter Verarbeitung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAPANNI C ET AL: "HIGH-LEVEL INTEGRATION SYSTEM FOR ROLLING MILL CONTROL" IRON AND STEEL ENGINEER, ASSOCIATION OF IRON AND STEEL ENGINEERS. PITTSBURGH, US, Bd. 70, Nr. 6, 1. Juni 1993 (1993-06-01), Seiten 32-35, XP000387769 ISSN: 0021-1559 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1488863A2 (fr) * 2003-06-20 2004-12-22 ABB PATENT GmbH Système et procédé pour l'optimisation du réglage de la qualité de l'épaisseur dans un processus de laminage
EP1488863A3 (fr) * 2003-06-20 2006-03-15 ABB PATENT GmbH Système et procédé pour l'optimisation du réglage de la qualité de l'épaisseur dans un processus de laminage
EP3798750A1 (fr) * 2019-09-25 2021-03-31 SMS Group GmbH Procédé de surveillance et de commande d'une installation de laminage de produits métalliques

Also Published As

Publication number Publication date
WO2002091092A3 (fr) 2003-05-01
EP1390821B1 (fr) 2005-08-17
EP1390821A2 (fr) 2004-02-25
DE50203961D1 (de) 2005-09-22
DE10122322A1 (de) 2002-11-14
JP2005509206A (ja) 2005-04-07
ATE302440T1 (de) 2005-09-15

Similar Documents

Publication Publication Date Title
DE4338615B4 (de) Verfahren und Vorrichtung zur Führung eines Prozesses in einem geregelten System
EP1624982B1 (fr) Procede de regulation de la temperature d'une bande metallique, en particulier dans un train finisseur pour le laminage a chaud de bandes metalliques
EP2697002B1 (fr) Procédé de commande pour train de laminoir
EP2527053A1 (fr) Procédé de commande pour une voie de laminage
EP0706680B1 (fr) Systeme regulateur, en particulier pour un processus non lineaire variable dans le temps
EP1488863B1 (fr) Système et procédé pour l'optimisation du réglage de la qualité de l'épaisseur dans un processus de laminage
WO2005072886A1 (fr) Procede de reglage et mecanisme de reglage pour une cage de laminoir
EP3691806B1 (fr) Dispositif de réglage de planéité doté d'un dispositif d'optimisation
EP3194087B1 (fr) Réglage de largeur d'une ligne de fabrication
WO2002091092A2 (fr) Procede servant a gerer un processus de transformation de l'acier, en particulier d'un processus de laminage a chaud
EP2288969A1 (fr) Système de conduite d'une installation avec optimisation du modèle en plusieurs phases
DE102007050891A1 (de) Auf der Streuung einer Istgröße eines Walzguts basierende Adaptierung eines Reglers in einem Walzwerk
EP3314761B1 (fr) Procede de commutation de filtre pour une commande de machine
DE19641432C2 (de) Verfahren und Einrichtung zur Vorausberechnung von vorab unbekannten Parametern eines industriellen Prozesses
WO2020224839A1 (fr) Procédé d'exploitation d'une installation industrielle
WO2020244850A1 (fr) Dispositif et procédé de commande de séquences de production complexes dans des grosses installations techniques, en particulier dans la sidérurgie
DE102005053489C5 (de) Regelungssystem und Regelungsverfahren für eine industrielle Einrichtung
DE10159608B4 (de) Walzverfahren für ein Band mit einer Schweißnaht
EP0996875B1 (fr) Procede de reglage de plusieurs regulateurs pour la regulation d'un systeme d'automatisme asservi constitue de systemes regles couples
EP4103339B1 (fr) Détermination de la sensibilité d'une grandeur cible d'une matière à laminer pour un paramètre de fonctionnement d'un train de laminage à chaud
DE10219322A1 (de) Verfahren und Vorrichtung zur Planung eines industriellen Prozesses
WO2021228927A1 (fr) Système et procédé de commande d'une usine de production constituée d'une pluralité de parties d'usine, en particulier d'une usine de production pour la production de marchandises industrielles telles que des produits semi-finis métalliques
EP4320489A1 (fr) Procédé d'optimisation pour exploiter des installations dans l'industrie primaire
DE102020202273A1 (de) Verfahren zur Automatisierung einer hüttentechnischen Anlage, insbesondere einer Anlage zum Walzen von Metallbändern
WO2023213658A1 (fr) Détermination du décalage latéral d'une bande métallique sur la base du contour d'une face d'extrémité d'une bobine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002588289

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002742971

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002742971

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002742971

Country of ref document: EP