WO2002091092A2 - Method for conducting steel processing, especially a hot rolling process - Google Patents

Method for conducting steel processing, especially a hot rolling process Download PDF

Info

Publication number
WO2002091092A2
WO2002091092A2 PCT/EP2002/005071 EP0205071W WO02091092A2 WO 2002091092 A2 WO2002091092 A2 WO 2002091092A2 EP 0205071 W EP0205071 W EP 0205071W WO 02091092 A2 WO02091092 A2 WO 02091092A2
Authority
WO
WIPO (PCT)
Prior art keywords
level
control
processes
automation
regulation
Prior art date
Application number
PCT/EP2002/005071
Other languages
German (de)
French (fr)
Other versions
WO2002091092A3 (en
Inventor
Mohieddine Jelali
Andreas Wolff
Original Assignee
BFI VDEh-Institut für angewandte Forschung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7684025&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002091092(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BFI VDEh-Institut für angewandte Forschung GmbH filed Critical BFI VDEh-Institut für angewandte Forschung GmbH
Priority to EP02742971A priority Critical patent/EP1390821B1/en
Priority to DE50203961T priority patent/DE50203961D1/en
Priority to JP2002588289A priority patent/JP2005509206A/en
Priority to AT02742971T priority patent/ATE302440T1/en
Publication of WO2002091092A2 publication Critical patent/WO2002091092A2/en
Publication of WO2002091092A3 publication Critical patent/WO2002091092A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/44Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table

Definitions

  • Method for guiding a steel processing process, in particular a hot rolling process
  • the invention relates to a method for guiding a steel processing process, in particular a hot rolling process, according to the preamble of claim 1 and claims the priority of German patent application 101 22 322.6, to which reference is made in terms of content.
  • Level 4 relates to management (production planning) and level 3 to production coordination, such as material tracking, scheduling and quality control.
  • Process automation takes place at level 2.
  • the technological process is represented in models which, for example, allow the optimal calculation of the pass schedule and the most precise possible pre-setting (setup) of the system. These are mostly relatively complicated physical models with an adaptation algorithm that adapts these models to reality based on measurement data.
  • a special task of level 2 in many automation systems is the calculation of the static controlled system gain factors (control gains) from level 1, e.g. B. for feedforward controls.
  • Level 1 includes basic automation with all basic and technological controls and control loops as well as visualization.
  • the basic control loops include position, force and speed controls, for example.
  • Technological regulations are those that ensure compliance with the required product quality parameters (e.g. thickness, cross profile, flatness).
  • the drive systems and drive control are located on level 0.
  • the product quality, for example the flatness of rolled strips, of each steel processing stage is determined by the parameters of the strip used as the raw material, by the functional condition of the tools, for example the rollers, and by the technological conditions such as rolling speed, tension, degree of deformation and temperature distribution across the width of the Bond in this sub-process.
  • the classic process control structure described above with levels 0 to 4 does not take into account the relationships between the individual steel processing levels.
  • the present invention is based on the object of optimizing the performance of future automation solutions in the steel industry and of increasing the product quality for the end customer.
  • the aim of the entire processing chain is to achieve an optimal end product with the best quality and minimal costs.
  • the results of the intermediate stages must also meet certain cost and quality criteria.
  • the method for guiding a steel processing process provides a new, overarching, hierarchical control and regulation structure. This structure takes into account the relationships between the steel processing stages and aims to achieve an optimal end product by hierarchically optimizing the entire process.
  • the newly introduced common hierarchical level, called TechLevel in which individual automation, regulation and control processes of the steel processing process are combined, eliminates the existing separation between the levels (Level 0, Level 1 and Level 2).
  • the process automation, basic automation and drive control thus take place on one level.
  • This combination is preferably suitable for a steel processing process, in particular a rolling process, since there is a complex multi-size system with strict couplings, the information flow between the individual levels being hitherto made difficult by the multiple levels.
  • the combination of these individual levels to form the TechLevel advantageously means that this new type of process control goes hand in hand with the current trend of automation in the steel industry in the direction of complete systems. For some years now, many plant manufacturers have been trying to offer complete automation systems, including drive control, with more or less success.
  • the automation hardware also offers ever faster computing speeds, so that the entire TechLevel can run on a single hardware and it is no longer necessary, as in the prior art, to run the levels on separate hardware.
  • the combination of the individual automation, regulation and control processes of the steel processing process in a single common level also enables the exchange of numerous signals between the levels superfluous. This means that model-based controls can also be implemented more quickly and clearly.
  • the often existing, double modeling on the first levels (level 1 and level 2) can thus be eliminated or can be more closely interlinked than before.
  • SuperLevel which is a control, regulation and optimization level
  • the task of this further level is the coordination of the subordinate control levels based on a hierarchically coupled optimization, so that the required product quality of the end product is achieved.
  • SuperLevel it is achieved that the individual technological functions of the steel processing stages considered separately, which have so far been optimized with great effort, now give way to a consideration of the entire steel processing process from the starting material to the end product, including the relationships between the sub-stages. This uniform analysis has great potential for innovation and improvement.
  • the modified and new structure of the process for the management of a steel processing process, in particular for hot rolling processes, with the new common level TechLevel and the higher level SuperLevel is supplemented with the known higher levels of production coordination and management.
  • the steel processing process is regarded as a so-called "large control system".
  • With regard to the objective function there are sub-goals for the individual sub-systems, which help to determine an overall goal that exists for the entire system, whereby the sub-goals can conflict with each other and with the overall goal.
  • the control device the system also has a functionally decentralized or hierarchical structure of the control devices or control algorithms.
  • Fig. 2 is a schematic diagram of the control and regulation structure according to the invention applied to a hot rolling process
  • FIG. 3 shows a basic diagram of the control and regulation structure according to the invention when applied to a coordinated flatness and cooling control hot strip mill.
  • FIG. 1 shows a basic diagram of the control and regulation structure according to the invention, which essentially shows the superposition of a second SuperLevel level over a new first common TechLevel level.
  • the common TechLevel level has a large number of parallel sub-processes that are linked locally and globally and are each connected to setup controllers.
  • the setup controllers are locally optimized within the TechLevel level. This local optimization of the subsystems consisting of different sub-processes is then linked to a global optimization, regulation and control strategy within the SuperLevel level. An additional global coupling of the subsystems takes place within the TechLevel level.
  • This structure takes into account the fact that the sum of the individual optimizations of the sub-processes is generally not necessarily the total optimum.
  • the aim is to put the quality of the end product in the foreground and to consider and determine the quality of the intermediate products.
  • the coupling structure between the different sub-processes within the common TechLevel level must be taken into account.
  • the setpoint specifications for the sub-processes are to be reversed by the SuperLevel in such a way that the manipulated variable restrictions are observed.
  • the overall control structure thus reflects the internal physical structure of the process.
  • models of different levels of detail and areas of validity are necessary in order to reduce the complexity of the optimization task.
  • the level of detail of the models decreases from the TechLevel level to the SuperLevel, product coordination and management levels, whereas the scope of the models increases.
  • the models used for the SuperLevel thus describe the overall process behavior of the process, the interaction of the sub-processes (couplings) and therefore do not have to be as detailed. Suitable models for this would be qualitative models (eg Petri networks), deterministic or stochastic automata or models based on algebraic equations. In contrast, the models on the TechLevel describe the respective sub-process in great detail locally, for example using DGL or NN or fuzzy approaches.
  • the SuperLevel controller influences the subordinate TechLevel controller by specifying suitable coordination variables for the respective sub-process, so that the behavior of the overall process is optimal with regard to a criterion to be defined.
  • the SuperLevel controller should intervene in particular if actuator restrictions are reached in a sub-process or unexpected malfunctions occur there, which, for example, result in a shift in the working point as a result of thermal crowning. While the target values are determined from a static point of view in the planning phase, the SuperLevel controller dynamically intervenes during the process.
  • FIG. 2 shows a basic diagram of the control and regulation structure according to the invention applied to a hot rolling process WWW, which has a roughing train, a finishing train and a cooling section with a reel as subsystems. It is also possible, for example, to operate subsystems of a casting machine, a compact steel production (CSP, Compact Steel Production) and a cooling section with reel or subsystems of a continuous casting plant, a hot rolling mill and a cold rolling mill using the method according to the invention.
  • CSP Compact Steel Production
  • FIG. 3 shows a basic diagram of the overarching hierarchical control and regulation structure according to the invention when applied to a coordinated flatness and cooling control hot strip mill WB.
  • the goal of the coordinated flatness and cooling control is to optimize the flatness of the rolled hot strip, which is measured behind the cooling.
  • the WB hot strip mill and the cooling section are stabilized by subordinate WB model and cooling model controls. These subordinate regulations are part of the TechLevel.
  • the hot strip mill WB delivers a metal strip with a certain flatness error due to the subordinate regulation WB model. This flatness error is a disturbance variable y, for the subsequent cooling process.
  • the goal of the coordinated flatness control in the SuperLevel is the target values of the subordinate ones Adjust WB model and model cooling regulations in TechLevel so that the flatness behind the cooling section corresponds to the specified requirements.
  • the flatness behind the cooling section is a controlled variable of the SuperLevel
  • a model predictive control for example, is used to control the SuperLevel.
  • the MPC is embedded in an infernal model control (IMC) structure with feedforward control G stw and G stk .
  • IMC infernal model control
  • a prediction of the control variables is included in the dynamic optimization OPT, which go beyond dead time between the process stages.

Abstract

The invention relates to and describes a method for conducting steel processing, especially a hot rolling process, wherein hierarchical levels are assigned to automation, regulation and control operations, wherein the individual automation, regulation and control operations of said steel processing are grouped in a first, common level (TechLevel) in which process automation, base automation and drive regulation are carried out.

Description

B F I VDEh-lnstitut für angewandte Forschung GmbH B F I VDEh Institute for Applied Research GmbH
Sohnstraße 65, 40237 DüsseldorfSohnstrasse 65, 40237 Dusseldorf
"Verfahren zur Führung eines Stahlverarbeitunqsprozesses. insbesondere eines Warmwalzprozesses""Method for guiding a steel processing process, in particular a hot rolling process"
Die Erfindung betrifft ein Verfahren zur Führung eines Stahlverarbeitungsprozesses, insbesondere eines Warmwalzprozesses, gemäß dem Oberbegriff des Anspruchs 1 und nimmt die Priorität der deutschen Patentanmeldung 101 22 322.6 in Anspruch, auf die inhaltlich Bezug genommen wird.The invention relates to a method for guiding a steel processing process, in particular a hot rolling process, according to the preamble of claim 1 and claims the priority of German patent application 101 22 322.6, to which reference is made in terms of content.
Es ist allgemein bekannt, daß in der Stahlindustrie, insbesondere der Stahlverarbeitungsindustrie, die klassische Prozesssteuerungsstruktur in der Regel hauptsächlich aus mehr oder weniger autonomen Ebenen (Level 0 bis Level 4) besteht. Die Ebene Level 4 bezieht sich auf das Management (Produktionsplanung) und die Ebene Level 3 auf die Produktionskoordination, wie beispielsweise Materialverfolgung, Terminplanung und Qualitätskontrolle. In der Ebene Level 2 findet die Prozeßautomatisierung statt. Hier wird der technologische Prozeß in Modellen abgebildet, die beispielsweise eine möglichst optimale Stichplanberechnung und eine möglichst genaue Voreinstellung (Setup) der Anlage erlauben. Hierbei handelt es meistens um relativ komplizierte physikalische Modelle mit einem Adaptionsalgorithmus, der diese Modelle anhand von Meßdaten an die Realität anpaßt. Eine besondere Aufgabe des Level 2 in vielen Automatisierungssystemen ist die Berechnung der statischen Regelstreckenverstärkungsfaktoren (control gains), die von dem Level 1 , z. B. für Störgrößenaufschaltungen (feedforward controls), benötigt werden. Die Ebene Level 1 beinhaltet die Basisautomatisierung mit allen Basissteuerungen- und technologischen Steuerungen und Regelkreisen sowie der Visualisierung. Zu den Basisregelkreisen zählen beispielsweise Positions-, Kraft- und Geschwindigkeitsregelungen. Als technologische Regelungen bezeichnet man diejenigen, welche die Einhaltung der geforderten Produktqualitätsparamter (z.B. Dicke, Querprofil, Planheit) sicherstellen. In der Ebene Level 0 sind die Antriebssysteme und die Antriebsregelung angesiedelt.It is generally known that in the steel industry, in particular the steel processing industry, the classic process control structure generally consists mainly of more or less autonomous levels (level 0 to level 4). Level 4 relates to management (production planning) and level 3 to production coordination, such as material tracking, scheduling and quality control. Process automation takes place at level 2. Here, the technological process is represented in models which, for example, allow the optimal calculation of the pass schedule and the most precise possible pre-setting (setup) of the system. These are mostly relatively complicated physical models with an adaptation algorithm that adapts these models to reality based on measurement data. A special task of level 2 in many automation systems is the calculation of the static controlled system gain factors (control gains) from level 1, e.g. B. for feedforward controls. Level 1 includes basic automation with all basic and technological controls and control loops as well as visualization. The basic control loops include position, force and speed controls, for example. Technological regulations are those that ensure compliance with the required product quality parameters (e.g. thickness, cross profile, flatness). The drive systems and drive control are located on level 0.
Die Produktqualität, beispielsweise die Planheit gewalzter Bänder, jeder Stahlverarbeitungsstufe wird bestimmt durch die Parameter des als Vormaterial eingesetzten Bandes, durch den Funktionszustand der Werkzeuge, beispielsweise der Walzen, und durch die technologischen Bedingungen, wie Walzgeschwindigkeit, Zug, Umformgrad und Temperaturverteilung über die Breite des Bandes bei diesem Teilprozeß. Die vorbeschriebene klassische Prozesssteuerungsstruktur mit den Ebenen Level 0 bis Level 4 berücksichtigt nicht die Zusammenhänge zwischen den einzelnen Stahlverarbeitungsstufen.The product quality, for example the flatness of rolled strips, of each steel processing stage is determined by the parameters of the strip used as the raw material, by the functional condition of the tools, for example the rollers, and by the technological conditions such as rolling speed, tension, degree of deformation and temperature distribution across the width of the Bond in this sub-process. The classic process control structure described above with levels 0 to 4 does not take into account the relationships between the individual steel processing levels.
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, die Leistungsfähigkeit zukünftiger Automatisierungslösungen in der Stahlindustrie zu optimieren und die Produktqualität für den Endkunden zu erhöhen. Ziel der gesamten Verarbeitungskette ist die Erreichung eines optimalen Endproduktes mit bester Qualität und minimalen Kosten. Auch müssen die Ergebnisse der Zwischenstufen ebenfalls bestimmte Kosten- und Qualitätskriterien erfüllen.Proceeding from this, the present invention is based on the object of optimizing the performance of future automation solutions in the steel industry and of increasing the product quality for the end customer. The aim of the entire processing chain is to achieve an optimal end product with the best quality and minimal costs. The results of the intermediate stages must also meet certain cost and quality criteria.
Diese Aufgabe wird durch ein Verfahren zur Führung eines Stahlverarbei- tungsprozesses, insbesondere eines Warmwalzprozesses, mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Ansprüchen 2 bis 5 angegeben. Erfindungsgemäß wird durch das Verfahren zur Führung eines Stahlverarbeitungsprozesses eine neue übergreifende hierarchische Steuer- und Regelungsstruktur bereitgestellt. Diese Struktur berücksichtigt die Zusammen- hänge zwischen den Stahlverarbeitungstufen und zielt auf eine Erreichung eines optimalen Endproduktes durch eine hierarchische Optimierung des gesamten Prozesses.This object is achieved by a method for guiding a steel processing process, in particular a hot rolling process, with the features of claim 1. Advantageous embodiments of the invention are specified in claims 2 to 5. According to the invention, the method for guiding a steel processing process provides a new, overarching, hierarchical control and regulation structure. This structure takes into account the relationships between the steel processing stages and aims to achieve an optimal end product by hierarchically optimizing the entire process.
Erfindungsgemäß wird durch die neu eingeführte gemeinsame hierarchische Ebene, genannt TechLevel, in dem einzelne Automatisierungs-, Regelungsund Steuerungsvorgänge des Stahlverarbeitungsprozesses zusammengefaßt werden, die bestehende Trennung zwischen den Ebenen (Level 0, Level 1 und Level 2) aufgehoben. Die Prozeßautomatisierung, Basisautomatisierung und Antriebsregelung finden somit ein in einer Ebene statt. Diese Zu- sammenführung eignet sich bevorzugt für einen Stahlverarbeitungsprozess, insbesondere einen Walzprozeß, da hier ein komplexes Mehrgrößensystem mit strengen Kopplungen besteht, wobei der Informationsfluß zwischen den einzelnen Ebenen bisher durch die mehreren Ebenen erschwert wird. Vorteilhafterweise wird durch die Zusammenfassung dieser einzelnen Ebenen zu dem TechLevel erreicht, daß diese neue Art der Prozeßführung mit dem heutigen Trend der Automatisierung in der Stahlindustrie in Richtung von Komplettsystemen einhergeht. Seit einigen Jahren versuchen viele Anlagenbauer mit mehr oder weniger Erfolg, komplette Automatisierungssysteme einschließlich der Antriebsregelung anzubieten.According to the invention, the newly introduced common hierarchical level, called TechLevel, in which individual automation, regulation and control processes of the steel processing process are combined, eliminates the existing separation between the levels (Level 0, Level 1 and Level 2). The process automation, basic automation and drive control thus take place on one level. This combination is preferably suitable for a steel processing process, in particular a rolling process, since there is a complex multi-size system with strict couplings, the information flow between the individual levels being hitherto made difficult by the multiple levels. The combination of these individual levels to form the TechLevel advantageously means that this new type of process control goes hand in hand with the current trend of automation in the steel industry in the direction of complete systems. For some years now, many plant manufacturers have been trying to offer complete automation systems, including drive control, with more or less success.
Auch bietet die Automatisierungshardware immer schnellere Rechengeschwindigkeiten, so daß der gesamte TechLevel auf einer einzigen Hardware laufen kann und es nicht mehr notwendig ist, wie im Stand der Technik die Ebenen auf getrennter Hardware laufen zu lassen. Auch macht die Zu- sammenfassung der einzelnen Automatisierungs-, Regelungs- und Steuerungsvorgänge des Stahlverarbeitungsprozesses in einer einzigen gemeinsamen Ebene den Austausch zahlreicher Signale zwischen den Ebenen überflüssig. Somit lassen sich dann auch modellbasierte Regelungen schneller und übersichtlicher realisieren. Die vielfach vorhandene, doppelte Modellierung auf den ersten Ebenen (Level 1 und Level 2) kann somit wegfallen bzw. noch enger als bisher verzahnt werden.The automation hardware also offers ever faster computing speeds, so that the entire TechLevel can run on a single hardware and it is no longer necessary, as in the prior art, to run the levels on separate hardware. The combination of the individual automation, regulation and control processes of the steel processing process in a single common level also enables the exchange of numerous signals between the levels superfluous. This means that model-based controls can also be implemented more quickly and clearly. The often existing, double modeling on the first levels (level 1 and level 2) can thus be eliminated or can be more closely interlinked than before.
Außerdem wird durch die vorbeschriebene Zusammenfassung der Ebenen auch zwingend der Austausch von Know-how und Informationen zwischen Setup-Spezialisten und Regelungstechnikern, die sonst in unterschiedlichen Ebenen des Verfahrens zur Prozeßführung arbeiten, verbessert. Hierdurch können Synergien ausgenutzt und Entwicklungs-, Implementierungs- und Inbetriebnahmezeiten eingespart werden.In addition, the above-described summary of the levels also necessarily improves the exchange of know-how and information between setup specialists and control engineers who otherwise work in different levels of the process control process. This allows synergies to be exploited and development, implementation and commissioning times to be saved.
Besonders vorteilhaft wird eine weitere übergeordnete Ebene, der sogenannte SuperLevel, eingeführt, die eine Steuer-, Regelungs- und Optimie- rungsebene ist. Aufgabe dieser weiteren Ebene ist die Koordinierung der unterlagerten Regelungsebenen basierend auf einer hierarchisch gekoppelten Optimierung, so daß die geforderte Produktqualität des Endproduktes erreicht wird. Durch die Einführung des sogenannten SuperLevels, wird erreicht, daß die bisher mit viel Aufwand optimierten einzelnen technologi- sehen Funktionen der getrennt betrachteten Stahlverarbeitungstufen nun einer Betrachtung des gesamten Stahlverarbeitungprozesses vom Aus^ gangsmaterial bis zum Endprodukt einschließlich der Zusammenhänge zwischen den Teilstufen weicht. In dieser einheitlichen Betrachtung steckt ein großes Innovations- und Verbesserungspotential.Another superordinate level, the so-called SuperLevel, which is a control, regulation and optimization level, is introduced particularly advantageously. The task of this further level is the coordination of the subordinate control levels based on a hierarchically coupled optimization, so that the required product quality of the end product is achieved. With the introduction of the so-called SuperLevel, it is achieved that the individual technological functions of the steel processing stages considered separately, which have so far been optimized with great effort, now give way to a consideration of the entire steel processing process from the starting material to the end product, including the relationships between the sub-stages. This uniform analysis has great potential for innovation and improvement.
Die modifizierte und neue Struktur des Verfahrens zur Führung eines Stahlverarbeitungsprozesses, insbesondere für Warmwalzverfahren, mit den neuen gemeinsamen Ebene TechLevel und der übergeordneten Ebene SuperLevel wird ergänzt mit den bekannten übergeordneten Ebenen Produkti- onskoordination sowie Management. Dabei wird der Stahlverarbeitungsprozeß als sogenanntes „großes Steuerungssystem" betrachtet. Hierbei existieren mehrere relativ selbständige Teilsysteme, die durch Wechselwirkungen oder durch gemeinsame Ressourcen verkoppelt sind. Bezüglich der Zielfunktion sind Teilziele für die einzelnen Teilsysteme vorhanden, die ein für das gesamte System bestehendes Gesamtziel mitbestimmen, wobei die Teilziele unter sich und mit dem Gesamtziel teilweise auch in Widerspruch stehen können. Auch besitzt das System besitzt hinsichtlich der Steuereinrichtung eine funktional dezentrale oder hierarchische Struktur der Steuereinrichtungen bzw. Steueralgorithmen.The modified and new structure of the process for the management of a steel processing process, in particular for hot rolling processes, with the new common level TechLevel and the higher level SuperLevel is supplemented with the known higher levels of production coordination and management. The steel processing process is regarded as a so-called "large control system". There are several relatively independent sub-systems that are caused by interactions or are linked by common resources. With regard to the objective function, there are sub-goals for the individual sub-systems, which help to determine an overall goal that exists for the entire system, whereby the sub-goals can conflict with each other and with the overall goal. With regard to the control device, the system also has a functionally decentralized or hierarchical structure of the control devices or control algorithms.
Nachfolgend wird die vorliegende Erfindung an Hand von einem in einer Zeichnung dargestellten Ausführungsbeispiel näher erläutert. Es zeigen:The present invention is explained in more detail below on the basis of an exemplary embodiment shown in a drawing. Show it:
Fig. 1 ein prinzipielles Schema der erfindungsgemäßen Steuerungs- und Regelungsstruktur,1 shows a basic diagram of the control and regulation structure according to the invention,
Fig. 2 ein prinzipielles Schema der erfindungsgemäßen Steuerungs- und Regelungsstruktur in Anwendung auf einen Warmwalzprozess undFig. 2 is a schematic diagram of the control and regulation structure according to the invention applied to a hot rolling process and
Fig. 3 ein prinzipielles Schema der erfindungsgemäßen Steuerungs- und Regelungsstruktur in Anwendung auf eine koordinierte Planheits- und Kühlungsregelung Warmbreitbandstraße..3 shows a basic diagram of the control and regulation structure according to the invention when applied to a coordinated flatness and cooling control hot strip mill.
Die Figur 1 zeigt ein prinzipielles Schema der erfindungsgemäßen Steuerungs- und Regelungsstruktur, die im wesentlichen die Überordnung einer zweiten Ebene SuperLevel über eine neue erste gemeinsame Ebene TechLevel zeigt. Die gemeinsame Ebene TechLevel weist eine Vielzahl von zueinander parallelen Teilprozessen auf, die lokal sowie global miteinander gekoppelt sind und jeweils mit Setup-Reglern verbunden sind. Die Setup- Regler werden innerhalb der Ebene TechLevel lokal optimiert. Diese lokale Optimierung der aus verschiedenen Teilprozessen bestehenden Teilsysteme ist dann mit einer globalen Optimierungs-, Regelungs- und Steuern ngsstra- gie innerhalb der Ebene SuperLevel verbunden. Eine zusätzliche globale Kopplung der Teilsysteme erfolgt innerhalb der Ebene TechLevel. Diese Struktur trägt dem Umstand Rechnung, daß die Summe der Einzelop- tima der Teilprozesse im allgemeinen nicht zwangsläufig das Gesamtoptimum ist. Damit soll die Qualität des Endproduktes in den Vordergrund rücken und in die Betrachtung und Festlegung der Qualität der Zwischenprodukte eingehen. Dabei muß die Kopplungsstruktur zwischen den verschieden Teilprozessen innerhalb der gemeinsamen Ebene TechLevel berücksichtigt werden. Insbesondere sollen bei Erreichen von Stellgrößenbeschränkungen in einzelnen Teilprozessen die Sollwertvorgaben für die Teil- prozesse durch den SuperLevel so umgesteuert werden, daß die Stellgrößenbeschränkungen eingehalten werden. Die Gesamtregelungsstruktur spiegelt somit die innere physikalische Struktur des Prozesses wieder. Für die Realisierung der einzelnen Ebenen sind Modelle unterschiedlicher Detailliertheit und Gültigkeitsbereiche notwendig, um die Komplexität der Opti- mierungsaufgabe zu reduzieren. Die Detailliertheit der Modelle nimmt ausgehend von der Ebene TechLevel über die Ebenen SuperLevel, Produktkoordination und Management ab, wohingegen die Gültigkeitsbereiche der Modelle zunehmen. Die für den SuperLevel verwendeten Modelle beschreiben das Gesamtprozessverhalten des Prozesses somit das Zusammenwir- ken der Teilprozesse (Kopplungen) und müssen aus diesem Grund nicht so detailliert sein. Geeignete Modelle wären hierfür qualitative Modelle (z.B. Petri-Netze), deterministische oder stochastische Automaten oder Modelle basierend auf algebraischen Gleichungen. Im Gegensatz hierzu beschreiben die Modelle auf dem TechLevel den jeweiligen Teilprozeß lokal sehr detailliert, beispielsweise durch DGL- oder NN- oder Fuzzyansätze.FIG. 1 shows a basic diagram of the control and regulation structure according to the invention, which essentially shows the superposition of a second SuperLevel level over a new first common TechLevel level. The common TechLevel level has a large number of parallel sub-processes that are linked locally and globally and are each connected to setup controllers. The setup controllers are locally optimized within the TechLevel level. This local optimization of the subsystems consisting of different sub-processes is then linked to a global optimization, regulation and control strategy within the SuperLevel level. An additional global coupling of the subsystems takes place within the TechLevel level. This structure takes into account the fact that the sum of the individual optimizations of the sub-processes is generally not necessarily the total optimum. The aim is to put the quality of the end product in the foreground and to consider and determine the quality of the intermediate products. The coupling structure between the different sub-processes within the common TechLevel level must be taken into account. In particular, when the manipulated variable limits are reached in individual sub-processes, the setpoint specifications for the sub-processes are to be reversed by the SuperLevel in such a way that the manipulated variable restrictions are observed. The overall control structure thus reflects the internal physical structure of the process. For the implementation of the individual levels, models of different levels of detail and areas of validity are necessary in order to reduce the complexity of the optimization task. The level of detail of the models decreases from the TechLevel level to the SuperLevel, product coordination and management levels, whereas the scope of the models increases. The models used for the SuperLevel thus describe the overall process behavior of the process, the interaction of the sub-processes (couplings) and therefore do not have to be as detailed. Suitable models for this would be qualitative models (eg Petri networks), deterministic or stochastic automata or models based on algebraic equations. In contrast, the models on the TechLevel describe the respective sub-process in great detail locally, for example using DGL or NN or fuzzy approaches.
Wichtig ist hierbei anzumerken, daß die neue weitere Ebene SuperLevel nicht zu verwechseln mit der bekannten Management- und der Planungsebene (in der Regel Level 4) oder der Produktions- und Koordinations- ebene (in der Regel Level 3). Der SuperLevel-Regler übernimmt die Beeinflussung der untergeordneten TechLevel-Regler durch Vorgabe geeigneter Koordinierungsgrößen für den jeweiligen Teilprozeß, so daß das Verhalten des Gesamtprozesses bezüglich eines zu definierenden Kriteriums optimal ist. Der SuperLevel-Regler soll insbesondere dann eingreifen, wenn Stellgliedbeschränkungen in einem Teilprozeß erreicht werden oder dort unerwartete Störungen auftreten, die beispielsweise eine Verschiebung des Ar- beitspunkts in Folge einer thermischen Bombierung mit sich bringen. Während in der Planungsphase die Sollgrößen einmal unter statischen Gesichtspunkten bestimmt werden, erfolgt durch den SuperLevel-Regler ein dynamischer Eingriff während des Prozeßablaufes.It is important to note that the new SuperLevel level should not be confused with the known management and planning levels (usually level 4) or the production and coordination levels (usually level 3). The SuperLevel controller influences the subordinate TechLevel controller by specifying suitable coordination variables for the respective sub-process, so that the behavior of the overall process is optimal with regard to a criterion to be defined. The SuperLevel controller should intervene in particular if actuator restrictions are reached in a sub-process or unexpected malfunctions occur there, which, for example, result in a shift in the working point as a result of thermal crowning. While the target values are determined from a static point of view in the planning phase, the SuperLevel controller dynamically intervenes during the process.
Die Figur 2 zeigt ein prinzipielles Schema der erfindungsgemäßen Steuerungs- und Regelungsstruktur in Anwendung auf einen Warmwalzprozess WWW, der eine Vorstraße, eine Fertigstraße und eine Kühlstrecke mit Haspel als Teilsysteme aufweist. Auch ist es beispielsweise möglich, Teilsysteme einer Gießmaschine, einer kompakten Stahlproduktion (CSP, Compact Steel Production) und einer Kühlstrecke mit Haspel oder Teilsysteme einer Stranggießanlage, eines Warmwalzwerkes und eines Kaltwalzwerk über das erfindungsgemäße Verfahren zu betreiben.FIG. 2 shows a basic diagram of the control and regulation structure according to the invention applied to a hot rolling process WWW, which has a roughing train, a finishing train and a cooling section with a reel as subsystems. It is also possible, for example, to operate subsystems of a casting machine, a compact steel production (CSP, Compact Steel Production) and a cooling section with reel or subsystems of a continuous casting plant, a hot rolling mill and a cold rolling mill using the method according to the invention.
In der Figur 3 ist ein prinzipielles Schema der erfindungsgemäßen übergrei- fenden hierarchischen Steuerungs- und Regelungsstruktur in Anwendung auf eine koordinierte Planheits- und Kühlungsregelung Warmbreitbandstraße WB dargestellt.FIG. 3 shows a basic diagram of the overarching hierarchical control and regulation structure according to the invention when applied to a coordinated flatness and cooling control hot strip mill WB.
Ziel der koordinierten Planheits- und Kühlungsregelung ist die Planheit des gewalzten Warmbandes, die hinter der Kühlung gemessen wird, zu optimieren. Die Warmbreitbandstraße WB als auch die Kühlstrecke werden durch unterlagerte Regelungen WB Modell und Modell Kühlung stabilisiert. Diese unterlagerten Regelungen gehören damit zum TechLevel. Die Warmbandstraße WB liefert aufgrund der unterlagerten Regelung WB Modell ein Metall- band mit einem bestimmten Planheitsfehler. Dieser Planheitsfehler ist eine Störgröße y, für den nachfolgenden Kühlungsprozeß. Das Ziel der koordinierten Planheitsregelung im SuperLevel ist die Sollwerte der unterlagerten Regelungen WB Modell und Modell Kühlung im TechLevel so anzupassen, daß die Planheit hinter der Kühlstrecke den vorgegebenen Anforderungen entspricht. Die Planheit hinter der Kühlstrecke ist eine Regelgröße des SuperLevelsThe goal of the coordinated flatness and cooling control is to optimize the flatness of the rolled hot strip, which is measured behind the cooling. The WB hot strip mill and the cooling section are stabilized by subordinate WB model and cooling model controls. These subordinate regulations are part of the TechLevel. The hot strip mill WB delivers a metal strip with a certain flatness error due to the subordinate regulation WB model. This flatness error is a disturbance variable y, for the subsequent cooling process. The goal of the coordinated flatness control in the SuperLevel is the target values of the subordinate ones Adjust WB model and model cooling regulations in TechLevel so that the flatness behind the cooling section corresponds to the specified requirements. The flatness behind the cooling section is a controlled variable of the SuperLevel
Als Regelung des SuperLevels wird beispielsweise eine Modell-Prädiktive- Regelung (MPC) verwendet. Wobei die MPC in eine Infernal Model Control (IMC)-Struktur mit Störgrößenaufschaltung Gstw und Gstk eingebettet ist. Dabei wird eine Prädiktion der Regelgrößen in die dynamische Optimierung OPT mit einbezogen, die über Totzeit zwischen den Prozeßstufen hinausgehen. Diese vereinfachten Modelle beschreiben das wesentliche dynamische Ein-/Ausgangsverhalten der Warmbandstrasse und der Kühlstrecke, die zur dynamischen Koordinierung der beiden Prozesse notwendig sind. Hierdurch wird der Modellierungsaufwand reduziert und die Regelungsaufgabe verein- facht. Vorzugsweise werden für die Modelle nicht-lineare Modelle verwandt.A model predictive control (MPC), for example, is used to control the SuperLevel. The MPC is embedded in an infernal model control (IMC) structure with feedforward control G stw and G stk . A prediction of the control variables is included in the dynamic optimization OPT, which go beyond dead time between the process stages. These simplified models describe the essential dynamic input / output behavior of the hot strip mill and the cooling section, which are necessary for the dynamic coordination of the two processes. This reduces the modeling effort and simplifies the control task. Non-linear models are preferably used for the models.
Aufgrund der unterlagerten Regelungen ist es ausreichend, stark vereinfachte Modelle der geregelten Kühlstrecke und Warmbreitbandstraße WB zu verwenden. Due to the underlying regulations, it is sufficient to use highly simplified models of the regulated cooling section and hot strip mill WB.

Claims

Patentansprüche: claims:
1. Verfahren zur Führung eines Stahlverarbeitungsprozesses, insbesondere eines Warmwalzprozesses, in dem die Automatisierungs-, Rege- lungs- und Steuerungsvorgänge hierarchischen Ebenen zugeordnet werden, dadurch gekennzeichnet, daß die einzelnen Automatisierungs-, Regelungs- und Steuerungsvorgänge des Stahlverarbeitungsprozesses in einer gemeinsamen ersten Ebene (TechLevel) zusammengefaßt werden, in dem die Prozeßautomatisierung, die Basisau- tomatisierung und die Antriebsregelung erfolgt.1. Method for guiding a steel processing process, in particular a hot rolling process in which the automation, regulation and control processes are assigned to hierarchical levels, characterized in that the individual automation, regulation and control processes of the steel processing process are in a common first level ( TechLevel) can be summarized in which the process automation, the basic automation and the drive control takes place.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß der gemeinsamen ersten Ebene (TechLevel) eine zweite Ebene (SuperLevel) übergeordnet wird, die eine Steuer-, Regelungs- und Optimie- rungsebene zur Koordinierung der unterlagerten Regelungsebenen basierend auf einer hierarchisch gekoppelten Optimierung ist.2. The method according to claim 1, characterized in that the common first level (TechLevel) is superimposed on a second level (SuperLevel), which is a control, regulation and optimization level for coordinating the subordinate control levels based on a hierarchically coupled optimization ,
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in einer zusätzlichen der zweiten Ebene (SuperLevel) übergeordneten dritten Ebene (Level 3) Informationen bezüglich der Produktionskoordination, wie beispielsweise Materialverfolgung, Terminplanung, Qualitätskontrolle, verarbeitet werden und in einer weiteren der dritten Ebene (Level 3) übergeordneten vierten Ebene (Level 4) Informationen bezüglich der Produktionsplanung verarbeitet werden.3. The method according to claim 1 or 2, characterized in that in an additional to the second level (SuperLevel) superordinate third level (Level 3) information regarding the production coordination, such as material tracking, scheduling, quality control, are processed and in a further third Level (level 3) overlying fourth level (level 4) information related to production planning are processed.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in der ersten Ebene (TechLevel) die einzelnen Steuerungsund Regelungsvorgänge der einzelnen Teilprozesse auf einer gemeinsamen Hardware ausgeführt werden.Method according to one of claims 1 to 3, characterized in that in the first level (TechLevel) the individual control and regulation processes of the individual sub-processes are carried out on common hardware.
Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß von der zweiten Ebene (SuperLevel) bei Erreichen von Stell- größenbeschränkungen in einzelnen Teilprozessen der ersten Ebene (TechLevel) über Regler die Sollwertvorgaben für die Teilprozesse in der ersten Ebene so umgesteuert werden, daß die Stellgrößenbeschränkungen eingehalten werden. Method according to one of Claims 1 to 4, characterized in that from the second level (SuperLevel) when actuating Size restrictions in individual sub-processes on the first level (TechLevel), the setpoint specifications for the sub-processes on the first level can be reversed so that the manipulated variable restrictions are observed.
PCT/EP2002/005071 2001-05-08 2002-05-08 Method for conducting steel processing, especially a hot rolling process WO2002091092A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02742971A EP1390821B1 (en) 2001-05-08 2002-05-08 Method for conducting steel processing, especially a hot rolling process
DE50203961T DE50203961D1 (en) 2001-05-08 2002-05-08 METHOD FOR LEADING A STEEL PROCESSING PROCESS, IN PARTICULAR A HOT ROLLING PROCESS
JP2002588289A JP2005509206A (en) 2001-05-08 2002-05-08 Steel processing, especially hot rolling process, how to do
AT02742971T ATE302440T1 (en) 2001-05-08 2002-05-08 METHOD FOR CONDUCTING A STEEL PROCESSING PROCESS, IN PARTICULAR A HOT ROLLING PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10122322.6 2001-05-08
DE10122322A DE10122322A1 (en) 2001-05-08 2001-05-08 Method for guiding a steel processing process, in particular a hot rolling process

Publications (2)

Publication Number Publication Date
WO2002091092A2 true WO2002091092A2 (en) 2002-11-14
WO2002091092A3 WO2002091092A3 (en) 2003-05-01

Family

ID=7684025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/005071 WO2002091092A2 (en) 2001-05-08 2002-05-08 Method for conducting steel processing, especially a hot rolling process

Country Status (5)

Country Link
EP (1) EP1390821B1 (en)
JP (1) JP2005509206A (en)
AT (1) ATE302440T1 (en)
DE (2) DE10122322A1 (en)
WO (1) WO2002091092A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1488863A2 (en) * 2003-06-20 2004-12-22 ABB PATENT GmbH System and method for optimizing the control of the quality of thickness in a rolling process
EP3798750A1 (en) * 2019-09-25 2021-03-31 SMS Group GmbH Method for monitoring and controlling a plant for rolling metal products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020202273A1 (en) * 2020-02-21 2021-08-26 Sms Group Gmbh Method for automating a metallurgical plant, in particular a plant for rolling metal strips

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446036A2 (en) * 1990-03-09 1991-09-11 Hitachi, Ltd. Control apparatus
DE19850492A1 (en) * 1997-11-10 1999-05-12 Siemens Ag Method and device for hot rolling thin steel strips
DE19838469A1 (en) * 1998-08-25 2000-03-02 Abb Research Ltd Computer process control that uses distributed system architecture and employs common software platform using sub systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446036A2 (en) * 1990-03-09 1991-09-11 Hitachi, Ltd. Control apparatus
DE19850492A1 (en) * 1997-11-10 1999-05-12 Siemens Ag Method and device for hot rolling thin steel strips
DE19838469A1 (en) * 1998-08-25 2000-03-02 Abb Research Ltd Computer process control that uses distributed system architecture and employs common software platform using sub systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAPANNI C ET AL: "HIGH-LEVEL INTEGRATION SYSTEM FOR ROLLING MILL CONTROL" IRON AND STEEL ENGINEER, ASSOCIATION OF IRON AND STEEL ENGINEERS. PITTSBURGH, US, Bd. 70, Nr. 6, 1. Juni 1993 (1993-06-01), Seiten 32-35, XP000387769 ISSN: 0021-1559 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1488863A2 (en) * 2003-06-20 2004-12-22 ABB PATENT GmbH System and method for optimizing the control of the quality of thickness in a rolling process
EP1488863A3 (en) * 2003-06-20 2006-03-15 ABB PATENT GmbH System and method for optimizing the control of the quality of thickness in a rolling process
EP3798750A1 (en) * 2019-09-25 2021-03-31 SMS Group GmbH Method for monitoring and controlling a plant for rolling metal products

Also Published As

Publication number Publication date
EP1390821A2 (en) 2004-02-25
WO2002091092A3 (en) 2003-05-01
JP2005509206A (en) 2005-04-07
ATE302440T1 (en) 2005-09-15
EP1390821B1 (en) 2005-08-17
DE50203961D1 (en) 2005-09-22
DE10122322A1 (en) 2002-11-14

Similar Documents

Publication Publication Date Title
EP3580622B1 (en) General planning of production- and / or maintenanceplans
DE4338615B4 (en) Method and device for managing a process in a controlled system
EP1624982B1 (en) Method for regulating the temperature of a metal strip, especially for rolling a metal hot strip in a finishing train
EP2697002B1 (en) Control method for a mill train
EP2527053A1 (en) Operating method for a mill train
DE19637917C2 (en) Method and device for designing or controlling the process flow of a plant in the raw materials industry
EP1488863B1 (en) System and method for optimizing the control of the quality of thickness in a rolling process
WO2018192798A1 (en) Optimization of the modelling of process models
EP3691806B1 (en) Flatness control with optimiser
EP3194087B1 (en) Width adjustment in a finishing train
WO2002091092A2 (en) Method for conducting steel processing, especially a hot rolling process
EP2288969A1 (en) Control system of a plant having multi-stage model optimization
DE102007050891A1 (en) Adaptation of a controller in a rolling mill based on the scattering of an actual size of a rolling stock
DE102004005011B4 (en) Control method and controller for a rolling stand
EP3314761B1 (en) Filter switching method for a machine control
DE19641432C2 (en) Method and device for the pre-calculation of previously unknown parameters of an industrial process
WO2020224839A1 (en) Method for operating an industrial system
WO2020244850A1 (en) Device and method for controlling complex production sequences in industrial-scale systems, in particular in the steel industry
DE102005053489C5 (en) Regulatory system and regulatory procedure for an industrial facility
DE10159608B4 (en) Rolling process for a band with a weld
EP4103339B1 (en) Determining a sensitivity of a target size of a rolling stock for an operating variable of a hot rolling mill
DE10219322A1 (en) Process for electronic data processing of industrial process has determining product mix for partial process and adjusting operating program for planned period based on product mix and operating priority of product mix
WO2021228927A1 (en) System and method for controlling a production plant consisting of a plurality of plant parts, in particular a production plant for producing industrial goods such as metal semi-finished products
EP4320489A1 (en) Optimization method for operating plants in the primary industry
DE102020202273A1 (en) Method for automating a metallurgical plant, in particular a plant for rolling metal strips

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002588289

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002742971

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002742971

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002742971

Country of ref document: EP