EP1390821B1 - Method for conducting steel processing, especially a hot rolling process - Google Patents
Method for conducting steel processing, especially a hot rolling process Download PDFInfo
- Publication number
- EP1390821B1 EP1390821B1 EP02742971A EP02742971A EP1390821B1 EP 1390821 B1 EP1390821 B1 EP 1390821B1 EP 02742971 A EP02742971 A EP 02742971A EP 02742971 A EP02742971 A EP 02742971A EP 1390821 B1 EP1390821 B1 EP 1390821B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- level
- techlevel
- superlevel
- control
- subprocesses
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
- B21B1/28—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/28—Control of flatness or profile during rolling of strip, sheets or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/28—Control of flatness or profile during rolling of strip, sheets or plates
- B21B37/44—Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
- B21B37/76—Cooling control on the run-out table
Definitions
- the invention relates to a method for guiding a steel processing process, in particular a hot rolling process, according to the preamble of claim 1 and takes the priority of the German patent application 101 22 322.6 (DE-101 22 322 A), to the content of which reference is made.
- Level 4 refers to management (Production planning) and level 3 on production coordination, such as material tracking, scheduling and quality control.
- process automation takes place.
- the technological process is modeled in models, for example the best possible stitch plan calculation and as accurate as possible Allow default setting (setup) of the system. This is mostly about relatively complicated physical models with an adaptation algorithm, which adapts these models to reality using measurement data.
- a special The task of Level 2 in many automation systems is the Calculation of the static control loop gain factors (control gains) coming from level 1, e.g. B. for Störssensclien (feedforward controls) are needed.
- the Level 1 level includes the Basic automation with all basic controls and technological Controls and control circuits as well as the visualization.
- To the base control loops include, for example, position, force and speed controls.
- Technological regulations are those which compliance with the required product quality parameters (e.g., thickness, cross-section, Flatness).
- the level 0 level are the drive systems and the drive control settled.
- each Steel processing stage is determined by the parameters of as a starting material inserted band, by the functional state of the tools, for example, the rollers, and by the technological conditions, such as rolling speed, tension, degree of deformation and temperature distribution over the width of the band in this sub-process.
- the present invention is based on the object the efficiency of future automation solutions in the steel industry to optimize and increase product quality for the end customer.
- the aim of the entire processing chain is to achieve optimal results End product with the best quality and minimum cost. Also need the results of the intermediate stages also have certain cost and quality criteria fulfill.
- TechLevel in which individual automation, control and and control operations of the steel processing process become the existing separation between the levels (Level 0, Level 1 and Level 2).
- the process automation, basic automation and drive control thus take place in one plane.
- This merge is preferably suitable for a steel processing process, in particular a rolling process, since here a complex multi-size system with strict couplings, whereby the flow of information between the individual levels is hindered by the multiple levels so far.
- advantageously, is through the summary of these individual levels reached to the TechLevel that this new type of litigation with the Today's trend of automation in the steel industry towards Complete systems goes along. For many years, many plant engineers have been trying with more or less success, complete automation systems including drive control.
- the automation hardware offers ever faster computing speeds, so the whole techlevel is on a single hardware can run and it is no longer necessary, as in the prior art to run the layers on separate hardware. Also does the summary the individual automation, control and control processes the steel processing process in a single common Level the exchange of many signals between levels superfluous. Thus, then also model-based regulations can be realize faster and clearer. The multiple, double Modeling on the first levels (Level 1 and Level 2) can thus be omitted or even more closely meshed than before.
- the SuperLevel control introduces the influence of the subordinate TechLevel control by specifying suitable coordination quantities for through the respective sub-process, so that the behavior of the overall process is optimal with respect to a criterion to be defined.
- the modified and new structure of the method for conducting a steel processing process, especially for hot rolling, with the new common level TechLevel and the superordinate level SuperLevel is supplemented with the known higher levels production coordination as well as management.
- This is the steel processing process considered as a so-called "large control system".
- Exist here several relatively independent subsystems through interactions or linked by shared resources.
- the objective function subgoals exist for the individual subsystems, which is a for the entire system co-determine the existing overall goal, whereby the Partial goals among themselves and with the overall goal partially in contradiction can stand.
- the system possesses with respect to the control device a functionally decentralized or hierarchical structure of the control devices or control algorithms.
- FIG. 1 shows a schematic diagram of the control system according to the invention. and regulatory structure, which is essentially the superposition of a second level SuperLevel over a new first common level TechLevel shows.
- the common level TechLevel exhibits a variety of parallel to each other sub-processes, locally and globally with each other are coupled and are each connected to setup regulators.
- the setup knobs are optimized locally within the TechLevel level. This local Optimization of subsystems consisting of different subprocesses is then with a global optimization, regulatory and control strategy connected within the SuperLevel level. An additional global one Coupling of the subsystems takes place within the TechLevel level.
- This structure takes into account the fact that the sum of the individual options In general, subprocesses do not necessarily have the overall optimum is. This should bring the quality of the final product in the foreground and in considering and defining the quality of intermediates received. In this case, the coupling structure between the different Subprocesses within the common level TechLevel considered become. In particular, when control value limits are reached in individual sub-processes, the setpoint specifications for the sub-processes be reversed by the SuperLevel so that the manipulated variable limitations be respected.
- the overall control structure thus reflects the internal physical structure of the process. For the realization of the individual levels are models of varying detail and scopes necessary to the complexity of the optimization task to reduce.
- the detail of the models starts out from the level TechLevel on the levels SuperLevel, product coordination and management, whereas the scope of the Models increase. Describe the models used for the SuperLevel the overall process behavior of the process thus the interaction of the sub-processes (couplings) and therefore do not have to be detailed. Suitable models would be qualitative models (e.g. Petri nets, deterministic or stochastic automata) or models based on algebraic equations. In contrast to this describe the models on the TechLevel are very local to the respective subprocess detailed, for example by DGL or NN or fuzzy approaches.
- the SuperLevel controller takes over the influence the subordinate TechLevel controller by specifying appropriate Coordination variables for the respective sub-process, so that the behavior of the overall process with respect to a criterion to be defined optimally is.
- the SuperLevel controller is intended to intervene in particular when actuator limitations be reached in a subprocess or unexpected there Disruptions occur, for example, a shift in the operating point as a result of a thermal crowning bring with it.
- the set values once from a static point of view be determined by the SuperLevel controller a dynamic Intervention during the process.
- FIG. 2 shows a schematic diagram of the control system according to the invention. and control structure applied to a hot rolling process WWW, which has a roughing road, a finishing train and a cooling section with reel as subsystems. It is also possible, for example, subsystems a casting machine, a compact steel production (CSP, Compact Steel Production) and a cooling section with reel or subsystems a continuous caster, a hot rolling mill and a cold rolling mill to operate over the inventive method.
- WWW hot rolling process
- FIG. 2 shows a schematic diagram of the control system according to the invention. and control structure applied to a hot rolling process WWW, which has a roughing road, a finishing train and a cooling section with reel as subsystems.
- subsystems a casting machine, a compact steel production (CSP, Compact Steel Production) and a cooling section with reel or subsystems a continuous caster, a hot rolling mill and a cold rolling mill to operate over the inventive method.
- CSP Compact Steel Production
- FIG 3 is a schematic diagram of the cross-over hierarchical control and regulation structure in application on a coordinated flatness and cooling control hot strip mill WB shown.
- the aim of the coordinated flatness and cooling control is the flatness of the rolled hot strip, which is measured behind the cooling, to optimize.
- the hot strip mill WB as well as the cooling section are going through subordinate regulations WB model and model cooling stabilized. These subordinate regulations are therefore part of the TechLevel.
- the hot strip mill WB supplies a metal strip due to the subordinate control WB model with a certain flatness error. This flatness error is one Disturbance variable y, for the subsequent cooling process.
- the goal of the coordinated Flatness control in the SuperLevel is the setpoint of the subordinate Adjust regulations WB model and model cooling in TechLevel so that the flatness behind the cooling section the given requirements equivalent.
- the flatness behind the cooling section is a controlled variable of the Super levels
- a model predictive control is used as a control of the super-level.
- the MPC is embedded in an Intemal Model Control (IMC) structure with feedforward control G stw and G stk .
- IMC Intemal Model Control
- a prediction of the controlled variables in the dynamic optimization OPT is included, which goes beyond dead time between the process stages.
- IMC Intemal Model Control
- These simplified models describe the essential dynamic input / output behavior of the hot strip mill and the cooling section, which are necessary for dynamic coordination of the two processes. This reduces the modeling effort and simplifies the control task.
- non-linear models are used for the models.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
- General Factory Administration (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Führung eines Stahlverarbeitungsprozesses, insbesondere eines Warmwalzprozesses, gemäß dem Oberbegriff des Anspruchs 1 und nimmt die Priorität der deutschen Patentanmeldung 101 22 322.6 (DE-101 22 322 A) in Anspruch, auf die inhaltlich Bezug genommen wird.The invention relates to a method for guiding a steel processing process, in particular a hot rolling process, according to the preamble of claim 1 and takes the priority of the German patent application 101 22 322.6 (DE-101 22 322 A), to the content of which reference is made.
Es ist allgemein bekannt, daß in der Stahlindustrie, insbesondere der Stahlverarbeitungsindustrie,
die klassische Prozesssteuerungsstruktur in der
Regel hauptsächlich aus mehr oder weniger autonomen Ebenen (Level 0 bis
Level 4) besteht. Die Ebene Level 4 bezieht sich auf das Management
(Produktionsplanung) und die Ebene Level 3 auf die Produktionskoordination,
wie beispielsweise Materialverfolgung, Terminplanung und Qualitätskontrolle.
In der Ebene Level 2 findet die Prozeßautomatisierung statt. Hier
wird der technologische Prozeß in Modellen abgebildet, die beispielsweise
eine möglichst optimale Stichplanberechnung und eine möglichst genaue
Voreinstellung (Setup) der Anlage erlauben. Hierbei handelt es meistens um
relativ komplizierte physikalische Modelle mit einem Adaptionsalgorithmus,
der diese Modelle anhand von Meßdaten an die Realität anpaßt. Eine besondere
Aufgabe des Level 2 in vielen Automatisierungssystemen ist die
Berechnung der statischen Regelstreckenverstärkungsfaktoren (control
gains), die von dem Level 1, z. B. für Störgrößenaufschaltungen
(feedforward controls), benötigt werden. Die Ebene Level 1 beinhaltet die
Basisautomatisierung mit allen Basissteuerungen- und technologischen
Steuerungen und Regelkreisen sowie der Visualisierung. Zu den Basisregelkreisen
zählen beispielsweise Positions-, Kraft- und Geschwindigkeitsregelungen.
Als technologische Regelungen bezeichnet man diejenigen, welche
die Einhaltung der geforderten Produktqualitätsparamter (z.B. Dicke, Querprofil,
Planheit) sicherstellen. In der Ebene Level 0 sind die Antriebssysteme
und die Antriebsregelung angesiedelt.It is well known that in the steel industry, especially the steel processing industry,
the classic process control structure in the
Usually mainly from more or less autonomous levels (level 0 to
Level 4). Level 4 refers to management
(Production planning) and level 3 on production coordination,
such as material tracking, scheduling and quality control.
At
Die Produktqualität, beispielsweise die Planheit gewalzter Bänder, jeder Stahlverarbeitungsstufe wird bestimmt durch die Parameter des als Vormaterial eingesetzten Bandes, durch den Funktionszustand der Werkzeuge, beispielsweise der Walzen, und durch die technologischen Bedingungen, wie Walzgeschwindigkeit, Zug, Umformgrad und Temperaturverteilung über die Breite des Bandes bei diesem Teilprozeß. Die vorbeschriebene klassische Prozesssteuerungsstruktur mit den Ebenen Level 0 bis Level 4 berücksichtigt nicht die Zusammenhänge zwischen den einzelnen Stahlverarbeitungsstufen.The product quality, for example the flatness of rolled strips, each Steel processing stage is determined by the parameters of as a starting material inserted band, by the functional state of the tools, for example, the rollers, and by the technological conditions, such as rolling speed, tension, degree of deformation and temperature distribution over the width of the band in this sub-process. The above-described classic Process control structure with levels level 0 to level 4 taken into account not the connections between the individual steel processing stages.
Aus Fapanni, Bertini: "High-level integration system for rolling mill control", Iron and Steel Engineer 70 (1993) June, No. 6, Pittsburgh, PA, US ist ein Verfahren zur Führung eines Stahlverarbeitungsprozesses bekannt, in dem Automatisierungs- und Steuerungsvorgänge hirarchischen Ebenen zugeordnet werden. Derartige Verfahren weisen jedoch teilweise Regelungsfehler auf.From Fapanni, Bertini: "High-level integration system for rolling mill control", Iron and Steel Engineer 70 (1993) June, no. 6, Pittsburgh, PA, US is a Method for managing a steel processing process known in the Automation and control processes assigned to hierarchical levels become. However, such methods have partial control errors on.
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, die Leistungsfähigkeit zukünftiger Automatisierungslösungen in der Stahlindustrie zu optimieren und die Produktqualität für den Endkunden zu erhöhen. Ziel der gesamten Verarbeitungskette ist die Erreichung eines optimalen Endproduktes mit bester Qualität und minimalen Kosten. Auch müssen die Ergebnisse der Zwischenstufen ebenfalls bestimmte Kosten- und Qualitätskriterien erfüllen.On this basis, the present invention is based on the object the efficiency of future automation solutions in the steel industry to optimize and increase product quality for the end customer. The aim of the entire processing chain is to achieve optimal results End product with the best quality and minimum cost. Also need the results of the intermediate stages also have certain cost and quality criteria fulfill.
Diese Aufgabe wird durch ein Verfahren zur Führung eines Stahlverarbeitungsprozesses,
insbesondere eines Warmwalzprozesses, mit den Merkmalen
des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung
sind in den Ansprüchen 2 bis 5 angegeben. This object is achieved by a method for guiding a steel processing process,
in particular a hot rolling process, with the features
of claim 1 solved. Advantageous embodiments of the invention
are specified in
Erfindungsgemäß wird durch das Verfahren zur Führung eines Stahlverarbeitungsprozesses eine neue übergreifende hierarchische Steuer- und Regelungsstruktur bereitgestellt. Diese Struktur berücksichtigt die Zusammenhänge zwischen den Stahlverarbeitungstufen und zielt auf eine Erreichung eines optimalen Endproduktes durch eine hierarchische Optimierung des gesamten Prozesses.According to the invention by the method for guiding a steel processing process a new overarching hierarchical tax and regulatory structure provided. This structure takes into account the relationships between the steel processing stages and aims at achieving it an optimal end product through a hierarchical optimization of the entire process.
Erfindungsgemäß wird durch die neu eingeführte gemeinsame hierarchische Ebene, genannt TechLevel, in dem einzelne Automatisierungs-, Regelungs- und Steuerungsvorgänge des Stahlverarbeitungsprozesses zusammengefaßt werden, die bestehende Trennung zwischen den Ebenen (Level 0, Level 1 und Level 2) aufgehoben. Die Prozeßautomatisierung, Basisautomatisierung und Antriebsregelung finden somit ein in einer Ebene statt. Diese Zusammenführung eignet sich bevorzugt für einen Stahlverarbeitungsprozess, insbesondere einen Walzprozeß, da hier ein komplexes Mehrgrößensystem mit strengen Kopplungen besteht, wobei der Informationsfluß zwischen den einzelnen Ebenen bisher durch die mehreren Ebenen erschwert wird. Vorteilhafterweise wird durch die Zusammenfassung dieser einzelnen Ebenen zu dem TechLevel erreicht, daß diese neue Art der Prozeßführung mit dem heutigen Trend der Automatisierung in der Stahlindustrie in Richtung von Komplettsystemen einhergeht. Seit einigen Jahren versuchen viele Anlagenbauer mit mehr oder weniger Erfolg, komplette Automatisierungssysteme einschließlich der Antriebsregelung anzubieten.According to the invention by the newly introduced common hierarchical Level, called TechLevel, in which individual automation, control and and control operations of the steel processing process become the existing separation between the levels (Level 0, Level 1 and Level 2). The process automation, basic automation and drive control thus take place in one plane. This merge is preferably suitable for a steel processing process, in particular a rolling process, since here a complex multi-size system with strict couplings, whereby the flow of information between the individual levels is hindered by the multiple levels so far. advantageously, is through the summary of these individual levels reached to the TechLevel that this new type of litigation with the Today's trend of automation in the steel industry towards Complete systems goes along. For many years, many plant engineers have been trying with more or less success, complete automation systems including drive control.
Auch bietet die Automatisierungshardware immer schnellere Rechengeschwindigkeiten, so daß der gesamte TechLevel auf einer einzigen Hardware laufen kann und es nicht mehr notwendig ist, wie im Stand der Technik die Ebenen auf getrennter Hardware laufen zu lassen. Auch macht die Zusammenfassung der einzelnen Automatisierungs-, Regelungs- und Steuerungsvorgänge des Stahlverarbeitungsprozesses in einer einzigen gemeinsamen Ebene den Austausch zahlreicher Signale zwischen den Ebenen überflüssig. Somit lassen sich dann auch modellbasierte Regelungen schneller und übersichtlicher realisieren. Die vielfach vorhandene, doppelte Modellierung auf den ersten Ebenen (Level 1 und Level 2) kann somit wegfallen bzw. noch enger als bisher verzahnt werden.Also, the automation hardware offers ever faster computing speeds, so the whole techlevel is on a single hardware can run and it is no longer necessary, as in the prior art to run the layers on separate hardware. Also does the summary the individual automation, control and control processes the steel processing process in a single common Level the exchange of many signals between levels superfluous. Thus, then also model-based regulations can be realize faster and clearer. The multiple, double Modeling on the first levels (Level 1 and Level 2) can thus be omitted or even more closely meshed than before.
Außerdem wird durch die vorbeschriebene Zusammenfassung der Ebenen auch zwingend der Austausch von Know-how und Informationen zwischen Setup-Spezialisten und Regelungstechnikem, die sonst in unterschiedlichen Ebenen des Verfahrens zur Prozeßführung arbeiten, verbessert. Hierdurch können Synergien ausgenutzt und Entwicklungs-, lmplementierungs- und Inbetriebnahmezeiten eingespart werden.In addition, by the above summary of the levels also mandatory the exchange of know-how and information between Setup specialists and control engineers who otherwise in different Levels of the process control process, improved. hereby can exploit synergies and development, implementation and Commissioning times can be saved.
Es wird eine weitere übergeordnete Ebene, der sogenannte SuperLevel, eingeführt, die eine Steuer-, Regelungs- und Optimierungsebene ist. Aufgabe dieser weiteren Ebene ist die Koordinierung der unterlagerten Regelungsebenen basierend auf einer hierarchisch gekoppelten Optimierung, so daß die geforderte Produktqualität des Endproduktes erreicht wird. Durch die Einführung des sogenannten SuperLevels, wird erreicht, daß die bisher mit viel Aufwand optimierten einzelnen technologischen Funktionen der getrennt betrachteten Stahlverarbeitungstufen nun einer Betrachtung des gesamten Stahlverarbeitungprozesses vom Ausgangsmaterial bis zum Endprodukt einschließlich der Zusammenhänge zwischen den Teilstufen weicht. In dieser einheitlichen Betrachtung steckt ein großes Innovations- und Verbesserungspotential.It becomes another superordinate level, the so-called SuperLevel, introduced, which is a control, regulation and optimization level. task This further level is the coordination of the subordinate levels of regulation based on a hierarchically coupled optimization, so that the required product quality of the final product is achieved. By the introduction of the so-called super-level, is achieved so far with a lot of effort optimized individual technological functions of the separated considered steel processing stages now a consideration of the entire Steel processing process from raw material to final product including the connections between the sub-steps gives way. There is a great potential for innovation and improvement in this uniform approach.
Die SuperLevel-Regelung führt die Beeinflussung mit der untergeordneten TechLevel-Regelung durch Vorgabe geeigneter Koordinierungsgrößen für den jeweiligen Teilprozess durch, so dass das Verhalten des Gesamtprozesses bezüglich eines zu definierenden Kriteriums optimal ist.The SuperLevel control introduces the influence of the subordinate TechLevel control by specifying suitable coordination quantities for through the respective sub-process, so that the behavior of the overall process is optimal with respect to a criterion to be defined.
Die modifizierte und neue Struktur des Verfahrens zur Führung eines Stahlverarbeitungsprozesses, insbesondere für Warmwalzverfahren, mit den neuen gemeinsamen Ebene TechLevel und der übergeordneten Ebene SuperLevel wird ergänzt mit den bekannten übergeordneten Ebenen Produktionskoordination sowie Management. Dabei wird der Stahlverarbeitungsprozeß als sogenanntes "großes Steuerungssystem" betrachtet. Hierbei existieren mehrere relativ selbständige Teilsysteme, die durch Wechselwirkungen oder durch gemeinsame Ressourcen verkoppelt sind. Bezüglich der Zielfunktion sind Teilziele für die einzelnen Teilsysteme vorhanden, die ein für das gesamte System bestehendes Gesamtziel mitbestimmen, wobei die Teilziele unter sich und mit dem Gesamtziel teilweise auch in Widerspruch stehen können. Auch besitzt das System besitzt hinsichtlich der Steuereinrichtung eine funktional dezentrale oder hierarchische Struktur der Steuereinrichtungen bzw. Steueralgorithmen.The modified and new structure of the method for conducting a steel processing process, especially for hot rolling, with the new common level TechLevel and the superordinate level SuperLevel is supplemented with the known higher levels production coordination as well as management. This is the steel processing process considered as a so-called "large control system". Exist here several relatively independent subsystems through interactions or linked by shared resources. Regarding the objective function subgoals exist for the individual subsystems, which is a for the entire system co-determine the existing overall goal, whereby the Partial goals among themselves and with the overall goal partially in contradiction can stand. Also, the system possesses with respect to the control device a functionally decentralized or hierarchical structure of the control devices or control algorithms.
Nachfolgend wird die vorliegende Erfindung an Hand von einem in einer Zeichnung dargestellten Ausführungsbeispiel näher erläutert. Es zeigen:
- Fig. 1
- ein prinzipielles Schema der erfindungsgemäßen Steuerungs- und Regelungsstruktur,
- Fig. 2
- ein prinzipielles Schema der erfindungsgemäßen Steuerungs- und Regelungsstruktur in Anwendung auf einen Warmwalzprozess und
- Fig. 3
- ein prinzipielles Schema der erfindungsgemäßen Steuerungs- und Regelungsstruktur in Anwendung auf eine koordinierte Planheits- und Kühlungsregelung Warmbreitbandstraße..
- Fig. 1
- a schematic diagram of the control and regulation structure according to the invention,
- Fig. 2
- a schematic diagram of the control and regulating structure according to the invention in application to a hot rolling process and
- Fig. 3
- a schematic diagram of the control and regulation structure according to the invention in application to a coordinated flatness and cooling control hot strip mill ..
Die Figur 1 zeigt ein prinzipielles Schema der erfindungsgemäßen Steuerungs- und Regelungsstruktur, die im wesentlichen die Überordnung einer zweiten Ebene SuperLevel über eine neue erste gemeinsame Ebene TechLevel zeigt. Die gemeinsame Ebene TechLevel weist eine Vielzahl von zueinander parallelen Teilprozessen auf, die lokal sowie global miteinander gekoppelt sind und jeweils mit Setup-Reglem verbunden sind. Die Setup-Regler werden innerhalb der Ebene TechLevel lokal optimiert. Diese lokale Optimierung der aus verschiedenen Teilprozessen bestehenden Teilsysteme ist dann mit einer globalen Optimierungs-, Regelungs- und Steuerungsstragie innerhalb der Ebene SuperLevel verbunden. Eine zusätzliche globale Kopplung der Teilsysteme erfolgt innerhalb der Ebene TechLevel. FIG. 1 shows a schematic diagram of the control system according to the invention. and regulatory structure, which is essentially the superposition of a second level SuperLevel over a new first common level TechLevel shows. The common level TechLevel exhibits a variety of parallel to each other sub-processes, locally and globally with each other are coupled and are each connected to setup regulators. The setup knobs are optimized locally within the TechLevel level. This local Optimization of subsystems consisting of different subprocesses is then with a global optimization, regulatory and control strategy connected within the SuperLevel level. An additional global one Coupling of the subsystems takes place within the TechLevel level.
Diese Struktur trägt dem Umstand Rechnung, daß die Summe der Einzeloptima der Teilprozesse im allgemeinen nicht zwangsläufig das Gesamtoptimum ist. Damit soll die Qualität des Endproduktes in den Vordergrund rükken und in die Betrachtung und Festlegung der Qualität der Zwischenprodukte eingehen. Dabei muß die Kopplungsstruktur zwischen den verschieden Teilprozessen innerhalb der gemeinsamen Ebene TechLevel berücksichtigt werden. Insbesondere sollen bei Erreichen von Stellgrößenbeschränkungen in einzelnen Teilprozessen die Sollwertvorgaben für die Teilprozesse durch den SuperLevel so umgesteuert werden, daß die Stellgrößenbeschränkungen eingehalten werden. Die Gesamtregelungsstruktur spiegelt somit die innere physikalische Struktur des Prozesses wieder. Für die Realisierung der einzelnen Ebenen sind Modelle unterschiedlicher Detailliertheit und Gültigkeitsbereiche notwendig, um die Komplexität der Optimierungsaufgabe zu reduzieren. Die Detailliertheit der Modelle nimmt ausgehend von der Ebene TechLevel über die Ebenen SuperLevel, Produktkoordination und Management ab, wohingegen die Gültigkeitsbereiche der Modelle zunehmen. Die für den SuperLevel verwendeten Modelle beschreiben das Gesamtprozessverhalten des Prozesses somit das Zusammenwirken der Teilprozesse (Kopplungen) und müssen aus diesem Grund nicht so detailliert sein. Geeignete Modelle wären hierfür qualitative Modelle (z.B. Petri-Netze, deterministische oder stochastische Automaten) oder Modelle basierend auf algebraischen Gleichungen. Im Gegensatz hierzu beschreiben die Modelle auf dem TechLevel den jeweiligen Teilprozeß lokal sehr detailliert, beispielsweise durch DGL- oder NN- oder Fuzzyansätze.This structure takes into account the fact that the sum of the individual options In general, subprocesses do not necessarily have the overall optimum is. This should bring the quality of the final product in the foreground and in considering and defining the quality of intermediates received. In this case, the coupling structure between the different Subprocesses within the common level TechLevel considered become. In particular, when control value limits are reached in individual sub-processes, the setpoint specifications for the sub-processes be reversed by the SuperLevel so that the manipulated variable limitations be respected. The overall control structure thus reflects the internal physical structure of the process. For the realization of the individual levels are models of varying detail and scopes necessary to the complexity of the optimization task to reduce. The detail of the models starts out from the level TechLevel on the levels SuperLevel, product coordination and management, whereas the scope of the Models increase. Describe the models used for the SuperLevel the overall process behavior of the process thus the interaction of the sub-processes (couplings) and therefore do not have to be detailed. Suitable models would be qualitative models (e.g. Petri nets, deterministic or stochastic automata) or models based on algebraic equations. In contrast to this describe the models on the TechLevel are very local to the respective subprocess detailed, for example by DGL or NN or fuzzy approaches.
Wichtig ist hierbei anzumerken, daß die neue weitere Ebene SuperLevel nicht zu verwechseln mit der bekannten Management- und der Planungsebene (in der Regel Level 4) oder der Produktions- und Koordinationsebene (in der Regel Level 3). Der SuperLevel-Regler übernimmt die Beeinflussung der untergeordneten TechLevel-Regler durch Vorgabe geeigneter Koordinierungsgrößen für den jeweiligen Teilprozeß, so daß das Verhalten des Gesamtprozesses bezüglich eines zu definierenden Kriteriums optimal ist. Der SuperLevel-Regler soll insbesondere dann eingreifen, wenn Stellgliedbeschränkungen in einem Teilprozeß erreicht werden oder dort unerwartete Störungen auftreten, die beispielsweise eine Verschiebung des Arbeitspunkts in Folge einer thermischen Bombierung mit sich bringen. Während in der Planungsphase die Sollgrößen einmal unter statischen Gesichtspunkten bestimmt werden, erfolgt durch den SuperLevel-Regler ein dynamischer Eingriff während des Prozeßablaufes.It is important to note that the new additional level SuperLevel not to be confused with the well-known management and planning levels (usually level 4) or the production and coordination levels (usually level 3). The SuperLevel controller takes over the influence the subordinate TechLevel controller by specifying appropriate Coordination variables for the respective sub-process, so that the behavior of the overall process with respect to a criterion to be defined optimally is. The SuperLevel controller is intended to intervene in particular when actuator limitations be reached in a subprocess or unexpected there Disruptions occur, for example, a shift in the operating point as a result of a thermal crowning bring with it. While in the planning phase, the set values once from a static point of view be determined by the SuperLevel controller a dynamic Intervention during the process.
Die Figur 2 zeigt ein prinzipielles Schema der erfindungsgemäßen Steuerungs- und Regelungsstruktur in Anwendung auf einen Warmwalzprozess WWW, der eine Vorstraße, eine Fertigstraße und eine Kühlstrecke mit Haspel als Teilsysteme aufweist. Auch ist es beispielsweise möglich, Teilsysteme einer Gießmaschine, einer kompakten Stahlproduktion (CSP, Compact Steel Production) und einer Kühlstrecke mit Haspel oder Teilsysteme einer Stranggießanlage, eines Warmwalzwerkes und eines Kaltwalzwerk über das erfindungsgemäße Verfahren zu betreiben.FIG. 2 shows a schematic diagram of the control system according to the invention. and control structure applied to a hot rolling process WWW, which has a roughing road, a finishing train and a cooling section with reel as subsystems. It is also possible, for example, subsystems a casting machine, a compact steel production (CSP, Compact Steel Production) and a cooling section with reel or subsystems a continuous caster, a hot rolling mill and a cold rolling mill to operate over the inventive method.
In der Figur 3 ist ein prinzipielles Schema der erfindungsgemäßen übergreifenden hierarchischen Steuerungs- und Regelungsstruktur in Anwendung auf eine koordinierte Planheits- und Kühlungsregelung Warmbreitbandstraße WB dargestellt.In the figure 3 is a schematic diagram of the cross-over hierarchical control and regulation structure in application on a coordinated flatness and cooling control hot strip mill WB shown.
Ziel der koordinierten Planheits- und Kühlungsregelung ist die Planheit des gewalzten Warmbandes, die hinter der Kühlung gemessen wird, zu optimieren. Die Warmbreitbandstraße WB als auch die Kühlstrecke werden durch unterlagerte Regelungen WB Modell und Modell Kühlung stabilisiert. Diese unterlagerten Regelungen gehören damit zum TechLevel. Die Warmbandstraße WB liefert aufgrund der unterlagerten Regelung WB Modell ein Metallband mit einem bestimmten Planheitsfehler. Dieser Planheitsfehler ist eine Störgröße y, für den nachfolgenden Kühlungsprozeß. Das Ziel der koordinierten Planheitsregelung im SuperLevel ist die Sollwerte der unterlagerten Regelungen WB Modell und Modell Kühlung im TechLevel so anzupassen, daß die Planheit hinter der Kühlstrecke den vorgegebenen Anforderungen entspricht. Die Planheit hinter der Kühlstrecke ist eine Regelgröße des SuperLevelsThe aim of the coordinated flatness and cooling control is the flatness of the rolled hot strip, which is measured behind the cooling, to optimize. The hot strip mill WB as well as the cooling section are going through subordinate regulations WB model and model cooling stabilized. These subordinate regulations are therefore part of the TechLevel. The hot strip mill WB supplies a metal strip due to the subordinate control WB model with a certain flatness error. This flatness error is one Disturbance variable y, for the subsequent cooling process. The goal of the coordinated Flatness control in the SuperLevel is the setpoint of the subordinate Adjust regulations WB model and model cooling in TechLevel so that the flatness behind the cooling section the given requirements equivalent. The flatness behind the cooling section is a controlled variable of the Super levels
Als Regelung des SuperLevels wird beispielsweise eine Modell-Prädiktive-Regelung (MPC) verwendet. Wobei die MPC in eine Intemal Model Control (IMC)-Struktur mit Störgrößenaufschaltung Gstw und Gstk eingebettet ist. Dabei wird eine Prädiktion der Regelgrößen in die dynamische Optimierung OPT mit einbezogen, die über Totzeit zwischen den Prozeßstufen hinausgehen. Diese vereinfachten Modelle beschreiben das wesentliche dynamische Ein-/Ausgangsverhalten der Warmbandstrasse und der Kühlstrecke, die zur dynamischen Koordinierung der beiden Prozesse notwendig sind. Hierdurch wird der Modellierungsaufwand reduziert und die Regelungsaufgabe vereinfacht. Vorzugsweise werden für die Modelle nicht-lineare Modelle verwandt.As a control of the super-level, for example, a model predictive control (MPC) is used. The MPC is embedded in an Intemal Model Control (IMC) structure with feedforward control G stw and G stk . In this case, a prediction of the controlled variables in the dynamic optimization OPT is included, which goes beyond dead time between the process stages. These simplified models describe the essential dynamic input / output behavior of the hot strip mill and the cooling section, which are necessary for dynamic coordination of the two processes. This reduces the modeling effort and simplifies the control task. Preferably, non-linear models are used for the models.
Aufgrund der unterlagerten Regelungen ist es ausreichend, stark vereinfachte Modelle der geregelten Kühlstrecke und Warmbreitbandstraße WB zu verwenden.Due to the subordinate regulations, it is sufficient, simplistic Models of the regulated cooling section and hot strip mill WB too use.
Claims (8)
- Method for controlling a steel treatment process, in particular a hot rolling process, whereby the automation, regulation and control processes are assigned to hierarchical levels, characterised in that the individual automation, regulation and control processes of the subprocesses of coordinated flatness regulation and cooling regulation are grouped together in a common first level, the TechLevel, in which process automation, base automation and drive regulation take place using TechLevel rules, and arranged above the common first level, the TechLevel, is a second level, the SuperLevel, which is a control, regulating and optimising level for coordinating the subordinate regulating levels based on a hierarchically coupled optimisation with a SuperLevel controller, and the SuperLevel controller performs the influencing of the subordinate TechLevel controller by input of suitable coordination variables for the respective subprocess, so that the behaviour of the overall process is optimal in relation to a criterion to be defined.
- Method according to claim 1, characterised in that the SuperLevel controller operates dynamically on the process sequence.
- Method according to claim 1 or 2, characterised in that, from the second level, the SuperLevel, on reaching adjustment variable limitations in individual subprocesses of the first level, the TechLevel, the target value inputs for the subprocesses in the first level are altered by means of controllers such that the adjustment variable limitations are maintained.
- Method according to one of the claims 1 to 3, characterised in that, as further subprocesses, a breaking-down train, a finishing train and a cooling train are also grouped together in the common first level, the TechLevel, and the TechLevel controllers assigned to them are influenced by the SuperLevel controllers by inputting suitable coordination variables, such that the behaviour of the overall process is optimised in relation to a criterion to be defined.
- Method according to claims 1 to 3, characterised in that, as further subprocesses, a casting machine, a compact steel production, CSP, and a cooling train with a coiler are grouped together in the common first level, the TechLevel, and the TechLevel controllers assigned to them are influenced by the SuperLevel controllers by inputting suitable coordination variables, such that the behaviour of the overall process is optimised in relation to a criterion to be defined.
- Method according to claims 1 to 3, characterised in that, as further subprocesses, a continuous casting system, a hot rolling plant and a cold rolling plant are grouped together in the common first level, the TechLevel, and the TechLevel controllers assigned to them are influenced by the SuperLevel controllers by inputting suitable coordination variables, such that the behaviour of the overall process is optimised in relation to a criterion to be defined.
- Method according to one of the claims 1 to 6, characterised in that in an additional level, Level 3, arranged above the second level, the SuperLevel, information relating to the production coordination, such as material tracking, scheduling and quality control is processed and in a further, fourth level, Level 4, arranged above the third level, Level 3, information relating to production planning is processed.
- Method according to one of the claims 1 to 3, characterised in that in the first level, the TechLevel, the individual control and regulating procedures of the individual subprocesses are carried out on common hardware.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10122322 | 2001-05-08 | ||
DE10122322A DE10122322A1 (en) | 2001-05-08 | 2001-05-08 | Method for guiding a steel processing process, in particular a hot rolling process |
PCT/EP2002/005071 WO2002091092A2 (en) | 2001-05-08 | 2002-05-08 | Method for conducting steel processing, especially a hot rolling process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1390821A2 EP1390821A2 (en) | 2004-02-25 |
EP1390821B1 true EP1390821B1 (en) | 2005-08-17 |
Family
ID=7684025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02742971A Revoked EP1390821B1 (en) | 2001-05-08 | 2002-05-08 | Method for conducting steel processing, especially a hot rolling process |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1390821B1 (en) |
JP (1) | JP2005509206A (en) |
AT (1) | ATE302440T1 (en) |
DE (2) | DE10122322A1 (en) |
WO (1) | WO2002091092A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10327663A1 (en) * | 2003-06-20 | 2005-01-05 | Abb Patent Gmbh | System and method for optimizing control of the thickness quality in a rolling process |
EP3798750B1 (en) * | 2019-09-25 | 2024-09-25 | SMS group GmbH | Method for monitoring and controlling a plant for rolling metal products |
DE102020202273A1 (en) * | 2020-02-21 | 2021-08-26 | Sms Group Gmbh | Method for automating a metallurgical plant, in particular a plant for rolling metal strips |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03259302A (en) * | 1990-03-09 | 1991-11-19 | Hitachi Ltd | Information processing system |
DE19850492A1 (en) * | 1997-11-10 | 1999-05-12 | Siemens Ag | Method and device for hot rolling thin steel strips |
DE19838469B4 (en) * | 1998-08-25 | 2007-10-18 | Abb Research Ltd. | Process control and control system with distributed processing |
-
2001
- 2001-05-08 DE DE10122322A patent/DE10122322A1/en not_active Withdrawn
-
2002
- 2002-05-08 EP EP02742971A patent/EP1390821B1/en not_active Revoked
- 2002-05-08 DE DE50203961T patent/DE50203961D1/en not_active Revoked
- 2002-05-08 AT AT02742971T patent/ATE302440T1/en not_active IP Right Cessation
- 2002-05-08 WO PCT/EP2002/005071 patent/WO2002091092A2/en active IP Right Grant
- 2002-05-08 JP JP2002588289A patent/JP2005509206A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP1390821A2 (en) | 2004-02-25 |
DE10122322A1 (en) | 2002-11-14 |
ATE302440T1 (en) | 2005-09-15 |
WO2002091092A2 (en) | 2002-11-14 |
WO2002091092A3 (en) | 2003-05-01 |
JP2005509206A (en) | 2005-04-07 |
DE50203961D1 (en) | 2005-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1624982B1 (en) | Method for regulating the temperature of a metal strip, especially for rolling a metal hot strip in a finishing train | |
DE10127788A1 (en) | Integrated optimal model prediction control in a process control system | |
EP1596999B1 (en) | Method for regulating the temperature of a metal strip, especially in a cooling path | |
EP2287345A1 (en) | Method for controlling and/or regulating an induction oven for a roller assembly, control and/or regulating device for a roller assembly and roller assembly for producing rolled goods | |
DE19637917C2 (en) | Method and device for designing or controlling the process flow of a plant in the raw materials industry | |
EP2428288B1 (en) | Method for producing steel bands using continuous casting or semi-continuous casting | |
EP2477734A1 (en) | Two-degree-of-freedom control having an explicit switching for controlling chemical engineering processes | |
EP0706680B1 (en) | Control device, especially for a non-linear process varying in time | |
WO2021228927A1 (en) | System and method for controlling a production plant consisting of a plurality of plant parts, in particular a production plant for producing industrial goods such as metal semi-finished products | |
EP1390821B1 (en) | Method for conducting steel processing, especially a hot rolling process | |
EP2480351B1 (en) | Control method for a processing line for a stretched rolling stock | |
WO2018192798A1 (en) | Optimization of the modelling of process models | |
WO2016041746A1 (en) | Width setting on a finishing train | |
EP3691806B1 (en) | Flatness control with optimiser | |
DE102008028777A1 (en) | Control system of a plant with multi-level model optimization | |
WO2021204950A1 (en) | Dynamic production planning method for continuous casting plants | |
EP0996875B1 (en) | Method for adjusting several controllers used to control a controlled system consisting of coupled controlled members | |
DE10321791A1 (en) | Process for controlling and/or regulating the temperature of a metal strip, especially in a finishing train, comprises comparing a theoretical temperature gradient with an actual temperature gradient to acquire adjusting signals | |
WO2024188493A1 (en) | Workflow for efficient parameterisation of a numerical control system | |
DE10321792A1 (en) | Process for controlling and/or regulating the temperature of a metal strip in a metallurgical installation comprises comparing a temperature gradient to an actual temperature gradient to determine adjusting signals for a cooling path | |
EP4130895A1 (en) | Method for determining a control parameter for controlling a rolling mill | |
EP3831511A1 (en) | Method and computer system for predicting a shrinkage of a cast metal product | |
EP4364867A1 (en) | Rolling of steel with metrological detection of phase transformation | |
WO2022106707A1 (en) | Method for adjusting the properties of a hot-rolled strip having a specific chemical composition in a hot strip mill | |
EP4107594A1 (en) | Method for automating a metallurgical installation, in particular an installation for rolling metal strips |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20031204 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20040608 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BETRIESFORSCHUNGSINSTITUT VDEHINSTITUT FUER ANGEWA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BETRIEBSFORSCHUNGSINSTITUT VDEHINSTITUT FUER ANGEW |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050817 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050817 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50203961 Country of ref document: DE Date of ref document: 20050922 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051117 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060117 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20051223 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: SIEMENS AG, ABTEILUNG CT IP I&S Effective date: 20060517 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: SIEMENS AG, ABTEILUNG CT IP I&S |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
BERE | Be: lapsed |
Owner name: BETRIEBSFORSCHUNGSINSTITUT VDEH INSTITUT FUR ANGEW Effective date: 20060531 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20090520 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20090522 Year of fee payment: 8 Ref country code: FI Payment date: 20090525 Year of fee payment: 8 Ref country code: FR Payment date: 20090519 Year of fee payment: 8 Ref country code: IT Payment date: 20090526 Year of fee payment: 8 Ref country code: SE Payment date: 20090525 Year of fee payment: 8 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090722 Year of fee payment: 8 Ref country code: GB Payment date: 20090528 Year of fee payment: 8 |
|
27W | Patent revoked |
Effective date: 20090527 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20090527 |
|
NLR2 | Nl: decision of opposition |
Effective date: 20090527 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: ECNC |