WO2002091021A1 - Detektor zur ortung metallischer gegenstände - Google Patents

Detektor zur ortung metallischer gegenstände Download PDF

Info

Publication number
WO2002091021A1
WO2002091021A1 PCT/DE2002/000700 DE0200700W WO02091021A1 WO 2002091021 A1 WO2002091021 A1 WO 2002091021A1 DE 0200700 W DE0200700 W DE 0200700W WO 02091021 A1 WO02091021 A1 WO 02091021A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coils
transmitter
detector
receiver
Prior art date
Application number
PCT/DE2002/000700
Other languages
English (en)
French (fr)
Inventor
Björn HAASE
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2002091021A1 publication Critical patent/WO2002091021A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/104Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils
    • G01V3/105Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops
    • G01V3/107Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops using compensating coil or loop arrangements

Definitions

  • the present invention relates to a detector for locating metallic objects, which has a receiving coil and a first transmitting coil, the coils being inductively coupled to one another.
  • the detectors based on an inductive method generally have a high offset, which makes it difficult to detect very small inductive changes due to metallic objects brought close to the detector.
  • the offset which is referred to here, is a signal which can be tapped at a receiving coil and which is measured by the receiving circuit in the detector without the influence of a metallic object.
  • the aim is to keep this offset as small as possible, ideally to make it zero, so that even very small changes in the inductive behavior due to metallic objects brought close to the detector can be reliably detected.
  • US Pat. No. 5,729,143 shows a detector whose aim is to suppress the previously mentioned offset of the measurement signal as much as possible.
  • the detector has a transmitter coil 1, which is connected to a transmitter S, and a receiver coil 2, which is connected to a receiver E.
  • the transmitter coil 1 and the receiver coil 2 are inductively coupled to one another in such a way that they partially overlap one another.
  • the transmitter coil 1 is supplied with an alternating current by the transmitter S.
  • This current-carrying transmitting coil 1 excites a first partial flow in the overlap area and a second partial flow in the remaining area of the receiving coil 2 by inductive coupling with the receiving coil 2.
  • the distance a between the center 3 of the transmitting coil 1 and the center 4 of the receiving coil 2 should now be chosen so that the two partial flows, which have opposite signs, compensate each other. If this is the case, the current-carrying transmitter coil 1 does not induce any current in the receiver coil if there is no metallic object in the vicinity of the coil arrangement 2. In this ideal case, the receiver E would not measure an offset signal. Only when the coil arrangement is brought close to a metallic object are the field lines generated by the transmitter coil 1 disturbed, so that a non-vanishing flux is now excited in the receiver coil 2, which results in a measurement signal in the receiver coil 2. This measurement signal received by the receiver E is unaffected by any offset signal.
  • FIG. 6 illustrates how the flux ⁇ induced in the receiving coil 2 depends on the distance a between the centers 3 and 4 of the mutually overlapping coils 1 and 2. It turns out that at a certain distance aO the flux Fluss in the receiving coil 2 disappears completely. The course of the river ⁇ depending on the distance a also makes it clear that it has a very large slope in the area of the ideal distance aO. This means that even very small deviations from the ideal distance aO result in a very large increase in the flux ⁇ induced in the receiving coil 2. In practice, this ideal distance aO can hardly be realized, so that a completely flow-free state of the receiving coil 2 cannot be achieved. So there will always be a certain offset signal. Therefore, it is proposed according to US 5,729,143 to recalibrate the detector again and again, i. H. carry out a zero adjustment in the receiver E.
  • the invention is based on the object of specifying a detector of the type mentioned at the outset which generates an offset signal which is as low as possible, incorrect placement of the coils having as little influence on the offset as possible.
  • the stated object is achieved with the features of claim 1 in that, in addition to a first transmitter coil, there is also a second transmitter coil, both of which are inductively coupled to the receiver coil.
  • the receiving coils and the two transmitter coils are arranged concentrically on a common axis, and the two transmitter coils are dimensioned with respect to their number of turns and / or their dimensions and the transmitter currents fed into the two transmitter coils are dimensioned with respect to their mutual phase positions and / or their amplitudes, that the fluxes excited by the two transmitter coils in the receiver coil compensate each other.
  • a detector By using two transmitter coils, which are arranged concentrically with a receiver coil on a common axis, a detector can be realized whose measurement signal has no or only a very slight offset. In addition, incorrect placement of the coils in the detector has only a very slight influence on the formation of an offset signal. For this reason, there is no need for a calibration process in the receiver of the detector.
  • the two transmitter coils and the receiver coil can be arranged coaxially to one another in one plane.
  • the two transmitter coils and the receiver coil can also be arranged one above the other in different levels.
  • two coils can be coaxial from the two transmitter coils and the receiver coil to each other in one plane and the third coil in a plane offset to it.
  • FIG. 2 shows the dependency of the flow in the receiving coil on incorrect placement of the receiving and transmitting coils
  • FIG. 3 shows a detector with three coils arranged one above the other in different planes
  • FIG. 4 shows a detector with two coaxial coils arranged in a plane with one another and a third coil in a plane offset from it.
  • Figure 5 shows a detector according to the prior art with two overlapping coils
  • FIG. 6 shows the dependence of the flux in the receiving coil on the mutual distance between the two coils according to FIG. 5.
  • all coils 5, 6 and 7 are arranged in a common plane. This arrangement is only possible if, as can be seen in FIG. 1, the individual coils 5, 6, 7 have different external dimensions, so that the coil 7 can be inserted into the coil 5 and the coil 5 into the coil 6 coaxially to the axis 8 is.
  • the flux ⁇ excited by the individual transmit coils 5 and 6 in the receive coil E depends on various sizes, namely the number of turns and the geometry of the coils 5, 6 and on the amplitudes of the currents fed into the two transmit coils 5, 6 and the mutual phase position of the currents in the transmission coils 5, 6. Ultimately, these variables are to be optimized such that, in the absence of a metallic object in the reception coil 7, no flow or as low a flow ⁇ as possible is excited in the case of current-carrying transmission coils 5 and 6.
  • FIG. 2 shows how an incorrect placement d of the transmission coils 5, 6 with respect to the reception coil 7 affects the flow ⁇ excited in the reception coil 7 6 excited partial flows resulting total flow ⁇ in the receiving coil 7 is zero.
  • the order of the two transmitter coils 5, 6 and the receiver coil 7 shown in FIG. 1 can also be changed.
  • the receiving coil 7 can either be between the two transmitter coils 5 and 6 or outside the two transmitter coils 5, 6.
  • Another possibility of arranging the three coils is shown in FIG Receiver E is connected, arranged in different planes one above the other, namely each of the three coils 9, 10, 11 concentric to a common axis 12.
  • the receiving coil 11 can, for. B. between the two transmit coils 9 and 10 or below the two transmit coils 9 and 10.
  • FIG. 4 shows a further exemplary embodiment of an arrangement of the three coils of the detector.
  • a second transmitter coil 14 which is connected to a second transmitter S2
  • a receiving coil 15 is arranged in a plane offset with respect to the two transmitting coils 13 and 14. All three coils 13, 14, 15 are concentric with respect to a common axis 16.
  • the transmitting and receiving coils 13, 14, 15 can be interchanged. That is, the receiving coil 15 can, for. B.
  • the transmitter coils are inductively coupled to the receiver coil.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Der Detektor weist eine Empfangsspule (7) und eine erste Sendespule (5) auf, wobei die Spulen (7, 5) induktiv miteinander gekoppelt sind. Damit ein möglichst geringes Offsetsignal im Detektor entsteht, ist eine zweite Sendespule (6) vorhanden, die ebenfalls mit der Empfangsspule (7) induktiv gekoppelt ist. Die Empfangsspule (7) und die beiden Sendespulen (5, 6) sind konzentrisch auf einer gemeinsamen Achse (8) angeordnet. Die beiden Sendespulen (5, 6) sind bezüglich ihrer Windungszahlen und/oder ihrer Abmessungen so dimensioniert und die in die beiden Sendespulen (5, 6) eingespeisten Sendeströme sind bezüglich ihrer gegenseitigen Phasenlagen und/oder ihrer Amplituden so bemessen, dass sich die von den beiden Sendespulen (5, 9) in der Empfangsspule (7) angeregten Flüsse gegenseitig kompensieren.

Description

Detektor zur Ortung metallischer Gegenstande
Stand der Technik
Die vorliegende Erfindung betrifft einen Detektor zur Ortung metallischer Gegenstande, der eine Empfangsspule und eine erste Sendespule aufweist, wobei die Spulen induktiv miteinander gekoppelt sind.
Detektoren zur Ortung metallischer Gegenstande wenden häufig induktive essverfanren an. Hierbei wird ausgenutzt, dass sich die induktiven Eigenschaften ein oder mehrerer in die Nahe von metallischen Gegenstanden gebrachter Spulen verandern. Die von metallischen Gegenstanden hervorgerufenen Veränderungen der induktiven Eigenschaften werden von einer Empfangsschaltung detektiert. Auf diese Weise lassen sich z. B. in einer Wand eingeschlossene metallische Gegenstande mittels einer oder mehrerer über die Wand hinweg geführter Spulen orten. Eine technische Schwierigkeit bei der Detektion metallischer Gegenstande besteht darin, dass die Ruckwirkung der zu ortenden Gegenstande auf die induktiven Eigenschaften einer oder mehrerer Spulen betraglich sehr klein ist. Dies trifft vor allem für den Einfluss von nicht ferromagnetischen Gegenstanden zu, wie z. B. von Kupfer, das aber in Form von elektrischen Leitungen oder Wasserleitungen sehr häufig in Wanden verlegt ist. Die auf einem induktiven Verfahren basierenden Detektoren haben in der Regel einen hohen Offset, der es schwierig macht, sehr kleine induktive Änderungen aufgrund von in die Nahe des Detektors gebrachten metallischen Gegenstanden zu detektieren. Der Offset, von dem hier gesprochen wird, ist ein an einer Empfangsspule abgreifbares Signal, das ohne Einfluss eines metallischen Gegenstandes von der Empfangsschaltung im Detektor gemessen wird. Es ist das Ziel, diesen Offset möglichst gering zu halten, ihn idealer Weise zu Null zu machen, so dass selbst sehr kleine Änderungen des induktiven Verhaltens aufgrund von in die Nahe des Detektors gebrachten metallischen Gegenstanden zuverlässig detektiert werden können.
Aus der US 5,729,143 geht ein Detektor hervor, dessen Ziel es ist, den zuvor angesprochenen Offset des Messsignals möglichst weitgehend zu unterdrucken. Zu diesem Zweck weist, wie die Figur 5 zeigt, der Detektor eine Sendespule 1, die an einen Sender S angeschlossen ist, und eine Empfangsspule 2, die an einen Empfanger E angeschlossen ist, auf. Die Sendespule 1 und die Empfangsspule 2 sind in der Weise miteinander induktiv gekoppelt, dass sie sich teilweise gegenseitig überlappen. Die Sendespule 1 wird vom Sender S mit einem Wechselstrom gespeist. Diese stromdurchflossene Sendespule 1 erregt durch die induktive Kopplung mit der Empfangsspule 2 in dieser einen ersten Teilfluss in der Uberlappungsflache und einen zweiten Teilfluss in der restlichen Flache der Empfangsspule 2. Der Abstand a zwischen dem Zentrum 3 der Sendespule 1 und dem Zentrum 4 der Empfangsspule 2 sollte nun so gewählt werden, dass sich die beiden Teilflusse, welche ein entgegengesetztes Vorzeichen haben, gegenseitig kompensieren. Wenn das der Fall ist, induziert die stromdurchflossene Sendespule 1, wenn sich kein metallischer Gegenstand in der Nahe der Spulenanordnung befindet, keinen Strom in der Empfangsspule 2. Der Empfanger E wurde in diesem Idealfall kein Offsetsignal messen. Erst wenn die Spulenanordnung in die Nahe eines metallischen Gegenstandes gebracht wird, werden die von der Sendespule 1 erzeugten Feldlinien gestört, so dass nun in der Empfangsspule 2 ein nicht verschwindender Fluss angeregt wird, der ein Messsignal in der Empfangsspule 2 zur Folge hat. Dieses vom Empfanger E aufgenommene Messsignal ist unbeeinflusst von irgend einem Offsetsignal .
Die Figur 6 verdeutlicht, wie der in der Empfangsspule 2 induzierte Fluss Φ vom Abstand a zwischen den Zentren 3 und 4 der sich gegenseitig überlappenden Spulen 1 und 2 abhangt. Es zeigt sich, dass bei einem gewissen Abstand aO der Fluss Φ in der Empfangsspule 2 ganzlich verschwindet. Der Verlauf des Flusses Φ in Abhängigkeit des Abstandes a macht aber auch deutlich, dass er im Bereich des Idealabstandes aO eine sehr große Steigung aufweist. Das bedeutet, dass schon sehr kleine Abweichungen vom Ideal-Abstand aO eine sehr starke Zunahme des in der Empfangsspule 2 induzierten Flusses Φ mit sich bringt. In der Praxis lasst sich dieser Idealabstand aO kaum realisieren, so dass sich ein völlig flussfreier Zustand der Empfangsspule 2 wohl nicht erreichen lasst. Es wird also immer ein gewisses Offsetsignal geben. Deswegen wird gemäß der US 5,729,143 vorgeschlagen, den Detektor immer wieder neu zu kalibrieren, d. h. einen Nullabgleich im Empfanger E vorzunehmen.
Der Erfindung liegt nun die Aufgabe zugrunde, einen Detektor der eingangs genannten Art anzugeben, der ein möglichst geringes Offsetsignal erzeugt, wobei eine Fehlplatzierung der Spulen einen möglichst geringen Einfluss auf den Offset hat.
Vorteile der Erfindung Die genannte Aufgabe wird mit den Merkmalen des Anspruchs 1 dadurch gelost, dass neben einer ersten Sendespule noch eine zweite Sendespule vorhanden ist, welche beide mit der Empfangsspule induktiv gekoppelt sind. Dabei sind die Empfangsspulen und die beiden Sendespulen konzentrisch auf einer gemeinsamen Achse angeordnet, und die beiden Sendespulen sind bezuglich ihrer Windungszahlen und/oder ihrer Abmessungen so dimensioniert und die in die beiden Sendespulen eingespeisten Sendestrome bezuglich ihrer gegenseitigen Phasenlagen und/oder ihrer Amplituden so bemessen, dass sich die von den beiden Sendespulen in der Empfangsspule angeregten Flusse gegenseitig kompensieren.
Durch den Einsatz zweier Sendespulen, die konzentrisch mit einer Empfangsspule auf einer gemeinsamen Achse angeordnet sind, lasst sich ein Detektor realisieren, dessen Messsignal keinen bzw. einen nur sehr geringen Offset aufweist. Hinzu kommt, dass eine Fehlplatzierung der Spulen im Detektor nur einen sehr geringen Einfluss auf die Bildung eines Offsetsignals hat. Aus diesem Grund kann auf einen Kalibrierprozess im Empfanger des Detektors verzichtet werden.
Vorteilhafte Weiterbildungen der Erfindung gehen aus den Unteranspruchen hervor.
Es gibt verschiedene Möglichkeiten, die beiden Sendespulen und die Empfangsspule relativ zueinander anzuordnen. So können die beiden Sendespulen und die Empfangsspule koaxial zueinander in einer Ebene angeordnet sein. Auch können die beiden Sendespulen und die Empfangsspule in verschiedenen Ebenen übereinander angeordnet sein. Außerdem können von den beiden Sendespulen und der Empfangsspule zwei Spulen koaxial zueinander in einer Ebene und die dritte Spule in einer dazu versetzten Ebene angeordnet sein.
Zeichnung
Anhand mehrerer in der Zeichnung dargestellter
Ausfuhrungsbeispiele wird nachfolgend die Erfindung naher erläutert. Es zeigen:
Figur 1 einen Detektor mit drei in einer Ebene angeordneten
Spulen,
Figur 2 die Abhängigkeit des Flusses in der Empfangsspule von einer Fehlplatzierung der Empfangs- und Sendespulen,
Figur 3 einen Detektor mit drei in verschiedenen Ebenen übereinander angeordneten Spulen,
Figur 4 einen Detektor mit zwei koaxialen, zueinander in einer Ebene angeordneten und einer dritten Spule in einer dazu versetzten Ebene,
Figur 5 einen Detektor gemäß dem Stand der Technik mit zwei einander überlappenden Spulen und
Figur 6 die Abhängigkeit des Flusses in der Empfangsspule vom gegenseitigen Abstand der beiden Spulen gemäß Figur 5.
Beschreibung von Ausfuhrungsbeispielen
Die Figur 1 zeigt einen prinzipiellen Aufbau eines Detektors zur Ortung metallischer Gegenstande. Dieser Detektor weist drei Spulen auf. Eine erste Sendespule 5, die an einen ersten Sender Sl angeschlossen ist, eine zweite Sendespule 6, die an einen zweiten Sender S2 angeschlossen ist, und eine Empfangsspule 7, die an einen Empfanger E angeschlossen ist. Jede Spule ist hier als kreisförmige Linie dargestellt. Dabei kann jede Spule 5, 6, 7 auch eine vom Kreis abweichende Form haben und aus einer oder auch mehreren Windungen bestehen. Die Besonderheit der Anordnung dieser drei Spulen 5, 6, 7 besteht darin, dass sie alle konzentrisch auf einer gemeinsamen Achse 8 angeordnet sind.
Bei dem in der Figur 1 dargestellten Ausfuhrungsbeispiel sind alle Spulen 5, 6 und 7 in einer gemeinsamen Ebene angeordnet. Diese Anordnung ist nur möglich, wenn, wie der Figur 1 zu entnehmen ist, die einzelnen Spulen 5, 6, 7 unterschiedliche Außenabmessungen aufweisen, so dass die Spule 7 in die Spule 5 und die Spule 5 in die Spule 6 koaxial zur Achse 8 einsetzbar ist.
Die beiden Sendespulen 5 und 6 werden von ihren Sendern Sl und S2 mit Wechselstromen entgegengesetzter Phase gespeist. Damit induziert die erste Sendespule 5 in der Empfangsspule 7 einen Fluss, der dem von der zweiten Sendespule 6 in der Empfangsspule 7 induzierten Fluss entgegengesetzt gerichtet ist. Beide in der Empfangsspule 7 induzierten Flusse kompensieren sich gegenseitig, so dass der Empfanger E kein Empfangssignal in der Empfangsspule 7 detektiert. Das gilt naturlich nur, wenn sich in der Nahe der Spulenanordnung kein metallischer Gegenstand befindet. Der von den einzelnen Sendespulen 5 und 6 in der Empfangsspule E erregte Fluss Φ hangt von verschiedenen Großen ab, nämlich der Windungszahl und der Geometrie der Spulen 5, 6 und von den Amplituden der in die beiden Sendespulen 5, 6 eingespeisten Strome und der gegenseitigen Phasenlage der Strome in den Sendespulen 5, 6. Diese Großen sind letztendlich so zu optimieren, dass in Abwesenheit eines metallischen Gegenstandes in der Empfangsspule 7 bei stromdurchflossenen Sendespulen 5 und 6 kein Fluss bzw. ein möglichst geringer Fluss Φ angeregt wird.
Es wird davon ausgegangen, dass die einzelnen Spulen 5, 6, 7 mit ihren Schwerpunkten auf der gemeinsamen Achse 8 liegen. In der Praxis gibt es aber immer gewisse Abweichungen von dieser Ideallage der einzelnen Sendespulen. Wie sich eine Fehlplatzierung d der Sendespulen 5, 6 gegenüber der Empfangsspule 7 bezuglich des in der Empfangsspule 7 erregten Flusses Φ auswirkt, zeigt die Figur 2. Im Idealfall, wenn es keine Fehlplatzierung d gibt, ist der aus den von den beiden Sendespulen 5 und 6 angeregten Teilflussen resultierende Gesamtfluss Φ in der Empfangsspule 7 gleich Null. Wie der Verlauf des resultierenden Gesamtflusses Φ in Abhängigkeit von der Fehlplatzierung d in Figur 2 zeigt, fuhrt eine Abweichung von der Ideallage (d=0) der Spulen nur zu einem geringen Anstieg des Flusses Φ durch die Empfangsspule 7. Der beschriebene Detektor, bestehend aus zwei Sendespulen 5, 6 und einer Empfangsspule 7, die alle konzentrisch auf einer gemeinsamen Achse 8 angeordnet sind, ist also äußerst unempfindlich gegenüber kleinen in der Praxis auftretenden Fehlplatzierungen seiner Spulen. Das lasst sich dadurch erklaren, dass eine Verschiebung einer einzelnen der drei Spulen 5, 6, 7 von der gemeinsamen Achse 8 weg in jeder Verschieberichtung die gleiche Storkomponente des Flusses Φ durch die Empfangsspule 7 beisteuert. D. h. die Storkomponente des Flusses Φ hangt nicht vom Vorzeichen der Fehlplatzierung d ab. Wie Figur 2 zeigt, ist die Nullstelle des Flusses Φ bei d=0 eine Nullstelle mindestens zweiter Ordnung. Auch bei einer Fehlplatzierung d von zwei Spulen gleichzeitig ergibt sich in Summe eine Abhängigkeit zweiter Ordnung der Storkomponente vom Betrag der Fehlplatzierung d.
Die in der Figur 1 dargestellte Reihenfolge der beiden Sendespulen 5, 6 und der Empfangsspule 7 kann auch verändert werden. So kann die Empfangsspule 7 entweder zwischen den beiden Sendespulen 5 und 6 oder außerhalb der beiden Sendespulen 5, 6 liegen. Eine andere Möglichkeit der Anordnung der drei Spulen zeigt die Figur 3. Dort sind eine erste Sendespule 9, die an einen ersten Sender Sl angeschlossen ist, eine zweite Sendespule 10, die an einen zweiten Sender S2 angeschlossen ist und eine Empfangsspule 11, die an einen Empfanger E angeschlossen ist, in verschiedenen Ebenen übereinander angeordnet, und zwar jede der drei Spulen 9, 10, 11 konzentrisch zu einer gemeinsamen Achse 12. Auch hier kann die Reihenfolge der einzelnen Spulen 9, 10, 11 vertauscht werden. Die Empfangsspule 11 kann z. B. zwischen den beiden Sendespulen 9 und 10 oder unterhalb der beiden Sendespulen 9 und 10 angeordnet sein.
Ein weiteres Ausfuhrungsbeispiel für eine Anordnung der drei Spulen des Detektors zeigt die Figur 4. Hier sind eine erste Sendespule 13, die an einen ersten Sender Sl angeschlossen ist, und eine zweite Sendespule 14, die an einen zweiten Sender S2 angeschlossen ist, koaxial zueinander in einer gemeinsamen Ebene angeordnet, und eine Empfangsspule 15 ist in einer gegenüber den beiden Sendespulen 13 und 14 versetzten Ebene angeordnet. Alle drei Spulen 13, 14, 15 liegen konzentrisch bezuglich einer gemeinsamen Achse 16. Wie schon bei den vorangehend beschriebenen Ausfuhrungsbeispielen, können die Sende- und Empfangsspulen 13, 14, 15 gegeneinander vertauscht werden. D. h. die Empfangsspule 15 kann z. B. zusammen mit der Sendespule 13 oder mit der Sendespule 14 in einer Ebene liegen, wobei dann die andere Sendespule 14 bzw. 13 in einer zweiten Ebene darüber anzuordnen wäre. Entscheidend bei den relativen Anordnungen der drei Spulen ist, dass die Sendespulen mit der Empfangsspule induktiv gekoppelt sind.

Claims

Patentansprüche
1. Detektor zur Ortung metallischer Gegenstande, der eine Empfangsspule (7, 11, 15) und eine erste Sendespule (5, 9, 13) aufweist, wobei die Spulen (7, 11, 15, 5, 9, 13) induktiv miteinander gekoppelt sind, dadurch gekennzeichnet,
- dass eine zweite Sendespule (6, 10, 14) vorhanden ist, die ebenfalls mit der Empfangsspule (7, 11, 15) induktiv gekoppelt ist,
- dass die Empfangsspule (7, 11, 15) und die beiden
Sendespulen (5, 9, 13, 6, 10, 14) konzentrisch auf einer gemeinsamen Achse (8, 12, 16) angeordnet sind,
- und dass die beiden Sendespulen (5, 9, 13, 6, 10, 14) bezuglich ihrer Windungszahlen und/oder ihrer Abmessungen so dimensioniert und in die beiden Sendespulen (5, 9, 13, 6, 10, 14) eingespeiste Sendestrome bezuglich ihrer gegenseitigen Phasenlagen und/oder ihrer Amplituden so bemessen sind, dass sich die von den beiden Sendespulen (5, 9, 13, 6, 10, 14) in der Empfangsspule (7, 11, 15) angeregten Flusse gegenseitig kompensieren
2. Detektor nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Sendespulen (5, 6) und die Empfangsspule (7) koaxial zueinander in einer Ebene angeordnet sind.
3. Detektor nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Sendespulen (9, 10) und die Empfangsspule (11) in verschiedenen Ebenen übereinander angeordnet sind.
4. Detektor nach Anspruch 1, dadurch gekennzeichnet, dass von den beiden Sendespulen (13, 14) und der Empfangsspule (15) zwei Spulen (13, 14) koaxial zueinander in einer Ebene und die dritte Spule (15) in einer dazu versetzten Ebene angeordnet sind.
PCT/DE2002/000700 2001-05-10 2002-02-26 Detektor zur ortung metallischer gegenstände WO2002091021A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001122741 DE10122741A1 (de) 2001-05-10 2001-05-10 Detektor zur Ortung metallischer Gegenstände
DE10122741.8 2001-05-10

Publications (1)

Publication Number Publication Date
WO2002091021A1 true WO2002091021A1 (de) 2002-11-14

Family

ID=7684295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/000700 WO2002091021A1 (de) 2001-05-10 2002-02-26 Detektor zur ortung metallischer gegenstände

Country Status (2)

Country Link
DE (1) DE10122741A1 (de)
WO (1) WO2002091021A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133501A1 (de) * 2009-05-18 2010-11-25 Sick Ag Sensor zum detektieren metallischer objekte
WO2013087283A3 (de) * 2011-12-13 2013-11-07 Robert Bosch Gmbh Metallsensor
EP2341371A3 (de) * 2009-12-30 2014-06-18 Klaus Ebinger Detektorsonde
WO2014095135A1 (de) * 2012-12-20 2014-06-26 Robert Bosch Gmbh Sensor zur ortung metallischer oder magnetischer objekte
CN105700023A (zh) * 2016-03-25 2016-06-22 东莞市华盾电子科技有限公司 一种手持式金属探测器
US9404728B2 (en) 2011-08-10 2016-08-02 Gerd Reime Sensor for locating metal objects and associated coil
WO2018235860A1 (ja) * 2017-06-20 2018-12-27 株式会社Ihi 異物検出装置
WO2021135092A1 (zh) * 2020-01-04 2021-07-08 深圳市度彼电子有限公司 墙体探测仪及其定位金属目标中心的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004047189A1 (de) 2004-09-29 2006-04-06 Robert Bosch Gmbh Sensor zur Ortung metallischer Objekte sowie Verfahren zur Auswertung von Messsignalen eines solchen Sensors
DE102004047188B4 (de) * 2004-09-29 2022-10-27 Robert Bosch Gmbh Vorrichtung zur Ortung metallischer Objekte
DE102004047190A1 (de) 2004-09-29 2006-04-06 Robert Bosch Gmbh Detektor zur Ortung metallischer Objekte
DE102006053023B4 (de) 2006-02-10 2018-10-04 Werner Turck Gmbh & Co. Kg Induktiver Näherungsschalter
DE102006053222B4 (de) * 2006-11-11 2009-01-29 Werner Turck Gmbh & Co. Kg Induktiver Näherungsschalter mit an einem Schirm befestigter Ergänzungsspule
DE102010007620B9 (de) 2009-02-13 2013-01-24 Sick Ag Näherungssensor
DE102009010943A1 (de) 2009-02-27 2010-09-16 Hilti Aktiengesellschaft Betriebsverfahren und Spulenanordnung für einen magnetischen Sensor zur Detektion metallischer Objekte in einem Untergrund
DE102009021804A1 (de) * 2009-05-18 2010-11-25 Gerd Reime Metalldetektor
DE102010031142A1 (de) * 2010-05-07 2011-11-10 Robert Bosch Gmbh Erfassung eines metallischen oder magnetischen Objekts
DE102013222936A1 (de) 2012-11-09 2014-05-15 Elmos Semiconductor Ag Spule für einen induktiven Sensor und Schaltung zu dessen Ansteuerung
US9684090B1 (en) * 2013-12-23 2017-06-20 SeeScan, Inc. Nulled-signal utility locating devices, systems, and methods
US10516394B2 (en) 2014-09-09 2019-12-24 Balluff Gmbh Sensor element of an inductive proximity or distance sensor containing coil arrangement having electrically-conductive shielding with flange completely enclosing the coil arrangement and method for operating the sensor element
RU2019142486A (ru) * 2017-06-20 2021-07-20 Просек Са Индукционное определение характеристик металлического объекта, внедренного в бетон, и соответствующее устройство обнаружения

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2557994A (en) * 1945-10-12 1951-06-26 Standard Telephones Cables Ltd Object detector
US4563645A (en) * 1981-02-09 1986-01-07 Goring Kerr Limited Inductively balanced oscillatory coil current for metal detection
US5557206A (en) * 1995-02-23 1996-09-17 Geophex Ltd. Apparatus and method for detecting a weak induced magnetic field by means of two concentric transmitter loops

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2557994A (en) * 1945-10-12 1951-06-26 Standard Telephones Cables Ltd Object detector
US4563645A (en) * 1981-02-09 1986-01-07 Goring Kerr Limited Inductively balanced oscillatory coil current for metal detection
US5557206A (en) * 1995-02-23 1996-09-17 Geophex Ltd. Apparatus and method for detecting a weak induced magnetic field by means of two concentric transmitter loops

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRIGHTON M ET AL: "CALCULATION OF OPTIMUM SPACING FOR A THREE COIL AXIALLY SYMMETRIC METAL DETECTOR", ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 29, no. 10, 13 May 1993 (1993-05-13), pages 838 - 839, XP000367628, ISSN: 0013-5194 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133501A1 (de) * 2009-05-18 2010-11-25 Sick Ag Sensor zum detektieren metallischer objekte
WO2010133328A1 (de) * 2009-05-18 2010-11-25 Gerd Reime Metalldetektor
CN102428390A (zh) * 2009-05-18 2012-04-25 格尔德·赖梅 金属探测器
EP2341371A3 (de) * 2009-12-30 2014-06-18 Klaus Ebinger Detektorsonde
US9404728B2 (en) 2011-08-10 2016-08-02 Gerd Reime Sensor for locating metal objects and associated coil
CN103975254A (zh) * 2011-12-13 2014-08-06 罗伯特·博世有限公司 金属传感器
WO2013087283A3 (de) * 2011-12-13 2013-11-07 Robert Bosch Gmbh Metallsensor
US9638823B2 (en) 2011-12-13 2017-05-02 Robert Bosch Gmbh Metal sensor
WO2014095135A1 (de) * 2012-12-20 2014-06-26 Robert Bosch Gmbh Sensor zur ortung metallischer oder magnetischer objekte
US10684385B2 (en) 2012-12-20 2020-06-16 Robert Bosch Gmbh Sensor having rotationally offset coil pairs and differently formed receiving coils for locating metal or magnetic objects
CN105700023A (zh) * 2016-03-25 2016-06-22 东莞市华盾电子科技有限公司 一种手持式金属探测器
WO2018235860A1 (ja) * 2017-06-20 2018-12-27 株式会社Ihi 異物検出装置
WO2021135092A1 (zh) * 2020-01-04 2021-07-08 深圳市度彼电子有限公司 墙体探测仪及其定位金属目标中心的方法

Also Published As

Publication number Publication date
DE10122741A1 (de) 2002-11-14

Similar Documents

Publication Publication Date Title
WO2002091021A1 (de) Detektor zur ortung metallischer gegenstände
DE102010007620B4 (de) Näherungssensor
WO2010133501A1 (de) Sensor zum detektieren metallischer objekte
DE102005002238A1 (de) Sensor zur Ortung metallischer Objekte sowie Messgerät mit einem solchen Sensor
DE2426270A1 (de) Wirbelstrompruefspulenanordnung
EP2302328B1 (de) Positionsmesseinrichtung mit sich mehrfach kreuzender Senderwindungsanordnung
DE102006040550B4 (de) Induktiver Näherungsschalter
DE60123043T2 (de) Anzeige der leitfähigkeit in einem magnetischen durchflussmesser
EP3594724B1 (de) Spule für einen induktiven sensor und schaltung zu dessen ansteuerung
DE10057773B4 (de) Näherungsschalter
DE3206598C2 (de)
WO2014095135A1 (de) Sensor zur ortung metallischer oder magnetischer objekte
DE2247026C3 (de) Schaltvorrichtung zur magnetischen Prüfung von Werkstücken
DE60133737T2 (de) Stromumformer zum messen von wechselstrom
WO2012100806A1 (de) Metalldetektor
DE1791027A1 (de) Verfahren zum Orten eines Fehlers einer elektrischen Leitung
DE4215899C1 (de) Anordnung zum Erfassen von Differenzströmen
DE10301951A1 (de) Verfahren zur Bodenkompensation
DE1231807B (de) Nach der Kernresonanzmethode arbeitende Vorrichtung zur Messung magnetischer Feldstaerken
DE1623104B2 (de) Spulensystem für Metallspürgerät
DE4021832C2 (de)
DE4443464C2 (de) Spulenanordnung
DE4101348C2 (de) Vorrichtung zur Bestimmung der Richtung einer Zielbohrstange gegenüber der magnetischen Nordrichtung
AT400992B (de) Pulsübertragungsstrecke
DE102018133507A1 (de) Metalldetektor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP