WO2002088735A2 - Procede de depot d'un spot d'un produit d'interet, et application pour l'isolement et/ou la determination d'un analyte - Google Patents

Procede de depot d'un spot d'un produit d'interet, et application pour l'isolement et/ou la determination d'un analyte Download PDF

Info

Publication number
WO2002088735A2
WO2002088735A2 PCT/FR2002/001444 FR0201444W WO02088735A2 WO 2002088735 A2 WO2002088735 A2 WO 2002088735A2 FR 0201444 W FR0201444 W FR 0201444W WO 02088735 A2 WO02088735 A2 WO 02088735A2
Authority
WO
WIPO (PCT)
Prior art keywords
interest
product
substrate
drop
particles
Prior art date
Application number
PCT/FR2002/001444
Other languages
English (en)
Other versions
WO2002088735A3 (fr
Inventor
Agnès PERRIN
Alain Theretz
Thierry Delair
Bernard Mandrand
Original Assignee
Bio Merieux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio Merieux filed Critical Bio Merieux
Priority to US10/475,873 priority Critical patent/US20040170757A1/en
Priority to EP02726283A priority patent/EP1381862A2/fr
Publication of WO2002088735A2 publication Critical patent/WO2002088735A2/fr
Publication of WO2002088735A3 publication Critical patent/WO2002088735A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/54333Modification of conditions of immunological binding reaction, e.g. use of more than one type of particle, use of chemical agents to improve binding, choice of incubation time or application of magnetic field during binding reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00387Applications using probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00457Dispensing or evacuation of the solid phase support
    • B01J2219/00459Beads
    • B01J2219/00466Beads in a slurry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/005Beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00646Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports
    • B01J2219/00648Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports by the use of solid beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00655Making arrays on substantially continuous surfaces the compounds being bound to magnets embedded in or on the solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00677Ex-situ synthesis followed by deposition on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/02Drop detachment mechanisms of single droplets from nozzles or pins
    • B01L2400/021Drop detachment mechanisms of single droplets from nozzles or pins non contact spotting by inertia, i.e. abrupt deceleration of the nozzle or pin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50857Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using arrays or bundles of open capillaries for holding samples
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Definitions

  • the present invention relates generally to the deposition, for example in the dry state, on a substrate, of at least a predetermined quantity, or dose, of at least one product of interest, distributed over the surface of the substrate and circumscribed according to an elementary area, of small value, in particular at most equal to 35 mm 2 , and preferably between 0.001 and 3 mm 2 , called spot or task.
  • the product of interest is a pigment or a dye
  • the juxtaposition of spots of color and / or of different intensities reproduces any image or characters of an alphabet
  • analyte in particular of a bio-molecule, in particular bio-macro-molecule such as nucleic acid or protein
  • reaction wells for example on a microplate
  • the product of interest is a reagent for capturing the analyte, for example a ligand which specifically binds to the analyte; in the latter case, the spot or spots obtained are arranged for example on the bottom of one or more microtiter wells,
  • a liquid (or fluid) medium is prepared or available comprising a vehicle, a solvent for example, and the product of interest distributed (dispersed and / or dissolved) homogeneously in said vehicle, b) from the liquid medium, according to any suitable technique, a drop is formed whose volume is determined in correspondence with the predetermined quantity of the product of interest to deposit in the spot; and the drop is placed or deposited, with or without acceleration (for example by gravity), on the surface of the substrate, then in contact over a very limited area with the liquid medium of the drop, c) at least partially, or even completely, the vehicle is eliminated from the drop, by all appropriate means, for example by drying, while it remains on the surface of the substrate, so as to leave the desired spot on the latter. , consisting of or comprising the product of interest, covering the surface of the substrate.
  • the surface tension between the liquid medium and the outside varies according to the interface of the drop, which generates a internal micro-circulation of the liquid medium, having the effect of concentrating the product of interest on the periphery of the drop.
  • this phenomenon has the effect of generating a deposit of the ligand, having the shape of a crown, in which the distribution and the concentration of ligand do not can be mastered, nor reproducible, which goes against the reliability sought in any method of analysis, in particular in the field of molecular biology.
  • the Applicant has carried out various tests to suppress or limit the MARANGONI effect, in the process of forming a spot of a ligand on the bottom of a well of an analysis microplate:
  • the MARANGONI effect is certainly limited, but the drop does not dry or requires a drying time that is not compatible with an automated or industrial process, 2) on the other hand, by heating the substrate, so that the product of interest does not have time to migrate towards the edge of the drop, we nevertheless observe the formation of a halo-shaped spot,
  • the present invention therefore aims to remedy the MARANGONI effect, by counteracting the latter.
  • a magnetic support is distributed or is distributed in the form of particles, homogeneously, in the vehicle,
  • the product of interest is linked to the magnetic support, whereby the liquid medium, from which the drop is formed, comprises transport particles, distributed in the vehicle, each comprising both the magnetic support and the product of interest ,
  • a magnetic field is generated crossing the surface of the substrate in a section comprising the contact area between the drop and the substrate, whereby the spot obtained comprises the transport particles , and therefore the product of interest, for example in the dry state, according to a uniform surface distribution.
  • Such an advantage is important for the determination of an analyte of the bio-molecule type, knowing that the spot is often washed, sometimes several times, before the ligand-bound analyte is determined by any suitable method, for example with a labeled reagent.
  • isolated or “isolation” is meant generically any technique making it possible to separate an analyte, but also to enrich or concentrate in said analyte in any fraction or liquid part containing it. However, it is also understood, possibly in conjunction with the preceding definition, any technique making it possible to determine the analyte, in the sense of detection and / or quantification thereof, from the liquid medium containing it.
  • analyte means any entity, in particular biological entity, to be isolated.
  • analytes considered below by the present invention mention will be made of cells, organelles, viruses and bacteria, antibodies, antibody fragments, antigens, haptens, lectins, sugars, ribo- acids, deoxyribonucleics, proteins, in particular A or G, hormones, hormone receptors, and in general all molecules or macromolecules, natural or synthetic, or the like, to be determined, ie to detect and / or quantify.
  • ligand is understood to mean an element capable of forming, through a chemical or physical bond, a complex with an analyte.
  • a ligand mention may be made of antibodies, antibody fragments, antigens, haptens, lectins, sugars, ribo- and deoxyribonucleic acids, proteins in particular A or G, hormones, hormone receptors, biotin, avidin or streptavidin and, in general, natural or synthetic ligands, and analogs of modified ligands, which can compete with ligands.
  • support means any type of support, polymer, inorganic or metallic.
  • polymer supports mention may be made of plastic supports based on polystyrene, poly (meth) acrylates, polybutadiene, polypropylene, or others, alone or in the form of copolymers.
  • inorganic supports mention may be made of silica, silicon, mica, glass, quartz, etc.
  • metallic supports mention may be made of gold, l silver, titanium oxide, vanadium oxide,
  • the immobilization of the ligands on the support can be carried out either by simple adsorption on the support, native or modified, or by means of a chemical reaction (functionalization), or physical, allowing the surface of the support to be modified, and thus allow the attachment of the ligand by covalent bonds, or other traditional means well known to those skilled in the art.
  • particle means any particle of a polymeric, inorganic or metallic support, onto which it is possible to graft a ligand.
  • the particles being able to be separated by magnetic means. From the above definition, small particles, in particular superparamagnetic particles, whose sedimentation rate under the effect of gravity is less than thermal agitation, but which can constitute aggregates by any process allowing them to be joined together, or to assemble them on larger particles, separable by magnetic means.
  • polymer particles By way of example of polymer particles, mention may be made of particles obtained by emulsion polymerization such as latexes, or particles of larger size, but magnetic.
  • metallic particles that may be mentioned include ferro-, ferri-, para- or superparamagnetic particles, whether or not covered with natural or synthetic polymers, the composition of which comprises iron or other metals such as cobalt, nickel or others, alone or in the form of alloys, but magnetic.
  • inorganic particles By way of example of inorganic particles, mention may be made of particles based on silica or silicon, magnetic or not.
  • the magnetic particles used by the present invention can be classified into two categories, namely particles of relatively large diameter, for example of the order of one or a few microns, and those of relatively small diameter, for example of order of a few tens of nanometers, and in the colloidal state.
  • Magnetic particles of relatively large diameter when placed in a magnetic field move towards the place where the field is the highest and at a speed sufficient to be separated from their environment by this means.
  • the particles described in document EP-A-0 125 995 are obtained by precipitation of ferrous and ferric salts in basic medium, followed by a silanization reaction in methanol. Their final diameter is between 0.1 and 1.5 ⁇ m and their density of 2.5 g / cm 3 .
  • the particles described in documents EP-A-0 106 873, EP-A-0 585 868 and US-C-5,356,713, are obtained by different polymerization processes, or also those described in document US-C- 4,297,337 use a porous glass matrix in which magnetic pigments are dispersed.
  • Magnetic particles of relatively small diameter are practically not attracted to a simple permanent magnet within a reasonable time. These particles are in particular widely used for the magnetic separation of cells.
  • those described in document US-C-4,230,685 are obtained by emulsion of a mixture of albumin, protein A and Fe 3 O 4 particles with a diameter of 15-20 nm, and can immobilize antibodies by the intermediate of protein A.
  • the document US-C-4,452,773 describes another type of particles, obtained by precipitation of ferrous and ferric salts in basic medium, and in the presence of a polysaccharide. These particles can immobilize antibodies, oligonucleotides, lectins or other biomolecules, by coupling to the polysaccharide, using known grafting methods.
  • HGMS High Gradient Magnetic Separation
  • HGMS High Gradient Magnetic Separation
  • the product of interest is a ligand, which can be an oligonucleotide for capturing a target nucleic acid.
  • the product of interest is linked to the magnetic support, in the form of particles, by functionalization of the support, then bond, for example covalent bond, between the functionalized support and the product of interest.
  • the substrate is a wall of a micro-titration or microanalysis well.
  • the method according to the invention is part of an isolation method, for example of determining an analyte, and in such a case the product of interest is a specific ligand of the analyte, and the substrate is for example the wall of a micro-titration well, as obtained at the end of a process according to the invention.
  • an isolation device for example for determining an analyte, comprising or incorporating at least one well, at least part of the wall of which, for example its bottom, constitutes a substrate for which is deposited at least one spot obtained by a method according to the invention.
  • FIG. 1 and 2 show two stages of a deposition process according to the prior art, the index a being reserved for a top view, and the index b being reserved for a sectional view;
  • FIG. 2c represents on an enlarged scale a detail A of FIG. 2a,
  • FIG. 3c represents a detail B, on an enlarged scale of FIG. 3b
  • FIGS. 6a to 6c represent the method of forming and placing a drop, as required by a deposition process according to the invention.
  • a liquid medium (4) is prepared or available, comprising a vehicle, for example a solvent, and the product of interest (2) distributed (dissolved and / or suspended) homogeneously in the vehicle,
  • a drop (5) whose volume is determined in correspondence with the predetermined amount of the product is formed by any suitable means, for example with those described below with reference to FIG. 6 interest to deposit, and this drop is placed on the surface (1a) of the substrate, in contact with the liquid medium (see Figure 1) c) at least partially, or even entirely, the vehicle is eliminated from the drop (5), while it remains on the surface (1 a) of the substrate (1), for example by drying, so as to leave the spot (3), for example in the dry state; as shown in Figure 2, in practice this spot has the shape of a halo or crown, consisting of a heap of the product of interest (2).
  • the procedure is for example as follows:
  • the liquid medium (4) is loaded into a reservoir (10), provided at its lower end with an orifice (12), of dimensions adapted so that the medium (4) does not flow by gravity, when the reservoir (10) is at rest,
  • the tank (10) is caused to move from its starting position (see Figure 6a) to an arrival position (see Figure 6b), determined by the contact between the stop (11) (from side of the tank (10)) and the substrate (1)
  • the formation and the deposition of the drop can be carried out according to any process different from that previously described, for example by deposition from a capillary, by simple contact between the latter containing the liquid medium and the substrate.
  • a magnetic support (6) is prepared or available, distributed in the form of particles, in a homogeneous manner, in the vehicle (cf. FIG. 3), 2 - the product of interest (2) is linked, by any appropriate means, to the magnetic support (6), whereby the liquid medium (4), from which the drop (5) is formed, comprises particles (7 ) of transport, distributed in the vehicle, each comprising and the magnetic support (6) and the product of interest (2) (cf. Figures 3a to 3c).
  • a magnetic field (8) is generated, with a magnet, chosen and positioned so that the magnetic field (8) passes through, practically perpendicularly, the surface (1a) of the substrate (1), immobile, according to a section (1c) comprising, and therefore wider than the contact area (1d) between the drop (5) and the substrate (1) (cf. Figure 4a and 4b); after drying, if necessary total, the spot (3) obtained comprises the transport particles (7), in the dry state, these transport particles being uniformly distributed inside the spot (3), as shown in the Figures 5a and 5b.
  • - magnetic latexes are one example, among others, of a magnetic support divided into particle forms
  • the magnet used generates the magnetic field for the implementation of the invention
  • each micro-titration well constitutes the substrate
  • the analyte is a nucleic target, for example an amplicon post RT-PCR,
  • the product of interest is a ligand, namely capture oligonucleotide, immobilizable on any support by a reactive pair, namely streptavidin, biotin; this oligonucleotide is specific, that is to say complementary to the nucleic target, or non-specific for the previously exemplified analyte, the transport particles correspond to the conjugation product, or conjugate, between the magnetic particles and the abovementioned capture oligonucleotide,
  • the analyte linked to the capture oligonucleotide is detected by any appropriate means, for example with a labeled reagent binding to the immobilized analyte
  • Example 1 Magnetic latex deposits. Influence of the presence of a magnet under the deposition surface on the morphology of the spot.
  • the deposits are analyzed under an optical microscope at 5X magnification, and in a bright background.
  • An image of each spot is acquired using a CCD camera connected to the microscope tube.
  • Each pixel of this image is associated with a gray level, from 0 (black) to 256 (white), the lower the density of material.
  • a cross section of the spots thus makes it possible to determine the distribution of the particles according to the mode of deposition.
  • the latexes are preferably distributed on the periphery of the spot, in the form of a halo (in the manner of FIG. 2c), during drying.
  • a magnet under the surface of the deposit, during drying, and inducing a magnetic attraction force perpendicular to the surface, avoids the movement of convection of the particles towards the edge of the spot. A uniform distribution of the particles is observed after drying.
  • a streptavidin solution at 1 mg / ml is prepared in 0.2M borate buffer pH9.2. This is deposited in the form of spots in several wells of microtitration plate using the deposition device described above, and equipped with a head comprising four capillaries making it possible to simultaneously deposit four spots whose diameter is around 1 mm. As said above, such spots can be obtained by depositing drops, from a simple contact between capillary tubes and the bottom of the well. The spots are left to dry for 15 minutes, then are rinsed with a 0.05% PBS-tween solution.
  • Immobilization of biotinyl capture oligonucleotides 30 ⁇ l of a 5.10 solution 15 copies / ml in PBS buffer of specific (A) or non-specific (B) oligonucleotides of a nucleic target, and both 5 'biotinyls are introduced into the functionalized wells. The immobilization reaction takes place for 30 minutes at 37 ° C. with stirring. The wells are then rinsed in PBS-tween buffer.
  • the oligonucleotide A has the sequence: 5'BIOTINE-TTG GAT TGG CCA TCC AGT
  • the oligonucleotide B has the sequence: 5'BIOTINE-CAT GTG CTA CTT CAC CAA CGG
  • biotinyl oligonucleotides 5.10 14 copies of a solution of specific (A) or non-specific (B) biotinyl oligonucleotides are added to 100 ⁇ l of magnetic particles-streptavidin. The immobilization reaction takes place for 30 minutes at 37 ° C. with stirring. The latexes are then washed by magnetization and taken up in borate buffer, before being deposited in the form of spots in the wells of a microplate with the capillary deposition device described above. Magnets are placed under some of the wells when depositing and drying the spots.
  • This fluorescent oligonucleotide is complementary or not, respectively oligonucleotides A or B.
  • 30 ⁇ l of this solution are deposited in each of the activated wells. The hybridization reaction takes place for 30 minutes at 37 ° C. with stirring. The wells are then rinsed in PBS-tween buffer, then in PBS buffer. They are analyzed under a fluorescence microscope in the presence of 50 ⁇ l of PBS in each well.
  • the fluorescent signal is distributed uniformly inside the spot, thanks to the homogeneous distribution of the capture sites.
  • the signal generated by the spot is analyzed using simple image processing, which consists in calculating the average gray level inside a window defined by the user.
  • Each gray level n- is associated with a number of pixels pj.
  • the average gray level of a window is defined by:
  • Example 3 Detection of post-RTPCR amplicons on magnetic latex spots.
  • RNA of the Sabin3 poliovirus (7 kB), described by its sequence in GENBANK No. X00596, is carried out by RT-PCR (Access kit from Promega), in the presence of biotinylated primers allowing the obtaining of amplicons DNA labeled at their 5 'end with biotin.
  • the amplicons (200 bases), described according to the sequence below, are checked (quantity and size) on agarose gel:
  • the amplicons are denatured for 5 minutes at 94 ° C., then added to the wells comprising the latex spots.
  • the hybridization reaction takes place for 30 minutes at 37 ° C. with stirring.
  • the wells are then rinsed in PBS-tween buffer.
  • a 0.1 mg / ml streptavidin-fluorescein solution in 0.2% PBS / tween / BSA is prepared. 30 ⁇ l of this solution are added to each well. Non-specific controls are obtained on wells which have not undergone the hybridization of the PCR products. Incubation takes place for 30 minutes at 37 ° C with shaking. The wells are then rinsed in PBS-tween buffer, then in ammonium carbonate buffer before being dried by air jet and analyzed under a fluorescence microscope.
  • the first image shows a spot of homogeneous and relatively strong intensity, which proves the presence of i) a specific capture of the amplicons on the magnetic support particles and ii) an effective detection of these biotinyl amplicons by streptavidin. It is here confirmed that the use of magnetic magnetic latexes makes it possible to obtain a uniform distribution of the particles and therefore of the detection signal inside the spot, without corona effect, which considerably simplifies the necessary image analysis. for quantification of the fluorescence emitted.
  • each particle of combined transport in the form of a complex - a magnetic particle comprising the magnetic support, a first ligand (oligo-nucleotide specific for a nucleic target), and a fluorophore marker
  • non-magnetic particle comprising a non-magnetic support, and another fluorophore marker, together constituting the product of interest, linked to the nucleic target by a second ligand (another specific oligo-nucleotide, in another region, of the nucleic target )
  • the method according to the invention can be implemented for printing or depositing a paint on any surface positioned in a magnetic field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Food Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biotechnology (AREA)
  • Clinical Laboratory Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Procédé de dépôt sur un subjectile (1) d'un produit d'intérêt (2), selon une aire élémentaire (3) de faible valeur, dite spot, procédé selon lequel: a. on prépare ou on dispose d'un milieu liquide (4), comprenant un véhicule et le produit d'intérêt (2); b. à partir du milieu liquide, on forme une goutte (5), et on pose ladite goutte sur la surface (1a) du subjectile, en contact avec le milieu liquide; c. on élimine le véhicule de la goutte (5), par exemple par séchage, en sorte de laisser subsister ledit spot (3); caractérisé en ce que, en combinaison: 1. on prépare ou on dispose d'un support magnétique (6), distribué dans le véhicule; 2. on lie le produit d'intérêt (2) au support magnétique (6), moyennant quoi le milieu liquide, à partir duquel on forme la goutte (5), comprend des particules (7) de transport; 3. au moins pendant l'élimination du véhicule de la goutte (5), on génère un champ magnétique (8) traversant la surface (1a) du subjectile (1), moyennant quoi le spot (3) obtenu comprend les particules (7) de transport, et donc le produit d'intérêt (2).

Description

PROCEDE DE DEPOT D'UN SPOT D'UN PRODUIT D'INTERET, ET APPLICATION POUR L'ISOLEMENT ET/OU LA DETERMINATION D'UN ANALYTE
La présente invention concerne de manière générale le dépôt, par exemple à l'état sec, sur un subjectile, d'au moins une quantité prédéterminée, ou dose, d'au moins un produit d'intérêt, réparti à la surface du subjectile et circonscrit selon une aire élémentaire, de faible valeur, notamment au plus égale à 35 mm2, et préférentiellement comprise entre 0,001 et 3 mm2, dite spot ou tâche.
Différentes techniques requièrent un tel dépôt, à l'état sec, au rang desquelles on peut citer :
- l'impression d'un subjectile de type papier, par jet d'encre, auquel cas le produit d'intérêt est un pigment ou un colorant, et la juxtaposition des spots de couleur et/ou d'intensités différentes reproduit toute image ou caractères d'un alphabet,
- l'isolement et/ou la détermination (qualitative et/ou quantitative) d'un analyte, en particulier d'une bio-molécule, notamment bio-macro-molécule telle que acide nucléique ou protéine, par mise en œuvre de puits réactionnels, par exemple sur une micro-plaque, auquel cas le produit d'intérêt est un réactif de capture de l'analyte, par exemple un ligand se liant spécifiquement à l'analyte ; dans ce dernier cas, le ou les spots obtenus sont disposés par exemple sur le fond d'un ou plusieurs puits de micro-tîtration,
Classiquement, quelle que soit la technique concernée, un tel spot est obtenu selon le procédé général suivant : a) on prépare ou on dispose d'un milieu liquide (ou fluide) comprenant un véhicule, un solvant par exemple, et le produit d'intérêt distribué (dispersé et/ou dissout) de manière homogène dans ledit véhicule, b) à partir du milieu liquide, selon toute technique appropriée, on forme une goutte dont le volume est déterminé en correspondance avec la quantité prédéterminée du produit d'intérêt à déposer dans le spot ; et on pose ou dépose la goutte, avec ou sans accélération (par exemple par gravité), sur la surface du subjectile, alors en contact selon une aire très limitée avec le milieu liquide de la goutte, c) on élimine au moins partiellement, voire totalement, le véhicule de la goutte, par tous les moyens appropriés, par exemple par séchage, alors qu'elle demeure sur la surface du subjectile, en sorte de laisser subsister sur ce dernier le spot désiré, constitué par ou comprenant le produit d'intérêt, recouvrant la surface du subjectile.
Un tel procédé comporte une difficulté substantielle, qui en particulier a été identifiée et analysée dans le domaine de l'impression par jet d'encre ; cf. US-A-5 695 820
Du fait de l'évaporation et/ou condensation du véhicule, en cours d'élimination, ou pour d'autres raisons, la tension superficielle entre le milieu liquide et l'extérieur varie selon l'interface de la goutte, ce qui génère une micro-circulation interne du milieu liquide, ayant pour effet de concentrer le produit d'intérêt sur la périphérie de la goutte.
Dans le domaine de l'impression par jet d'encre, ce phénomène, connu sous le nom d'effet MARANGONI, a pour effet de conférer à chaque spot une forme de halo.
Dans le domaine de la détermination (qualitative et/ou quantitative) d'une bio-molécule, ce phénomène a pour effet de générer un dépôt du ligand, ayant la forme d'une couronne, dans laquelle la distribution et la concentration en ligand ne peuvent être maîtrisées, ni reproductibles, ce qui va a encontre de la fiabilité recherchée dans toute méthode d'analyse, en particulier dans le domaine de la biologie moléculaire.
Préalablement à la présente invention, la Demanderesse a procédé à différents essais pour supprimer ou limiter l'effet MARANGONI, dans le processus de formation d'un spot d'un ligand sur le fond d'un puits d'une microplaque d'analyse :
1 ) en refroidissant le subjectile, on limite certes l'effet MARANGONI, mais la goutte ne sèche pas ou requiert un temps de séchage non compatible avec un processus automatisé, ou industriel, 2) à l'opposé, en chauffant le subjectile, pour que le produit d'intérêt n'ait pas le temps de migrer vers le bord de la goutte, on observe néanmoins la formation d'un spot en forme de halo,
3) en séchant la goutte en atmosphère humide, on retrouve les inconvénients selon 1),
4) en augmentant la viscosité du milieu liquide, avec un additif approprié, la goutte ne sèche pas ou mal.
La présente invention a donc pour objet de remédier à l'effet MARANGONI, en contrecarrant ce dernier.
Selon la présente invention, on a découvert que l'effet
MARANGONI cessait pratiquement, dans tout processus de formation d'un spot à partir d'une goutte, dès lors qu'en combinaison on met en œuvre les conditions opératoires suivantes :
1 ) on prépare ou on dispose d'un support magnétique distribué sous forme de particules, de manière homogène, dans le véhicule,
2) on lie le produit d'intérêt au support magnétique, moyennant quoi le milieu liquide, à partir duquel on forme la goutte, comprend des particules de transport, distribuées dans le véhicule, chacune comprenant et le support magnétique et le produit d'intérêt,
3) au moins pendant l'élimination du véhicule de la goutte, on génère un champ magnétique traversant la surface du subjectile selon une section comprenant l'aire de contact entre la goutte et le subjectile, moyennant quoi le spot obtenu comprend les particules de transport, et donc le produit d'intérêt, par exemple à l'état sec, selon une distribution homogène en surface.
Grâce à l'invention, et comme montré par le protocole expérimental décrit ci-après dans le domaine de la détermination d'un analyte, du type biomolécule, on obtient un spot homogène dans lequel la quasi-totalité du produit d'intérêt est bien distribuée en surface, par l'intermédiaire des particules de transport, ayant exactement la même distribution à la surface du spot.
Grâce à l'action du champ magnétique, on constate également une meilleure retenue du spot à la surface du subjectile, sans doute en raison d'une pénétration ou d'un ancrage des particules de transport dans la couche superficielle du subjectile.
Un tel avantage est important pour la détermination d'un analyte du type bio-molécule, en sachant que le spot est souvent lavé, parfois à plusieurs reprises, avant que l'analyte lié au ligand soit déterminé par toute méthode appropriée, par exemple avec un réactif marqué.
Dans toute la présente description, le vocabulaire suivant est explicité.
Par "isoler" ou "isolement", on entend de manière générique toute technique permettant de séparer un analyte, mais aussi d'enrichir ou concentrer en ledit analyte dans toute fraction ou partie liquide le contenant. Mais on entend aussi, éventuellement conjointement avec la définition précédente, toute technique permettant de déterminer l'analyte, au sens d'une détection et/ou quantification de celui-ci, à partir du milieu liquide le contenant.
Par "analyte", on entend toute entité, notamment entité biologique, à isoler. Au rang des analytes considérés ci-après par la présente invention, on citera les cellules, organelles, virus et bactéries, les anticorps, les fragments d'anticorps, les antigènes, les haptènes, les lectines, les sucres, les acides ribo-, déoxyribonucléiques, les protéines, notamment A ou G, les hormones, les récepteurs d'hormones, et d'une manière générale toutes molécules ou macromolécules, naturelles ou synthétiques, ou analogues, à déterminer, c'est- à-dire détecter et/ou quantifier.
On entend par "ligand", un élément capable de former par un lien chimique ou physique, un complexe avec un analyte. A titre d'exemple de ligand, on peut citer les anticorps, les fragments d'anticorps, les antigènes, les haptènes, les lectines, les sucres, les acides ribo- et désoxyribonucléiques, les protéines notamment A ou G, les hormones, les récepteurs d'hormones, la biotine, l'avidine ou la streptavidine et, d'une manière générale, les ligands naturels ou synthétiques, et les analogues de ligands modifiés, pouvant entrer en compétition avec les ligands.
On entend par "support", tout type de support, polymère, inorganique ou métallique. A titre d'exemple de supports polymères, on peut citer les supports plastiques à base de polystyrène, poly(méth)acrylates, polybutadiène, polypropylène, ou d'autres, seuls ou sous forme de copolymeres. A titre d'exemple de supports inorganiques, on peut citer l'oxyde de silice, le silicium, le mica, le verre, le quartz,... A titre d'exemple de supports métalliques, on peut citer l'or, l'argent, l'oxyde de titane, l'oxyde de vanadium,
L'immobilisation des ligands sur le support peut s'effectuer, soit par simple adsorption sur le support, natif ou modifié, soit par l'intermédiaire d'une réaction chimique (fonctionnalisation), ou physique, permettant de modifier la surface du support, et ainsi de permettre la fixation du ligand par des liens de covalence, ou d'autres moyens traditionnels bien connus de l'homme de l'art.
On entend par "particule", toute particule d'un support polymère, inorganique ou métallique, sur laquelle il est possible de greffer un ligand. En particulier, sont considérées comme tombant dans le champ de la présente invention, les particules pouvant être séparées par voie magnétique. Ressortent de la définition précédente, les particules de faible taille, notamment superparamagnétiques, dont la vitesse de sédimentation sous l'effet de la gravité est inférieure à l'agitation thermique, mais pouvant constituer des agrégats par tout procédé permettant de les réunir entre elles, ou de les assembler sur des particules de plus grosses tailles, séparables par voie magnétique.
A titre d'exemple de particules polymères, on peut citer les particules obtenues par polymérisation en émulsion telles que les latex, ou des particules de plus grosse taille, mais magnétiques. A titre d'exemple de particules métalliques, on peut citer les particules ferro-, ferri-, para- ou superparamagnétiques, recouvertes ou non de polymères naturels ou synthétiques, dont la composition comprend le fer ou d'autres métaux comme le cobalt, le nickel ou d'autres, seuls ou sous forme d'alliages, mais magnétiques.
A titre d'exemple de particules inorganiques, on peut citer les particules à base de silice ou de silicium, magnétiques ou non.
Les particules magnétiques mises en œuvre par la présente invention peuvent être rangées en deux catégories, à savoir les particules de diamètre relativement important, par exemple de l'ordre du ou de quelques microns, et celles de diamètre relativement faible, par exemple de l'ordre de quelques dizaines de nanomètres, et à l'état colloïdal.
Les particules magnétiques de diamètre relativement important lorsqu'elles sont placées dans un champ magnétique, se déplacent en direction de l'endroit où le champ est le plus élevé et à une vitesse suffisante pour être séparées de leur milieu par ce moyen.
A titre d'exemple, on peut citer les particules décrites dans le document EP-A-0 125 995. Elles sont obtenues par précipitation de sels ferreux et ferriques en milieu basique, suivie d'une réaction de silanisation dans le méthanol. Leur diamètre final est compris entre 0,1 et 1 ,5 μm et leur densité de 2,5 g/cm3. De même, les particules décrites dans les documents EP-A- 0 106 873, EP-A-0 585 868 et US-C-5,356,713, sont obtenues par différent procédés de polymérisation, ou encore celles décrites dans le document US-C- 4,297,337 utilisent une matrice de verre poreuse dans laquelle sont dispersés des pigments magnétiques. D'autres brevets décrivent aussi l'utilisation de particules de faibles tailles, mais volontairement agrégées afin d'augmenter la masse magnétiques comme dans le document US-C-5, 169,754. L'article de P. A. Risφen et al , Protein Expression and Purification, 6 (1995), 272-277 décrit aussi des gels magnétiques.
Placées dans un champ magnétique, toutes ces particules relativement grosses engendrent un mouvement en direction de l'endroit où le champ est le plus intense. Un simple aimant permanent ou des montages équivalent tels que décrits par exemple dans le document EP-A-0 317 286 peuvent être utilisés. Ces particules sont couramment employées pour la séparation de cellules ou de molécules, ainsi que dans des immunoessais tels que décrit dans le document EP-A-0 528 708.
Les particules magnétiques de diamètre relativement faible ne sont pratiquement pas attirées par un simple aimant permanent dans des délais raisonnables. Ces particules sont en particulier largement utilisées pour la séparation magnétique de cellules. Par exemple, celles décrites dans le document US-C-4,230,685, sont obtenues par émulsion d'un mélange d'albumine, de protéine A et de particules de Fe3O4 de diamètre 15-20 nm, et peuvent immobiliser des anticorps par l'intermédiaire de la protéine A. Le document US-C-4,452,773 décrit un autre type de particules, obtenu par précipitation de sels ferreux et ferrique en milieu basique, et en présence d'un polysaccharide. Ces particules peuvent immobiliser des anticorps, des oligonucléotides, des lectines ou d'autres biomolécules, par couplage sur le polysaccharide, grâce à des méthodes de greffage connues. Leur utilisation a souvent été reprise, comme dans les documents US-C-5,543,289 ou WO-A- 88/00060, ou elles sont utilisées dans des applications particulières comme celles décrites dans les documents FR-A-2 710 410 et FR-A-2 732 116. Le document US-C-4,795,698 décrit une modification de la procédure de Molday, en remplaçant , par exemple, le polysaccharide par un autre polymère de nature protéique. Les protéines présentes à la surface des particules peuvent ainsi servir a l'immobilisation ultérieure d'anticorps par des méthodes de couplage connues de l'homme de l'art.
Ces particules de diamètre relativement faible nécessitent l'utilisation de montages particuliers, permettant d'augmenter localement le gradient de champ magnétique. Cette technique est connue par l'homme de l'art sous l'appellation de HGMS (pour High Gradient Magnetic Séparation) et utilise un dispositif consistant, par exemple, en un récipient ouvert, rempli d'une matrice de fibres ou de grains métalliques. Placé dans un champ magnétique externe, ce dispositif permet d'obtenir un gradient de champ très important à la surface même des fibres. Même des particules superparamagnétiques de dimensions restreintes peuvent être retenues sur un tel dispositif, pour peu que le réseau de fibres soit suffisamment resserré et que le trajet d'une particule l'amène au voisinage de la matrice. A titre d'exemple, de tels dispositifs sont décrits dans les documents US-C-4,375,407, US-C-5,543,289, WO-A- 96/26782, WO-A-96/26011 ou US-C-5, 186,827, et des publications comme celle de B.L. Hirschbein et al. (CHEMTECH, March 1982, pp 172-179). Des montages peuvent également être trouvés dans le commerce, par exemple, sous l'appellation MACS column chez Miltenyi Biotec (Bergisch Gladbach, Germany).
Conformément à la présente invention, à titre d'exemple, le produit d'intérêt est un ligand, qui peut être un oligo-nucléotide de capture d'un acide nucléique cible.
Préférentiellement, le produit d'intérêt est lié au support magnétique, sous forme de particules, par fonctionnalisation du support, puis liaison, par exemple liaison covalente, entre le support fonctionnalisé et le produit d'intérêt.
A titre d'exemple, et comme décrit ci-après dans le protocole expérimental, le subjectile est une paroi d'un puits de micro-titration ou microanalyse.
Préférentiellement, et à titre d'exemple, le procédé selon l'invention s'inscrit dans une méthode d'isolement, par exemple de détermination d'un analyte, et en pareil cas le produit d'intérêt est un ligand spécifique de l'analyte, et le subjectile est par exemple la paroi d'un puits de micro-titration, tel qu'obtenu à l'issue d'un procédé selon l'invention.
En pareil cas, on met donc en œuvre un dispositif d'isolement, par exemple de détermination d'un analyte, comprenant ou incorporant au moins un puits dont au moins une partie de la paroi, par exemple son fond, constitue un subjectile pour lequel est déposé au moins un spot obtenu par un procédé selon l'invention.
La présente invention est maintenant décrite par référence au dessin annexé, à caractère schématique et explicatif, dans lequel : - les Figures 1 et 2 représentent deux étapes d'un procédé de dépôt selon l'art antérieur, l'indice a étant réservé à une vue de dessus, et l'indice b étant réservé à une vue en coupe ; la Figure 2c représente à échelle agrandie un détail A de la Figure 2a,
- les Figures 3, 4 et 5 représentent trois étapes d'un procédé de dépôt selon la présente invention ; comme précédemment, l'indice a est réservé à une vue de dessus, et l'indice b à une vue en coupe ; la Figure 3c représente un détail B, à échelle agrandie de la Figure 3b,
- à titre d'exemple, les Figures 6a à 6c représentent le mode de formation et de pose d'une goutte, telle que requise par un procédé de dépôt selon l'invention.
Conformément à l'art antérieur et aux Figures 1 et 2, il s'agit de déposer à l'état sec sur un subjectile (1) au moins une quantité prédéterminée d'au moins un produit d'intérêt, réparti à la surface (1 a) du subjectile et circonscrit selon une aire élémentaire (3), de faible valeur, par exemple ayant un diamètre de l'ordre de 0,3 mm.
Conformément à ce procédé antérieur
a) on prépare ou on dispose d'un milieu liquide (4), comprenant un véhicule, par exemple un solvant, et le produit d'intérêt (2) distribué (dissout et/ou suspendu) de manière homogène dans le véhicule,
b) à partir du milieu liquide, on forme par tous moyens appropriés, par exemple avec ceux décrits ci-après par référence à la Figure 6, une goutte (5) dont le volume est déterminé en correspondance avec la quantité prédéterminée du produit d'intérêt à déposer, et on pose cette goutte sur la surface (1a) du subjectile, en contact avec le milieu liquide (cf. Figure 1) c) on élimine au moins partiellement, voire en totalité le véhicule de la goutte (5), alors qu'elle demeure sur la surface (1 a) du subjectile (1 ), par exemple par séchage, en sorte de laisser subsister le spot (3), par exemple à l'état sec ; comme montré à la Figure 2, en pratique ce spot a la forme d'un halo ou couronne, constitué par un amas du produit d'intérêt (2).
Comme montré par les Figures 6a à 6c, pour former la goutte (5) à partir du milieu liquide (4), on procède par exemple de la manière suivante :
- on charge le milieu liquide (4) dans un réservoir (10), pourvu à son extrémité inférieure d'un orifice (12), de dimensions adaptées pour que le milieu (4) ne s'écoule pas par gravité, lorsque le réservoir (10) est au repos,
- on provoque le déplacement du réservoir (10), à partir de sa position de départ (cf. Figure 6a), vers une position d'arrivée (cf. Figure 6b), déterminée par le contact entre la butée (11 ) (du côté du réservoir (10)) et le subjectile (1)
- au moment où le déplacement du réservoir (10) est stoppé, le choc mécanique ainsi créé sur ce dernier permet d'extraire par l'orifice (12) une goutte du milieu liquide (4), laquelle va se déplacer dans l'air avant de se déposer sur le subjectile (1 ) (cf. Figure 6c).
La formation et le dépôt de la goutte peuvent être effectués selon tout procédé différent de celui précédemment décrit, par exemple par dépôt à partir d'un capillaire, par simple contact entre ce dernier contenant le milieu liquide et le subjectile.
Selon l'invention, conformément aux Figures 3 à 5, et par différence au procédé selon l'art antérieur :
1 - on prépare ou on dispose d'un support magnétique (6), distribué sous forme de particules, de manière homogène, dans le véhicule (cf. Figure 3), 2 - on lie, par tous moyens appropriés, le produit d'intérêt (2) au support magnétique (6), moyennant quoi le milieu liquide (4), à partir duquel on forme la goutte (5), comprend des particules (7) de transport, distribuées dans le véhicule, chacune comprenant et le support magnétique (6) et le produit d'intérêt (2) (cf. Figures 3a à 3c).
3 - au moins pendant l'élimination au moins partielle du véhicule de la goutte (5), on génère un champ magnétique (8), avec un aimant, choisi et positionné en sorte que le champ magnétique (8) traverse, pratiquement perpendiculairement, la surface (1a) du subjectile (1 ), immobile, selon une section (1c) comprenant, et donc plus large que l'aire de contact (1d) entre la goutte (5) et le subjectile (1 ) (cf. Figure 4a et 4b) ; après séchage, si nécessaire total, le spot (3) obtenu comprend les particules (7) de transport, à l'état sec, ces particules de transport étant uniformément réparties à l'intérieur du spot (3), comme montré par les Figures 5a et 5b.
La présente invention et ses avantages sont mis en évidence par le protocole expérimental ci-après, avec la correspondance suivante entre le vocabulaire des revendications et celui dudit protocole :
- les latex magnétiques sont un exemple, parmi d'autres, de support magnétique divisé sous formes de particules,
- l'aimant utilisé génère le champ magnétique pour la mise en œuvre de l'invention,
- le fond de chaque puits de micro-titration constitue le subjectile,
- l'analyte est une cible nucléique, par exemple un amplicon post RT-PCR,
- le produit d'intérêt est un ligand, à savoir oligonucléotide de capture, immobilisable sur tout support par un couple réactif, à savoir streptavidine, biotine ; cet oligonucléotide est spécifique, c'est-à-dire complémentaire à la cible nucléique, ou non spécifique de l'analyte précédemment exemplifié, - les particules de transport correspondent au produit de conjugaison, ou conjugué, entre les particules magnétiques et l'oligo-nucléotide de capture précité,
- l'analyte lié à l'oligo-nucléotide de capture est détecté par tout moyen approprié, par exemple avec un réactif marqué se liant à l'analyte immobilisé
Exemple 1 : Dépôts de latex magnétiques. Influence de la présence d'un aimant sous la surface de dépôt sur la morphologie du spot.
Préparation des latex magnétiques
Une solution de latex magnétiques (diamètre = 300 nm, taux de solide = 0.1 %) est préparée dans un tampon borate 0.2M, pH 9.2, est disponible commercialement auprès de la Société française Ademtech, à Pessac (France), sous la référence AD F112/E212E/P212.
Cette solution est introduite dans un dispositif tel que décrit par référence aux Figures 6a à 6c, adaptable sur une plaque de micro-titration (Nunc Maxisorb, support en polystyrène, 96 puits). Ce système permet d'éjecter des gouttes vers le fond d'un puits, au travers d'une buse de 50 μm de diamètre, après un trajet dans l'air d'environ 500 μm.
Dépôt sous champ magnétique
Sous le fond du puits de cette plaque, immobile en position, est déposé un aimant cylindrique, développant un champ magnétique, traversant perpendiculairement le fond du puits, dont la tête cylindrique a une surface excédant la section du puits (diamètre=12 mm). Les latex sont déposés sous forme de spots au fond de la surface de ce puits, et laissés à sécher pendant 10 minutes environ. Dépôt sans champ magnétique
Le même type de dépôt est réalisé en l'absence d'aimant sous le puits.
Analyse
Les dépôts sont analysés sous microscope optique au grossissement 5X, et en fond clair. Une image de chaque spot est acquise grâce à une caméra CCD branchée sur le tube du microscope. A chaque pixel de cette image est associé un niveau de gris, de 0 (noir) à 256 (blanc), d'autant plus faible que la densité de matière est importante. Une coupe de section des spots permet ainsi de déterminer la répartition des particules selon le mode de dépôt.
Résultats
En l'absence d'aimant, les latex se repartissent préférentiellement à la périphérie du spot, sous forme de halo (à la manière de la Figure 2c), lors du séchage. On observe une très forte hétérogénéité de distribution des particules. En revanche, la présence d'un aimant sous la surface du dépôt, lors du séchage, et induisant une force d'attraction magnétique perpendiculairement à la surface, évite le mouvement de convexion des particules vers le bord du spot. Une répartition uniforme des particules est observée l'issue du séchage.
Des lavages intensifs montrent que les spots ne sont pas affectés et que les particules sont adsorbées très fortement sur la surface à l'issue du séchage. Ceci permet de résoudre un point important observé lors des dépôts de particules non aimantées : la couronne (halo) qu 'elles forment en séchant, peut être arrachée au cours des lavages, au point que cet anneau n'est plus que partiel. Exemple 2 : Détection de cibles nucléiques sur spots de particules magnétiques. Intérêt du dépôt de particules magnétiques par rapport à un dépôt direct.
Dépôt direct
Une solution de streptavidine à 1 mg/ml est préparée en tampon borate 0.2M pH9.2. Celle-ci est déposée sous forme de spots dans plusieurs puits de plaque de microtitration à l'aide du dispositif de dépôt décrit précédemment, et équipé d'une tête comprenant quatre capillaires permettant de déposer simultanément quatre spots dont le diamètre avoisine 1 mm. Comme dit plus haut, de tels spots peuvent être obtenus par dépôt de gouttes, à partir d'un simple contact entre des tubes capillaires et le fond du puits. Les spots sont laissés à sécher pendant 15 minutes, puis sont rincés par une solution de PBS-tween 0.05%.
Immobilisation des oligonucléotides de capture biotinyles : 30 μl d'une solution à 5.1015 copies/ml en tampon PBS d'oligonucléotides spécifiques (A) ou non spécifiques (B) d'une cibles nucléique, et tous deux biotinyles en 5', sont introduits dans les puits fonctionnalisés. La réaction d'immobilisation a lieu pendant 30 minutes à 37°C sous agitation. Les puits sont ensuite rincés en tampon PBS-tween.
L'oligonucléotide A a pour séquence : 5'BIOTINE-TTG GAT TGG CCA TCC AGT
L'oligonucléotide B a pour séquence : 5'BIOTINE-CAT GTG CTA CTT CAC CAA CGG
Dépôt par l'intermédiaire de particules magnétigues
On part d'une émulsion magnétique (Ademtech, Pessac, France référence AD F112/E212E/P212). Les particules de cette émulsion sont ensuite fonctionnalisées en surface, par greffage covalent de sptréptavidine à l'aide d'un agent de couplage hétérobifonctionnel, à savoir de carbodiimide.
Elles sont ensuite lavées par aimantation et reprises en tampon
PBS à un taux de solide de 0.2%.
Fixation des oligonudéotides biotinyles : 5.1014 copies d'une solution d'oligonucléotides biotinyles spécifiques (A) ou non spécifiques (B) sont ajoutés à 100 μl de particules magnetiques-streptavidine. La réaction d'immobilisation a lieu pendant 30 minutes à 37°C sous agitation. Les latex sont ensuite lavés par aimantation et repris en tampon borate, avant d'être déposés sous forme de spots dans les puits d'une microplaque avec le dispositif de dépôt capillaire décrit précédemment. Des aimants sont placés sous certains des puits lors du dépôt et du séchage des spots.
Capture et détection sur spot de cibles nucléigues fluorescentes
Un oligonucléotide cible ayant la séquence suivante :
5'FITC-ACT GGA TGG ATC CAA
est donc marqué à son extrémité 5' par la fluorescéine, avec une concentration de 7.1014 copies/ml. Cet oligonucléotide fluorescent est complémentaire ou non, respectivement des oligonudéotides A ou B. 30 μl de cette solution sont déposés dans chacun des puits activés. La réaction d'hybridation a lieu pendant 30 minutes à 37°C sous agitation. Les puits sont ensuite rincés en tampon PBS-tween, puis en tampon PBS. Ils sont analysés sous microscope à fluorescence en présence de 50 μl de PBS dans chaque puits.
Résultats
Cas du dépôt direct Aucun signal de fluorescence n'a pu être détecté dans le cas du dépôt direct dans les conditions utilisées. Il est probable que la quantité de streptavidine adsorbée sur la surface de la micro-plaque est insuffisante pour permettre ensuite une capture efficace des cibles marquées.
• Cas du dépôt par l'intermédiaire de particules magnétiques
Dans les deux cas, une image des spots fluorescents est obtenue en présence de l'oligonucléotide spécifique. Cependant la morphologie de l'image est très différente selon que le dépôt ait eu lieu en présence ou en absence de l'aimant sous la microplaque.
En l'absence d'aimant, on observe la même répartition hétérogène du signal que celle décrite dans l'exemple 1 en l'absence d'aimant, c'est à dire une concentration des particules magnétiques et donc des oligonudéotides de capture, importante à la périphérie de la goutte.
En présence d'aimant, le signal fluorescent est reparti uniformément à l'intérieur du spot, grâce à la répartition homogène des sites de capture.
Le signal généré par le spot est analysé à l'aide d'un traitement d'image simple, qui consiste à calculer le niveau de gris moyen à l'intérieur d'une fenêtre définie par l'utilisateur. A chaque niveau de gris n-, est associé un nombre de pixel pj. Le niveau de gris moyen d'une fenêtre est défini par :
Figure imgf000018_0001
Les niveaux de fluorescence générés sur les spots de particules magnétiques ont ainsi été analysés.
L'intérêt du dépôt de particules magnétiques sous champ magnétique apparaît clairement. Il est possible dans ce cas de differentier nettement les spots « spécifiques » des spots « non spécifiques », alors que ce n'est pas possible dans le cas des spots de particules non aimantées.
Exemple 3 : Détection d'amplicons post-RTPCR sur des spots de latex magnétique.
Amplification des cibles nucléigues
L'amplification d'ARN du poliovirus Sabin3 (7 kB), décrit par sa séquence dans GENBANK N°X00596, est réalisée par RT-PCR (kit Access de Promega), en présence d'amorces biotinylées permettant l'obtention d'amplicons ADN marqués à leur extrémité 5' par la biotine. Les amplicons (200 bases), décrites selon la séquence ci-après, sont contrôlés (quantité et taille) sur gel d'agarose :
ce tcσggcccct gaatgσggct aattctaacc atggagcagg cagctgcaaσ ccagcagcca gcctgtcgta acgcgcaagt ccgtggcgga accgactact ttgggtgtcc gtgtttcctt ttattcttga atggctgctt atggtgacaa tcatagattg ttatcataaa gcgagttgga ttggccatcc agt
Synthèse des particules magnétigues conjuguées à un oligonucléotide de capture
5.1014 copies d'une solution d'oligonucléotide de capture, complémentaire des produits PCR à détecter, sont ajoutés à 100 μl de particules magnetiques-streptavidine obtenues comme cela est décrit dans l'exemple 2. La réaction de capture a lieu pendant 30 minutes à 37°C sous agitation. Les latex sont ensuite lavés par aimantation et repris en tampon borate, avant d'être déposés sous forme de spots dans les puits d'une plaque de micro-titration avec le dispositif de dépôt capillaire précédemment décrit. Des aimants sont placés sous les puits avant le dépôt.
Capture des amplicons sur les spots de latex magnétiques
Les amplicons sont dénaturés durant 5 minutes à 94°C, puis ajoutés dans les puits comprenant les spots de latex. La réaction d'hybridation a lieu pendant 30 minutes à 37°C sous agitation. Les puits sont ensuite rincés en tampon PBS-tween.
Détection des produits PCR biotinyles
Une solution de streptavidine-fluorescéine à 0.1 mg/ml en PBS/tween/BSA 0.2% est préparée. 30 μl de cette solution sont ajoutés dans chaque puits. Des témoins non spécifiques sont obtenus sur des puits n'ayant pas subi l'hybridation des produits PCR. L'incubation a lieu pendant 30 minutes à 37°C sous agitation. Les puits sont ensuite rincés en tampon PBS-tween, puis en tampon carbonate d'ammonium avant d'être séchés par jet d'air et analysés sous microscope à fluorescence.
Résultats
Deux images montrent des spots obtenus respectivement en présence et en l'absence des amplicons. La première image montre un spot d'intensité homogène et relativement forte, qui prouve bien la présence i) d'une capture spécifique des amplicons sur les particules magnétiques de support et ii) d'une détection efficace de ces amplicons biotinyles par la streptavidine. Il est ici confirmé que l'utilisation de latex magnétiques aimantés permet d'obtenir une répartition uniforme des particules et donc du signal de détection à l'intérieur du spot, sans effet de couronne, ce qui simplifie considérablement l'analyse d'image nécessaire pour une quantification de la fluorescence émise.
Avec le procédé selon la présente invention, il est possible de déposer plusieurs spots, juxtaposés mais séparés les uns des autres sur un même support plan, comme il est possible de superposer plusieurs spots les uns sur les autres.
A titre indicatif, s'agissant de la détermination moléculaire d'un matériel nucléique, par exemple de type bactérien, conformément au brevet français FR 2797 690 (dont le contenu est incorporé à la présente description en tant que de besoin), chaque particule de transport associe sous forme de complexe : - une particule magnétique comprenant le support magnétique, un premier ligand (oligo-nucléotide spécifique d'une cible nucléique), et un marqueur fluorophore
- une particule non magnétique comprenant un support non magnétique, et un autre marqueur fluorophore, constituant ensemble le produit d'intérêt, lié à la cible nucléique par un second ligand (autre oligo-nucléotide spécifique, dans une autre région, de la cible nucléique)
Le procédé selon l'invention peut être mis en œuvre pour l'impression ou le dépôt d'une peinture sur toute surface positionnée dans un champ magnétique.

Claims

REVENDICATIONS
1. Procédé de dépôt sur un subjectile (1 ) d'au moins une quantité prédéterminée d'au moins un produit d'intérêt (2), réparti à la surface (1a) du subjectile et circonscrit selon une aire élémentaire (3) de faible valeur, dite spot, procédé selon lequel :
® on prépare ou on dispose d'un milieu liquide (4), comprenant un véhicule et le produit d'intérêt (2) distribué de manière homogène dans ledit véhicule,
© à partir du milieu liquide, on forme une goutte (5), dont le volume est déterminé en correspondance avec la quantité prédéterminée du produit d'intérêt à déposer, et on pose ladite goutte sur la surface (1 a) du subjectile, en contact avec le milieu liquide
© on élimine au moins en partie le véhicule de la goutte (5), alors qu'elle demeure sur la surface (1a) du subjectile (1 ), par exemple par séchage, en sorte de laisser subsister ledit spot (3)
caractérisé en ce que, en combinaison :
© on prépare ou on dispose d'un support magnétique (6), distribué sous forme de particules, de manière homogène, dans le véhicule,
© on lie le produit d'intérêt (2) au support magnétique (6), moyennant quoi le milieu liquide, à partir duquel on forme la goutte (5), comprend des particules (7) de transport, distribuées dans le véhicule, chacune comprenant et le support magnétique (6) et le produit d'intérêt (2),
© au moins pendant l'élimination du véhicule de la goutte (5), on génère un champ magnétique (8) traversant la surface (1 a) du subjectile (1 ) selon une section (1c) comprenant l'aire de contact (1d) entre la goutte (5) et le subjectile (1 ), moyennant quoi le spot (3) obtenu comprend les particules (7) de transport, et donc le produit d'intérêt (2), selon une distribution homogène en surface.
2. Procédé selon la revendication 1 , caractérisé en ce que le produit d'intérêt (2) est un ligand, par exemple un oligonucléotide de capture d'un acide nucléique cible
3. Procédé selon la revendication 1 , caractérisé en ce que le produit d'intérêt (2) est lié au support magnétique (6), sous formes de particules, par fonctionnalisation dudit support, puis liaison, par exemple liaison covalente, entre le support fonctionnalisé et le produit d'intérêt
4. Procédé selon la revendication 1 , caractérisé en ce que le subjectile (1 ) est une paroi d'un puits de micro-titration ou micro-analyse
5. Méthode d'isolement, par exemple de détermination d'un analyte, caractérisée en ce que le produit d'intérêt (2) est un ligand spécifique d'un analyte, et on met en œuvre un subjectile susceptible d'être obtenu par un procédé selon une quelconque des revendications 1 à 4.
6. Dispositif d'isolement, par exemple de détermination d'un analyte, caractérisé en ce qu'il comprend ou incorpore un puits dont au moins une partie de la paroi, par exemple son fond, constitue un subjectile sur lequel est déposé au moins un spot susceptible d'être obtenu par un procédé selon l'une quelconque des revendications 1 à 4
PCT/FR2002/001444 2001-04-26 2002-04-25 Procede de depot d'un spot d'un produit d'interet, et application pour l'isolement et/ou la determination d'un analyte WO2002088735A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/475,873 US20040170757A1 (en) 2001-04-26 2002-04-25 Method for depositing a spot product of a product of interest, and use for isolating and/or determining an analyte
EP02726283A EP1381862A2 (fr) 2001-04-26 2002-04-25 Procede de depot d'une molecule sur une surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/05639 2001-04-26
FR0105639A FR2824001B1 (fr) 2001-04-26 2001-04-26 Procede de depot d'un spot d'un produit d'interet, et application pour l'isolement et/ou la determination d'un analyte

Publications (2)

Publication Number Publication Date
WO2002088735A2 true WO2002088735A2 (fr) 2002-11-07
WO2002088735A3 WO2002088735A3 (fr) 2003-09-25

Family

ID=8862731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/001444 WO2002088735A2 (fr) 2001-04-26 2002-04-25 Procede de depot d'un spot d'un produit d'interet, et application pour l'isolement et/ou la determination d'un analyte

Country Status (4)

Country Link
US (1) US20040170757A1 (fr)
EP (1) EP1381862A2 (fr)
FR (1) FR2824001B1 (fr)
WO (1) WO2002088735A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723425B1 (ko) * 2006-04-13 2007-05-30 삼성전자주식회사 기판상에 생체분자 액적을 프린팅하는 장치 및 방법
JP2011135009A (ja) * 2009-12-25 2011-07-07 Tokyo Electron Ltd 基板乾燥装置及び基板乾燥方法
WO2021011944A2 (fr) * 2019-07-18 2021-01-21 Essenlix Corporation Dosage homogène faisant appel à l'imagerie

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049382A2 (fr) * 1999-02-16 2000-08-24 The Perkin-Elmer Corporation Systeme de distribution de billes
WO2001015154A1 (fr) * 1999-08-23 2001-03-01 Burstein Technologies, Inc. Procedes et appareil permettant de former physiquement des structures non operationnelles sur un disque optique

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586193B2 (en) * 1996-04-25 2003-07-01 Genicon Sciences Corporation Analyte assay using particulate labels
HU225069B1 (en) * 1997-09-09 2006-06-28 Lyotropic Therapeutics Coated particles, methods of making and using

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049382A2 (fr) * 1999-02-16 2000-08-24 The Perkin-Elmer Corporation Systeme de distribution de billes
WO2001015154A1 (fr) * 1999-08-23 2001-03-01 Burstein Technologies, Inc. Procedes et appareil permettant de former physiquement des structures non operationnelles sur un disque optique

Also Published As

Publication number Publication date
FR2824001B1 (fr) 2003-10-10
EP1381862A2 (fr) 2004-01-21
FR2824001A1 (fr) 2002-10-31
US20040170757A1 (en) 2004-09-02
WO2002088735A3 (fr) 2003-09-25

Similar Documents

Publication Publication Date Title
EP0965045B1 (fr) Procede pour isoler, notamment detecter ou quantifier un analyte dans un milieu
CA2182906C (fr) Surfaces hautement specifiques pour reactions biologiques, procede pour leur preparation et procede pour leur utilisation
EP0840648B1 (fr) Particules superparamagnetiques et monodisperses
WO2006072306A1 (fr) Supports tridimensionnels a nanostructure et microstructure
EP1343586A1 (fr) Procedes et dispositifs de transport et de concentration d'un analyte present dans un echantillon
CN108291910B (zh) 用于数字计数的流动系统和方法
FR2832507A1 (fr) Methode de detection d'analyte(s) a l'aide de particules magnetiques colloidales
WO2005090975A1 (fr) Methode de structuration destinee a des applications utilisant des biocapteurs et dispositifs comprenant ces structures
JP2010508505A (ja) 多孔性バイオアッセイ用基板並びにそのような基板を作製するための方法及び装置
EP3265809B1 (fr) Procédé et dispositif pour détecter en temps réel un composé sécrété et la cible sécrétrice ainsi que leurs utilisations
WO2004106928A1 (fr) Procede de detection et de quantification multiplex d’analyses dans un echantillon a l’aide de microspheres
WO2002088735A2 (fr) Procede de depot d'un spot d'un produit d'interet, et application pour l'isolement et/ou la determination d'un analyte
FR2790092A1 (fr) Procede de determination d'un analyte present dans une solution
WO1998037234A1 (fr) Procede de caracterisation de duplex d'acide nucleique
Stamm et al. Functionalization of ceramic liposomal nanoparticles, cerasomes, with antibodies
TWI665441B (zh) 雙邊不對稱顆粒、具有雙邊不對稱顆粒的四面體聚合結構、雙邊不對稱顆粒的製作方法及檢測生物分子之方法
CN107407675A (zh) 生物传感器盒的制造
AU731708B2 (en) Dry polymer bead preparation
WO2001014880A1 (fr) Detection d'un analyte en utilisant deux types de particules
FR2716206A1 (fr) Surfaces hautement spécifiques pour réactions biologiques, procédé pour leur préparation et procédé de dosage d'une molécule utilisant ces surfaces.
FR2878960A1 (fr) Procede pour mettre en oeuvre un test d'agglutination dans un microcanal
FR2664704A1 (fr) Procede de detection d'une substance biologique dans un milieu liquide selon une technique de filtration permettant de retenir la substance biologique sur des particules ne traversant pas le filtre.
WO2005039751A1 (fr) Microplaques en elastomere porteuses de ligands reactifs, ainsi que leur procede de preparation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002726283

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002726283

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10475873

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP