WO2002088033A1 - Procede et dispositif permettant de reduire le volume de boues excedentaires - Google Patents

Procede et dispositif permettant de reduire le volume de boues excedentaires Download PDF

Info

Publication number
WO2002088033A1
WO2002088033A1 PCT/JP2001/008842 JP0108842W WO02088033A1 WO 2002088033 A1 WO2002088033 A1 WO 2002088033A1 JP 0108842 W JP0108842 W JP 0108842W WO 02088033 A1 WO02088033 A1 WO 02088033A1
Authority
WO
WIPO (PCT)
Prior art keywords
excess sludge
reducing
volume
ultrasonic wave
ultrasonic
Prior art date
Application number
PCT/JP2001/008842
Other languages
English (en)
French (fr)
Inventor
Shu Ting Zhang
Toshiki Yoshimura
Kunihiko Miseki
Original Assignee
Able Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Able Co., Ltd. filed Critical Able Co., Ltd.
Priority to EP01972717A priority Critical patent/EP1329426A4/en
Priority to JP2002585340A priority patent/JPWO2002088033A1/ja
Priority to US10/169,366 priority patent/US6773597B2/en
Publication of WO2002088033A1 publication Critical patent/WO2002088033A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1221Particular type of activated sludge processes comprising treatment of the recirculated sludge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for reducing excess sludge, which reduces excess sludge generated when biologically treating various organic wastewaters, and a device for reducing excess sludge using the method.
  • Organic wastewater discharged as industrial wastewater and domestic wastewater is mainly treated by biological methods such as activated sludge.
  • disposal of microbes is a problem because of the large amount of excess sludge generated due to the active growth of microorganisms.
  • As a method of disposing of such excess sludge some use it as a soil improvement material and use it as a combo material, but the fundamental solution has not yet been reached, In this case, the excess sludge is dewatered and then treated as industrial waste by incineration or landfill.
  • Patent No. 2806495 Japanese Patent Application Laid-Open No. 11-128975
  • Japanese Patent Application No. 11-218022 which are relatively inexpensive and easy to control. These are to irradiate ultrasonic waves after adding alkali to excess sludge.
  • An object of the present invention is to provide a method and an apparatus for solubilizing surplus sludge, which have a higher solubilizing capacity than conventional methods, a low total cost, and can reduce the size of equipment. .
  • a solubilizing agent is added to excess sludge generated by subjecting organic wastewater to microbial treatment, ultrasonic waves are applied, and a reduced pressure expansion treatment is performed. After that, the volume of the excess sludge is reduced by performing the microorganism treatment again.
  • Another method for reducing the volume of excess sludge based on the present invention is characterized in that the solubilizing agent is an alkali, a lysing agent, or a combination thereof.
  • the alkali contributes to the dissolution of the protein, and if neutralized, is harmless to the environment.
  • the alkaline agent for example, NaOH, KOH, Mg (OH) 2 , Ca (OH) 2, etc., but if the pH can be increased, use other compounds. Can also.
  • the lysing agent exerts an effect of destroying the cell wall of the microorganism.
  • lysing agents include hydrogen peroxide, sodium hypochlorite, and ozone.
  • An apparatus for reducing excess sludge volume is a method for treating organic wastewater with a microorganism.
  • An apparatus for reducing excess sludge volume is characterized in that the decompression and expansion means is a homogenizer.
  • the cell wall of the microorganism is destroyed by a solubilizing agent such as ultrasonic waves and ultrasonic waves, the leakage of the contents of the cells damaged by the expansion under reduced pressure is promoted, and the microorganism is further reacted by the solubilizing agent. It can be changed to a substance that can be easily used.
  • the higher the pressure applied to the homogenizer the higher the solubilizing effect by the expansion under reduced pressure.
  • the optimal operating conditions may be determined in consideration of the manufacturing cost and running cost of the apparatus.
  • the ultrasonic wave applying means and the decompression and expansion means are separate apparatuses, and these ultrasonic wave application means and the decompression and expansion means are either directly or It is characterized by being connected in series via another device.
  • the ultrasonic wave applying means and the decompression / expansion means are separate apparatuses, it is possible to design the apparatus to maximize its performance.
  • the operating conditions of each of the processes of applying ultrasonic waves and expanding under reduced pressure can be freely and independently controlled optimally.
  • An apparatus for reducing the volume of surplus sludge based on still another embodiment of the present invention is characterized in that it is configured as one apparatus having both functions of the ultrasonic wave applying means and the decompression and expansion means.
  • the ultrasonic wave application means and the decompression / expansion means are configured as a device, the device can be designed to minimize the size of the device. In addition, the cost of the entire apparatus can be reduced, and control of the apparatus can be easily performed.
  • the ultrasonic applying means includes an ultrasonic vibrator, and the decompression and expansion means intersects a flow downstream of the ultrasonic vibrator. And a plate-like body having a large number of through holes formed therein. According to this embodiment, the plate-like body (perforated plate) arranged corresponding to the flow exerts the decompression and expansion action, and achieves high solubilization.
  • An apparatus for reducing the volume of excess sludge based on still another embodiment of the present invention is characterized in that a receiving plate-like body is interposed between the ultrasonic wave applying means and the decompression and expansion means so as to block the flow.
  • FIG. 1 is a diagram showing a method for reducing the volume of excess sludge according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an apparatus for reducing the volume of excess sludge according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an apparatus for reducing excess sludge according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing an apparatus for reducing the volume of excess sludge according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing an apparatus for reducing the volume of excess sludge according to the embodiment of the present invention.
  • FIG. 1 shows an example of a flow process diagram of a wastewater treatment method including a method for reducing excess sludge volume according to an embodiment of the present invention.
  • raw water 1 of organic wastewater flows through an initial sedimentation basin 2 and a flow control pond 3, flows into a biological treatment tank 4, is treated by microorganisms, and then solid-liquid separated in a final sedimentation basin 5, and treated water 6 And sludge (returned sludge 7, excess sludge 8).
  • a part of the sludge is returned to the biological treatment tank as return sludge 7 and the other part is introduced into the sludge solubilization process DV 11 as surplus sludge 8 with or without passing through the sludge concentration tank 10 and surplus sludge 8 is solubilized and decomposed.
  • the solubilized solubilized sludge 9 is returned to the flow control tank 3 and / or the biological treatment tank 4 in the wastewater treatment step, and the solubilized sludge 9 is decomposed by microorganisms in the biological treatment tank 4.
  • Sludge solubilization process in DV 11 the surplus sludge 8 that has been introduced is subjected to the action of an ultrasonic oscillator, and further subjected to the decompression and expansion action of a homogenizer, solubilized.
  • Sludge solubilization step DV 11 has a function as an ultrasonic wave applying means and a function as a homogenizer as a decompression and expansion means. The structure is shown in Fig.2, Fig.3, Fig.4 and Fig.5.
  • the ultrasonic wave application means and the decompression / expansion means are separately configured and connected in series.
  • reference numeral 12 denotes an ultrasonic vibrator as a part of the ultrasonic wave applying means
  • 13 denotes an ultrasonic processing tank
  • 14 denotes a pump
  • 15 denotes a decompression / expansion processing tank
  • 16 denotes a homogenizer as a decompression / expansion means.
  • the apparatus shown in FIGS. 4 and 5 is an apparatus having both functions of the ultrasonic wave applying means and the decompression and expansion means (homogenizer).
  • a device that is manufactured using these means as separate components and then assembled with fasteners such as bolts and nuts is also included in the concept of the one device.
  • the perforated plate 26 is installed just before the ultrasonic action direction of the ultrasonic vibrator 22 so that the excess sludge that has been affected by the ultrasonic wave is reduced to the ultrasonic straight wave and the pump pressure. It is sent to the perforated plate 26 more.
  • the pressure on the primary side of the perforated plate 26 is high, but the pressure on the secondary side of the perforated plate 26 is close to the atmospheric pressure.
  • the pressure drops close to. Due to the pressure difference, the cells in the excess sludge expand due to rapid decompression, and the cells that have been subjected to the fine and high-frequency cavitation of ultrasonic waves are subjected to the expansion of the liquid body, and the destroyed cell walls are damaged.
  • the swelling action promotes the leakage of the contents inside the cells, and is affected by the action of a lysing agent such as alkali, resulting in a substance that is easily decomposed by microorganisms.
  • the cell wall damaged by the action of the alkali dissolving agent and the action of ultrasonic waves is destroyed by expansion under reduced pressure, and the leakage of the content liquid is promoted.
  • the receiving plate-like body 27 is placed just before the ultrasonic vibrator 22.
  • the solution subjected to the action of the ultrasonic wave is maintained at a high pressure by the receiving plate 27, and then passes through the passage beside the receiving plate 27, and the cell (perforated plate) 26)
  • the pressure is reduced from the outlet of 6), the expansion is effected, and the destruction of the cell wall and the leakage of the contents are promoted. Is advanced.
  • the outlet of the cell may be a perforated plate, a small hole plate, or a single circular hole.
  • the small-hole plate and single-hole are hard to clog, so even if foreign substances other than microbial cells that cannot be dissolved are mixed, there is no need for a foreign substance removal step before the process, and the operation is stable. be able to.
  • a small-hole plate is desirable.
  • the receiving plate-like body 27 may be a flat plate or another shape such as an arc plate. It is desirable to install the receiving plate 27, but in special cases, a certain effect can be obtained without installing the receiving plate 27.
  • the homogenizer refers to a device having an action of breaking down cells of microorganisms or leaking contents from the broken cells by instantaneously reducing pressure through a perforated plate in a pressurized state.
  • the contents of the cell are leaked out of the cell and broken down into a substance that can be easily used by microorganisms. It is important to. To facilitate this process, the pressure of the partially solubilized liquid is increased and the pressure is reduced instantaneously, causing the cells to swell, causing the cells with damaged cell walls and the contents of the destroyed cells to become cells. It leaks out, is subjected to the action of al energy, and becomes a substance easily decomposed by microorganisms.
  • the viscosity of the sludge liquid increases due to the action of ultrasonic waves and ultrasonic waves, increasing the resistance of micron-based mass transfer in the liquid, and causing a difference between the partially solubilized cells and the liquid body (alternative liquid).
  • the solubilization by further decomposition becomes difficult, and the effect of solubilization may not be high.
  • a synergistic effect can be obtained by treating with a homogenizer.
  • the above-mentioned alkali is used, the same action and effect can be obtained by using another bactericide.
  • the solubilized sludge is returned to the previous process of the biological treatment process, decomposed into other microorganisms, and the volume of excess sludge is reduced.
  • the method and apparatus for reducing the volume of excess sludge of the present invention will be described in more detail with reference to examples.
  • a solubilization test was performed on the sludge (food factory) obtained when the organic wastewater was treated with aerobic microorganisms under the following conditions.
  • Ultrasonic frequency 19Hz, output 400W, residence time l min (using equipment made by Seidensha Electronics Co., Ltd.)
  • the sludge is centrifuged by centrifugation (4000 rpm, 10 minutes), and the recovered liquid is subjected to oxygen consumption by potassium dichromate at 150 ° C (CODJ measurement method (based on JISK102) )) was used to judge by the rise in the measured COD concentration in the sludge.
  • the measurement was performed using a colorimeter manufactured by HACH and a COD reactor.
  • Table 1 shows the results of solubilization using excess sludge from the above food factory.
  • Homogenizers each having the structure shown in Figs. 3, 4, and 5 were used.
  • the perforated plates in Figs. 3 and 4 have a diameter of 1.5 mm and a porosity of 38%, and Fig. 5 has six through holes with a small hole type and a hole diameter of 4.5 mm.
  • the results of the homogenizer alone and the homogenizer under alkaline conditions when no homogenizer is used for comparison are shown for comparison.
  • the pressure of the pump for sending the liquid to the homogenizer was 4.0 to 6.0 kgf / cm 2 .
  • a biological treatment experiment was performed using wastewater from the same food factory as raw water.
  • the solution which had been promoted by ultrasonication and homogenizer at normal temperature and under alkaline conditions (initial PH12), was sent to the flow control tank without adjusting the pH, and the biological treatment effect was confirmed.
  • the results are shown in Table 2.
  • the ultrasonic wave is applied under the Al-force conditions, and then the decompression and expansion of the homogenizer is applied.
  • the solubilizing effect can be enhanced. That is, by synergizing the action of the ultrasonic wave and the action of the homogenizer, the effect of solubilizing the microbial cells can be enhanced.
  • Al-ri-li-li contributes to the dissolution of evening protein, and if neutralized, is harmless to the environment. It is possible to prevent a decrease in pH due to the dissolution of carbon dioxide gas and adjust the pH. Also, lytic agents can destroy the cell walls of microorganisms.
  • the excess sludge volume reducing apparatus according to another embodiment of the present invention, high solubilization is achieved by the decompression and expansion means, and high volume reduction is realized by the high solubilizing effect.
  • the cell wall of microorganisms can be broken by a solubilizing agent such as li, or damaged cells can be expanded under reduced pressure to promote leakage of cell contents, and converted into substances that can be more easily used by microorganisms by further reaction with the solubilizing agent. it can.
  • the ultrasonic wave application means and the decompression and expansion means are separate apparatuses, they must be designed to maximize the performance of each apparatus. It is possible to freely and optimally control the operating conditions of each of the processes of applying the ultrasonic wave and expanding under reduced pressure freely and independently.
  • the ultrasonic wave application means and the decompression and expansion means are configured as a device, the size of the device is minimized. The cost of the entire system can be reduced, and the operation of the system can be easily controlled.
  • high solubilization can be achieved by the plate-shaped body arranged corresponding to the flow.
  • high solubilization can be achieved by the interposed receiving plate-shaped body.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Treatment Of Sludge (AREA)
  • Physical Water Treatments (AREA)
  • Activated Sludge Processes (AREA)

Description

明細書 余剰汚泥の減容化方法及び装置 発明の分野
本発明は各種有機性汚水を生物的に処理する際に発生する余剰汚泥を減容化す る余剰汚泥の減容化方法及びこの方法を用いた余剰汚泥の減容化装置に関するも のである。
発明の背景
各種産業排水及び生活廃水として排出される有機性廃水は、 主に活性汚泥法な どの生物学的方法で処理されている。 この処理過程では微生物が活発に増殖する ため余剰汚泥が大量に生成されるために、 その処分が問題になる。 このような余 剰汚泥の処分方法としては、 一部において土壌改良材として利用することゃコン ボスト材料として利用することがおこなわれているが、 根本的な解決にまだ至つ ておらず、 殆どの場合は、 余剰汚泥を脱水処理した後に産業廃棄物として焼却や 埋め立てなどの方法で処理しているのが現状である。
しかし、 近時においては、 上記の焼却処分については、 焼却に伴うダイォキシ ンなどのいわゆる環境ホルモンなどの有害物質の発生が懸念され、 また埋め立て 処分の場合にも、 経時的に有害物質の浸出問題が懸念される傾向が強くなつてい る。 従って、 より根本的な解決方法として、 処分すべき余剰汚泥自体を減容化す る技術が求められ、 このための提案も多数されてきている。
その中で、 コストが比較的安く、 制御しやすい方法として特許第 2806495号、 特開平 11-128975号、 特願平 11-218022号等の方法がある。 これらは、 余剰汚泥 にアルカリを添加した後に超音波を照射するものである。
しかしながら、 従来の技術で述べた特開平 11 - 128975号に示されたものは、 可 溶化された余剰汚泥を生物処理工程に返送するときの中和コストを考慮して、 ¾ 局 pH10.5以下で行うようにしているが、 この方法では期待される可溶化の効果 を得ることが困難である。
従来の技術で述べた特願平 11-218022号に示されたものは、 中和処理をェ 夫して、 pHを 1 2〜1 3まで高めて、 可溶化効果を向上させているが、 超音波 による処理時間がまだ長く、 出力が比較的に高いためコスト高につながり、 また、 微生物の資化性 (微生物の分解に利用されやすさ) に関しても満足できる効果が 得られ難く、 実用に支障がでる場合がある。 これらの技術に関して、 低い超音波 出力でかつ短い作用時間によって、 要求された溶解効果、 特に微生物に資化され 易い効果が得られるように、 コスト削減と効果を向上させる技術改良が強く求め られている。
発明の概要 本発明は、 従来の方法よりも可溶化能力が高く、 ト一タルコストが安く、 設備 の小型化を図ることができる余剰汚泥の可溶化処理方法及び装置を提供すること を目的とする。
本発明の請求項 1記載の余剰汚泥の減容化方法は、 有機性廃水に微生物処理を 施すことにより生ずる余剰汚泥に、 可溶化剤を添加し、 超音波を作用させ、 減圧 膨張処理を施した後に、 再び微生物処理を施すことにより、 前記余剰汚泥の容積 を減少させることを特徴とする。
当該方法によれば、 減圧膨張処理により高い可溶化が図られ、 特に高い微生物 資化性が得られ、 高い減容化が実現される。
本発明に基づく他の余剰汚泥の減容化方法は、 前記可溶化剤が、 アルカリ、 又 は溶菌剤、 又はこれらの組み合わせであることを特徴とする。
当該方法によれば、 アルカリはタンパク質の溶解に寄与し、 中和されれば環境 に無害であり、 更に生物処理系では炭酸ガスの溶け込みによる p Hの低下を防止 すること及び p Hの調整ができるという利点がある。 アルカリ剤としては、 例え ば、 N a O H、 K O H、 M g ( O H) 2、 C a (O H) 2などを使用することが できるが、 p Hを高めることができれば他の化合物を使用することもできる。 また、 溶菌剤は微生物の細胞壁を破壊するという作用を発揮する。 溶菌剤の種 類として様々なものがあるが、 菌体を分解できるものならば種類は問わない。 例 えば、 過酸化水素、 次亜塩素ソーダ一、 オゾンなとが挙げられる。
本発明の他の実施例に基づく余剰汚泥の減容化装置は、 有機性廃水を微生物処 理することにより生じた余剰汚泥に、 可溶化剤を添加する手段と、 超音波を作用 させる超音波付与手段と、 当該超音波付与手段の下流側に設けられて前記余剰汚 泥に減圧膨張処理を施す減圧膨張手段とを備えたことを特徴とする。
当該実施例に基づけば、 減圧膨張手段により高い可溶化が図られ、 特に高い微 生物資化性が得られ、 高い減容化が実現される。
本発明のさらに他の実施例に基づく余剰汚泥の減容化装置は、 前記減圧膨張手 段がホモジナイザーであることを特徴とする。
当該実施例に基づけば、 超音波とアル力リ等の可溶化剤により微生物の細胞壁 を破壊し、 減圧膨張によって傷つけられた細胞の中身の漏出を促進し、 可溶化剤 による更なる反応で微生物に利用されやすい物質に変化させることが可能である。 なお、 ホモジナイザーにかける圧力が高いほど、 減圧膨張による可溶化効果が高 くなるが、 装置の製造コストとランニングコストなどを考慮して最適な操作条件 を決定すればよい。
本発明のさらに他の実施例に基づく余剰汚泥の減容化装置は、 前記超音波付与 手段と前記減圧膨張手段とが別装置であり、 これらの超音波付与手段と減圧膨張 手段とが直接又は他の装置を介して直列に接続されていることを特徴とする。 当該実施例によれば、 超音波付与手段と減圧膨張手段とが別装置なのでそれそ れの装置の性能を最大限発揮させるように設計することができる。 更に、 超音波 付与と減圧膨張との各処理の操作条件を自由にそれぞれ独立に最適に制御できる。 本発明のさらに他の実施例に基づく余剰汚泥の減容化装置は、 前記超音波付与 手段と前記減圧膨張手段との機能を併せ持つ一の装置として構成されていること を特徴とする。
当該実施例によれば、 超音波付与手段と減圧膨張手段とがーの装置として構成 されているので、 装置の大きさを最小限に抑えるように設計をすることができる。 また、 装置全体のコストを低減でき、 装置の制御も簡単に行うことができる。 本発明のさらに他の実施例に基づく余剰汚泥の減容化装置は、 前記超音波付与 手段が超音波振動子を含み、 前記減圧膨張手段が、 当該超音波振動子の下流に流 れに交差するように配置された、 多数の貫通孔が形成された板状体を含むことを 特徴とする。 当該実施例によれば、 流れに対応して配置された板状体 (多孔板) により、 減 圧膨張作用が発揮され、 高い可溶化が図られる。
本発明のさらに他の実施例に基づく余剰汚泥の減容化装置は、 前記超音波付与 手段と前記減圧膨張手段との間に、 流れを遮るように受流板状体を介装したこと を特徴とする。
当該実施例によれば、 介装された受流板状体により、 超音波のキヤビテ一ショ ン効果を高め、 溶液の流れを変更して、 混合を促進するので、 前記板状体 (多孔 板) の子 L径を大きくしても、 高い可溶化が図られる。 図面の簡単な説明 図 1は、 本発明の実施の形態の余剰汚泥の減容化方法を示す図である。
図 2は、 本発明の実施の形態の余剰汚泥の減容化装置を示す概略図である。 図 3は、 本発明の実施の形態の余剰汚泥の減容化装置を示す概略図である。 図 4は、 本発明の実施の形態の余剰汚泥の減容化装置を示す概略図である。 図 5は、 本発明の実施の形態の余剰汚泥の減容化装置を示す概略図である。 好ましい実施態様の詳細な説明 以下、 図に従って、 本発明の実施形態を説明する。
図 1に、 本発明の実施の形態に係る余剰汚泥の減容化方法を含む廃水の処理方 法のフロー工程図の一例を示す。 図 1において、 有機廃水の原水 1は初期沈殿地 2、 流量調整池 3を経て、 生物処理槽 4に流入して微生物により処理された後に 最終沈殿池 5で固液分離して、 処理水 6と汚泥 (返送汚泥 7、 余剰汚泥 8 ) とな る。 その汚泥の一部分を返送汚泥 7として生物処理槽に返送すると共に他部は余 剰汚泥 8として汚泥濃縮槽 1 0を経て又は経由せずに、 汚泥可溶化工程 D V 1 1 に導入し、 余剰汚泥 8を可溶化及び分解処理を行う。 可溶化された可溶化汚泥 9 は廃水処理工程の流量調整槽 3又は生物処理槽 4、 又はこれらの両方に返送して 、 生物処理槽 4中の微生物により可溶化汚泥 9を分解する。 汚泥可溶化工程 D V 1 1では、 投入された余剰汚泥 8は超音波の振動子の作用 を受け、 更にホモジナイザーの減圧膨張作用を受けて、 可溶化処理される。 汚泥可溶化工程 D V 1 1は超音波付与手段としての機能と減圧膨張手段である ホモジナイザ一としての機能を備えている。 その構造を図 2、 図 3、 図 4、 図 5 に示す。
図 2及び図 3に示すものは、 超音波付与手段と減圧膨張手段 (ホモジナイザー ) とを分離して構成し直列に接続したものである。 図中 1 2は超音波付与手段の 一部としての超音波振動子、 1 3は超音波処理タンク、 1 4はポンプ、 1 5は減 圧膨張処理タンク、 1 6は減圧膨張手段としてのホモジナイザ一である。
図 4と図 5に示すものは超音波付与手段と減圧膨張手段 (ホモジナイザー) と の機能を併せ持つ一の装置としたものである。 これらの各手段を別部品として製 造した後に、 ボルトナット等の締結具により組み立てたものも、 前記一の装置と いう概念に含まれるものとする。
図 4に示すものは、 多孔板 2 6を超音波振動子 2 2の超音波作用方向の直前に 設置して、 超音波の作用を受けた余剰汚泥が超音波の直進波とポンプの圧力によ り多孔板 2 6に送られるようにしている。
この構造を採用したので、 多孔板 2 6の一次側では圧力が高いが、 多孔板 2 6 の二次側の圧力が大気圧に近いため、 多孔板 2 6を通過した液体はすぐに大気圧 に近い圧力に下がる。 その圧力差で余剰汚泥中の菌体は急激な減圧により膨張し 、 超音波の微細的な高周波のキヤビテ一シヨン作用を受けた菌体は液体本体の膨 張作用を受け、 破壊された細胞壁が更に膨張作用で細胞内部の内容物の漏出が促 進されて、 アルカリなどの溶解剤の作用を受け、 微生物に分解されやすい物質に なる。 また、 アルカリの溶解剤の作用と超音波の作用により傷を付けられた細胞 壁が減圧膨張により破壊され、 内容液の漏出が促進される。
図 5に示すものは、 超音波振動子 2 2の直前に受流板状体 2 7を置いたもので める。
この構造を採用したので、 超音波の作用を受けた溶液が受流板状体 2 7により 高圧に維持され、 その後に受流板状体 2 7の脇の通路を通って、 セル (多孔板 2 6 ) の出口から減圧を受け、 膨張作用を受け、 細胞壁の破壊と内容物の漏出が促 進される。
なお、 セルの出口は多孔板、 少孔板、 単円孔でもよい。 その中、 少孔板と単円 孔は詰まりにくいため、 微生物菌体以外の溶解できない異物が混入された場合で も工程の前段階で異物除去工程がなくても済み、 操作を安定的に行うことができ る。 目詰まりと減圧膨張効果を総合的に考えると、 少孔板が望ましい。
また、 前記受流板状体 2 7は平板でも円弧板等の他の形でも構わない。 受流板 状体 2 7を設置することが望ましいが特殊の場合では受流板状体 2 7を設置なく てもある程度の効果が得られる。
このように、 本発明の実施の形態に係る余剰汚泥の減容化方法及び装置によれ ば、 アルカリ条件で超音波の作用を受けた後にホモジナイザーの作用を受け、 又 は同時に作用を受けて、 可溶化効果を高めることができる。 即ち、 超音波の作用 とホモジナイザ一の作用を相乗させることにより微生物細胞の可溶化効果を高め ることができる。 ここでホモジナイザーとは加圧した状態で多孔板を通って、 瞬 間的に減圧して、 微生物の細胞を破壊または破壊された細胞から内容物を漏出さ せる作用を有する装置を指す。
アル力リと超音波の作用で微生物の細胞壁を破壊したり、 傷を付けたりした後 に、 その細胞の内容物を細胞外に漏出させ更に微生物に利用されやすい物質に変 換するように分解することが重要である。 この過程を促進するには一部可溶化さ れた液体の圧力を上げて瞬間的に減圧することにより細胞が膨張し、 細胞壁に傷 が付いた細胞及び破壊された細胞内の内容物が細胞外に漏出され、 アル力りの作 用を受け、 微生物にとって分解されやすい物質になる。
アル力リと超音波の作用で汚泥液体の粘度が大きくなり、 液体内のミクロン的 な物質移動の抵抗が増加し、 一部可溶化された細胞と液体本体 (アル力リ液)との 間の混合性が悪化し、 更なる分解による可溶化が困難になり、 可溶化の効果が高 く得られない場合がある。 このような原因を解決するために、 ホモジナイザーを 用いて処理すれば相乗効果が得られる。 なお、 前記アルカリを用いたが、 他の溶 菌剤を用いても同様な作用効果が得られる。
そして、 可溶化された汚泥は生物処理工程の前工程に返送され、 他の微生物に 分解され、 余剰汚泥の減容化が図られる。 以下に、 本発明の余剰汚泥の減容化方法及び装置を実施例にを参照しながら より詳細に説明する。
(実施例 1 )
以下の条件で有機排水を好気性微生物処理した際に得られた汚泥 (食品工場)の 可溶化試験を行った。
汚泥濃度: 10050 mg/リットル、 pH6.3
pH調整剤: NaOH
可溶初期 pH: 1 2
超音波周波数: 19Hz、 出力 400W、 滞留時間 l min (精電舍電子工業株式会社 製の装置使用)
可溶化の指標は、 汚泥を遠心分離 (4000rpm、 10分間)で遠心分離し、 その回収 液を 150°Cにおける、 ニクロム酸カリウムによる酸素消費量 (CODJ の測定方法 ( J I S K 0 1 0 2に準拠) ) を用いて、 計測した汚泥中の COD濃度の上昇 により判断した。 当該測定は、 H A C H社製の比色計と C O Dリアクタとを使用 した。
表 1
Figure imgf000009_0001
A:ホモジナイザ一だけ、
B :アルカリホモジナイザー、
C:アルカリ超音波、
D :アルカリ超音波 +直列型ホモジナイザー (図 3 )、
E :アルカリ超音波 +—体型多孔板ホモジナイザー (図 4 )、
F :アルカリ超音波十一体型少孔板ホモジナイザー (図 5 )。
表 1に上記食品工場の余剰汚泥を用いて可溶化の結果を示す。 ホモジナイザー はそれそれ図 3、 図 4、 図 5に示した構造のものをそれそれ用いた。 図 3、 図 4 の多孔板は直径 1.5mm、 開孔率は 38%で、 図 5は少孔型で孔径 4.5mmの貫通孔 を 6つを有する。 比較のためにホモジナイザーを使用しない場合、 ホモジナイザ 一だけ及びアルカリ条件でのホモジナイザーの場合の結果を比較のために示す。 ホモジナイザーに液を送るポンプの圧力は 4.0— 6.0kgf/cm2であった。
表 1からわかるようにホモジナイザーを使用しない場合より使用した場合では 顕著な可溶化効果が得られた。 また、 ホモジナイザーだけの場合ではあまり顕著 な可溶化効果が得られないことがわかった。 なお、 多孔板型より少孔板型の方が やや劣っているが、 超音波だけの場合に比較すれば顕著な効果が確認された。 ま た、 図に示したように、 分離直列型より一体型の方がよい結果が得られる点は興 味深い。 これは直進流などに抵抗があることが寄与すると考えられる。 何れにし ても表 1ではホモジナイザーの減圧膨張作用を受けた汚泥は CODが変化するこ とが確認された。
(実施例 2 )
図 1に示したフロー工程に従って、 同じ食品工場の排水を原水とした生物処理 実験を行った。 実験は常温、 アルカリ条件 (初期 PH12)において超音波及びホモジ ナイザーで溶解を促進した液の pHを調整しないで流量調整槽に送り込んで、 生 物学的な処理の効果を確認した。 その結果を表 2に示す。
その他の試験条件は以下の通りである。
原水流量: 50 リットル/日、
原水 BOD : 1050 mg/リットル
原水流量調整槽: 50リツトル
生物処理槽: 70リットル
可溶化工程への汚泥量: 余剰汚泥量の 3.2倍
可溶化剤: NaOH
超音波の照射時間: 1分間
表 2
0 A B C D E F
B O D(mg/l) 7.5 7.5 7.2 7.3 7.3 7.6 7.4 処理水質 C O D(mg/l) 7.5 8 10 12 14 14.2 14.1
S S (mg/l) 11 11 11.5 11.4 11.3 11.2 11.3
P H 7.2 7.2 7.3 7.3 7.3 7.3 7.3
B O D汚 g転換率
0.44 0.42 0.31 0.14 0.04 0.02 0.02 (ff-SS/g-B OD) 0は図 1のフローに可溶化工程を除いた実験装置を用いた実験であり、 他の符 号の説明は表 1と同じである。
表 2に示したように、 4.0"6.0kgf/cm2の圧力範囲におけるホモジナイザ一のみ の可溶化は可溶化工程のない場合とほぼ同じ結果であり、 汚泥減容化効果がない ことが明らかである。 アルカリホモジナイザーの場合では顕著な減容化効果が現 れたものの期待された効果が得られない。 アル力リ超音波ではかなりの減容化効 果があるものの、 B O Dの汚泥転換率がまだ 0.14であった。 一方、 アルカリ条 件で超音波の作用を受けた後にホモジナイザーの作用を受けた場合は何れでもァ ルカリ超音波の場合より汚泥の発生量が著しく少なく、 処理水質も殆ど差がなか つた。
上記表 2に示す各実験結果について、 表 1と比べてみると、 CODを可溶化指 標とした可溶化評価ではアル力リ超音波にホモジナイザーを付加した場合では可 溶化効果があるものの、 汚泥の転換率を指標とした汚泥減容化評価に関してはホ モジナイザーの効果が著しく大きいことがわかった。 これはホモジナイザーによ る菌体の細胞壁から内容物の漏出が促進され更なる分解により生物処理しやすく なることが寄与したと考えられる。 これらの結果から、 汚泥の減容化効果に及ぼ すアルカリ超音波とホモジナイザーの相乗効果は大きいことが確認された。 以上説明したように、 本発明に基づく余剰汚泥の減容化方法によれば、 アル力 リ条件で超音波を作用させた後にホモジナイザーの減圧膨張作用を作用させ、 又 は同時に作用させることにより、 可溶化効果を高めることができる。 すなわち、 超音波の作用とホモジナイザ一の作用を相乗させることにより微生物細胞の可溶 化効果を高めることができる。
本発明の他の実施例に基づく余剰汚泥の減容化方法によれば、 アル力リは夕ン パク質の溶解に寄与し、 中和されれば環境に無害であり、 更に生物処理系では炭 酸ガスの溶け込みによる p Hの低下を防止すること及び p Hの調整ができる。 ま た、 溶菌剤は微生物の細胞壁を破壊することができる。
本発明の他の実施例に基づく余剰汚泥の減容化装置によれば、 減圧膨張手段に より高い可溶化が図られ、 高い可溶化効果により、 高い減容化が実現される。 本発明の他の実施例に基づく余剰汚泥の減容化装置によれば、 超音波とアル力 リ等の可溶化剤により微生物の細胞壁を壊したり、 傷つけられた細胞を減圧膨張 により、 細胞の中身の漏出を促進し、 可溶化剤による更なる反応で微生物に利用 されやすい物質に変えることができる。
本発明の他の実施例に基づく余剰汚泥の減容化装置によれば、 超音波付与手段 と減圧膨張手段とが別装置であるのでそれぞれの装置の性能を最大限発揮させる ように設計することができ、 超音波付与と減圧膨張との各処理の操作条件を自由 にそれぞれ独立に最適に制御できる。
本発明の他の実施例に基づく余剰汚泥の減容化装置によれば、 超音波付与手段 と減圧膨張手段とがーの装置として構成されているので、 装置の大きさを最小限 に抑えるように設計をすることができ、 装置全体のコストを低減でき、 装置操作 の制御も簡単に行うことができる。
本発明の他の実施例に基づく余剰汚泥の減容化装置によれば、 流れに対応して 配置された板状体により高い可溶化が図られる。
本発明のさらに他の実施例に基づくの余剰汚泥の減容化装置によれば、 介装さ れた受流板状体により高い可溶化が図られる。

Claims

請求の範囲
1 . 有機性廃水に微生物処理を施すことにより生ずる余剰汚泥に、 可溶化剤を添 加し、 超音波を作用させ、 減圧膨張処理を施した後に、 再び微生物処理を施すこ とにより、 前記余剰汚泥の容積を減少させることを特徴とする余剰汚泥の減容化 方法。
2 . 前記可溶化剤が、 アルカリ、 又は溶菌剤、 又はこれらの組み合わせであるこ とを特徴とする請求項 1記載の余剰汚泥の減容化方法。
3 . 有機性廃水を微生物処理を施すことにより生じた余剰汚泥に、 可溶化剤を添 加する手段と、 超音波を作用させる超音波付与手段と、 当該超音波付与手段の下 流側に設けられて前記余剰汚泥に減圧膨張処理を施す減圧膨張手段とを備えたこ とを特徴とする余剰汚泥の減容化装置。
4 . 前記減圧膨張手段がホモジナイザ一であることを特徴とする請求項 3記載の 余剰汚泥の減容化装置。
5 . 前記超音波付与手段と前記減圧膨張手段とが別装置として構成され、 これら の超音波付与手段と減圧膨張手段とが直接又は他の装置を介して直列に接続され ていることを特徴とする請求項 3又は 4記載の余剰汚泥の減容化装置。
6 . 前記超音波付与手段と前記減圧膨張手段との機能を併せ持つ一の装置として 構成されていることを特徴とする請求項 3又は 4記載の余剰汚泥の減容化装置。
7 . 前記超音波付与手段が超音波振動子を含み、 前記減圧膨張手段が、 当該超音 波振動子の下流に流れに交差するように配置された、 多数の貫通孔が形成された 板状体を含むことを特徴とする請求項 6記載の余剰汚泥の減容化装置。
8 . 前記超音波付与手段と前記減圧膨張手段との間に、 流れを遮るように受流板 状体を介装したことを特徴とする請求項 6又は 7記載の余剰汚泥の減容化装置。
PCT/JP2001/008842 2000-10-06 2001-10-09 Procede et dispositif permettant de reduire le volume de boues excedentaires WO2002088033A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01972717A EP1329426A4 (en) 2000-10-06 2001-10-09 METHOD AND DEVICE FOR VOLUME REDUCTION OF EXHAUST SLUDGE
JP2002585340A JPWO2002088033A1 (ja) 2000-10-06 2001-10-09 余剰汚泥の減容化方法及び装置
US10/169,366 US6773597B2 (en) 2000-10-06 2001-10-09 Method and apparatus for reducing excess sludge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-308485 2000-10-06
JP2000308485A JP2005230582A (ja) 2000-10-06 2000-10-06 余剰汚泥の減容化方法及び装置

Publications (1)

Publication Number Publication Date
WO2002088033A1 true WO2002088033A1 (fr) 2002-11-07

Family

ID=18788786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008842 WO2002088033A1 (fr) 2000-10-06 2001-10-09 Procede et dispositif permettant de reduire le volume de boues excedentaires

Country Status (6)

Country Link
US (1) US6773597B2 (ja)
EP (1) EP1329426A4 (ja)
JP (2) JP2005230582A (ja)
KR (1) KR20030047870A (ja)
CN (1) CN1210217C (ja)
WO (1) WO2002088033A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843106B1 (fr) * 2002-08-05 2004-10-08 Omnium Traitement Valorisa Procede et installation de traitement des boues provenant des installations d'epuration biologique des eaux
KR20040021147A (ko) * 2002-09-02 2004-03-10 환경관리공단 초음파를 이용한 슬러지 무배출 생물학적 고도수처리 시스템
CN1321078C (zh) * 2005-09-14 2007-06-13 北京天地人环保科技有限公司 用超声波处理污泥使污泥减量化的方法
KR100603990B1 (ko) * 2005-10-19 2006-07-25 유현재 슬러지 감량 및 바이오 가스 증산이 가능하도록 초음파 공동화 현상을 이용한 슬러지 리액터
JP5053629B2 (ja) * 2006-01-05 2012-10-17 旭有機材工業株式会社 分散装置
CN100363276C (zh) * 2006-03-03 2008-01-23 清华大学 一种污泥超声波脱水方法
JP2008012476A (ja) * 2006-07-07 2008-01-24 Honda Motor Co Ltd 排水処理システム
CN100404444C (zh) * 2006-09-01 2008-07-23 清华大学 城镇污水污泥的减量化、资源化方法
JP5457620B2 (ja) * 2006-09-27 2014-04-02 日環特殊株式会社 汚泥減容炭化装置とその方法と有機性排水処理システム
US20080078719A1 (en) * 2006-09-29 2008-04-03 Malcolm Ezekiel Fabiyi System and method for treating wastewater
US7309432B1 (en) * 2006-09-29 2007-12-18 Praxair Technology, Inc. System and method for eliminating sludge via ozonation
US7513999B2 (en) * 2006-09-29 2009-04-07 Praxair Technology, Inc. Ozonation of wastewater for reduction of sludge or foam and bulking control
KR100778155B1 (ko) * 2007-01-31 2007-11-28 주식회사 타 셋 하수 슬러지의 가수분해 및 초음파 병합 농축에 의한혐기성 소화 처리 장치
CN101182092B (zh) * 2007-11-07 2010-06-02 天津大学 生物污泥的减量化方法
CN101574027B (zh) * 2009-06-11 2011-01-12 绍兴文理学院 超声波松土器及松土方法
CN101786778B (zh) * 2010-03-23 2012-05-23 天津大学 生物污泥的减量化方法
CN102249513B (zh) * 2010-05-21 2014-04-16 金达坂(上海)新能源设备有限公司 一种城市污泥无害化处理系统及方法
US8435409B2 (en) 2010-05-28 2013-05-07 Ecolab Usa Inc. Activated sludge process in wastewater treatment
CN103249682A (zh) * 2010-12-17 2013-08-14 通用电气公司 从生物修复流出物或淤泥回收硒的生物化学方法
CN102225830A (zh) * 2011-05-18 2011-10-26 安徽雷克环保科技有限公司 一种城市污泥的资源化处理方法
WO2013081977A1 (en) 2011-12-01 2013-06-06 Praxair Technology, Inc. Method and system for sludge ozonation in a wastewater treatment system
CN103435238A (zh) * 2013-09-02 2013-12-11 中国矿业大学 低能量密度超声波与氢氧化钙联合破解剩余污泥的方法
CN104211278A (zh) * 2014-09-18 2014-12-17 句容市深水水务有限公司 一种污泥减量生物处理系统及其使用方法
CN112645553A (zh) * 2020-11-30 2021-04-13 惠州哈尔滨工业大学国际创新研究院 超声波负压处理污泥的方法
CN114516713B (zh) 2022-02-17 2022-09-13 生态环境部华南环境科学研究所 一种基于机械-超声联用的污泥细胞破解用一体化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370235A (en) * 1978-07-04 1983-01-25 Shinryo Air Conditioning Co., Ltd. Method of treating excess sludge
JPH02227191A (ja) * 1989-02-28 1990-09-10 Ebara Infilco Co Ltd 有機性汚水の処理方法
JPH08281299A (ja) * 1995-04-18 1996-10-29 Meidensha Corp 超音波を用いた汚泥処理方法
JPH11147100A (ja) * 1997-11-17 1999-06-02 Ebara Corp 有機性汚水の処理方法
JPH11156399A (ja) * 1997-11-28 1999-06-15 Ebara Corp 有機性汚水の処理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299199A (ja) 1988-10-06 1990-04-11 Fujita Corp 有機性汚泥処理法
US5068036A (en) * 1988-12-28 1991-11-26 Chemical Waste Management, Inc. Activated sludge process with in situ recovery of powdered adsorbent
JPH05345192A (ja) 1990-12-11 1993-12-27 Ina Food Ind Co Ltd 排水処理方法
JPH07323300A (ja) 1994-05-30 1995-12-12 Kyodo Kumiai Inbaiomento 汚泥の高効率嫌気性消化方法
JP2806495B2 (ja) 1994-06-02 1998-09-30 鹿島建設株式会社 余剰汚泥の処理方法
JP3627894B2 (ja) 1997-10-30 2005-03-09 株式会社荏原製作所 有機性汚水の処理方法と装置
JP3307878B2 (ja) * 1998-06-15 2002-07-24 神鋼パンテツク株式会社 有機性廃水の処理方法及びその処理装置
JP2000271598A (ja) * 1999-03-24 2000-10-03 Ebara Corp 有機性汚泥の嫌気性処理方法
JP2001038397A (ja) * 1999-07-30 2001-02-13 Able:Kk 余剰汚泥の減容化方法及び装置
DE19940994B4 (de) * 1999-08-28 2004-02-26 Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) Verfahren zum Abbau von Klärschlamm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370235A (en) * 1978-07-04 1983-01-25 Shinryo Air Conditioning Co., Ltd. Method of treating excess sludge
JPH02227191A (ja) * 1989-02-28 1990-09-10 Ebara Infilco Co Ltd 有機性汚水の処理方法
JPH08281299A (ja) * 1995-04-18 1996-10-29 Meidensha Corp 超音波を用いた汚泥処理方法
JPH11147100A (ja) * 1997-11-17 1999-06-02 Ebara Corp 有機性汚水の処理方法
JPH11156399A (ja) * 1997-11-28 1999-06-15 Ebara Corp 有機性汚水の処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1329426A4 *

Also Published As

Publication number Publication date
CN1416408A (zh) 2003-05-07
US20030136733A1 (en) 2003-07-24
JP2005230582A (ja) 2005-09-02
KR20030047870A (ko) 2003-06-18
EP1329426A1 (en) 2003-07-23
EP1329426A4 (en) 2005-01-12
CN1210217C (zh) 2005-07-13
US6773597B2 (en) 2004-08-10
JPWO2002088033A1 (ja) 2004-08-12

Similar Documents

Publication Publication Date Title
WO2002088033A1 (fr) Procede et dispositif permettant de reduire le volume de boues excedentaires
WO2004026774A1 (ja) 汚泥減量方法および装置
JP4840563B2 (ja) 汚水処理装置
KR100782874B1 (ko) 유기성 배수의 처리방법
KR20020080285A (ko) 슬러지 분해가용화 방법을 이용한 슬러지 무배출하수고도처리방법
JP3775654B2 (ja) 有機性汚水の生物処理における余剰汚泥の減量化方法及び装置
JP2002361293A (ja) 有機性汚泥の減量化方法及び装置
JP4667890B2 (ja) 有機性廃棄物の処理方法
JP2001347296A (ja) 汚泥の処理方法および処理装置、それを利用した汚水の処理方法および処理装置
JP2006239625A (ja) 有機性廃棄物の処理方法及び処理設備
US7147780B2 (en) Process for reducing sludge derived from the treatment of wastewater by oxygenation and mechanical action
KR20020075635A (ko) 슬러지 무배출형 하폐수의 처리 공정 및 그 장치
KR20050055917A (ko) 스플릿 플로우형 초음파 슬러지 분해 반응기를 갖는하.폐수처리 장치
JP2001259663A (ja) 有機性廃水の処理方法
KR100337758B1 (ko) 슬러지 무배출 생물학적 하폐수 처리 방법 및 그 장치
JP2005270862A (ja) 嫌気性処理装置
JP2006326438A (ja) 汚泥処理装置及び汚泥処理方法
JP2000202484A (ja) 有機性汚水の生物処理方法
JP2001038397A (ja) 余剰汚泥の減容化方法及び装置
JP2001121183A (ja) 有機性廃液の処理方法
CACHO RIVERO Anaerobic Digestion of Excess Municipal Sludge: Optimization for Increased Solid Destruction
JP2003071484A (ja) 有機性廃水の処理方法と装置
JP2002028685A (ja) 有機性廃液の好気性処理方法及びその装置
JP3756827B2 (ja) 汚泥減量方法および装置
JP2001225091A (ja) 汚水と汚泥の処理方法及びその処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020027007207

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018030459

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001972717

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10169366

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002585340

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020027007207

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001972717

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001972717

Country of ref document: EP