WO2002084647A2 - Antiferromagnetisches schichtsystem und verfahren zur magnetischen datenspeicherung in derartigen antiferromagnetischen schichtsystemen - Google Patents

Antiferromagnetisches schichtsystem und verfahren zur magnetischen datenspeicherung in derartigen antiferromagnetischen schichtsystemen Download PDF

Info

Publication number
WO2002084647A2
WO2002084647A2 PCT/DE2002/001301 DE0201301W WO02084647A2 WO 2002084647 A2 WO2002084647 A2 WO 2002084647A2 DE 0201301 W DE0201301 W DE 0201301W WO 02084647 A2 WO02084647 A2 WO 02084647A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
antiferromagnetic layer
antiferromagnetic
ferromagnetic
magnetic
Prior art date
Application number
PCT/DE2002/001301
Other languages
English (en)
French (fr)
Other versions
WO2002084647A3 (de
WO2002084647A8 (de
Inventor
Oliver De Haas
Rudolf Schäfer
Claus Schneider
Original Assignee
Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. filed Critical Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V.
Priority to EP02761864A priority Critical patent/EP1377979A2/de
Priority to AU2002308373A priority patent/AU2002308373A1/en
Priority to JP2002581516A priority patent/JP2004531845A/ja
Priority to US10/473,591 priority patent/US20040086750A1/en
Publication of WO2002084647A2 publication Critical patent/WO2002084647A2/de
Publication of WO2002084647A3 publication Critical patent/WO2002084647A3/de
Publication of WO2002084647A8 publication Critical patent/WO2002084647A8/de

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10584Record carriers characterised by the selection of the material or by the structure or form characterised by the form, e.g. comprising mechanical protection elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3218Exchange coupling of magnetic films via an antiferromagnetic interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10504Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10515Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1409Heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer

Definitions

  • Antiferromagnetic layer system and method for magnetic data storage in such antiferromagnetic layer systems are provided.
  • the invention relates to the field of materials technology and relates to antiferromagnetic layer systems and methods for magnetic data storage in such antiferromagnetic layer systems, which can be used, for example, in computer hard disks or in other magnetic mass storage devices.
  • Granular hard magnetic materials such as e.g. sputtered cobalt-platinum layers and layer systems are used as storage medium.
  • the storage information is in the form of the magnetic structure, a magnetic domain extending over several grains. A transition between two oppositely magnetized areas represents a storage unit (one bit).
  • the information is written in by local magnetic fields and can therefore be inadvertently changed or deleted by strong external fields.
  • the operation of these conventional storage disks is described in the patents US 4,789,598 and US 5,523,173.
  • antiferromagnetic materials in contrast to ferromagnets, neighboring atomic moments are not aligned in parallel, but in anti-parallel. They therefore have a disappearing average magnetization. If the two magnetic sublattices aligned in antiparallel (only the atoms whose spins have the same sense of direction) are considered, then the sublattice magnetizations prefer to take certain directions. Like ferromagnets, antiferromagnets generally have uniaxial or multiaxial anisotropy. Due to the vanishing total torque, antiferromagnets do not interact with external magnetic fields as long as the anti-parallel alignment of the sub-grids is not broken.
  • an antiferromagnet Due to the intrinsic magnetic properties of an antiferromagnet, it can serve as a storage medium.
  • the sublattice magnetizations of the antiferromagnet are not sensitive to magnetic fields that occur in technical devices. A written information would therefore be insensitive to interference fields.
  • the transition area between two domains can be kept very narrow, since transitions between opposite sublattice magnetizations on the atomic scale are possible in the antiferromagnet. Due to the disappearing mean magnetization, antiferromagnetic domains do not generate stray fields. As a result, no demagnetization effects are to be expected.
  • Antiferromagnets therefore offer the prerequisite for a significant increase in the storage density compared to conventional ferromagnetic layers. So far, however, it has not been possible to specifically write information into the antiferromagnet. Likewise, no method is known for reading information from antiferromagnets.
  • the object of the invention is to provide an antiferromagnetic layer system and methods by means of which it is possible to specifically write and read information in such antiferromagnetic layer systems.
  • the antiferromagnetic layer system consists of at least one ferromagnetic and at least one antiferromagnetic layer, the Curie temperature of the ferromagnetic layer material being above the blocking temperature of the layer system.
  • the ferromagnetic and antiferromagnetic layer (s) are coupled to one another at least with regard to their magnetization configuration by means of exchange anisotropy effects. Taking advantage of the temperature dependence of the reaction of the ferromagnetic layer on the antiferromagnetic layer, the temperature dependence of the stability of the magnetization configuration can be controlled by selecting the thickness of the antiferromagnetic layer.
  • the layer thicknesses of the antiferromagnetic layer (s) are thus a function of the operating temperature of the antiferromagnetic layer system used, the layer thickness also increasing with increasing operating temperature.
  • the ferromagnetic and antiferromagnetic layer (s) are not or only partially in direct contact, a magnetic interaction between the layers being realized in each case. It is also advantageous if a non-magnetic intermediate layer is arranged between at least one of the ferromagnetic and antiferromagnetic layers, the magnetic interaction between the ferromagnetic and the antiferromagnetic layer not being significantly impeded by the non-magnetic intermediate layer.
  • the non-magnetic intermediate layers advantageously have layer thicknesses between 0.2 and 2.0 nm.
  • the layer systems are also advantageously expanded and / or structured.
  • NiFe permalloy
  • ferromagnetic layer material NiFe (permalloy) is also advantageously used as the ferromagnetic layer material.
  • NiO, IrMn and / or FeMn are used as the antiferromagnetic layer material.
  • the layers have lateral dimensions in the micro and / or nano range.
  • At least one layer system is produced from at least one ferromagnetic layer and from at least one antiferromagnetic layer.
  • the ferromagnetic layer material used has a Curie temperature above the blocking temperature of the antiferromagnetic layer material used.
  • the at least one antiferromagnetic layer of the layer system undergoes a one- or multi-stage local heat treatment at a temperature above the blocking temperature of the antiferromagnetic layer material and below that Subjected to the Curie temperature of the ferromagnetic layer material and then the cooling is carried out in the presence of a global or local directional magnetic field.
  • the local heat treatment is advantageously carried out by means of a laser, near-field optics or a conductive scanning probe tip.
  • the reading of the stored data is also advantageously carried out using magneto-optical or magnetoresistive methods.
  • an antiferromagnetic layer and a ferromagnetic layer are brought into contact, they couple via exchange anisotropy effects, at least with regard to their magnetization configuration.
  • a magnetization configuration is formed in the antiferromagnetic layer that follows that of the ferromagnetic layer or in the ferromagnetic layer a magnetization configuration that follows that of the antiferromagnetic layer.
  • the antiferromagnetic layer system used is used at an operating temperature above the blocking temperature of the antiferromagnetic layer.
  • the magnetization configuration of the ferromagnetic component in the antiferromagnetic layer is then stored locally by means of exchange coupling via a ferromagnetic component and / or the magnetization configuration of the antiferromagnetic layer is read by the ferromagnetic component.
  • a magnetic field is applied to store the data, and the data is read without applying a magnetic field. Best way to carry out the invention
  • Fig. 1 shows the structure of a data memory from the invention
  • Fig. 2 shows the structure of a data memory from the invention
  • a layer system consisting of 12 nm NiO, 10 nm Ni 8 ⁇ m and 2 nm Ta as an oxidation barrier by cathode sputtering at 20.degree.
  • a rotationally symmetrical magnetic field with a strength of 1 kA / cm is present during the layer deposition.
  • the blocking temperature of the layer system thus produced is 70 ° C.
  • the disk 3 rotates under a movable read / write head 4.
  • the antiferromagnetic layer 2 cannot be influenced by magnetic fields up to 0.5 T.
  • the layer system can be heated to temperatures of> 85 °.
  • the size of the heated area 8 depends on the size of the light spot.
  • a light spot with a diameter of 300 nm is achieved by a focused laser beam 6 or the light is concentrated on an area of a few tens of nm by means of near-field optics 7 (pointed optical waveguide).
  • the blocking temperature is exceeded locally, the magnetization generated by the write head 4 in the ferromagnetic layer 1 is transferred into the magnetization configuration of the antiferromagnetic layer 2. Since the disk 3 moves away under the light spot and the read / write head 4, the point described cools down again immediately after the write operation to below the blocking temperature of 70 ° C., so that the information written in is stable against external fields.
  • the stray field of the ferromagnetic Ni ⁇ iFeig layer which is measured by a magnetoresistive reading head 4, serves for information.
  • NiO layer is applied to a circular disk 3, which serves as the carrier material, by means of cathode sputtering at 20 ° C.
  • a rotationally symmetrical magnetic field with a strength of 1 kA / cm is present during the layer deposition.
  • the disk 3 moves under a likewise movable read / write head 4.
  • the read / write head 4 consists of a layer system NiFe (1 nm) Cu (0.8 nm) Co (10 nm) and a magnetic yoke , which is surrounded by a current coil and in the opening of which the layer system is located.
  • the read / write head 4 is approximated to the storage disk 3 until the magnetic coupling between the antiferromagnetic NiO layer 2 and the 1 nm thick Ni ⁇ iFeig layer 1 of the read head 4 is established.
  • a magnetization is forced on the Ni ⁇ iFeig layer 1 by a current in the current coil, which magnetization is taken over by the antiferromagnetic layer 2 due to the exchange anisotropy.
  • the read / write head 4 is approximated in the same way as for writing to the storage disk 3. However, no current flows through the coil, so that the free Ni ⁇ iFeig layer 1 aligns itself in accordance with the exchange anisotropy of the antiferromagnetic NiO layer 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Record Carriers (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Thin Magnetic Films (AREA)

Abstract

Die Erfindung bezieht sich auf das Gebiet der Werkstofftechnik und betrifft antiferromagnetische Schichtsysteme und Verfahren zur magnetischen Datenspeicherung, die beispielsweise in Computerfestplatten zur Anwendung kommen können.Die Aufgabe der Erfindung besteht in der Angabe eines antiferromagnetischen Schichtsystems und von Verfahren, mit deren Hilfe ein gezieltes Einschreiben und Lesen von Informationen in derartigen antiferromagnetischen Schichtsystemen möglich ist.Gelöst wird die Aufgabe durch ein Antiferromagnetisches Schichtsystem, bestehend aus mindestens einer ferromagnetischen (1) und mindestens einer antiferromagnetischen Schicht (2), wobei die Curie-Temperatur des ferromagnetischen Schichtmaterials über der Blockingtemperatur des antiferromagnetischen Schichtmaterials liegt, und bei dem die ferromagnetischen und antiferromagnetischen Schicht(en) durch Austauschanisotropieeffekte miteinander mindestens hinsichtlich ihrer Magnetisierungskonfiguration gekoppelt sind, und bei dem die Schichtdicke der antiferromagnetischen Schicht(en) eine Funktion der Betriebstemperatur des eingesetzten antiferromagnetischen Schichtsystems ist, wobei mit zunehmenden Betriebstemperaturen die Schichtdicken ebenfalls zunehmen.

Description

Antiferromagnetisches Schichtsystem und Verfahren zur magnetischen Datenspeicherung in derartigen antiferromagnetischen Schichtsystemen
Anwendungsgebiet der Erfindung
Die Erfindung bezieht sich auf das Gebiet der Werkstofftechnik und betrifft antiferromagnetische Schichtsysteme und Verfahren zur magnetischen Datenspeicherung in derartigen antiferromagnetischen Schichtsystemen, die beispielsweise in Computerfestplatten oder in anderen magnetischen Massenspeichern zur Anwendung kommen können.
Stand der Technik
Zur magnetischen Datenspeicherung werden bisher granuläre hartmagnetische Materialien wie z.B. aufgestäubte Kobalt-Platin-Schichten und Schichtsysteme als Speichermedium verwendet. Die Speicherinformation liegt in Form der magnetischen Struktur vor, wobei sich eine magnetische Domäne über mehrere Körner erstreckt. Ein Übergang zwischen zwei entgegengesetzt magnetisierten Bereichen stellt eine Speichereinheit (ein Bit) dar. Die Information wird durch lokale magnetische Felder eingeschrieben und kann somit durch starke externe Felder unbeabsichtigt verändert oder gelöscht werden. Die Funktionsweise diese herkömmlichen Speicherplatten wird in den Patenten US 4,789,598 und US 5,523,173 beschrieben.
In den letzten Jahren konnte durch Weiterentwicklung der magnetischen Materialien und Bauteile eine jährliche Steigerung der Speicherdichte von ca. 30 % und mehr erreicht werden. Die Erhöhung der Speicherdichte verringert die Fläche, die einer Speichereinheit zur Verfügung steht umgekehrt proportional. Damit rücken benachbarte Domänenübergänge näher zusammen. Deren Streufeld, das auch zum Auslesen der Information über Mangetowiderstands-Leseköpfe genutzt wird, destabilisiert aber die Magnetisierung der einzelnen Domänen. Gleichzeitig erhöht sich bei Verkleinerung der magnetischen Bereiche auch deren Anfälligkeit gegenüber thermischen Fluktuationen und durch sie bewirkte Ummagnetisierungsprozesse. Letzeres wird auch als „superparamagnetisches Limit" bezeichnet. Um kleinere Bereiche dennoch stabil zu magnetisieren, muss die magnetische Anisotropie der magnetischen Körner erhöht oder deren Magnetisierung und damit das Streufeld verringert werden. Beide Möglichkeiten um Informationen schreiben zu können, führen zu einer Erhöhung der Koerzitivfeldstärke, die nötig ist, um einen Bereich umzumagnetisieren. Das Magnetfeld, welches vom Schreibkopf erzeugt werden kann, ist durch die Sättigungsmagnetisierung des Jochmaterials begrenzt. Aufgrund der genannten Einschränkungen findet die magnetische Speicherdichte bei ca. 100 Gbit/ZollΛ2 (15,5 Gbit/cmΛ2) ein oberes Maximum.
In antiferromagnetischen Materialien sind benachbarte atomare Momente im Gegensatz zu Ferromagneten nicht parallel, sondern antiparallel ausgerichtet. Sie haben deshalb eine verschwindende mittlere Magnetisierung. Werden die beiden antiparallel ausgerichteten magnetischen Untergitter (nur die Atome, deren Spins den gleichen Richtungssinn haben) betrachtet, so nehmen die Untergittermagnetisierungen bestimmte Richtungen bevorzugt ein. Wie die Ferromagnete besitzen Antiferromagnete im allgemeinen eine ein- oder mehrachsige Anisotropie. Antiferromagnete wechselwirken aufgrund des verschwindenden Gesamtmomentes nicht mit externen Magnetfeldern, solange die antiparallele Ausrichtung der Untergitter nicht aufgebrochen wird.
Aufgrund der intrinsischen magnetischen Eigenschaften eines Antiferromagneten kann dieser als Speichermedium dienen. Die Untergittermagnetisierungen des Antiferromagneten sind auf Magnetfelder, wie sie in technischen Geräten vorkommen, nicht empfindlich. Eine eingeschriebene Information wäre daher unempfindlich gegen Störfelder. Zusätzlich kann der Übergangsbereich zwischen zwei Domänen sehr schmal gehalten werden, da im Antiferromagneten Übergänge zwischen entgegengesetzten Untergittermagnetisierungen auf atomarer Skala möglich sind. Aufgrund der verschwindenden mittleren Magnetisierung erzeugen antiferromagnetische Domänen keine Streufelder. Dadurch sind auch keine Entmagnetisierungseffekte zu erwarten. Antiferromagneten bieten daher die Voraussetzung für eine deutliche Erhöhung der Speicherdichte gegenüber herkömmlichen ferromagnetischen Schichten. Bislang ist es aber nicht möglich Informationen gezielt in den Antiferromagneten einzuschreiben. Ebenso ist noch keine Methode für das Auslesen von Informationen aus Antiferromagneten bekannt. Darlegung der Erfindung
Die Aufgabe der Erfindung besteht in der Angabe eines antiferromagnetischen Schichtsystems und von Verfahren, mit deren Hilfe ein gezieltes Einschreiben und Lesen von Informationen in derartigen antiferromagnetischen Schichtsystemen möglich ist.
Die Aufgabe wird durch die in den Ansprüchen angegebene Erfindung gelöst. Weiterbildungen sind Gegenstand der Unteransprüche.
Das erfindungsgemäße antiferromagnetische Schichtsystem besteht aus mindestens einer ferromagnetischen und mindestens einer antiferromagnetischen Schicht, wobei die Curie-Temperatur des ferromagnetischen Schichtmaterials über der Blockingtemperatur des Schichtsystems liegt. Dabei sind die ferromagnetischen und antiferromagnetischen Schicht(en) durch Austauschanisotropieeffekte miteinander mindestens hinsichtlich ihrer Magnetisierungskonfiguration gekoppelt. Unter Ausnutzung der Temperaturabhängigkeit der Rückwirkung der ferromagnetischen Schicht auf die antiferromagnetische Schicht kann durch die Auswahl der Dicke der antiferromagnetischen Schicht die Temperaturabhängigkeit der Stabilität der Magnetisierungskonfiguration gesteuert werden. Damit sind die Schichtdicken der antiferromagnetischen Schicht(en) eine Funktion der Betriebstemperatur des eingesetzten antiferromagnetischen Schichtsystems, wobei mit zunehmender Betriebstemperatur die Schichtdicken ebenfalls zunehmen.
Auf diese Art und Weise ist es möglich, eine bei Betriebstemperatur gegen hohe Magnetfelder stabile Information zu speichern und durch gesteuerte Temperaturerhöhung in vorteilhafterweise relativ geringen Bereichen das Einschreiben und Lesen von Daten in die antiferromagnetische Schicht(en) zu erreichen.
Vorteilhafterweise sind die ferromagnetische(n) und antiferromagnetische(n) Schicht(en) nicht oder nur teilweise im direkten Kontakt, wobei in jedem Fall eine magnetische Wechselwirkung zwischen den Schichten realisiert ist. Es ist auch vorteilhaft, wenn zwischen mindestens einer der ferromagnetischen und antiferromagnetischen Schichten eine nichtmagnetische Zwischenschicht angeordnet ist, wobei die magnetische Wechselwirkung zwischen der ferromagnetischen und der antiferromagnetischen Schicht durch die nichtmagnetische Zwischenschicht nicht wesentlich behindert werden darf.
Vorteilhafterweise weisen die nichtmagnetischen Zwischenschichten Schichtdicken zwischen 0,2 und 2,0 nm auf.
Ebenfalls vorteilhafterweise sind die Schichtsysteme ausgedehnt und/oder strukturiert.
Auch vorteilhafterweise ist als ferromagnetisches Schichtmaterial NiFe (Permalloy) eingesetzt.
Weiterhin ist vorteilhaft, dass als antiferromagnetisches Schichtmaterial NiO, IrMn und/oder FeMn eingesetzt sind.
Es ist auch vorteilhaft, wenn bei Betriebstemperaturen zwischen 0 und 150 °C Schichtdicken der antiferromagnetischen Schicht zwischen 1 und 20 nm vorhanden sind.
Ebenfalls ist es vorteilhaft, wenn die Schichten laterale Abmessungen im Mikro- und/oder Nanobereich aufweisen.
Bei dem erfindungsgemäßen Verfahren zur magnetischen Datenspeicherung in antiferromagnetischen Schichtsystemen wird mindestens ein Schichtsystem aus mindestens einer ferromagnetischen Schicht und aus mindestens einer antiferromagnetischen Schicht hergestellt. Dabei weist das eingesetzte ferromag netische Schichtmaterial eine Curie-Temperatur oberhalb der Blockingtemperatur des eingesetzten antiferromagnetischen Schichtmaterials auf. Die mindestens eine antiferromagnetische Schicht des Schichtsystems wird einer ein- oder mehrstufigen lokalen Wärmebehandlung bei einer Temperatur oberhalb der Blockingtemperatur des antiferromagnetischen Schichtmaterials und unterhalb der Curie-Temperatur des ferromagnetischen Schichtmaterials unterzogen und anschließend wird die Abkühlung in Gegenwart eines globalen oder lokalen gerichteten Magnetfeldes durchgeführt.
Vorteilhafterweise wird die lokale Wärmebehandlung mittels eines Lasers, einer Nahfeldoptik oder einer leitfähigen Rastersondenspitze durchgeführt.
Ebenfalls vorteilhafterweise wird das Lesen der gespeicherten Daten über magnetooptische oder magnetoresistive Verfahren durchgeführt.
Werden eine antiferromagnetische Schicht und eine ferromagnetische Schicht in Kontakt gebracht, so koppeln diese über Austauschanisotropieeffekte mindestens hinsichtlich ihrer Magnetisierungskonfiguration. Abhängig von der Balance der Stabilitäten (Anisotropien) der ferromagnetischen und antiferromagnetischen Schicht bildet sich in der antiferromagnetischen Schicht eine Magnetisierungskonfiguration, die derjenigen der ferromagnetischen Schicht folgt oder in der ferromagnetischen Schicht eine Magnetisierungskonfiguration, die derjenigen der antiferromagnetischen Schicht folgt. Durch Temperaturerhöhung über die Blockingtemperatur wird die Stabilität der Magnetisierungskonfiguration der antiferromagnetischen Schicht so stark geschwächt, dass diese die Magnetisierungskonfiguration der ferromagnetischen Schicht annimmt und diese beim Abkühlen unter die Blockingtemperatur beibehält.
Bei dem weiteren erfindungsgemäßen Verfahren zur magnetischen Datenspeicherung in antiferromagnetischen Schichtsystemen wird das eingesetzte antiferromagnetische Schichtsystem bei einer Betriebstemperatur oberhalb der Blockingtemperatur der antiferromagnetischen Schicht eingesetzt. Über ein ferromagnetisches Bauteil wird dann die Magnetisierungskonfiguration des ferromagnetischen Bauteils in der antiferromagnetischen Schicht mittels Austauschkopplung lokal gespeichert und/oder die Magnetisierungskonfiguration der antiferromagnetischen Schicht von dem ferromagnetischen Bauteil gelesen. Dabei wird zum Speichern der Daten ein Magnetfeld angelegt und das Lesen der Daten wird ohne Anlegen eines Magnetfeldes durchgeführt. Bester Weg zur Ausführung der Erfindung
Im weiteren wird die Erfindung an mehreren Ausführungsbeispielen näher erläutert.
Dabei zeigt
Fig. 1 den Aufbau eines Datenspeichers aus dem erfindungsgemäßen
Schichtsystem unter Einsatz von Bauteilen zur lokalen Temperaturerhöhung und
Fig. 2 den Aufbau eines Datenspeichers aus dem erfindungsgemäßen
Schichtsystem unter Einsatz eines magnetischen Bauteils zur Speicherung der Daten
Beispiel 1:
Auf eine kreisrunde Scheibe, die als Trägermaterial 3 dient, wird ein Schichtsystem, bestehend aus 12 nm NiO, 10 nm Ni8ιFeιg und 2 nm Ta als Oxidationsbarriere mittels Kathodenzerstäubung bei 20°C flächig aufgebracht. Während der Schichtabscheidung liegt ein rotationssymmetrisches Magnetfeld der Stärke 1 kA/cm an. Die Blockingtemperatur des so hergestellten Schichtsystems liegt bei 70°C. Im Betrieb rotiert die Scheibe 3 unter einem beweglichen Schreib-Lese-Kopf 4. Im Temperaturbereich von 0°C bis 70°C, der Betriebstemperatur, lässt sich die antiferromagnetische Schicht 2 durch Magnetfelder bis 0,5 T nicht beeinflussen. Durch Einkoppeln eines energiereichen Lichtfleckes in Rotationsrichtung unmittelbar vor dem Schreib-Lese-Kopf 4, lässt sich das Schichtsystem auf Temperaturen von > 85° erwärmen. Die Größe des erwärmten Bereichs 8 hängt von der Größe des Lichtfleckes ab. Durch einen fokussierten Laserstrahl 6 wird ein Lichtfleck von 300 nm Durchmesser erzielt oder durch eine Nahfeldoptik 7 (angespitzter Lichtwellenleiter) das Licht auf eine Fläche von wenigen zehn nm konzentriert. Durch das lokale Überschreiten der Blockingtemperatur wird die durch den Schreib- Kopf 4 in der ferromagnetischen Schicht 1 erzeugte Magnetisierung in die Magnetisierungskonfiguration der antiferromagnetischen Schicht 2 übertragen. Da sich die Scheibe 3 unter dem Lichtfleck und dem Schreib-Lese-Kopf 4 hinwegbewegt, kühlt die beschriebene Stelle unmittelbar nach dem Schreibvorgang wieder unter die Blockingtemperatur von 70°C ab, so dass die eingeschriebene Information stabil gegen äußere Felder ist. Zum Auslesen der geschriebenen Information dient das Streufeld der ferromagnetischen NiβiFeig-Schicht, das von einen magnetoresistiven Lesekopf 4 gemessen wird.
Beispiel 2:
Auf eine kreisrunde Scheibe 3, die als Trägermaterial dient, wird eine 8 nm dicke NiO-Schicht mittels Kathodenzerstäubung bei 20°C flächig aufgebracht. Während der Schichtabscheidung liegt ein rotationssymmetrisches Magnetfeld der Stärke 1 kA/cm an. Im Betrieb bewegt sich die Scheibe 3 unter einem ebenfalls beweglichen Schreib- Lese-Kopf 4. Der Schreib-Lese-Kopf 4 besteht aus einem Schichtsystem NiFe(1 nm) Cu (0,8 nm) Co (10 nm) sowie einem magnetischen Joch, welches von einer Stromspule umgeben ist und in dessen Öffnung sich das Schichtsystem befindet. Zum Schreiben wird der Schreib-Lese-Kopf 4 an die Speicherscheibe 3 angenähert, bis die magnetische Kopplung zwischen der antiferromagnetischen NiO-Schicht 2 und der 1 nm dicken NiβiFeig-Schicht 1 des Lesekopfes 4 hergestellt ist. Durch einen Strom in der Stromspule wird der NiβiFeig-Schicht 1 eine Magnetisierung aufgezwungen, die durch die Austauschanisotropie von der antiferromagnetischen Schicht 2 übernommen wird. Zum Auslesen der Information wird der Schreib-Lese- Kopf 4 auf die gleiche Weise wie zum Schreiben an die Speicherscheibe 3 angenähert. Jedoch fließt kein Strom durch die Spule, so dass sich die dadurch freie NiβiFeig-Schicht 1 entsprechend der Austauschanisotropie der antiferromagnetischen NiO-Schicht 2 ausrichtet.
Bezugszeichen liste
1 ferromagnetische Schicht
2 antiferromagnetische Schicht
3 Trägerschicht
4 Schreib-Lese-Kopf
5 Sammellinse
6 Laser-Strahl
7 Nahfeldoptik
8 erwärmter Bereich

Claims

Patentansprüche
1. Antiferromagnetisches Schichtsystem, bestehend aus mindestens einer ferromagnetischen (1) und mindestens einer antiferromagnetischen (2) Schicht, wobei die Curie-Temperatur des ferromagnetischen Schichtmaterials (1) über der Blockingtemperatur des antiferromagnetischen Schichtmaterials (2) liegt, und bei dem die ferromagnetischen (1) und antiferromagnetischen (2) Schicht(en) durch Austauschanisotropieeffekte miteinander mindestens hinsichtlich ihrer Magnetisierungskonfiguration gekoppelt sind, und bei dem die Schichtdicke der antiferromagnetischen Schicht(en) (2) eine Funktion der Betriebstemperatur des eingesetzten antiferromagnetischen Schichtsystems (2) ist, wobei mit zunehmenden Betriebstemperaturen die Schichtdicken ebenfalls zunehmen.
2. Antiferromagnetisches Schichtsystem nach Anspruch 1 , bei dem die ferromagnetische(n) (1) und antiferromagnetische(n) (2) Schicht(en) nicht oder nur teilweise im direkten Kontakt stehen, wobei in jedem Fall eine magnetische Wechselwirkung zwischen den Schichten realisiert ist.
3. Antiferromagnetisches Schichtsystem nach Anspruch 2, bei dem zwischen mindestens einer der ferromagnetischen (1) und antiferromagnetischen (2) Schichten eine nichtmagnetische Zwischenschicht angeordnet ist, wobei die magnetische Wechselwirkung zwischen der ferromagnetischen (1) und der antiferromagnetischen (2) Schicht durch die nichtmagnetische Zwischenschicht nicht wesentlich behindert werden darf.
4. Antiferromagnetisches Schichtsystem nach Anspruch 3, bei dem die nichtmagnetischen Zwischenschichten Schichtdicken zwischen 0,2 und 2,0 nm aufweisen.
5. Antiferromagnetisches Schichtsystem nach Anspruch 1 , bei dem die Schichtsysteme ausgedehnt und/oder strukturiert sind.
6. Antiferromagnetisches Schichtsystem nach Anspruch 1 , bei dem als ferromagnetisches (1) Schichtmaterial NiFe (Permalloy) eingesetzt ist.
7. Antiferromagnetisches Schichtsystem nach Anspruch 1 , bei dem als antiferromagnetisches (2) Schichtmaterial NiO, IrMn und/oder FeMn eingesetzt sind.
8. Antiferromagnetisches Schichtsystem nach Anspruch 1 , bei dem bei Betriebstemperaturen zwischen 0 und 150 °C Schichtdicken der antiferromagnetischen Schicht (2) zwischen 1 und 20 nm realisiert sind.
9. Antiferromagnetisches Schichtsystem nach Anspruch 1 , bei dem die Schichten laterale Abmessungen im Mikro- und/oder Nanobereich aufweisen.
10. Verfahren zur magnetischen Datenspeicherung in antiferromagnetischen Schichtsystemen nach mindestens einem der Ansprüche 1 bis 9, bei dem mindestens ein Schichtsystem aus mindestens einer ferromagnetischen Schicht (1) und aus mindestens einer antiferromagnetischen Schicht (2) hergestellt wird, wobei das eingesetzte ferromagnetische Schichtmaterial (1) eine Curie- Temperatur oberhalb der Blockingtemperatur des eingesetzten antiferromagnetischen Schichtmaterials (2) aufweist, und die mindestens eine antiferromagnetische Schicht (2) des Schichtsystems einer ein- oder mehrstufigen lokalen Wärmebehandlung bei einer Temperatur oberhalb der Blockingtemperatur des antiferromagnetischen Schichtmaterials (2) und unterhalb der Curie-Temperatur des ferromagnetischen Schichtmaterials (1) unterzogen wird, und anschließend die Abkühlung in Gegenwart eines globalen oder lokalen gerichteten Magnetfeldes durchgeführt wird.
11. Verfahren nach Anspruch 10, bei dem die lokale Wärmebehandlung mittels eines Lasers (6), einer Nahfeldoptik (7) oder einer leitfähigen Rastersondenspitze durchgeführt wird.
12. Verfahren nach Anspruch 10, bei dem das Lesen der gespeicherten Daten über magnetooptische oder magnetoresistive Verfahren durchgeführt wird.
3. Verfahren zur magnetischen Datenspeicherung in antiferromagnetischen Schichtsystemen nach mindestens einem der Ansprüche 1 bis 9, bei dem das eingesetzte antiferromagnetische Schichtsystem (2) bei einer Betriebstemperatur oberhalb der Blockingtemperatur der antiferromagnetischen Schicht (2) eingesetzt wird und über ein ferromagnetisches Bauteil (4) die Magnetisierungskonfiguration des ferromagnetischen Bauteils (4) in der antiferromagnetischen Schicht (2) mittels Austauschkopplung lokal gespeichert und/oder die Magnetisierungskonfiguration der antiferromagnetischen Schicht (2) von dem ferromagnetischen Bauteil (4) gelesen wird, wobei zum Speichern der Daten ein Magnetfeld angelegt wird und das Lesen der Daten ohne Anlegen eines Magnetfeldes durchgeführt wird.
PCT/DE2002/001301 2001-04-12 2002-04-05 Antiferromagnetisches schichtsystem und verfahren zur magnetischen datenspeicherung in derartigen antiferromagnetischen schichtsystemen WO2002084647A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02761864A EP1377979A2 (de) 2001-04-12 2002-04-05 Antiferromagnetisches schichtsystem und verfahren zur magnetischen datenspeicherung in derartigen antiferromagnetischen schichtsystemen
AU2002308373A AU2002308373A1 (en) 2001-04-12 2002-04-05 Antiferromagnetic layer system and methods for magnetically storing data in antiferromagnetic layer systems of the like
JP2002581516A JP2004531845A (ja) 2001-04-12 2002-04-05 反強磁性層系およびこの形式の反強磁性層系への磁気的なデータ記憶のための方法
US10/473,591 US20040086750A1 (en) 2001-04-12 2002-04-05 Antiferromagnetic layer system and methods for magnectically storing data in anti-ferromagnetic layer system of the like

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10119380 2001-04-12
DE10119380.7 2001-04-12

Publications (3)

Publication Number Publication Date
WO2002084647A2 true WO2002084647A2 (de) 2002-10-24
WO2002084647A3 WO2002084647A3 (de) 2003-07-31
WO2002084647A8 WO2002084647A8 (de) 2003-09-12

Family

ID=7682095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001301 WO2002084647A2 (de) 2001-04-12 2002-04-05 Antiferromagnetisches schichtsystem und verfahren zur magnetischen datenspeicherung in derartigen antiferromagnetischen schichtsystemen

Country Status (6)

Country Link
US (1) US20040086750A1 (de)
EP (1) EP1377979A2 (de)
JP (1) JP2004531845A (de)
AU (1) AU2002308373A1 (de)
DE (1) DE10215505A1 (de)
WO (1) WO2002084647A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507076A (ja) * 2004-07-13 2008-03-06 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 交換バイアス(exchange−bias)に基づく多状態(multi−state)磁気メモリおよび論理装置、および磁気的に安定な磁気記憶

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662486A1 (de) * 2004-11-29 2006-05-31 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Prozess zur Speicherung van Information in einer magnetischen Multischichtanordnung
US20090237835A1 (en) * 2008-03-20 2009-09-24 Samsung Electronics Co., Ltd. Switching field controlled (SFC) media using anti-ferromagnetic thin layer in magnetic recording

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521294A (en) * 1967-03-13 1970-07-21 Ampex Magneto thermal recording process and apparatus
US4621030A (en) * 1982-07-19 1986-11-04 Hitachi, Ltd. Perpendicular magnetic recording medium and manufacturing method thereof
JPS62184644A (ja) * 1986-02-10 1987-08-13 Canon Inc 光磁気メモリ用媒体及び該媒体を使用した記録方法
EP0847052A1 (de) * 1996-06-14 1998-06-10 Seiko Epson Corporation Magnetooptisches aufzeichnungsmedium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789598A (en) * 1987-01-20 1988-12-06 International Business Machines Corporation Thin film medium for horizontal magnetic recording having an improved cobalt-based alloy magnetic layer
US5523173A (en) * 1994-12-27 1996-06-04 International Business Machines Corporation Magnetic recording medium with a CoPtCrB alloy thin film with a 1120 crystallographic orientation deposited on an underlayer with 100 orientation
JP2778626B2 (ja) * 1995-06-02 1998-07-23 日本電気株式会社 磁気抵抗効果膜及びその製造方法並びに磁気抵抗効果素子
JPH1197764A (ja) * 1997-09-18 1999-04-09 Fujitsu Ltd 磁気抵抗効果素子及び磁気抵抗効果型ヘッド及び磁気記録再生装置
JPH11161921A (ja) * 1997-12-01 1999-06-18 Nec Corp 磁気抵抗効果素子およびその製造方法
US6348274B1 (en) * 1998-12-28 2002-02-19 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic recording apparatus
JP3884932B2 (ja) * 2001-09-07 2007-02-21 株式会社日立グローバルストレージテクノロジーズ 磁気記録媒体及び磁気記憶装置
US20030108721A1 (en) * 2001-12-11 2003-06-12 Fullerton Eric E. Thermally - assisted magnetic recording disk with recording layer exchange- coupled to antiferromagnetic-to-ferromagnetic switching layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521294A (en) * 1967-03-13 1970-07-21 Ampex Magneto thermal recording process and apparatus
US4621030A (en) * 1982-07-19 1986-11-04 Hitachi, Ltd. Perpendicular magnetic recording medium and manufacturing method thereof
JPS62184644A (ja) * 1986-02-10 1987-08-13 Canon Inc 光磁気メモリ用媒体及び該媒体を使用した記録方法
EP0847052A1 (de) * 1996-06-14 1998-06-10 Seiko Epson Corporation Magnetooptisches aufzeichnungsmedium

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DEVASAHAYAM A J ET AL: "THE DEPENDENCE OF THE ANTIFERROMAGNET/FERROMAGNET BLOCKING TEMPERATURE ON ANTIFERROMAGNET THICKNESS AND DEPOSITION CONDITIONS" JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Bd. 85, Nr. 8, 15. April 1999 (1999-04-15), Seiten 5519-5521, XP000902150 ISSN: 0021-8979 *
JENSEN P J: "MAGNETIC RECORDING MEDIUM WITH IMPROVED TEMPORAL STABILITY" APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Bd. 78, Nr. 15, 9. April 2001 (2001-04-09), Seiten 2190-2192, XP001017538 ISSN: 0003-6951 *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 032 (P-661), 30. Januar 1988 (1988-01-30) & JP 62 184644 A (CANON INC), 13. August 1987 (1987-08-13) *
SALANSKY N M: "SOME MAGNETOOPTICAL AND HF PROPERTIES OF MAGNETIC FILMS" IEEE TRANSACTIONS ON MAGNETICS, IEEE INC. NEW YORK, US, Bd. 10, Nr. 4, 1. Dezember 1974 (1974-12-01), Seiten 1033-1038, XP000616891 ISSN: 0018-9464 *
TAKANO K ET AL: "STRUCTURAL AND MAGNETOCRYSTALLINE ANISOTROPY CONTRIBUTIONS TO THE BLOCKING TEMPERATURES OF NIXCO(1-X)O EXCHANGE COUPLES (ABSTRACT)" JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Bd. 79, Nr. 8, PART 2A, 15. April 1996 (1996-04-15), Seite 4932 XP000695651 ISSN: 0021-8979 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507076A (ja) * 2004-07-13 2008-03-06 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 交換バイアス(exchange−bias)に基づく多状態(multi−state)磁気メモリおよび論理装置、および磁気的に安定な磁気記憶
US7764454B2 (en) 2004-07-13 2010-07-27 The Regents Of The University Of California Exchange-bias based multi-state magnetic memory and logic devices and magnetically stabilized magnetic storage
JP2010192101A (ja) * 2004-07-13 2010-09-02 Regents Of The Univ Of California 交換バイアス(exchange−bias)に基づく多状態(multi−state)磁気メモリおよび論理装置、および磁気的に安定な磁気記憶

Also Published As

Publication number Publication date
DE10215505A1 (de) 2002-10-24
US20040086750A1 (en) 2004-05-06
WO2002084647A3 (de) 2003-07-31
JP2004531845A (ja) 2004-10-14
AU2002308373A1 (en) 2002-10-28
EP1377979A2 (de) 2004-01-07
WO2002084647A8 (de) 2003-09-12

Similar Documents

Publication Publication Date Title
DE69835410T2 (de) Magnetoresistiver Lesekopf mit abgeschirmtem magnetischem Tunnelübergang
DE69826090T2 (de) Magnetische Tunnelübergangseinrichtung mit verbesserten ferromagnetischen Schichten
DE69534314T2 (de) Magnetoresistiver Spinventilfühler mit selbstverankernder laminierter Schicht und Benutzung des Fühlers in einem magnetischen Aufzeichnungssystem
EP0674769B1 (de) Magnetowiderstands-sensor mit künstlichem antiferromagneten und verfahren zu seiner herstellung
DE3820475C1 (de)
DE69835650T2 (de) Magnetische Tunnelübergangsvorrichtungen
DE69919391T2 (de) Plattenantrieb mit aufhebungsschaltung für thermische unebenheiten ,einen magnetischen tunnelgrenzsensor gebrauchend
EP1768840B1 (de) Auf exchange-bias basierender mehrstufiger magnetspeicher und logische geräte sowie magnetisch stabilisierter magnetspeicher
DE19528245B4 (de) Magneto-Widerstandskopf und dessen Verwendung in einer Magnetaufzeichnungsvorrichtung
DE19934009A1 (de) Magnetowiderstands-Dünnschichtelement vom Drehventil-Typ
DE19820465A1 (de) Magnetowiderstandseffektelement, und ein derartiges Element aufweisender Magnetkopf und magnetische Aufzeichnungseinrichtung
DE2827429A1 (de) Magnetische duennfilmstruktur mit ferro- und antiferromagnetischem austausch- vorspannungsfilm
DE102016000263A1 (de) Magnetkopf, ausgestattet mit einem Spin-Drehmoment-Oszillator mit niedriger Ansteuerspannung für mikrowellenunterstützte Magnetaufzeichnung
DE19936378A1 (de) Magnetowiderstands-Dünnschichtelement vom Drehventiltyp
EP1596373B1 (de) Magnetisches Medium zur Speicherung von Informationen
DE19804339C2 (de) Spinventil-Magnetowiderstandskopf und Herstellungsverfahren dafür
DE102014009542A1 (de) Magnetischer scherensensor mit einer weichmagnetischen vorspannungsstruktur an der hinterkante
DE3330075A1 (de) Schreib-/lese-magnetkopf fuer ein senkrecht zu magnetisierendes aufzeichnungsmedium
DE60203677T2 (de) Verfahren zum Ändern der Schaltfeldeigenschaften von magnetischen Tunnelübergängen
DE102004024377A1 (de) Wärmeunterstützte Schaltarraykonfiguration für MRAM
DE69723963T2 (de) Seitliche magento-elektronische vorrichtung unter ausnutzung eines quasi zwei-dimensionalen elektrogases
EP1377979A2 (de) Antiferromagnetisches schichtsystem und verfahren zur magnetischen datenspeicherung in derartigen antiferromagnetischen schichtsystemen
DE102005004126A1 (de) MRAM-Speicherzelle mit schwacher intrinsisch anisotroper Speicherschicht
DE10004383A1 (de) Spinventil-Magnetowiderstandssensor und Magnetkopf mit solch einem Spinventil-Magnetowiderstandssensor
DE60203093T2 (de) Senkrechtes magnetisches Aufzeichnungsmittel und Informationsspeichergerät

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002761864

Country of ref document: EP

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 43/2002 UNDER (71) THE NAME SHOULD READ "LEIBNIZ-INSTITUT FUER FESTKOERPER- UND WERKSTOFFORSCHUNG DRESDEN E.V."

WWE Wipo information: entry into national phase

Ref document number: 2002581516

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10473591

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002761864

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002761864

Country of ref document: EP