WO2002084228A1 - Kapazitives sensorelement und verfahren zur herstellung eines kapazitiven sensorelements - Google Patents

Kapazitives sensorelement und verfahren zur herstellung eines kapazitiven sensorelements Download PDF

Info

Publication number
WO2002084228A1
WO2002084228A1 PCT/DE2002/001332 DE0201332W WO02084228A1 WO 2002084228 A1 WO2002084228 A1 WO 2002084228A1 DE 0201332 W DE0201332 W DE 0201332W WO 02084228 A1 WO02084228 A1 WO 02084228A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
sensor element
liquid
capacitive sensor
plastic
Prior art date
Application number
PCT/DE2002/001332
Other languages
English (en)
French (fr)
Inventor
Bernhard Jakoby
Matthias Buskies
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2002084228A1 publication Critical patent/WO2002084228A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/088Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with electric fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/265Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/268Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors mounting arrangements of probes

Definitions

  • the invention is based on a capacitive 'sensor element or by a method of producing a capacitive sensor element according to the preamble of the independent claims.
  • Capacitive sensor elements are already known, which serve as level sensors. Such sensor elements are shown in FIG. 1.
  • the sensor elements have a printed circuit board 100, on the upper side of which electrode structures 101, 102 are formed as thin surface layers.
  • the electrodes 101 are all electrically connected to one another.
  • the electrodes 102 are all connected to one another.
  • a measurement capacitance consisting of the electrode group 101 and the electrode group 102 is thus formed.
  • the capacitance between these electrodes depends on the electrode geometry and the dielectric constant of the surrounding medium.
  • a corresponding partial capacitance is formed both on the upper side of the electrodes 101, 102 and on the lower side of the electrodes.
  • the partial capacitance that forms between the electrodes 101, 102 downwards, is essentially determined by the dielectric constant of the carrier substrate 100.
  • the upper partial capacitance between the electrodes 101, 102 is determined by the dielectric constant of the medium above the electrodes.
  • the sensor element according to FIG. 1 is arranged such that part of the electrodes 101, 102 n immerses the liquid and, depending on the level of the liquid, part of the electrodes 101, 102 does not immerse the liquid.
  • the dielectric constant of the liquid differs from the dielectric constant of air
  • the total capacitance measured between the electrodes 101, 102 depends on how many of the electrodes 101, 102 m immerse the liquid and how many do not.
  • the carrier 100 is arranged downward, the capacity cannot be changed in this direction, so that the change in capacity due to the immersion or non-immersion in the liquid is relatively small.
  • a circuit board 100 is usually used as a carrier, which has a relatively large
  • the capacitive sensor element according to the invention or the method for producing a capacitive sensor element have the advantage over the fact that the electrodes are no longer attached to a surface of a carrier 100 due to the formation of the electrodes from a metal sheet have to. It is therefore possible to apply liquid to both the top, the bottom and the space between the electrodes and to measure a capacitance which changes in this way. Furthermore, sensor elements can be formed particularly easily from such metal sheets by forming a holding element by filling a mold with plastic, in which the metal sheets are also inserted.
  • the holding element is particularly simply designed as a frame, since the electrode structures can be held on both sides in this way. Electrodes can be formed in one piece in a particularly simple manner as comb structures with associated feed lines. Reference capacitors can easily be formed by additional electrodes.
  • the mold is particularly easy to fill by injection or reaction molding.
  • the metal sheets from which the electrodes are formed can be processed particularly simply by punching or etching. During manufacture, the individual structures, in particular the sensitive electrode structures, can be connected to one another by metallic bridges, which makes handling particularly simple.
  • Figure 2 is an external view of an inventive
  • Figure 5 shows a metal sheet as used in the manufacture.
  • FIG. 2 shows an external view in a top view
  • the figure shows a cross section along the line III-III of FIG. 2
  • FIG. 4 shows a cross section through the element of FIG. 2 parallel to the paper plane of FIG. 2.
  • FIG. 2 shows a sensor element which has a multiplicity of measuring electrodes 1, 2 which are held in a frame 3.
  • the measuring electrodes 1 and 2 are designed as thin metal sheets, while the frame 3 is made of an insulating plastic.
  • the electrodes 1 and 2 are arranged in such a way that the electrodes engage in one another, ie an electrode 1 is always followed by an electrode 2 and an electrode 2 is always followed by an electrode 1. Electrically, the electrodes 1 are short-circuited to one another and the electrodes 2 are short-circuited to one another.
  • the electrodes 1 and 2 thus form two electrodes of a measuring capacity.
  • the sensor is designed so that it can be immersed in a liquid medium.
  • the level of the liquid can then be determined by measuring the capacitance between the interlocking electrodes 1, 2.
  • the capacitance measured between the electrodes 1, 2 will change. It is essential that this Dielectric constant differs from the dielectric constant of air.
  • the measured capacitance is influenced.
  • the electrodes 1, 2, which are immersed in the liquid are acted upon from all sides by the liquid, so that the measuring effect is greater than in the case of conventional sensors in which the measuring electrodes are formed on the top of a substrate are.
  • conventional sensors have the problem that the dielectric constant of the carrier substrate can change, in particular if the carrier plate is detached from the medium to be measured. Then there is a slow temporal offset, which is difficult to compensate for in terms of measurement technology.
  • FIGS. 2 and 3 show further electrodes 4, 5 which form a reference capacitance.
  • the sensor is introduced into a measuring liquid so that the further electrodes 4, 5, which form the reference capacitance, are always surrounded by the liquid.
  • the dielectric constant of the liquid can thus be calculated. On the basis of this calculation, it can then be concluded for the measurement capacity how large the number of measurement electrodes 1, 2 contained or not immersed in the liquid is.
  • the invention is not limited to level sensors.
  • such electrode structures can be used wherever a capacitance m of a liquid is measured. This is for example, when determining the composition of the liquid based on a capacity measurement, e.g. For example, in the case of fuel type sensors, the case.
  • FIG. 4 shows a further view of the sensor, which shows a cross section through the sensor element according to FIG. 2 parallel to the paper plane. The cut is made in such a way that the electrodes 1, 2, 4, 5 are exposed so that the embedding in the material of the frame 3 can be seen.
  • the electrodes 1 are attached in one piece to a corresponding feed line 11.
  • the electrodes 2 are all attached in one piece to a corresponding feed line 12.
  • the feed lines 11 and 12 are completely embedded in the plastic material of the frame 3 and only protrude at the lower end in order to form connecting elements 21 and 22.
  • the electrode fingers 5 of the reference capacitance are also connected in one piece to the feed line 12.
  • the electrode fingers 4 of the reference capacitance have their own supply line 14 and their own connection 24.
  • the supply line 24 is also embedded in the material of the plastic frame 3.
  • the electrodes 1, 2, 4, 5, the feed lines 11, 12, 14 and the connection elements 21, 22, 24 are formed in one piece by stamping or etching out of a metal sheet.
  • the individual coherent metal pieces can be manufactured individually or it is possible to structure all of them from one piece at the same time. The structuring out of a single piece is explained in more detail in FIG. 5.
  • FIG. 5 shows a top view of a machined metal strip 51, from which basic structures for the electrodes as shown in FIGS. 2 to 4 are structured. All metal elements as explained in FIG. 4 are made from the metal strips 51 were structured out. In particular, the supply lines 11, 12, 14 and the electrodes 1, 2, 4 and 5 connected to them. However, a large number of connecting elements 31, 32 are provided. The electrodes 1, 2 and 4, 5 are connected to one another by short connecting elements 31 so that they are joined together to form a mechanically fixed grid. The conductor tracks 11, 12 are connected by long connecting rods 32 to an outer edge 33 of the metal strip 51. Starting from the strip 51 as shown in FIG.
  • the plastic frame 3 is produced by placing the strip 51 in a mold and filling the plastic into the mold by injection or reaction molding so that the frame 3 is formed.
  • the connecting elements 31 and 32 are then cut through a further processing step, in particular a stamping or sawing step . that the electrodes 1, 2 and 4, 5 are then separated from one another and are no longer connected by metallic connecting elements 31. Furthermore, the longer connecting elements 32 are severed, so that there is no longer any connection to an outer edge 33 of the metal strip 51.
  • the connecting elements 31 and 32 ensure that the individual electrodes 1, 2, 4, 5 and conductor tracks 11, 12, 14 cannot move relative to one another in the manufacturing phase. Handling is therefore particularly simple, in particular machining can be carried out without any problems. After parts of these sheet metal elements are then embedded in the plastic of the frame 3, the individual elements are held by the frame 3. The individual connecting elements 31, 32 can then be severed without the relative position of the individual elements being able to be influenced thereby. A particularly simple manufacturing process can be realized in this way. This is particularly possible to design the sheet metal strip 51 as a very long sheet metal strip, so that a large number of metal structures for a large number of sensor elements are arranged in succession on a sheet metal strip 51. It is even possible to use a material for the sheet metal strip 51 which is of such thickness that a large number of elements 51 are located in a rolled sheet metal strip. In terms of production technology, a large number of elements can be automatically fed to a processing machine. become.

Abstract

Es wird ein kapazitives Sensorelement bzw. ein Verfahren zur Herstellung eines kapazitiven Sensorelements vorgeschlagen bei dem Elektroden aus einem Metallblech ausgebildet sind. Die Elektroden werden von einem Halteelement aus Kunststoff derart gehalten, dass eine Flüssigkeit beide Seiten der Elektroden (1, 2) beaufschlagen kann. Zur Herstellung wird ein Metallblech mit Strukturen für die Elektroden (1, 2) in eine Form eingelegt und das Halteelement (3) wird durch Befüllen der Form mit einem Kunststoff gebildet.

Description

Kapazitives Sensorelement und Verfahren zur Herstellung eines kapazitiven Sensorelements
Stand der Technik
Die Erfindung geht aus von einem kapazitiven ' Sensorelement bzw. von einem Verfahren zur Herstellung eines kapazitiven Sensorelements nach der Gattung der unabhängigen Patentansprüche .
Es sind bereits kapazitive Sensorelement bekannt, die als Füllstandsensoren dienen. Derartige Sensorelemente werden in der Figur 1 dargestellt. Die Sensorelemente weisen eine Leiterplatte 100 auf, auf dessen Oberseite Elektrodenstrukturen 101, 102 als dünne oberflächliche Schichten ausgebildet sind. Die Elektroden 101 sind elektrisch alle miteinander verbunden. Ebenso sind die Elektroden 102 alle miteinander verbunden. Es wird so eine Messkapazität bestehend aus der Elektrodengruppe 101 und der Elektrodengruppe 102 gebildet. Die Kapazität zwischen diesen Elektroden hängt von der Elektrodengeometrie und der Dielektrizitätskonstante des umgebenden Mediums ab. Dabei bildet sich sowohl auf der Oberseite der Elektroden 101, 102 wie auch auf der Unterseite der Elektroden eine entsprechende Teilkapazität aus. Die Teilkapazität die sich zwischen den Elektroden 101, 102 nach unten hin ausbildet, wird im wesentlichen von der Dielektrizitätskonstante des Tragersubstrats 100 bestimmt. Die obere Teilkapazitat zwischen den Elektroden 101, 102 wird von der Dielektrizitätskonstante des Mediums oberhalb der Elektroden bestimmt. Bei einer Anwendung als Fullstandsensor wird das Sensorelement nach der Figur 1 so angeordnet, dass ein Teil der Elektroden 101, 102 n die Flüssigkeit eintaucht und in Abhängigkeit vom Füllstand der Flüssigkeit ein Teil der Elektroden 101, 102 nicht m die Flüssigkeit eintauchen. Wenn sich die Dielektrizitätskonstante der Flüssigkeit von der Dielektrizitätskonstante von Luft unterscheidet, hangt somit die gemessene Gesamtkapazitat zwischen den Elektroden 101, 102 davon ab, wie viele der Elektroden 101, 102 m die Flüssigkeit eintauchen und wie viele nicht. Da nach unten hm der Trager 100 angeordnet ist, ist die Kapazität in dieser Richtung nicht veränderlich, so dass die Kapazitatsanderung aufgrund des Eintauchens oder Nichtemtauchens in die Flüssigkeit relativ gering ist. Weiterhin wird als Tr ger üblicherweise eine Leiterplatte 100 verwendet, die eine relativ große
Dielektrizitätskonstante aufweist. Auch dies tragt dazu bei, dass der Messeffekt relativ gering ist. Weiterhin können sich derartige Leiterplatten 100 im Lauf der Zeit verandern, entweder durch Alterung oder durch Emdiffus on eines Te l des Messmediums. Es kommt dann zu einer langsamen Verschiebung der gemessenen Kapazität, was sich messtechnisch nur sehr schwer kompensieren lasst.
Vorteile der Erfindung
Das erfmdungsgemaße kapazitive Sensorelement bzw. das Verfahren zur Herstellung eines kapazitiven Sensorelements haben dem gegenüber den Vorteil, dass durch die Ausbildung der Elektroden aus einem Metallblech die Elektroden nicht mehr auf einer Oberflache eines Tragers 100 befestigt sein müssen. Es ist daher möglich, sowohl die Oberseite, die Unterseite und den Zwischenraum der Elektroden mit einer Flüssigkeit zu beaufschlagen und eine sich so verändernde Kapazität zu messen. Weiterhin lassen sich aus derartigen Metallblechen besonders einfach Sensorelemente ausbilden, indem ein Halteelement durch Befüllen einer Form mit Kunststoff gebildet wird, in der auch die Metallbleche eingelegt sind.
Weitere Vorteile ergeben sich durch die Merkmale der abhängigen Patentansprüche. Besonders einfach wird das Halteelement als Rahmen ausgebildet, da so die Elektrodenstrukturen auf beiden Seiten gehalten werden können. Elektroden können besonders einfach einstückig als Kammstrukturen im mit dazugehörigen Zuleitungen ausgebildet werden. Durch weitere Elektroden können einfach Referenzkapazitäten gebildet werden. Das Befüllen der Form erfolgt besonders einfach durch Spritz- oder Reaktionsguss. Die Metallbleche aus denen die Elektroden ausgebildet werden, können besonders einfach durch Stanzen oder Ätzen bearbeitet werden. Während der Herstellung können die einzelnen Strukturen insbesondere die empfindlichen Elektrodenstrukturen durch metallische Brücken miteinander verbunden werden, wodurch die Handhabung besonders einfach wird.
Zeichnungen
Ausführungsbeispiele der Erfindung werden in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert . Es zeigen
Figur 1 ein kapazitives Sensorelement nach dem Stand der.
Technik,
Figur 2 eine Außenansicht eines erfindungsgemäßen
Sensorelements, Figur 3 und 4 Querschnitte durch die Figur 2 und
Figur 5 ein Metallblech wie es für die Herstellung verwendet wird.
Beschreibung
In den Figuren 2 bis 4 werden unterschiedliche Ansichten eines erfindungsgemäßen Sensorelements dargestellt. In der Figur 2 wird eine Außenansicht in einer Aufsicht gezeigt, in der Figur wird ein Querschnitt entlang der Linie III-III der Figur 2 gezeigt und in der Figur 4 wird ein Querschnitt durch das Element der Figur 2 parallel zur Papierebene der Figur 2 gezeigt.
In der Figur 2 wird ein Sensorelement gezeigt welches eine Vielzahl von Messelektroden 1, 2 aufweist, die in einem Rahmen 3 gehalten sind. Die Messelektroden 1 und 2 sind als dünne Metallbleche ausgebildet, während der Rahmen 3 aus einem isolierenden Kunststoff ausgebildet ist. Wie in der Aufsicht nach der Figur 2 bzw. in dem Schnitt nach der Figur 3 zu erkennen ist, sind die Elektroden 1 und 2 so angeordnet, dass die Elektroden ineinander greifen, d.h. auf eine Elektrode 1 folgt immer eine Elektrode 2 und auf eine Elektrode 2 folgt immer eine Elektrode 1. Elektrisch verhält es sich so, dass die Elektroden 1 miteinander kurzgeschlossen sind und dass die Elektroden 2 untereinander kurzgeschlossen sind. Die Elektroden 1 und 2 bilden so zwei Elektroden einer Messkapazität. Der Sensor ist dabei so ausgebildet, dass er in ein Flüssigkeitsmedium eingetaucht werden kann. Durch Messung der Kapazität zwischen den ineinander greifenden Elektroden 1, 2 kann dann der Füllstand der Flüssigkeit bestimmt werden. In Abhängigkeit von der Dielektrizitätskonstante der Flüssigkeit wird sich die Kapazität die zwischen den Elektroden 1, 2 gemessen wird verändern. Dabei ist wesentlich, dass sich diese Dielektrizitätskonstante von der Dielektrizitätskonstante von Luft unterscheidet. Je nachdem wie viele der Elektroden 1, 2 m die Flüssigkeit eintauchen und wie viele der Elektroden 1, 2 nicht in die Flüssigkeit eintauchen wird somit die gemessene Kapazität beemflusst. Im Unterschied zu den bisher bekannten Sensoren werden bei dem erfmdungsgemaßen Sensor die Elektroden 1, 2 die m die Flüssigkeit eintauchen von allen Seiten mit der Flüssigkeit beaufschlagt, so dass der Messeffekt großer ist als bei herkömmlichen Sensoren bei denen die Messelektroden auf der Oberseite eines Substrats ausgebildet sind. Weiterhin haben herkömmliche Sensoren das Problem, dass sich die Dielektrizitätskonstante des Tragersubstrats verandern kann insbesondere wenn eine E d ffusion des zu messenden Mediums die Tragerplatte erfolgt. Es kommt dann zu einem langsam zeitlichen Offset, der messtechnisch nur schwer kompensiert werden kann.
In den Figuren 2 und 3 werden neben den Fullstandselektroden 1, 2 auch noch weitere Elektroden 4, 5 gezeigt, die eine Referenzkapazitat bilden. Der Sensor wird so in eine Messflussigkeit eingebracht, so dass die weiteren Elektroden 4 ,5, die die Referenzkapazitat bilden, immer von der Flüssigkeit umgeben sind. Durch Messung der Kapazität zwischen den Elektroden 4, 5 der Referenzkapazitat lasst sich somit die Dielektrizitätskonstante der Flüssigkeit berechnen. Aufgrund dieser Berechnung kann dann bei der Messkapazitat geschlossen werden wie groß die Anzahl der der Flüssigkeit enthaltenen bzw. nicht in der Flüssigkeit eingetauchten Messelektroden 1, 2 ist.
Die Erfindung ist jedoch nicht auf Fullstandssensoren beschrankt. Insbesondere können derartige Elektrodenstrukturen immer da eingesetzt werden, wo eine Kapazität m einer Flüssigkeit gemessen wird. Dies ist beispielsweise auch bei der Bestimmung der Zusammensetzung der Flüssigkeit anhand einer Kapazitätsmessung, z. Bsp. bei Kraftstoffsortensensoren, der Fall.
In der Figur 4 wird eine weitere Ansicht des Sensors gezeigt, die einen Querschnitt durch das Sensorelement nach der Figur 2 parallel zur Papierebene darstellt. Der Schnitt erfolgt dabei so, dass die Elektroden 1, 2, 4, 5 freigelegt werden, so dass man die Einbettung in das Material des Rahmens 3 erkennt. Wie in der Figur zu erkennen ist sind die Elektroden 1 einstückig an einer entsprechenden Zuleitung 11 befestigt. Weiterhin sind die Elektroden 2 alle einstückig an einer entsprechenden Zuleitung 12 befestigt. Die Zuleitung 11 und 12 sind vollständig in das Kunststoffmaterial des Rahmens 3 eingebettet und ragen nur am unteren Ende heraus um so Anschlusselemente 21 und 22 zu bilden. Ebenfalls einstückig mit der Zuleitung 12 sind die Elektrodenfinger 5 der Referenzkapazität verbunden. Die Elektrodenfinger 4 der Referenzkapazität weisen eine eigene Zuleitung 14 und einen eigenen Anschluss 24 auf. Auch die Zuleitung 24 ist in das Material des Kunststoffrahmens 3 eingebettet. Die Elektroden 1, 2, 4, 5 die Zuleitungen 11, 12, 14 und die Anschlusselemente 21, 22, 24 sind einstückig durch Herausprägen oder Herausätzen aus einem Metallblech gebildet. Dabei können die einzelnen zusammenhängenden Metallstücke einzeln gefertigt werden oder aber es ist möglich alle gleichzeitig aus einem Stück herauszustrukturieren. Die Herausstrukturierung aus einem einzigen Stück wird in der Figur 5 näher erläutert.
In der Figur 5 wird eine Aufsicht auf einen bearbeiteten Metallstreifen 51 gezeigt, aus dem Grundstrukturen für die Elektroden wie sie in den Figuren 2 bis 4 gezeigt werden, herausstrukturiert sind. Aus den Metallstreifen 51 sind alle metallischen Elemente wie sie in der Figur 4 erläutert wurden herausstrukturiert. Insbesondere die Zuleitungen 11, 12, 14 und die damit verbundenen Elektroden 1, 2, 4 und 5. Es sind jedoch eine Vielzahl von Verbindungselementen 31, 32 vorgesehen. Die Elektroden 1, 2 und 4, 5 sind durch kurze Verbindungselemente 31 miteinander verbunden so dass sie zu einem mechanisch festen Gitter -zusammengefügt sind. Die Leiterbahnen 11, 12 sind durch lange Verbindungsstäbe 32 mit einem äußeren Rand 33 des Blechstreifens 51 verbunden. Ausgehend von dem Streifen 51 wie er in der Figur 5 gezeigt wird erfolgt die Erzeugung des Kunststoffrahmens 3 indem der Streifen 51 in eine Form gelegt wird und der Kunststoff durch Spritz- oder Reaktionsguss in die Form eingefüllt wird so dass sich der Rahmen 3 bildet. Danach erfolgt durch einen weiteren Bearbeitungsschritt insbesondere einen Stanz- oder Sägeschritt eine Durchtrennung der Verbindungselemente 31 und 32 so. dass dann die Elektroden 1, 2 und 4, 5 von einander getrennt sind und nicht mehr durch metallische Verbindungselemente 31 verbunden sind. Weiterhin werden die längeren Verbindungselemente 32 durchtrennt, so dass nun auch keine Verbindung mehr zu einem äußeren Rand 33 des Blechstreifens 51 vorhanden ist.
Durch die Verbindungselemente 31 und 32 wird erreicht, dass in der Herstellungsphase die einzelnen Elektroden 1, 2, 4, 5 und Leiterbahnen 11, 12, 14 sich relativ zueinander nicht verschieben können. Die Handhabung ist daher besonders einfach insbesondere kann eine maschinelle Bearbeitung problemlos erfolgen. Nachdem dann Teile dieser Blechelemente in den Kunststoff des Rahmens 3 eingebettet sind, werden die einzelnen Elemente von dem Rahmen 3 gehalten. Es können dann die einzelnen Verbindungselemente 31, 32 durchtrennt werden, ohne dass damit die relative Lage der einzelnen Elemente zueinander beeinflussbar ist. Es lässt sich so ein besonders einfaches Herstellungsverfahren realisieren. Das ist insbesondere möglich den Blechstreifen 51 als sehr langen Blechstreifen auszubilden, so dass eine Vielzahl von Metallstrukturen für eine Vielzahl von Sensorelementen nacheinander auf einem Blechstreifen 51 angeordnet sind. Es ist sogar möglich für den Blechstreifen 51 ein Material zu nehmen welches von der Stärke her so ausgebildet ist, dass sich eine Vielzahl von Elementen 51 in einem gerollten Blechstreifen befinden. Es könne fertigungstechnisch eine Vielzahl von Elementen automatisch einer Bearbeitungsmaschine zugeführt. werden.

Claims

Ansprüche
1. Kapazitives Sensorelement mit einer Vielzahl von ineinander greifenden Elektroden (1, 2) dadurch gekennzeichnet, dass die Elektroden (1, 2) als Metallplatten ausgebildet sind, die von einem Halteelement (3) aus Kunststoff gehalten werden.
2. Sensorelement nach Anspruch 1, dadurch gekennzeichnet, dass das Halteelement (3) als Kunststoffrahmen ausgebildet ist und dass die Elektroden (1, 2) in einem Innenraum des Rahmens derart angeordnet sind, dass bei einem Eintauchen des Rahmens (3) in eine Flüssigkeit eine Oberseite, eine Unterseite und Zwischenräume der Elektroden (1, 2) mit der Flüssigkeit beaufschlagt werden.
3. Sensorelemente nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Elektroden (1, 2) als ineinander greifende Kammstrukturen ausgebildet sind, die an einer Seite jeweils mit Zuleitungen (11, 12) verbunden sind.
4. Sensorelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass weitere Elektroden (4, 5) vorgesehen sind und dass für die weiteren Elektroden (4, 5) mindestens eine weitere Zuleitung (14) vorgesehen ist.
5. Verfahren zur Herstellung eines kapazitiven Sensors, dadurch gekennzeichnet, dass ein Metallblech mit metallischen Strukturen für ineinander greifende Elektroden (1, 2) in eine Form eingelegt wird, und dass ein Halteelement (3) aus einem Kunststoff durch befüllen der Form mit Kunststoff gebildet wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass da Befüllen der Form im Spritzguss oder Reaktionsguss erfolgt .
7. Verfahren nach einem der vorhergehenden Verfahrensansprüche, dadurch gekennzeichnet, dass die Metallstrukturen durch Stanzen oder Ätzen eines Blechs
(51) gebildet werden.
PCT/DE2002/001332 2001-04-11 2002-04-10 Kapazitives sensorelement und verfahren zur herstellung eines kapazitiven sensorelements WO2002084228A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001118061 DE10118061A1 (de) 2001-04-11 2001-04-11 Kapazitives Sensorelement und Verfahren zur Herstellung eines kapazitiven Sensorelements
DE10118061.6 2001-04-11

Publications (1)

Publication Number Publication Date
WO2002084228A1 true WO2002084228A1 (de) 2002-10-24

Family

ID=7681219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001332 WO2002084228A1 (de) 2001-04-11 2002-04-10 Kapazitives sensorelement und verfahren zur herstellung eines kapazitiven sensorelements

Country Status (2)

Country Link
DE (1) DE10118061A1 (de)
WO (1) WO2002084228A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1462775A1 (de) * 2003-03-25 2004-09-29 ELTEK S.p.A. Vorrichtung zur Detektion physikalischer Variablen von Schmieröl eines Verbrennungsmotors
JP2014021073A (ja) * 2012-07-23 2014-02-03 Aisan Ind Co Ltd 液体センサ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202030A1 (de) * 2002-01-18 2003-07-24 Bosch Gmbh Robert Vorrichtung zur Messung von Füllständen
DE102008013530A1 (de) 2007-10-02 2009-04-09 Robert Bosch Gmbh Kombinierter Füllstands- und Ethanolsensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1498404A1 (de) * 1965-05-17 1968-12-05 Ott Dipl Ing Albert Kapazitive Messsonde zur Bestimmung der Niveauhoehe von Fluessigkeiten und Festguetern mit begrenzter Ausdehnung des elektrischen Feldes
US5005409A (en) * 1989-01-13 1991-04-09 Teleflex Incorporated Capacitive liquid sensor
JPH04110618A (ja) * 1990-08-30 1992-04-13 Murata Mfg Co Ltd 液面センサー
DE4313418A1 (de) * 1993-04-24 1994-10-27 Spohr Mestechnik Gmbh Verfahren und Vorrichtung zur digitalen Ermittlung und Fernabfragung von Füllständen und Pegelhöhen bei Flüssigkeiten oder Medien begrenzt hoher Viskosität unter Verwendung diskreter Sensorpositionen
WO1996015464A1 (en) * 1994-11-14 1996-05-23 Moonstone Technology Limited Capacitive touch detectors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218318A (ja) * 1994-01-31 1995-08-18 Kajima Corp 液位および沈殿物高さ測定器
DE19644777C1 (de) * 1996-10-28 1998-06-04 Sican Gmbh Füllstandssensor mit einer Anzahl kapazitiver Sensoren

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1498404A1 (de) * 1965-05-17 1968-12-05 Ott Dipl Ing Albert Kapazitive Messsonde zur Bestimmung der Niveauhoehe von Fluessigkeiten und Festguetern mit begrenzter Ausdehnung des elektrischen Feldes
US5005409A (en) * 1989-01-13 1991-04-09 Teleflex Incorporated Capacitive liquid sensor
JPH04110618A (ja) * 1990-08-30 1992-04-13 Murata Mfg Co Ltd 液面センサー
DE4313418A1 (de) * 1993-04-24 1994-10-27 Spohr Mestechnik Gmbh Verfahren und Vorrichtung zur digitalen Ermittlung und Fernabfragung von Füllständen und Pegelhöhen bei Flüssigkeiten oder Medien begrenzt hoher Viskosität unter Verwendung diskreter Sensorpositionen
WO1996015464A1 (en) * 1994-11-14 1996-05-23 Moonstone Technology Limited Capacitive touch detectors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 357 (P - 1395) 31 July 1992 (1992-07-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1462775A1 (de) * 2003-03-25 2004-09-29 ELTEK S.p.A. Vorrichtung zur Detektion physikalischer Variablen von Schmieröl eines Verbrennungsmotors
JP2014021073A (ja) * 2012-07-23 2014-02-03 Aisan Ind Co Ltd 液体センサ

Also Published As

Publication number Publication date
DE10118061A1 (de) 2002-10-24

Similar Documents

Publication Publication Date Title
DE69913610T2 (de) Herstellung von Durchkontaktierungen für mehrlagige, induktive oder andere Bauteile
DE4135007C2 (de) SMD-Bauelemente mit Maßnahmen gegen Lötbrückenbildung und Temperaturwechselbeanspruchung
DE60010505T2 (de) Festelektrolytkondensatoren und deren herstellungsverfahren
DE4317125C2 (de) Monolithische Mehrschicht-Chip-Induktivität
DE4091418C2 (de) Verfahren zur Herstellung eines Mehrschichtkondensators
DE3225782A1 (de) Elektronisches bauteil
DE2843716A1 (de) Schichtaufbau besitzende bzw. laminierte sammelschiene mit eingelassenen kondensatoren
DE60034186T2 (de) Thermokopf und herstellungsverfahren
DE2103064A1 (de) Vorrichtung zur Herstellung von Modulelementen
DE2628327B2 (de) Verfahren und Vorrichtung zum Herstellen von Mehrschichtkondensatoren
DE4133008A1 (de) Kapazitiver drucksensor und herstellungsverfahren hierzu
EP0386821B1 (de) Kondensator und Verfahren zu seiner Herstellung
WO2002084228A1 (de) Kapazitives sensorelement und verfahren zur herstellung eines kapazitiven sensorelements
DE2513859C2 (de) Verfahren zum Herstellen eines Kondensator-Widerstands-Netzwerks
DE102011004543A1 (de) Impulswiderstand, Leiterplatte und elektrisches oder elektronisches Gerät
DE112020001355T5 (de) Chip-widerstand
DE3441218A1 (de) Induktionsspulenanordnung fuer elektrische schaltungen
EP0171642B1 (de) Varistor in Chip-Bauweise zur Verwendung in gedruckten Schaltungen und Verfahren zu seiner Herstellung
DE4232666C1 (de) Verfahren zum Herstellen von Leiterplatten
DE10045195B4 (de) Thermistor und Verfahren zu dessen Herstellung
DE10057606B4 (de) Anordnung zur Verbindung des Ferritkerns eines Planartransformators mit Masse
EP3076488B1 (de) Elektrischer verbinder
DE112022003455T5 (de) Mehrschichtiger Keramikkondensator
DE2020535C3 (de) Verfahren zum Herstellen elektrischer Leiter in gedruckten Schaltungen sowie nach diesem Verfahren hergestellter elektrischer Leiter
DE2748271B2 (de) Gedruckte Leiterplatte und Verfahren zur Herstellung derselben

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP