WO2002079548A1 - Electrolytic plating tank - Google Patents

Electrolytic plating tank Download PDF

Info

Publication number
WO2002079548A1
WO2002079548A1 PCT/JP2001/002603 JP0102603W WO02079548A1 WO 2002079548 A1 WO2002079548 A1 WO 2002079548A1 JP 0102603 W JP0102603 W JP 0102603W WO 02079548 A1 WO02079548 A1 WO 02079548A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
plating
anode
plating solution
lines
Prior art date
Application number
PCT/JP2001/002603
Other languages
French (fr)
Japanese (ja)
Inventor
Souichi Obata
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2001/002603 priority Critical patent/WO2002079548A1/en
Priority to JP2002577948A priority patent/JP3924537B2/en
Publication of WO2002079548A1 publication Critical patent/WO2002079548A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/008Current shielding devices

Definitions

  • the present invention relates to an electroplating bath, and more particularly, to an electroplating bath capable of performing plating with a uniform thickness and controlling the plating thickness.
  • FIG. 23 is a schematic diagram showing the most common plating tank 10.
  • 1 2 is the anode and 1 3 is the power sword.
  • the plating solution is circulated and filtered by a circulating filter (not shown).
  • 14 is an outlet for the plating solution, and the plating solution is supplied in the direction of the arrow.
  • a shielding plate 15 may be inserted between the anode 12 and the force sword 13.
  • the shielding plate 15 has a large number of through holes 16 (black circles in the figure) as shown in FIG.
  • a lining pipe 17 is provided in the lower part of the tank.
  • FIG. 26 shows another type of apparatus, a jet-type plating apparatus.
  • the plating solution is ejected from the plating solution ejection pipe 18 provided in the vertical direction toward the object held by the force source 13 to apply plating to the object. I am trying to apply.
  • the anode (not shown) is formed in a net shape or a ring shape, and is attached inside the tip of the ejection pipe 18.
  • This jet-type plating device is of an open system, that is, it jets the plating solution into the air.
  • the plating solution flows upward along the side wall of the plating tank, and flows from behind the anode 12 toward the center of the tank 10.
  • the plating solution has a low flow rate with respect to the object to be plated, and the plating flow tends to be non-uniform because the flow of the solution is not uniform.
  • air ration is often performed as shown in Fig. 25.However, due to the difference in liquid pressure, the situation differs between the upper and lower parts of the tank, and uniform agitation cannot be performed. The problem is that it is not possible to obtain You.
  • air easily accumulates in the recesses of the object to be covered, causing problems such as no attachment.
  • the porosity is about 20%, so that there is a problem that the flow resistance of the solution is large, and the plating speed and plating efficiency are reduced.
  • the purpose of using the shielding plate 15 is to control the lines of electric force. I can't get it. If the diameter of the through hole 16 is reduced, the electric flux lines can be prevented from wrapping around, but the plating efficiency will be significantly reduced.
  • an object of the present invention is to provide an electrolytic plating tank capable of plating with a uniform thickness and controlling the plating thickness.
  • the present invention is to provide an electrolytic plating bath which can control lines of electric force, can perform plating of a uniform thickness, and can reduce the size of the apparatus.
  • an electrolytic plating tank is provided with a first tank in which an anode is disposed and sealed, and is provided adjacent to the first tank, and is internally provided.
  • a second tank in which a force sword is arranged; a pump for pumping the liquid attached to the first tank; and a plurality of parallel tanks provided on a partition wall between the first tank and the second tank.
  • a nozzle comprising a cylindrical body having a required length of a book, wherein the plating solution sent to the first tank is sent through the cylindrical body to the second tank, and a liquid flow is generated in the plating solution of the second tank. And characterized in that:
  • the plating solution is fed into the second tank from a large number of cylinders, it is possible to prevent the electric power lines from wrapping around and obtain a plating film having a uniform thickness. Also, the plating thickness can be controlled by changing the diameter, length, number, arrangement, etc. of the cylinders. Further, a structure in which the anode can be passed from one surface of the first tank facing the partition wall facing the partition wall to the other surface opposite to the one surface. It is preferable that the plating solution be sent between the opposed wall surface and the anode by the pump.
  • the plating solution flows in the closed first tank from behind the anode while contacting the anode, so that the ion concentration increases and the amount of ions supplied per unit time can be increased.
  • the plating speed is improved.
  • an ejection unit into which a plating solution is sent from the pump is disposed between the opposed wall surface and the anode, and the ejection unit includes a plurality of ejection pipes. It is characterized in that a number of small holes for ejecting the liquid toward the opposed wall surface are provided.
  • a partition wall provided with the nozzle be provided detachably. This is suitable because it is possible to select and install various types of nozzles whose diameter, length, number and arrangement are changed in accordance with the properties of the covering object.
  • the electrolytic plating tank according to the present invention has a plurality of rods between the anode and the force sword, and the electric lines of force are bent by passing the lines of electric force between the rods,
  • a shielding means for lengthening the path of the lines of electric force is provided.
  • the lines of electric force reaching the force sword become almost parallel, and a uniform plating film can be obtained. It is also effective for plating in blind vias. In addition, the size of the device can be reduced accordingly.
  • FIG. 1 is a plan view of the plating tank with the cover removed
  • Fig. 2 is a front view of the nozzle
  • Fig. 3 is a front view of the blowout unit
  • Fig. 4 is a diffusion double layer.
  • FIG. 5 is an explanatory view showing the effect of suppressing the wraparound of the lines of electric force by the cylinder
  • FIG. 6 is a front view of the first tank
  • FIG. 7 is a plan view of the first tank. Yes, FIG.
  • FIG. 8 is a side view of the first tank
  • FIG. 9 is a front view of the first tank in the embodiment
  • FIG. 10 is a plan view of FIG. 9
  • FIG. 9 is a side view of FIG. 9
  • FIG. 12 is a front view of a first tank in still another embodiment
  • FIG. 13 is a plan view of FIG. 12
  • FIG. FIG. 15 is a side view of FIG. 12
  • FIG. 15 is a front view of a first tank in still another embodiment
  • FIG. 16 is a plan view of FIG. 15, and FIG. Fig. 15
  • Side view FIG. 18 is an explanatory view showing a plating thickness measuring point of an adherend
  • FIG. 19 is a plan view of a plating tank showing still another embodiment
  • FIG. 21 is a front view of the unit
  • FIG. 21 is an explanatory view showing the arrangement of the rods of the shielding unit
  • FIG. 22 is an explanatory view showing the meandering state of the electric flux lines
  • FIG. FIG. 24 is an explanatory view of a conventional general electrolytic plating tank.
  • FIG. 24 is a front view of a shielding plate
  • FIG. 25 is an explanatory view of a state in which an air pipe is provided.
  • FIG. 6 is an explanatory view of a jet-type plating apparatus
  • FIG. 27 is an explanatory view showing a wraparound state of lines of electric force when a shielding plate is used.
  • FIG. 1 is a schematic plan view of the electrolytic plating tank 20.
  • Reference numeral 21 denotes a sealed first tank (chamber 1) in which a plurality of anodes 22 extending vertically are arranged.
  • the plating solution can flow between the front and back of the anode 22 through the gap between the adjacent anodes 22.
  • the anodes 22 are connected by a connection bar (not shown) and connected to a power supply device (not shown).
  • the first tank 21 can be hermetically closed by a lid (not shown).
  • a second tank 24 is provided adjacent to the first tank 21 (horizontally in the horizontal direction).
  • a force sword 25 is disposed in the second tank 24.
  • the node 25 is connected to a power supply device (not shown).
  • the plating solution in the second tank 24 is pumped into the first tank 21 through a pipe 27 by a circulation pump 26.
  • This feeding flow rate is appropriately changed depending on the size of the tank.
  • Reference numeral 30 denotes a nozzle, which is provided on a partition wall 31 between the first tank 21 and the second tank 24, and is composed of a plurality of parallel cylindrical bodies 32 having a required length. With this nozzle 30, the plating solution sent to the first tank 21 is sent to the second tank 24 through the cylindrical body 32, and the plating solution flows into the plating solution of the second tank 24. Cause.
  • FIG. 2 shows an example of the arrangement of the cylindrical body 32.
  • the partition wall 31 is provided detachably with respect to the tank, and is replaced with various nozzles 30 in which the diameter, length, number, arrangement, etc. of the cylindrical bodies 32 are changed according to the type of the object to be covered. It is preferable to be able to do so.
  • the plating solution may be simply pumped into the first tank 21 by the pump 26, the plating solution may be ejected into the first tank 21 through the ejection unit 33 as shown in FIG. This is preferable.
  • the blow-out unit 33 is disposed between the opposed wall surface 21 a of the first tank 21 opposed to the partition wall 31 and the anode 22.
  • the blowout unit 33 includes a plurality of blowout pipes 35 each having both ends connected to the communication pipe 34.
  • the plating solution is directed to the blowout pipe 35 toward the facing wall surface 21a.
  • a large number of small holes 36 erupting almost vertically are provided.
  • the liquid gushing out of the jetting unit 33 is vigorously jetted toward the opposing wall 21a, hits the opposing wall 21a and is agitated, and becomes turbulent. Since the small holes 36 of the jetting unit 33 are provided substantially uniformly distributed, the state of the liquid flow becomes almost the same everywhere, and the liquid passes between the anodes 22. Thus, the plating solution is introduced into the second tank 24 through the cylindrical body 32 after passing through the gap between the anodes 22 arranged in the sealed first tank 21. As a result, a uniform ion flow with a high ion concentration is obtained. The plating efficiency is improved, and a plating film having a uniform film thickness can be obtained.
  • FIG. 4 is an explanatory diagram of a diffusion double layer near the anode 22 surface. As shown in the figure, the positive ions are almost positive in the immediate vicinity of the anode 22, but the negative ions increase as the distance from the anode 22 increases. Becomes This unbalanced region of charge is called a diffusion double layer.
  • the plating solution in a uniform flow state contacts the anode 22 from behind the anode 22 at a uniform and high speed and passes, the diffusion double layer becomes thinner, and the plating efficiency is improved. In addition, a uniform film pressure can be obtained.
  • the plating solution passes through the cylinder 32 of the nozzle 30.
  • the lines of electric force are interrupted, the degree of the lines of electric force wrapping behind the partition wall 31 is reduced, and the shielding effect is increased. Therefore, it is not necessary to forcefully reduce the opening area (diameter of the cylinder), and the shielding effect can be increased without lowering the plating efficiency.
  • the plating solution is supplied to the object to be covered at a certain flow rate through the cylindrical body 32. This also makes it possible to improve the plating speed and obtain a plating film having a uniform film pressure.
  • FIG. 6 front view
  • FIG. 7 plane view
  • FIG. 8 side view
  • the cylinders 32 are arranged uniformly on the partition wall 31 and have the same length.
  • FIG. 9 front view
  • FIG. 10 plan view
  • FIG. 11 side view
  • the length of the cylinder 32 located in the center area of the partition wall 31 is made longer than the length of the peripheral cylinder 32. By doing so, it is possible to increase the plating thickness at the center of the covering object.
  • -Fig. 12 front view
  • Fig. 13 plan view
  • Fig. 14 side view
  • the upper, middle, and lower cylinders 32 are set to be longer in this order.
  • the flow rate of the plating solution increases toward the lower side (the upper side decreases the flow rate of the plating solution due to the liquid resistance).
  • the liquid flows upward from below near the wall surface. Therefore, garbage that easily stays near the corner of the second tank 24 can be rolled up and sent to a filtration device to be removed.
  • the thickness of the plating on the lower side of the object to be covered tends to be small.
  • the object to be covered can be plated with a uniform thickness.
  • the partition wall 31 is detachably provided in the tank (for example, so that it can be pulled upward from the first tank 21), and FIG. 6 to FIG. 8, FIG. 9 to FIG. 11, FIG.
  • the optimal plating thickness can be obtained according to the shape and the like of the object to be covered by selecting and mounting the partition wall 31 in which the cylindrical bodies 32 are arranged as shown in FIG. That is, the plating thickness can be controlled.
  • FIG. 15 front view
  • FIG. 16 plane view
  • FIG. 17 side view
  • a shielding plate (not shown) having holes arranged in an appropriate arrangement is arranged inside the partition wall 31 so as to block the entrance of the cylindrical body 32 at a required portion (FIG. 1).
  • the thick black circle of 5 indicates a closed cylinder.
  • the hole diameter of the cylinder 32 can be adjusted by reducing the hole diameter of the shielding plate.
  • the thickness of the plating can be easily controlled with the ones in Fig. 15 to Fig. 17.
  • the overall size was 100 mm square in Fig. 1 and the depth was 90 mm.
  • the position of the partition plate 31 was about 40 mm from the opposite wall surface.
  • the thickness of the partition plate 31 was 2 mm, and the length of the cylinder 32 was 2 mm. Therefore, the actual length of the cylinder 32 is 4 mm.
  • the inner diameter of the cylinder 32 was 5 mm.
  • the inner diameter of the jet pipe 35 was 8 mm, and the diameter of the small hole 36 was 1 mm.
  • the pump 26 pumped the plating solution at a rate of 3 liters per minute to the first tank 21.
  • the liquid depth in the second tank 24 was 60 mm.
  • composition of the plating solution is shown below. Proper value
  • Copper sulfate5 water 60 ⁇ 80 g / 1 70 g / 1
  • Example 1 in Table 1 shows the distribution of plating thickness when electrolytic copper plating was performed with the above-mentioned appropriate amount of plating solution composition.
  • Figure 18 shows the measurement points for the plating thickness of the adherend.
  • Example 1 As is clear from Table 1, it can be seen that the plating thickness of Example 1 is more uniform than that of the conventional example.
  • FIG. 19 shows an electrolytic plating bath 40 according to still another embodiment.
  • a shielding unit (shielding means) 41 capable of controlling the line of electric force (lengthening the path of the line of electric force) is disposed between the anode 22 and the force source 25.
  • this obstruction unit 4 ⁇ A plurality of rods 43 extending in the vertical direction are fixed to 42.42.
  • the lines of electric force travel while avoiding the rod-shaped body 43 which is an insulator, so that the path of the lines of electric force becomes longer.
  • the insertion of the shielding unit 41 in the tank of the above size increases the path of the lines of electric force between the anode 22 and the cathode 25 by about 10% ⁇
  • the lines of electric force become parallel, and a uniform plating thickness can be obtained.
  • increasing the distance between the electrodes increases the size of the plating tank.
  • the liquid resistance of the plating solution is regulated by the plating solution composition and can hardly be adjusted.
  • the shielding unit 41 by using the shielding unit 41, it is possible to lengthen the path of the electric flux lines by a plating tank of the same size, thereby obtaining a uniform plating thickness. be able to. Also, the size of the plating tank can be reduced accordingly.
  • the aperture ratio is about 20%, and the problem that the resistance to the flow of the liquid is large has already been described. Since the rods 43 are only present in parallel at intervals, the aperture ratio is practically 100%, and has little effect on the plating efficiency.
  • Example 2 of Table 1 above The results of measuring the plating thickness with the above experimental apparatus are shown in Example 2 of Table 1 above.
  • the plating solution used was an electrolytic copper plating solution having the above composition.
  • Example 2 a plating film having a more uniform thickness than the conventional example was obtained.
  • the rod-shaped body 43 of the shielding unit 41 is parallel to the vertical direction. Although it is arranged so as to extend, it may be arranged so as to extend parallel to the lateral direction. Further, it is needless to say that the conditions such as the arrangement, the number, and the diameter of the rods 43 can be appropriately changed according to the plating conditions of the covering object or the like.
  • the plating solution is sent from the large number of cylinders to the second tank, it is possible to prevent the electric flux lines from wrapping around, and to obtain a plating film having a uniform thickness.
  • the plating thickness can be controlled by changing the diameter, length, number, arrangement, etc. of the cylinders.
  • the plating solution flows in the closed first tank from behind the anode while contacting the anode, the ion concentration increases, and the amount of ions supplied per unit time increases. The plating speed is improved.
  • the ejection unit by disposing the ejection unit, a uniform turbulent state is generated in the entire tank, and the contact efficiency with the anode is further increased.
  • various types of nozzles whose diameter, length, number, and arrangement are changed according to the properties of the covering object can be selected and mounted, which is preferable.
  • the lines of electric force reaching the force sword are almost parallel, and a uniform plating film can be obtained. It is also effective for plating in blind vias.
  • the size of the device can be reduced accordingly.
  • the lines of electric force meander, and the path of the lines of electric force can be lengthened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

An electrolytic plating tank capable of applying a plating of uniform thickness, characterized by comprising a first tank (21) having an anode (22) disposed therein and being enclosed, a second tank (24) provided adjacent to the first tank (21) and having a cathode (25) disposed therein, a pump (26) for force-feeding plating liquid to the first tank (21), and a nozzle (30) installed in a partition wall (31) located between the first tank (21) and the second tank (24), formed of a number of tubular bodies (32) having a specified length and positioned parallel with each other, feeding the plating liquid fed to the first tank (21) to the second tank (24) through the tubular bodies (32), and causing a liquid flow in the plating liquid contained in the second tank (24).

Description

明 細 書  Specification
電解めつき槽 技術分野 Technical field of electroplating bath
本発明は電解めつき槽に関し、 さらに詳細には均一な厚さのめっきを施 したり、 めっき厚の制御が可能な電解めつき槽に関する。 背景技術  The present invention relates to an electroplating bath, and more particularly, to an electroplating bath capable of performing plating with a uniform thickness and controlling the plating thickness. Background art
図 2 3は、 最も一般的なめっき槽 1 0を示す概略図である。  FIG. 23 is a schematic diagram showing the most common plating tank 10.
1 2はアノード、 1 3は力ソードである。 めっき液は循環ろ過機 (図示 せず) により循環され、 またろ過される。 1 4はめつき液の噴き出し口で あり、 矢印方向にめっき液が供給される。 アノード 1 2 と力ソード 1 3 と の間には遮蔽板 1 5が挿入されることもある。 この遮蔽板 1 5には、 図 2 4に示すように多数の通孔 1 6 (図の黒丸部分) が設けられている。  1 2 is the anode and 1 3 is the power sword. The plating solution is circulated and filtered by a circulating filter (not shown). 14 is an outlet for the plating solution, and the plating solution is supplied in the direction of the arrow. A shielding plate 15 may be inserted between the anode 12 and the force sword 13. The shielding plate 15 has a large number of through holes 16 (black circles in the figure) as shown in FIG.
また、 めっき液の撹拌には、 図 2 5に示されるように、 槽内下部に、 ェ アレーショ ン用パイプ 1 7が配設される。  To stir the plating solution, as shown in FIG. 25, a lining pipe 17 is provided in the lower part of the tank.
図 2 6は、 他の方式の装置であって、 噴流式めつき装置を示す。  FIG. 26 shows another type of apparatus, a jet-type plating apparatus.
このめつき装置の場合には、 上下方向に設けためっき液の噴出パイプ 1 8から、 めっき液を力ソード 1 3に保持した被めつき物に向けて噴出し、 被めつき物にめっきを施すようにしている。 アノード (図示せず) は網状 もしくはリ ング状に形成されて、 噴出パイプ 1 8の先端内部に取りつけら れている。 この噴流式めつき装置は開放系、 すなわち、 空気中にめっき液 を噴出するようになっている。  In the case of this plating apparatus, the plating solution is ejected from the plating solution ejection pipe 18 provided in the vertical direction toward the object held by the force source 13 to apply plating to the object. I am trying to apply. The anode (not shown) is formed in a net shape or a ring shape, and is attached inside the tip of the ejection pipe 18. This jet-type plating device is of an open system, that is, it jets the plating solution into the air.
図 2 3に示す電解めつき槽の場合、 めっき液は、 めっき槽の側壁に沿つ て上方に流れ、 アノー ド 1 2の背後から槽 1 0の中央方向に流れる。 しか しながら、めっき液の被めつき物に対する液流の速度は小さなものであり、 また液の流れが均一でないことから、 めつき厚が不均一になりやすいとい う課題がある。 そのために、 図 2 5に示すようにエアレーシヨ ンを行う場 合が多いが、 液圧が相違することから、 槽の上部と下部とで状況が相違し、 均一な撹拌が行えず、 そのために均一な膜厚が得られないという課題があ る。 また被めつき物の凹部にエアーが溜まりやすく、 無めつき等の不具合 も発生する。 In the case of the electrolytic plating tank shown in FIG. 23, the plating solution flows upward along the side wall of the plating tank, and flows from behind the anode 12 toward the center of the tank 10. However, there is a problem that the plating solution has a low flow rate with respect to the object to be plated, and the plating flow tends to be non-uniform because the flow of the solution is not uniform. For this purpose, air ration is often performed as shown in Fig. 25.However, due to the difference in liquid pressure, the situation differs between the upper and lower parts of the tank, and uniform agitation cannot be performed. The problem is that it is not possible to obtain You. In addition, air easily accumulates in the recesses of the object to be covered, causing problems such as no attachment.
また、 図 2 4のような遮蔽板 1 5を用いると、 その開孔率は 2 0 %程度 なので、 液の流れ抵抗が大きく、 めっき速度、 めっき効率が落ちるという 課題がある。 さらに遮蔽板 1 5を用いる目的は、 電気力線の制御にあるが、 図 2 7に示すように遮蔽板 1 5裏面側への電気力線の回り込みを必ずしも 回避できず、 十分な遮蔽効果が得られない。 通孔 1 6の径を小さくすれば 電気力線の回り込みは回避できるが、 めっき効率が著しく落ちることにな る。  In addition, when a shielding plate 15 as shown in FIG. 24 is used, the porosity is about 20%, so that there is a problem that the flow resistance of the solution is large, and the plating speed and plating efficiency are reduced. Furthermore, the purpose of using the shielding plate 15 is to control the lines of electric force. I can't get it. If the diameter of the through hole 16 is reduced, the electric flux lines can be prevented from wrapping around, but the plating efficiency will be significantly reduced.
また、 図 2 6に示す噴流式めつき装置の場合、 開放系であるから、 遮蔽 板を用いることができず、 膜厚制御が困難である。 さらに、 部分めつきに は適するが、 広い面積にめっきを施すのには不向きである。  In the case of the jet-type plating apparatus shown in Fig. 26, since it is an open system, a shielding plate cannot be used, and it is difficult to control the film thickness. Furthermore, it is suitable for partial plating but not suitable for plating large areas.
そこで本発明は上記課題を解決すべくなされたものであり、 その目的と するところは、 .均一な厚さのめっきを施したり、 めっき厚の制御が可能な 電解めつき槽を提供するにある。  Accordingly, the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an electrolytic plating tank capable of plating with a uniform thickness and controlling the plating thickness. .
さらに本発明は、 電気力線の制御ができ、 均一な厚さのめっきを施すこ とが可能で、 装置の小型化も図れる電解めつき槽を提供するにある 発明の開示  Further, the present invention is to provide an electrolytic plating bath which can control lines of electric force, can perform plating of a uniform thickness, and can reduce the size of the apparatus.
上記課題を解決するため、 本発明に係る電解めつき槽は、 内部にァノー ドが配置され、 かつ密閉された第 1の槽と、 該第 1の槽に隣接して設けら れ、 内部に力ソードが配置された第 2の槽と、 前記第 1の槽にめつき液を 圧送するポンプと、前記第 1の槽と第 2の槽との間の仕切り壁に設けられ、 平行な多数本の所要長さを有する筒体からなり、 第 1の槽に送り込まれた めっき液を該筒体を通じて第 2の槽に送り込み、 第 2の槽のめつき液中に 液流を生じさせるノズルとを具備することを特徴とする。  In order to solve the above-mentioned problems, an electrolytic plating tank according to the present invention is provided with a first tank in which an anode is disposed and sealed, and is provided adjacent to the first tank, and is internally provided. A second tank in which a force sword is arranged; a pump for pumping the liquid attached to the first tank; and a plurality of parallel tanks provided on a partition wall between the first tank and the second tank. A nozzle comprising a cylindrical body having a required length of a book, wherein the plating solution sent to the first tank is sent through the cylindrical body to the second tank, and a liquid flow is generated in the plating solution of the second tank. And characterized in that:
多数本の筒体からめっき液を第 2の槽に送り込むようにしたので、 電気 力線の回り込みを防止でき、均一な厚さのめっき皮膜を得ることができる。 また、 筒体の径、 長さ、 本数、 配置などを変えることでめっき厚の制御 も可能となる。 また、 前記アノードを、 前記仕切り壁と対向する第 1の槽の対向壁面に 面する一方の面から、 該一方の面と反対側の他方の面に向けてめつき液が 通流可能な構造に形成し、 前記ポンプにより、 めっき液を、 前記対向壁面 と前記アノードとの間に送り込むようにすると好適である。 Since the plating solution is fed into the second tank from a large number of cylinders, it is possible to prevent the electric power lines from wrapping around and obtain a plating film having a uniform thickness. Also, the plating thickness can be controlled by changing the diameter, length, number, arrangement, etc. of the cylinders. Further, a structure in which the anode can be passed from one surface of the first tank facing the partition wall facing the partition wall to the other surface opposite to the one surface. It is preferable that the plating solution be sent between the opposed wall surface and the anode by the pump.
これにより、 めっき液が密閉された第 1の槽内でァノ一ドの背後からァ ノ一ドに接触しつつ流れるので、 イオン濃度が高くなり、 単位時間に供給 されるイオン量を多くでき、 めっき速度が向上する。  As a result, the plating solution flows in the closed first tank from behind the anode while contacting the anode, so that the ion concentration increases and the amount of ions supplied per unit time can be increased. The plating speed is improved.
また、 前記対向壁面と前記アノードとの間に、 前記ポンプからめっき液 が送り込まれる噴き出しュニッ 卜が配置され、 該噴き出しュニッ 卜は、 複 数本の噴出しパイプを備え、 該噴き出しパイプに、 めっき液を前記対向壁 面に向けて噴出する多数の小穴が設けられていることを特徵とする。  Further, an ejection unit into which a plating solution is sent from the pump is disposed between the opposed wall surface and the anode, and the ejection unit includes a plurality of ejection pipes. It is characterized in that a number of small holes for ejecting the liquid toward the opposed wall surface are provided.
このような噴き出しュニッ 卜を配置することで、 槽全体に均一な乱流状 態が生成され、 ァノードとの接触効率がさらに高まる。  By arranging such a jet unit, a uniform turbulent state is generated in the entire tank, and the contact efficiency with the anode is further increased.
また撹拌効率が高まるので、 エアレーシヨ ンの必要がなく、 無めつき等 の不具合を解消できる。  In addition, since the stirring efficiency is increased, there is no need for an air rate, and problems such as non-sticking can be eliminated.
また、 前記ノズルを備えた仕切り壁を着脱可能に設けると好適である。 これにより、 径、 長さ、 本数や配置を被めつき物の性状に合わせて変更 した種種のノズルを選択して装着できて好適である。  It is preferable that a partition wall provided with the nozzle be provided detachably. This is suitable because it is possible to select and install various types of nozzles whose diameter, length, number and arrangement are changed in accordance with the properties of the covering object.
また、 本発明に係る電解めつき槽では、 アノードと力ソードの間に、 複 数本の棒状体を有し、 該棒状体間を電気力線が通過することにより電気力 線が曲げられ、 もって電気力線の経路を長くする遮蔽手段を設けたことを 特徴とする。  Further, the electrolytic plating tank according to the present invention has a plurality of rods between the anode and the force sword, and the electric lines of force are bent by passing the lines of electric force between the rods, In this case, a shielding means for lengthening the path of the lines of electric force is provided.
これにより力ソードに到達する電気力線が平行に近くなり、 均一なめつ き皮膜を得ることができる。 ブラインドビア内のめっきにも有効である。 またそれだけ装置の小型化も図れる。  As a result, the lines of electric force reaching the force sword become almost parallel, and a uniform plating film can be obtained. It is also effective for plating in blind vias. In addition, the size of the device can be reduced accordingly.
前記棒状体を複数列設け、 各列の各棒状体が隣接する列の棒状体間に位 置するようにすると、 電気力線が蛇行し、 電気力線の経路を長くすること ができる。 図面の簡単な説明 図 1はカバーを取り去った状態のめっき槽の平面図であり、 図 2は、 ノ ズルの正面図であり、 図 3は、 噴き出しユニッ トの正面図であり、 図 4は、 拡散二重層の説明図であり、 図 5は、 筒体による電気力線の回り込み抑止 効果を示す説明図であり、 図 6第 1の槽の正面図であり、 図 7は、 第 1の 槽の平面図であり、 図 8は、 第 1の槽の側面図であり、 図 9は、 実施形態 における第 1の槽の正面図であり、 図 1 0は、 図 9の平面図であり、 図 1 1は、 図 9の側面図であり、 図 1 2は、 さらに他の実施形態における第 1 の槽の正面図であり、 図 1 3は、 図 1 2の平面図であり、 図 1 4は、 図 1 2の側面図であり、 図 1 5は、 またさらに他の実施形態における第 1の槽 の正面図であり、 図 1 6であり、 図 1 5の平面図であり、 図 1 7は、 図 1 5の側面図であり、 図 1 8は、 被めつき物のめっき厚測定個所を示す説明 図であり、 図 1 9は、 さらに他の実施形態を示すめっき槽の平面図であり、 図 2 0は、 遮蔽ユニッ トの正面図であり、 図 2 1は、 遮蔽ユニッ トの棒状 体の配列を示す説明図であり、 図 2 2は、 電気力線の蛇行状態を示す説明 図であり、 図 2 3は、 従来の一般的な電解めつき槽の説明図であり、 図 2 4は、 遮蔽板の正面図であり、 図 2 5は、 エアレ一シヨンパイプを設けた 状態の説明図であり、 図 2 6は、 噴流式めつき装置の説明図であり、 図 2 7は、遮蔽板を用いた場合の電気力線の回り込み状態を示す説明図である。 発明を実施するための最良の形態 When a plurality of the rods are provided and each rod in each row is positioned between the rods in the adjacent rows, the lines of electric force meander and the path of the lines of electric force can be lengthened. BRIEF DESCRIPTION OF THE FIGURES Fig. 1 is a plan view of the plating tank with the cover removed, Fig. 2 is a front view of the nozzle, Fig. 3 is a front view of the blowout unit, and Fig. 4 is a diffusion double layer. FIG. 5 is an explanatory view showing the effect of suppressing the wraparound of the lines of electric force by the cylinder, FIG. 6 is a front view of the first tank, and FIG. 7 is a plan view of the first tank. Yes, FIG. 8 is a side view of the first tank, FIG. 9 is a front view of the first tank in the embodiment, FIG. 10 is a plan view of FIG. 9, and FIG. 9 is a side view of FIG. 9, FIG. 12 is a front view of a first tank in still another embodiment, FIG. 13 is a plan view of FIG. 12, and FIG. FIG. 15 is a side view of FIG. 12, FIG. 15 is a front view of a first tank in still another embodiment, FIG. 16 is a plan view of FIG. 15, and FIG. Fig. 15 Side view FIG. 18 is an explanatory view showing a plating thickness measuring point of an adherend, FIG. 19 is a plan view of a plating tank showing still another embodiment, and FIG. FIG. 21 is a front view of the unit, FIG. 21 is an explanatory view showing the arrangement of the rods of the shielding unit, FIG. 22 is an explanatory view showing the meandering state of the electric flux lines, and FIG. FIG. 24 is an explanatory view of a conventional general electrolytic plating tank. FIG. 24 is a front view of a shielding plate, and FIG. 25 is an explanatory view of a state in which an air pipe is provided. FIG. 6 is an explanatory view of a jet-type plating apparatus, and FIG. 27 is an explanatory view showing a wraparound state of lines of electric force when a shielding plate is used. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明の好適な実施の形態を添付図面に基づき詳細に説明する。 図 1は、 電解めつき槽 2 0の概略的な平面図である。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic plan view of the electrolytic plating tank 20.
2 1は密閉された第 1の槽 (チャンバ一) であり、 内部に上下方向に伸 びる複数本のァノ一ド 2 2が配置されている。 隣接するァノード 2 2の間 隙からめっき液がアノード 2 2の表裏に通流可能である。  Reference numeral 21 denotes a sealed first tank (chamber 1) in which a plurality of anodes 22 extending vertically are arranged. The plating solution can flow between the front and back of the anode 22 through the gap between the adjacent anodes 22.
アノード 2 2は連結バー (図示せず) によって連結されるとともに、 図 示しない給電装置に接続される。  The anodes 22 are connected by a connection bar (not shown) and connected to a power supply device (not shown).
第 1の槽 2 1は図示しない蓋体によって密閉可能となっている。  The first tank 21 can be hermetically closed by a lid (not shown).
第 1の槽 2 1 に隣接して (水平横方向に隣接) 第 2の槽 2 4が設けられ ている。 この第 2の槽 2 4内には力ソード 2 5が配置されている。 カソ一 ド 2 5は図示しない給電装置に接続される。 A second tank 24 is provided adjacent to the first tank 21 (horizontally in the horizontal direction). A force sword 25 is disposed in the second tank 24. Casio The node 25 is connected to a power supply device (not shown).
第 2の槽 2 4内のめっき液は、 循環ポンプ 2 6 により配管 2 7を通じて 第 1の槽 2 1 内に圧送される。 この送り込み流量は、 槽の大きさによって 適宜変更される。  The plating solution in the second tank 24 is pumped into the first tank 21 through a pipe 27 by a circulation pump 26. This feeding flow rate is appropriately changed depending on the size of the tank.
3 0はノズルであり、 第 1の槽 2 1 と第 2の槽 2 4との間の仕切り壁 3 1 に設けられ、 平行な多数本の所要長さを有する筒体 3 2からなる。 この ノズル 3 0により、 第 1の槽 2 1 に送り込まれためっき液を筒体 3 2を通 じて第 2の槽 2 4に送り込み、 第 2の槽 2 4のめつき液中に液流を生じさ せる。  Reference numeral 30 denotes a nozzle, which is provided on a partition wall 31 between the first tank 21 and the second tank 24, and is composed of a plurality of parallel cylindrical bodies 32 having a required length. With this nozzle 30, the plating solution sent to the first tank 21 is sent to the second tank 24 through the cylindrical body 32, and the plating solution flows into the plating solution of the second tank 24. Cause.
筒体 3 2の配置例を図 2に示す。  FIG. 2 shows an example of the arrangement of the cylindrical body 32.
仕切り壁 3 1 を槽に対して着脱自在に設けて、 被めつき物の種類に応じ て、 筒体 3 2の径、 長さ、 本数や配置等を変更した種々のノズル 3 0に交 換できるようにすると好適である。  The partition wall 31 is provided detachably with respect to the tank, and is replaced with various nozzles 30 in which the diameter, length, number, arrangement, etc. of the cylindrical bodies 32 are changed according to the type of the object to be covered. It is preferable to be able to do so.
めっき液は、 ポンプ 2 6により単に第 1の槽 2 1内に圧送するのでもよ いが、 図 3に示すような、 噴き出しユニッ ト 3 3を通じて第 1の槽 2 1 中 に噴出させるようにすると好適である。  Although the plating solution may be simply pumped into the first tank 21 by the pump 26, the plating solution may be ejected into the first tank 21 through the ejection unit 33 as shown in FIG. This is preferable.
この噴き出しュニッ ト 3 3は、 仕切り壁 3 1 と対向する第 1の槽 2 1の 対向壁面 2 1 aとアノード 2 2 との間に配置される。  The blow-out unit 33 is disposed between the opposed wall surface 21 a of the first tank 21 opposed to the partition wall 31 and the anode 22.
この噴き出しユニッ ト 3 3は、 両端が連通パイプ 3 4に接続された複数 本の噴出しパイプ 3 5を備えており、 この噴き出しパイプ 3 5に、 めっき 液を上記対向壁面 2 1 aに向けてほぼ垂直に噴出する多数の小穴 3 6が設 けられている。  The blowout unit 33 includes a plurality of blowout pipes 35 each having both ends connected to the communication pipe 34. The plating solution is directed to the blowout pipe 35 toward the facing wall surface 21a. A large number of small holes 36 erupting almost vertically are provided.
続いて、 上記電解めつき槽 2 0の動作について説明する。  Next, the operation of the electrolytic plating tank 20 will be described.
噴き出しユニッ ト 3 3からめつき液は勢いよく上記対向壁面 2 1 aに向 かって噴出され、 対向壁面 2 1 aにぶつかって撹拌され、 乱流となる。 噴 き出しユニッ ト 3 3の小穴 3 6はほぼ均一に分布して設けられていること から、 液流の状態がどこもほぼ同じとなって、 アノード 2 2間を通過する。 このように、 めっき液は、 密閉された第 1の槽 2 1内に配置されたァノー ド 2 2間の間隙を通過してから筒体 3 2を通じて第 2の槽 2 4内に導入さ れることから、 イオン濃度の高い、 かつ均一な液流となり、 これによりめ つき効率がよくなるとともに、 均一な膜圧のめっき皮膜が得られる。 The liquid gushing out of the jetting unit 33 is vigorously jetted toward the opposing wall 21a, hits the opposing wall 21a and is agitated, and becomes turbulent. Since the small holes 36 of the jetting unit 33 are provided substantially uniformly distributed, the state of the liquid flow becomes almost the same everywhere, and the liquid passes between the anodes 22. Thus, the plating solution is introduced into the second tank 24 through the cylindrical body 32 after passing through the gap between the anodes 22 arranged in the sealed first tank 21. As a result, a uniform ion flow with a high ion concentration is obtained. The plating efficiency is improved, and a plating film having a uniform film thickness can be obtained.
図 4は、 アノード 2 2表面近くの拡散二重層の説明図である。 図のよう に、 アノード 2 2の直近ではほとんどプラスイオンであるが、 アノード 2 2から離れるにしたがってマイナスイオンが増加し、 ついには異符号の電 荷の濃度が等しくなつて電気的中性の状態となる。 この、 電荷のアンバラ ンスな領域は拡散二重層と呼ばれる。  FIG. 4 is an explanatory diagram of a diffusion double layer near the anode 22 surface. As shown in the figure, the positive ions are almost positive in the immediate vicinity of the anode 22, but the negative ions increase as the distance from the anode 22 increases. Becomes This unbalanced region of charge is called a diffusion double layer.
拡散二重層の厚さが薄い程、 イオンの供給がスムーズとなり、 したがつ て、 めっき速度が上がり、 また均一な膜圧となる。  The thinner the diffusion double layer, the smoother the supply of ions, and therefore the faster the plating rate and the more uniform the film pressure.
本実施の形態では、 均一な流れの状態のめつき液がァノード 2 2の背後 からアノード 2 2に均一、 かつ高速で接触して通過することから、 拡散二 重層が薄くなり、 めっき効率がよく、 また均一な膜圧が得られるのである。  In the present embodiment, since the plating solution in a uniform flow state contacts the anode 22 from behind the anode 22 at a uniform and high speed and passes, the diffusion double layer becomes thinner, and the plating efficiency is improved. In addition, a uniform film pressure can be obtained.
また、 図 5に示すように、 めっき液はノズル 3 0の筒体 3 2を通過する。 このように筒体 3 2を配置することによって、 電気力線が遮断され、 電気 力線が仕切り壁 3 1の背後に回り込む程度が小さくなり、 遮蔽効果が大き くなる。 したがって、 無理に開口面積 (筒体の径) を小さくする必要はな く、 めっき効率を落とすことなく遮蔽効果を大きくすることができる。 また、 めっき液は、 筒体 3 2を通じて、 ある程度の流速をもって被めつ き物に供給され、 これによつても、 めっき速度の向上、 均一膜圧のめっき 皮膜を得ることが可能となる。  Further, as shown in FIG. 5, the plating solution passes through the cylinder 32 of the nozzle 30. By arranging the cylindrical body 32 in this manner, the lines of electric force are interrupted, the degree of the lines of electric force wrapping behind the partition wall 31 is reduced, and the shielding effect is increased. Therefore, it is not necessary to forcefully reduce the opening area (diameter of the cylinder), and the shielding effect can be increased without lowering the plating efficiency. Further, the plating solution is supplied to the object to be covered at a certain flow rate through the cylindrical body 32. This also makes it possible to improve the plating speed and obtain a plating film having a uniform film pressure.
図 6 (正面図) 、 図 7 (平面図) 、 図 8 (側面図) は筒体 3 2の配列、 長さの一例を示す。 この例では、 筒体 3 2を仕切り壁 3 1 に均一に配置し、 また長さも等しく した。  FIG. 6 (front view), FIG. 7 (plan view), and FIG. 8 (side view) show an example of the arrangement and length of the cylinder 32. In this example, the cylinders 32 are arranged uniformly on the partition wall 31 and have the same length.
図 9 (正面図) 、 図 1 0 (平面図) 、 図 1 1 (側面図) は筒体 3 2の配 列、 長さの他の一例を示す。 この例では、 仕切り壁 3 1の中央のエリアに 位置する筒体 3 2の長さを周辺の筒体 3 2の長さよりも長くなるようにし た。 このようにすると、 被めつき物の中央部のめっき厚を大きくすること ができる。 - 図 1 2 (正面図) 、 図 1 3 (平面図) 、 図 1 4 (側面図) は筒体 3 2の 配列、 長さのさらに他の一例を示す。 この例では、 上段、 中段、 下段の筒 体 3 2をこの順に長くなるように設定した。 この例では、 力ソー ド 2 5付 近 (第 2の槽 2 4のコーナ一付近) におけるめっき液の流速が下部側程大 きくなる (上段側は液抵抗によってめつき液の流速が低くなる) ので、 第 2の槽 2 4の壁面付近において下方から上方への液流が生じる。 したがつ て、 第 2の槽 2 4のコーナー部付近に滞留しやすいごみを巻き上げて、 ろ 過装置に送り込んで除去することができる。 また、 一般的には、 被めつき 物の下部側のめっき厚が薄くなる傾向にあるが、 この例によれば、 被めつ き物に均等の厚さでめっきを施すことができる。 FIG. 9 (front view), FIG. 10 (plan view), and FIG. 11 (side view) show another example of the arrangement and length of the cylinder 32. In this example, the length of the cylinder 32 located in the center area of the partition wall 31 is made longer than the length of the peripheral cylinder 32. By doing so, it is possible to increase the plating thickness at the center of the covering object. -Fig. 12 (front view), Fig. 13 (plan view), and Fig. 14 (side view) show another example of the arrangement and length of the cylinder 32. In this example, the upper, middle, and lower cylinders 32 are set to be longer in this order. In this example, with power source 25 In the vicinity (near the corner of the second tank 24), the flow rate of the plating solution increases toward the lower side (the upper side decreases the flow rate of the plating solution due to the liquid resistance). The liquid flows upward from below near the wall surface. Therefore, garbage that easily stays near the corner of the second tank 24 can be rolled up and sent to a filtration device to be removed. In general, the thickness of the plating on the lower side of the object to be covered tends to be small. However, according to this example, the object to be covered can be plated with a uniform thickness.
仕切り壁 3 1を槽に着脱自在に設けて (例えば第 1の槽 2 1から上方に 引き抜けるようにする) 、 図 6〜図 8、 図 9〜図 1 1、 図 1 2〜図 1 4等 に示す筒体 3 2を配列した仕切り壁 3 1を選択して装着することによって. 被めつき物の形状等に応じて最適なめっき厚を得ることができる。 すなわ ち、 めっき厚のコントロールが可能となる。  The partition wall 31 is detachably provided in the tank (for example, so that it can be pulled upward from the first tank 21), and FIG. 6 to FIG. 8, FIG. 9 to FIG. 11, FIG. The optimal plating thickness can be obtained according to the shape and the like of the object to be covered by selecting and mounting the partition wall 31 in which the cylindrical bodies 32 are arranged as shown in FIG. That is, the plating thickness can be controlled.
図 1 5 (正面図) 、 図 1 6 (平面図) 、 図 1 7 (側面図) はノズル 3 0 のさらに他の一例を示す。 この例のものでは、 仕切り壁 3 1の内側に適宜 配列で孔をあけた遮蔽板 (図示せず) を配置し、 所要部位の筒体 3 2の入 口を閉塞するようにした(図 1 5の太い黒丸部分が閉塞された筒体を示す), あるいは、 遮蔽板の孔径を小さくすることによって、 筒体 3 2の孔径の 調整もできる。  FIG. 15 (front view), FIG. 16 (plan view), and FIG. 17 (side view) show still another example of the nozzle 30. In this example, a shielding plate (not shown) having holes arranged in an appropriate arrangement is arranged inside the partition wall 31 so as to block the entrance of the cylindrical body 32 at a required portion (FIG. 1). (The thick black circle of 5 indicates a closed cylinder.) Alternatively, the hole diameter of the cylinder 32 can be adjusted by reducing the hole diameter of the shielding plate.
図 1 5〜図 1 7のものによっても、 容易にめっき厚のコントロールが行 える。  The thickness of the plating can be easily controlled with the ones in Fig. 15 to Fig. 17.
図 1 に示す装置の実験装置を作成し、 めっき厚の測定をした。  An experimental setup for the setup shown in Fig. 1 was created and the plating thickness was measured.
全体の大きさを、 図 1で 1 0 0 m m四方とし、 深さを 9 0 m mとした。 仕切り板 3 1 の位置は対向壁面からおよそ 4 0 m mとした。 仕切り板 3 1 の厚さを 2 m m、 筒体 3 2の長さを 2 m mとした。 したがって、 筒体 3 2 の実質長は 4 m mである。 また筒体 3 2の内径は 5 m mとした。 噴き出し パイプ 3 5の内径を 8 m m、 小穴 3 6は 1 m mの径とした。 ポンプ 2 6に よって、 毎分 3 リッ トルのめっき液を第 1の槽 2 1に圧送した。 第 2の槽 2 4の液深は 6 0 m mとなった。  The overall size was 100 mm square in Fig. 1 and the depth was 90 mm. The position of the partition plate 31 was about 40 mm from the opposite wall surface. The thickness of the partition plate 31 was 2 mm, and the length of the cylinder 32 was 2 mm. Therefore, the actual length of the cylinder 32 is 4 mm. The inner diameter of the cylinder 32 was 5 mm. The inner diameter of the jet pipe 35 was 8 mm, and the diameter of the small hole 36 was 1 mm. The pump 26 pumped the plating solution at a rate of 3 liters per minute to the first tank 21. The liquid depth in the second tank 24 was 60 mm.
めつき液の組成を次に示す。 適正値 The composition of the plating solution is shown below. Proper value
硫酸 ( 9 8 %) 180 260g/ 1 220 g/1  Sulfuric acid (98%) 180 260g / 1 220g / 1
硫酸銅 · 5水 60^80 g/1 70 g/1  Copper sulfate5 water 60 ^ 80 g / 1 70 g / 1
塩素イオン 30 80ppm 50ppra  Chloride ion 30 80ppm 50ppra
電流密度 1 3 A/d 2 A/d  Current density 1 3 A / d 2 A / d
温度 20 30°C 25°C 上記適量のめつき液の組成で電解銅めつきを施した際のめっき厚の分布 を表 1 の実施例 1 に示す。 被めつき物のめっき厚の測定個所は図 1 8に示 す。 表 1 Temperature 20 30 ° C 25 ° C Example 1 in Table 1 shows the distribution of plating thickness when electrolytic copper plating was performed with the above-mentioned appropriate amount of plating solution composition. Figure 18 shows the measurement points for the plating thickness of the adherend. table 1
Figure imgf000009_0001
なお、 従来例は、 図 2 3の全く一般的な銅めつき槽を用いた (めっき槽 の大きさは実験装置とほぼ同じにした) 。
Figure imgf000009_0001
In the conventional example, a completely common copper plating tank shown in Fig. 23 was used (the size of the plating tank was almost the same as the experimental apparatus).
表 1から明らかなように、 実施例 1の方が、 従来例の場合よりもめっき 厚が均一であることがわかる。  As is clear from Table 1, it can be seen that the plating thickness of Example 1 is more uniform than that of the conventional example.
図 1 9はさらに他の実施の形態の電解めつき槽 4 0を示す。  FIG. 19 shows an electrolytic plating bath 40 according to still another embodiment.
本実施の形態では、 アノード 2 2 と力ソー ド 2 5 との間に電気力線を制 御 (電気力線の経路を長くする) 可能な遮蔽ユニッ ト (遮蔽手段) 4 1 を 配置した。  In the present embodiment, a shielding unit (shielding means) 41 capable of controlling the line of electric force (lengthening the path of the line of electric force) is disposed between the anode 22 and the force source 25.
この遮遊ユニッ ト 4 Ί は、 図 2 0に示すように、 上下に配置した連結板 4 2 . 4 2に上下方向に平行に伸びる複数本の棒状体 4 3を固定したもの である。 As shown in Fig. 20, this obstruction unit 4Ί A plurality of rods 43 extending in the vertical direction are fixed to 42.42.
棒状体 4 3の配列の一例を図 2 1 に示す。  An example of the arrangement of the rods 43 is shown in FIG.
この例では、 両アノード 2 2間が約 1 0 0 m mのめつき槽において、 幅 約 2 0 m mの連結板 4 2に、 直径約 1 m mの P V C製丸'棒 4 3を 1 5列に 千鳥状に配置した。 すなわち、 各列の各棒状体 4 3が隣接する列の棒状体 4 3の間に位置するようにした。 上記の場合各丸棒 4 3間の間隔は約 1 m mである。  In this example, in a mounting tank with a distance of about 100 mm between the anodes 22, a connecting plate 42 with a width of about 20 mm and a round rod 4 3 made of PVC with a diameter of about 1 mm in 15 rows. They were arranged in a staggered pattern. That is, each rod 43 in each row was located between the rods 43 in the adjacent row. In the above case, the interval between the round bars 43 is about 1 mm.
このようにすることで、 図 2 2に示すように、 電気力線は絶縁体である 棒状体 4 3を回避して進行するため、 電気力線の経路が長くなる。 上記大 きさの槽で上記遮蔽ユニッ ト 4 1を挿入することで、 アノード 2 2 とカソ ード 2 5間の電気力線の経路が約 1 0 %長くなることが計算上確認された < 一般に、 極間距離が長くなる程、 あるいはめっき液の液抵抗が大きくな る程、 電気力線は平行になり、 均一なめっき厚を得ることができる。 しか しながら、 極間距離を大きくすればめっき槽が大きくなつてしまう。 めつ き液の液抵抗は、 めっき液組成に規制され、 調整はほとんどできない。  By doing so, as shown in FIG. 22, the lines of electric force travel while avoiding the rod-shaped body 43 which is an insulator, so that the path of the lines of electric force becomes longer. Calculations have shown that the insertion of the shielding unit 41 in the tank of the above size increases the path of the lines of electric force between the anode 22 and the cathode 25 by about 10% < In general, as the distance between the electrodes increases or as the solution resistance of the plating solution increases, the lines of electric force become parallel, and a uniform plating thickness can be obtained. However, increasing the distance between the electrodes increases the size of the plating tank. The liquid resistance of the plating solution is regulated by the plating solution composition and can hardly be adjusted.
この点、 本実施の形態では、 遮蔽ユニッ ト 4 1 を用いることで、 同じ大 きさのめっき槽でそれだけ電気力線の経路を長くすることができ、 したが つて、 均一なめっき厚を得ることができる。 また、 それだけ、 めっき槽の 小型化も図れる。  In this regard, in the present embodiment, by using the shielding unit 41, it is possible to lengthen the path of the electric flux lines by a plating tank of the same size, thereby obtaining a uniform plating thickness. be able to. Also, the size of the plating tank can be reduced accordingly.
また、 図 2 4に示すような遮蔽板では、 開口率が 2 0 %程度になってし まレ ^、液の流れに対する抵抗が大きいという課題については既に述べたが、 本実施の形態では、 棒状体 4 3が間隔をおいて平行に存するだけなので、 実質的に開口率は 1 0 0 %であり、 めっき効率にはほとんど影響を与えな い。  In addition, in the shielding plate as shown in FIG. 24, the aperture ratio is about 20%, and the problem that the resistance to the flow of the liquid is large has already been described. Since the rods 43 are only present in parallel at intervals, the aperture ratio is practically 100%, and has little effect on the plating efficiency.
上記実験装置でめっき厚を測定した結果を前記の表 1の実施例 2 に示し た。 なお、 めっき液は前記組成の電解銅めつき液を用いた。  The results of measuring the plating thickness with the above experimental apparatus are shown in Example 2 of Table 1 above. The plating solution used was an electrolytic copper plating solution having the above composition.
実施例 2から明らかなように、 従来例よりも均一な厚さのめっき皮膜が 得られた。  As is clear from Example 2, a plating film having a more uniform thickness than the conventional example was obtained.
上記実施の形態では、 '遮蔽ュニッ ト 4 1の棒状体 4 3は上下方向に平行 に伸びるように配置したが、横方向に平行に伸びるように配置してもよい。 また棒状体 4 3の配置、 本数、 径等の条件は、 被めつき物等のめっき条 件にしたがつて適宜変更できることはもちろんである。 In the above embodiment, the rod-shaped body 43 of the shielding unit 41 is parallel to the vertical direction. Although it is arranged so as to extend, it may be arranged so as to extend parallel to the lateral direction. Further, it is needless to say that the conditions such as the arrangement, the number, and the diameter of the rods 43 can be appropriately changed according to the plating conditions of the covering object or the like.
遮蔽ユニッ ト 4 1 は、 図 1等に示すノズル 3 0の前方に配置すれば、 さ らに均一なめっき厚を得ることが期待できる。 発明の効果  If the shielding unit 41 is arranged in front of the nozzle 30 shown in FIG. 1 and the like, a more uniform plating thickness can be expected. The invention's effect
請求項 1 によれば、 多数本の筒体からめっき液を第 2の槽に送り込むよ うにしたので、 電気力線の回り込みを防止でき、 均一な厚さのめっき皮膜 を得ることができる。  According to the first aspect, since the plating solution is sent from the large number of cylinders to the second tank, it is possible to prevent the electric flux lines from wrapping around, and to obtain a plating film having a uniform thickness.
また、 筒体の径、 長さ、 本数、 配置などを変えることでめっき厚の制御 も可能となる。  Also, the plating thickness can be controlled by changing the diameter, length, number, arrangement, etc. of the cylinders.
請求項 2によれば、 めっき液が密閉された第 1の槽内でァノ一ドの背後 からアノードに接触しつつ流れるので、 イオン濃度が高くなり、 単位時間 に供給されるイオン量を多くでき、 めっき速度が向上する。  According to claim 2, since the plating solution flows in the closed first tank from behind the anode while contacting the anode, the ion concentration increases, and the amount of ions supplied per unit time increases. The plating speed is improved.
請求項 3によれば、 噴き出しユニッ トを配置することで、 槽全体に均一 な乱流状態が生成され、 ァノードとの接触効率がさらに高まる。  According to the third aspect, by disposing the ejection unit, a uniform turbulent state is generated in the entire tank, and the contact efficiency with the anode is further increased.
また撹拌効率が高まるので、 エアレーシヨ ンの必要がなく、 無めつき等 の不具合を解消できる。  In addition, since the stirring efficiency is increased, there is no need for an air rate, and problems such as non-sticking can be eliminated.
請求項 4によれば、 径、 長さ、 本数や配置を被めつき物の性状に合わせ て変更した種種のノズルを選択して装着できて好適である。  According to claim 4, various types of nozzles whose diameter, length, number, and arrangement are changed according to the properties of the covering object can be selected and mounted, which is preferable.
請求項 5によれば、 力ソードに到達する電気力線が平行に近くなり、 均 一なめっき皮膜を得ることができる。 ブラインドビア内のめっきにも有効 である。  According to the fifth aspect, the lines of electric force reaching the force sword are almost parallel, and a uniform plating film can be obtained. It is also effective for plating in blind vias.
またそれだけ装置の小型化も図れる。  In addition, the size of the device can be reduced accordingly.
また請求項 6によれば、 電気力線が蛇行し、 電気力線の経路を長くする ことができる。  According to the sixth aspect, the lines of electric force meander, and the path of the lines of electric force can be lengthened.

Claims

請 求 の 範 囲 The scope of the claims
1 . 内部にアノー ドが配置され、 かつ密閉された第 1の槽と、 1. A first tank in which an anode is placed and sealed,
該第 1の槽に隣接して設けられ、 内部に力ソードが配置された第 2の槽 と、  A second tank provided adjacent to the first tank and having a force sword disposed therein;
前記第 1の槽にめつき液を圧送するポンプと、  A pump for pumping the liquid attached to the first tank;
前記第 1の槽と第 2の槽との間の仕切り壁に設けられ、 平行な多数本の 所要長さを有する筒体からなり、 第 1の槽に送り込まれためっき液を該筒 体を通じて第 2の槽に送り込み、 第 2の槽のめつき液中に液流を生じさせ るノズルとを具備することを特徴とする電解めつき槽。  It is provided on a partition wall between the first tank and the second tank, and is composed of a large number of parallel cylinders having a required length, and the plating solution fed into the first tank is passed through the cylinder. A nozzle that feeds into the second tank and generates a liquid flow in the plating liquid in the second tank.
2 . 前記アノードは、 前記仕切り壁と対向する第 1 の槽の対向壁面に面す る一方の面から、 該一方の面と反対側の他方の面に向けてめっき液が通流 可能な構造に形成され、 2. The anode has a structure in which a plating solution can flow from one surface facing the opposite wall surface of the first tank facing the partition wall to the other surface opposite to the one surface. Formed in
前記ポンプは、 めっき液を、 前記対向壁面と前記アノードとの間に送り 込むことを特徴とする請求項 1記載の電解めつき槽。  The electrolytic plating tank according to claim 1, wherein the pump sends a plating solution between the opposed wall surface and the anode.
3 . 前記対向壁面と前記アノードとの間に、 前記ポンプか'らめっき液が送 り込まれる噴き出しユニッ トが配置され、 該噴き出しユニッ トは、 複数本 の噴出しパイプを備え、 該噴き出しパイプに、 めっき液を前記対向壁面に 向けて噴出する多数の小穴が設けられていることを特徴とする請求項 2記 載の電解めつき槽。  3. An ejection unit, into which the plating solution is sent from the pump, is disposed between the opposed wall surface and the anode, and the ejection unit includes a plurality of ejection pipes, 3. The electrolytic plating tank according to claim 2, further comprising a plurality of small holes for jetting a plating solution toward the opposed wall surface.
4 . 前記ノズルを備えた仕切り壁が着脱可能に設けられていることを特徴 とする請求項 1 、 2または 3記載の電解めつき槽。  4. The electrolytic plating tank according to claim 1, wherein a partition wall provided with the nozzle is detachably provided.
5 . アノードと力ソードの間に、 複数本の棒状体を有し、 該棒状体間を電 気力線が通過することにより電気力線が曲げられ、 もって電気力線の経路 を長くする遮蔽手段が設けられていることを特徴とする電解めつき槽。 5. A shielding means having a plurality of rods between the anode and the force sword, wherein the lines of electric force pass between the rods to bend the lines of electric force, thereby lengthening the path of the lines of electric force. An electroplating bath characterized by being provided with:
6 . 前記棒状体が複数列設けられ、 各列の各棒状体が隣接する列の棒状体 間に位置することを特徴とする請求項 5記載の電解めつき槽。 6. The electrolytic plating tank according to claim 5, wherein a plurality of the rods are provided, and each rod in each row is located between the rods in an adjacent row.
PCT/JP2001/002603 2001-03-28 2001-03-28 Electrolytic plating tank WO2002079548A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2001/002603 WO2002079548A1 (en) 2001-03-28 2001-03-28 Electrolytic plating tank
JP2002577948A JP3924537B2 (en) 2001-03-28 2001-03-28 Electrolytic plating tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/002603 WO2002079548A1 (en) 2001-03-28 2001-03-28 Electrolytic plating tank

Publications (1)

Publication Number Publication Date
WO2002079548A1 true WO2002079548A1 (en) 2002-10-10

Family

ID=11737179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002603 WO2002079548A1 (en) 2001-03-28 2001-03-28 Electrolytic plating tank

Country Status (2)

Country Link
JP (1) JP3924537B2 (en)
WO (1) WO2002079548A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015134956A (en) * 2013-12-20 2015-07-27 アイシン精機株式会社 Plating apparatus
KR101734302B1 (en) 2015-03-26 2017-05-12 한국기계연구원 A Cover Plate for Electro Plating
JP2019167628A (en) * 2017-07-27 2019-10-03 セムシスコ ゲーエムベーハーSemsysco GmbH Distribution system for at least one of chemical and electrolytic surface treatment
WO2020025090A1 (en) * 2018-07-30 2020-02-06 RENA Technologies GmbH Flow generator, deposition device and method for the deposition of a material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116431B2 (en) * 1982-11-13 1986-04-30 Yamada Metsuki Kogyosho Kk
JPS621238Y2 (en) * 1983-01-11 1987-01-13
JPH02153090A (en) * 1988-12-02 1990-06-12 Hitachi Cable Ltd Stripe plating device
JPH0513956A (en) * 1991-07-05 1993-01-22 Fujitsu Ltd Plating processing device for printed board
JPH08253892A (en) * 1995-03-16 1996-10-01 Nippondenso Co Ltd Plating device and plating method
JPH10214838A (en) * 1997-01-28 1998-08-11 Toshiba Corp Semiconductor manufacturing device and method for manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116431B2 (en) * 1982-11-13 1986-04-30 Yamada Metsuki Kogyosho Kk
JPS621238Y2 (en) * 1983-01-11 1987-01-13
JPH02153090A (en) * 1988-12-02 1990-06-12 Hitachi Cable Ltd Stripe plating device
JPH0513956A (en) * 1991-07-05 1993-01-22 Fujitsu Ltd Plating processing device for printed board
JPH08253892A (en) * 1995-03-16 1996-10-01 Nippondenso Co Ltd Plating device and plating method
JPH10214838A (en) * 1997-01-28 1998-08-11 Toshiba Corp Semiconductor manufacturing device and method for manufacturing semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015134956A (en) * 2013-12-20 2015-07-27 アイシン精機株式会社 Plating apparatus
KR101734302B1 (en) 2015-03-26 2017-05-12 한국기계연구원 A Cover Plate for Electro Plating
JP2019167628A (en) * 2017-07-27 2019-10-03 セムシスコ ゲーエムベーハーSemsysco GmbH Distribution system for at least one of chemical and electrolytic surface treatment
JP7161445B2 (en) 2017-07-27 2022-10-26 セムシスコ ゲーエムベーハー Distribution system for chemical and/or electrolytic surface treatment
WO2020025090A1 (en) * 2018-07-30 2020-02-06 RENA Technologies GmbH Flow generator, deposition device and method for the deposition of a material
CN112513341A (en) * 2018-07-30 2021-03-16 雷纳技术有限责任公司 Flow generator, deposition apparatus and method for depositing material
JP2021532266A (en) * 2018-07-30 2021-11-25 レナ テクノロジー ゲーエムベーハーRENA Technologies GmbH Flow generator, film forming equipment and material film forming method

Also Published As

Publication number Publication date
JPWO2002079548A1 (en) 2004-07-22
JP3924537B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
US4634503A (en) Immersion electroplating system
US8545687B2 (en) Apparatus and method for the electrolytic treatment of a plate-shaped product
US6398939B1 (en) Method and apparatus for controlling flow in an electrodeposition process
JP3707778B2 (en) Unit cell for alkaline metal chloride aqueous electrolytic cell
CA1068641A (en) Method and apparatus for the electrodeposition of metal
US4964965A (en) Insoluble electrode device for treatment of metallic material
US3567595A (en) Electrolytic plating method
WO2002079548A1 (en) Electrolytic plating tank
JP4355790B2 (en) Electrolytic apparatus and electrolytic treatment method
CS221549B2 (en) Electrolyser for electrolysis of liquid electrolyte
JPS63149390A (en) Method and apparatus for producing metallic foil by electrolysis
JP4020519B2 (en) Method and apparatus for electroplating metal wire
KR101426373B1 (en) Apparatus to Plate Substrate
KR101789080B1 (en) Plating apparatus and container bath
JP2000064088A (en) Plating device of printed circuit board
KR940011009B1 (en) Counter-current electrolyte injector and electrodeposition device using thereof
CN110382744B (en) Metal inert anode for the production of aluminium by electrolysis of a melt
JP6779547B2 (en) Electrolytic treatment assembly and surface treatment equipment using it
JP2003514125A (en) Equipment for electrolytically processing plate-shaped workpieces, especially printed wiring boards
CN218969409U (en) Electroplating machine and electroplating system
JP2007204779A (en) Method of unifying concentration of electrolyte and electrolytic cell
JP6793063B2 (en) Partial plating equipment, partial plating method, and manufacturing method of partial plating members
JP2017110269A (en) Negative electrode for electrolytic device, and electrolytic device including the same
JP3366319B2 (en) Continuous automatic plating equipment
KR101325366B1 (en) Metal Foil Manufacturing Apparatus Comprising Perpendicular Type Cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002577948

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642