JP2017110269A - Negative electrode for electrolytic device, and electrolytic device including the same - Google Patents

Negative electrode for electrolytic device, and electrolytic device including the same Download PDF

Info

Publication number
JP2017110269A
JP2017110269A JP2015246490A JP2015246490A JP2017110269A JP 2017110269 A JP2017110269 A JP 2017110269A JP 2015246490 A JP2015246490 A JP 2015246490A JP 2015246490 A JP2015246490 A JP 2015246490A JP 2017110269 A JP2017110269 A JP 2017110269A
Authority
JP
Japan
Prior art keywords
cathode
plates
metal
anode
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015246490A
Other languages
Japanese (ja)
Inventor
充生 川端
Mitsuo Kawabata
充生 川端
浩之 岸上
Hiroyuki Kishigami
浩之 岸上
薫 熊丸
Kaoru Kumamaru
薫 熊丸
広宣 小久保
Hironobu Kokubo
広宣 小久保
永田 誠
Makoto Nagata
誠 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Pretec Corp
Original Assignee
Asahi Pretec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Pretec Corp filed Critical Asahi Pretec Corp
Priority to JP2015246490A priority Critical patent/JP2017110269A/en
Publication of JP2017110269A publication Critical patent/JP2017110269A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode which contributes to space saving and electrolytic efficiency improvement of an electrolytic device.SOLUTION: A negative electrode for an electrolytic device is a negative electrode to be used for an electrolytic device which precipitates metal to the negative electrode from a metal-containing solution by an electrolytic method including a negative electrode and a positive electrode opposed to each other. The negative electrode is constituted of two or more negative electrode plates electrically connected in parallel, the negative electrode plates electrically connected in parallel are arranged in parallel at an interval, and in two or more negative electrode plates, the negative electrode plates of equal to or more than (the number of total electrode plates-1) have a plurality of through holes.SELECTED DRAWING: Figure 1

Description

本発明は金属含有溶液の電解装置に用いる陰極、および該陰極を備えた電解装置に関するものである。   The present invention relates to a cathode used in an electrolysis apparatus for a metal-containing solution, and an electrolysis apparatus including the cathode.

金、銀、白金、ロジウム、ルテニウム、およびパラジウムなどの金属はメッキ、配線など様々な用途で使用されているが、高価な金属であるため、メッキ処理設備や金属配線処理設備などの各種処理設備から排出される処理液や洗浄液等の廃液(以下、「金属含有溶液」ということがある)から、これら金属の回収処理が行われている。   Metals such as gold, silver, platinum, rhodium, ruthenium, and palladium are used in various applications such as plating and wiring. However, because they are expensive metals, various processing equipment such as plating equipment and metal wiring equipment These metals are recovered from waste liquids (hereinafter also referred to as “metal-containing solutions”) such as processing liquids and cleaning liquids discharged from the liquid.

金属含有溶液から金属を回収する装置として電解装置が汎用されており、有価金属の回収効率を向上するための技術も各種提案されている。例えば特許文献1には、回転陰極の面の少なくとも一部を網状または多孔質状の導電体で被覆する技術が開示されている。また特許文献2には電極に耐食性の金属網を重ね合わせた積層メッシュを用いる技術が開示されている。   Electrolytic apparatuses are widely used as apparatuses for recovering metals from metal-containing solutions, and various techniques for improving the recovery efficiency of valuable metals have been proposed. For example, Patent Document 1 discloses a technique in which at least a part of the surface of a rotating cathode is covered with a net-like or porous conductor. Patent Document 2 discloses a technique using a laminated mesh in which a corrosion-resistant metal net is superimposed on an electrode.

国際公開第2008/153001号公報International Publication No. 2008/153001 実開平07−1070号公報Japanese Utility Model Publication No. 07-1070

近年、環境汚染防止の観点から、金属含有溶液を電解装置で処理した後の廃液(以下、「処理済液」ということがある)を再利用することが検討されている。再利用するには電解装置をメッキ処理設備や金属配線処理設備などの金属含有溶液を排出する設備に近接して設置することが望ましいため、設置スペースを考慮すると電解装置はできるだけ省スペースで、しかも高い電解効率を有することが要求されている。ところが、メッキ処理設備などから排出される金属含有溶液中の金属濃度は装置導入段階で概ね100ppm以下である場合が多いが、再利用するためには金属濃度をできるだけ低減させる必要がある。金属濃度低減には金属イオンと陰極表面との接触効率を高めて電解効率を向上させる必要があるが、電解装置の小型化と電解効率の向上を両立させることは難しかった。   In recent years, from the viewpoint of preventing environmental pollution, it has been studied to reuse a waste liquid (hereinafter, also referred to as “treated liquid”) after a metal-containing solution has been treated with an electrolysis device. In order to reuse, it is desirable to install the electrolyzer close to equipment that discharges the metal-containing solution such as plating equipment and metal wiring processing equipment. It is required to have high electrolytic efficiency. However, in many cases, the metal concentration in the metal-containing solution discharged from the plating processing facility or the like is approximately 100 ppm or less at the stage of introducing the apparatus, but it is necessary to reduce the metal concentration as much as possible in order to reuse it. In order to reduce the metal concentration, it is necessary to improve the electrolysis efficiency by increasing the contact efficiency between the metal ions and the cathode surface, but it has been difficult to achieve both the downsizing of the electrolyzer and the improvement of the electrolysis efficiency.

例えば上記特許文献1に示す回転陰極を用いた電解装置は、優れた電解効率を有するが、電解槽内に回転陰極の設置スペースが必要となるため、電解装置の小型化が難しかった。また上記特許文献2では網や多孔質などの陰極を密着積層させて表面積を増大させているため、電解装置を小型化できるが電解効率が低かった。   For example, although the electrolysis apparatus using the rotating cathode shown in Patent Document 1 has excellent electrolysis efficiency, it is difficult to reduce the size of the electrolyzing apparatus because an installation space for the rotating cathode is required in the electrolytic cell. Further, in Patent Document 2, since the surface area is increased by closely laminating a net or a porous cathode, the electrolysis apparatus can be reduced in size, but the electrolysis efficiency is low.

本発明は上記の様な事情に着目してなされたものであって、その目的は、電解装置の省スペース化と電解効率向上に寄与する陰極、および該陰極を備えた電解装置を提供することにある。   The present invention has been made paying attention to the above-described circumstances, and an object thereof is to provide a cathode that contributes to space saving and electrolytic efficiency improvement of the electrolytic device, and an electrolytic device including the cathode. It is in.

本発明の電解装置用陰極は、対向する陰極と陽極とを備えた電気分解法によって金属含有溶液から金属を陰極に析出させる電解装置に用いる陰極であって、前記陰極は電気的に並列に接続された2枚以上の陰極板で構成されていると共に、前記電気的に並列に接続された陰極板は互いに間隔を有して並列に配置されており、且つ、前記2枚以上の陰極板のうち、[全陰極板数−1]枚以上の陰極板は複数の貫通孔を有するものであることに要旨を有する。   The cathode for an electrolysis apparatus of the present invention is a cathode used in an electrolysis apparatus for depositing metal on a cathode from a metal-containing solution by an electrolysis method having an opposing cathode and anode, and the cathodes are electrically connected in parallel. And the electrically connected cathode plates are arranged in parallel with a distance from each other, and the two or more cathode plates are arranged in parallel. Among them, the [total number of cathode plates −1] or more cathode plates have a gist in that they have a plurality of through holes.

本発明では、前記並列に配置された陰極板は互いに8mm以下の間隔を有することも好ましく、また前記陰極を構成する2枚以上の陰極板は、前記陰極板の貫通孔を通して並列する他の陰極板に電流が流れるように構成されていることも好ましい実施態様である。   In the present invention, it is also preferable that the cathode plates arranged in parallel have an interval of 8 mm or less, and two or more cathode plates constituting the cathode are other cathodes arranged in parallel through the through holes of the cathode plate. It is also a preferred embodiment that the plate is configured to allow current to flow.

また本発明では、陰極は2枚または3枚の陰極板で構成されていることや、陰極板間にスペーサーが配置されていることも好ましい実施態様である。   In the present invention, it is also preferable that the cathode is composed of two or three cathode plates, and that a spacer is arranged between the cathode plates.

更に本発明には、上記陰極を備えた電解装置も含む。本発明の電解装置は、電解槽内に陽極と、該陽極の1つの面に対向する前記陰極とを有する電極を少なくとも1組内設し、且つ、前記陰極は、前記陽極に近接して配置された複数の貫通孔を有する陰極板と、該陰極板の陽極対向面と反対側に設置された少なくとも1枚の陰極板で構成されていることに要旨を有する。   Furthermore, the present invention includes an electrolyzer provided with the above cathode. The electrolysis apparatus of the present invention includes at least one set of electrodes each having an anode and an anode facing the one surface of the anode in an electrolytic cell, and the cathode is disposed close to the anode. The gist of the present invention is that it is composed of a cathode plate having a plurality of through-holes and at least one cathode plate installed on the opposite side of the cathode plate from the surface facing the anode.

前記陰極板のうち前記陽極から最も離れて配置された陰極板は、貫通孔を有する陰極板、または貫通孔を有さない陰極板であり、その他の陰極板は複数の貫通孔を有する陰極板であることも好ましい実施態様である。   Of the cathode plates, the cathode plate arranged farthest from the anode is a cathode plate having a through hole or a cathode plate having no through hole, and the other cathode plates are cathode plates having a plurality of through holes. It is also a preferred embodiment.

本発明の陰極は、電気的に並列に接続された2枚以上の陰極板のうち、複数の貫通孔を設けた陰極板を所定数用いると共に、陰極板は相互に間隔を有して並列に配置した構成を有しているため、電解装置の省スペース化と電解効率向上に寄与する。したがって本発明の陰極を用いた電解装置は、省スペースで優れた電解効率を有する。   The cathode of the present invention uses a predetermined number of cathode plates provided with a plurality of through-holes among two or more cathode plates electrically connected in parallel, and the cathode plates are spaced in parallel with each other. Since it has the arrangement | positioning structure, it contributes to the space-saving of an electrolyzer, and the electrolysis efficiency improvement. Therefore, the electrolysis apparatus using the cathode of the present invention has excellent electrolysis efficiency in a small space.

図1は、陰極板2枚を保持する保持枠とスペーサーの概略説明図である。FIG. 1 is a schematic explanatory diagram of a holding frame and spacers for holding two cathode plates. 図2は、陽極と本発明の陰極を内設した電解槽の側面断面図である。FIG. 2 is a side sectional view of an electrolytic cell in which an anode and a cathode of the present invention are installed. 図3は、陽極と本発明の陰極を有する電極の構成例を示す一部断面図である。FIG. 3 is a partial cross-sectional view showing a configuration example of an electrode having an anode and a cathode of the present invention. 図4は、陽極と本発明の陰極を有する電極の他の構成例を示す一部断面図である。FIG. 4 is a partial cross-sectional view showing another configuration example of an electrode having an anode and a cathode of the present invention. 図5は、流路が往復型の電解槽の一例を示す側面断面図である。FIG. 5 is a side sectional view showing an example of an electrolytic cell having a reciprocating flow path. 図6は、本発明の実施例1の試験装置の概略説明図である。FIG. 6 is a schematic explanatory diagram of the test apparatus according to the first embodiment of the present invention. 図7は、実施例1の総電流値と電流密度の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the total current value and the current density in Example 1. 図8は、本発明の実施例2の試験装置の概略説明図である。FIG. 8 is a schematic explanatory diagram of a test apparatus according to Embodiment 2 of the present invention. 図9は、本発明の実施例3の試験装置の概略説明図である。FIG. 9 is a schematic explanatory diagram of a test apparatus according to Embodiment 3 of the present invention. 図10は、実施例3の陰極の電流値と陰極板間隔との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the cathode current value and the cathode plate spacing in Example 3.

上記したように処理済液を再利用するためには効率よく金属濃度を低減させる必要がある。また電解装置の小型化を達成するためには、極めて高い電解効率が要求されている。   As described above, in order to reuse the treated liquid, it is necessary to efficiently reduce the metal concentration. In order to achieve downsizing of the electrolyzer, extremely high electrolysis efficiency is required.

本発明者らは上記のように省スペース化と電解効率向上という両立困難な問題を解決すべく鋭意研究を重ねた。その結果、電解装置に用いる陰極を電気的に並列に接続された2枚以上の陰極板で構成すると共に、陰極板は互いに間隔を有して並列して配置し、且つ複数の貫通孔を有する陰極板を所定数用いれば、上記課題を達成できることを見出し、本発明に至った。以下、本発明の陰極の構成について説明する。   As described above, the present inventors have intensively studied to solve the difficult problem of both space saving and electrolytic efficiency improvement. As a result, the cathode used in the electrolysis apparatus is composed of two or more cathode plates electrically connected in parallel, and the cathode plates are arranged in parallel at intervals and have a plurality of through holes. The inventors have found that the above-mentioned problems can be achieved by using a predetermined number of cathode plates, and have reached the present invention. Hereinafter, the configuration of the cathode of the present invention will be described.

本発明で用いる陰極は電気的に並列に接続された2枚以上の陰極板で構成されていると共に、前記電気的に並列に接続された陰極板は互いに間隔を有して並列に配置されているが、「電気的に並列に接続」とは電気回路上で各陰極板が並列接続されている意味である。また「陰極板は互いに間隔を有して並列に配置されている」とは、陰極板間に所定の隙間が設けられていると共に、隣接する陰極板間の電流の流れを完全に遮蔽しない状態で陰極板の板面同士が対向して並列するように配置されているという意味である。また対向する陽極との関係では、該陽極に近接して設置する陰極板の陽極対向面とは反対側に他の陰極板を間隔を設けて配置して陰極板の板面を並列にすることが好ましい。電気分解する際、1つの陽極に対向する位置に1枚目の陰極板を配置すると共に、該陰極板の背面側、具体的には該1枚目の陰極板を介して並列に、好ましくは電解に有効に作用する位置に他の陰極板を配置した陰極を用いると、省スペースで優れた電解効率が得られる。   The cathode used in the present invention is composed of two or more cathode plates electrically connected in parallel, and the electrically connected cathode plates are arranged in parallel at intervals. However, “electrically connected in parallel” means that the cathode plates are connected in parallel on the electric circuit. In addition, “the cathode plates are arranged in parallel with a space between each other” means that a predetermined gap is provided between the cathode plates and the current flow between adjacent cathode plates is not completely shielded. This means that the plate surfaces of the cathode plates are arranged so as to face each other in parallel. In addition, in relation to the opposing anode, another cathode plate is arranged on the opposite side of the cathode facing surface of the cathode plate placed close to the anode, and the plate surfaces of the cathode plates are arranged in parallel. Is preferred. When electrolyzing, a first cathode plate is disposed at a position facing one anode, and the back side of the cathode plate, specifically, in parallel via the first cathode plate, preferably When a cathode in which another cathode plate is arranged at a position that effectively acts on electrolysis is used, excellent electrolysis efficiency can be obtained in a small space.

並列する陰極板の間隔は金属析出面が接触しないように設けることが好ましく、陰極板同士の設置角度や電気的に並列にするための配線接続方法などは限定されない。供給した金属含有溶液の滞留や線速度の低下などを抑制する観点からは該板面同士が平行となるように配置することが好ましい。   The interval between the cathode plates arranged in parallel is preferably provided so that the metal deposition surfaces do not come into contact with each other, and the installation angle between the cathode plates and the wiring connection method for making them electrically in parallel are not limited. From the viewpoint of suppressing stagnation of the supplied metal-containing solution, a decrease in linear velocity, and the like, it is preferable that the plate surfaces be arranged in parallel.

陰極板間に間隔を設けると電極面積が大きくなり、また陰極板同士を密着させた場合と比べて陰極板間に金属含有溶液を流通させることができるため、金属イオンが陰極板表面で拡散する移動速度が向上して優れた電解効率が得られると考えられる。このような観点から陰極板間には金属含有溶液が流通するように任意の幅の間隔を設ければよい。陰極板同士の間隔は広げる程、陽極に近い陰極板の電流値は高くなる。なお、電着速度はある程度の電流値で飽和すると共に、その他の陰極板の電流値が低下するため、陰極全体の電解効率は低下傾向にある。したがって陰極全体の電解効率を向上させる観点から陰極板間の間隔は好ましくは8mm以下、より好ましくは7mm以下、更に好ましくは6mm以下、より更に好ましくは5mm以下である。一方、並列する陰極板間に間隔が設けてあれば電解効率向上に十分な電流値を確保できるため、陰極板間の間隔の下限は限定されない。陰極板間を流通する金属含有溶液の線速度を向上させて、電解効率をより高める観点からは陰極板間の間隔は好ましくは1.0mm以上、より好ましくは1.5mm以上、更に好ましくは2mm以上である。   By providing a space between the cathode plates, the electrode area increases, and the metal-containing solution can be circulated between the cathode plates as compared with the case where the cathode plates are brought into close contact with each other, so that metal ions diffuse on the surface of the cathode plates. It is considered that the moving speed is improved and excellent electrolysis efficiency is obtained. From such a viewpoint, an arbitrary width may be provided between the cathode plates so that the metal-containing solution flows. The wider the gap between the cathode plates, the higher the current value of the cathode plates closer to the anode. The electrodeposition rate is saturated at a certain current value, and the current values of the other cathode plates are reduced, so that the electrolysis efficiency of the entire cathode tends to decrease. Therefore, from the viewpoint of improving the electrolysis efficiency of the entire cathode, the distance between the cathode plates is preferably 8 mm or less, more preferably 7 mm or less, still more preferably 6 mm or less, and even more preferably 5 mm or less. On the other hand, if a gap is provided between the parallel cathode plates, a current value sufficient for improving the electrolysis efficiency can be secured, so the lower limit of the gap between the cathode plates is not limited. The distance between the cathode plates is preferably 1.0 mm or more, more preferably 1.5 mm or more, and even more preferably 2 mm from the viewpoint of improving the linear velocity of the metal-containing solution flowing between the cathode plates and increasing the electrolysis efficiency. That's it.

本発明では複数の貫通孔を有する陰極板を用いることで、貫通孔を有さない陰極板と比べて表面積を増大させることができる。電気分解によって目的とする金属が電着する陰極板の表面(以下、「金属析出面」ということがある。)に複数の貫通孔を設けると、貫通孔形成部分の陰極板厚み(深さ)方向も利用でき、かつ電流が陰極板の一方の面(表面)から他方の面(裏面)にも回り込むことができるため、電気分解時に陰極板表裏面を有効に利用できる。したがって複数の貫通孔を有する陰極板に金属含有溶液を流通させると、金属イオンと陰極板の金属析出面との有効接触面積を増大できる。また陰極板間に隙間を設けて並列に配置することで該隙間にも金属含有溶液が流通して金属イオンが陰極板の金属析出面を拡散し移動する速度が速くなり、電解効率を向上できる。   In the present invention, by using a cathode plate having a plurality of through holes, the surface area can be increased as compared with a cathode plate having no through holes. When a plurality of through holes are provided on the surface of the cathode plate on which the target metal is electrodeposited by electrolysis (hereinafter sometimes referred to as “metal deposition surface”), the thickness (depth) of the cathode plate at the through hole forming portion. The direction can also be used, and the current can flow from one surface (front surface) to the other surface (back surface) of the cathode plate, so that the front and back surfaces of the cathode plate can be effectively used during electrolysis. Therefore, when the metal-containing solution is circulated through the cathode plate having a plurality of through holes, the effective contact area between the metal ions and the metal deposition surface of the cathode plate can be increased. Further, by providing a gap between the cathode plates and arranging them in parallel, the metal-containing solution flows through the gap, and the speed at which the metal ions diffuse and move on the metal deposition surface of the cathode plate is increased, so that the electrolytic efficiency can be improved. .

貫通孔とは、陰極板の板面の一方の面から他方の面に連通した孔を有することをいう。陰極板表面の貫通孔の間隔は不規則でもよいが、一定の間隔で複数の貫通孔が設けられていると電流分布の均一性が向上するため望ましい。   A through-hole means having a hole communicated from one surface of the plate surface of the cathode plate to the other surface. Although the interval between the through holes on the surface of the cathode plate may be irregular, it is desirable to provide a plurality of through holes at a constant interval because the uniformity of the current distribution is improved.

複数の貫通孔を有する陰極板としては、特に限定されず、任意の形状の貫通孔が複数形成された陰極板を用いればよい。例えば網状(格子状を含む、以下同じ)陰極板または多孔質状陰極板が挙げられる。具体的に網状陰極板としては、例えば市販されている平織り金網、溶接金網、クリンプ金網、フラット・トップ金網など各種公知の金属網を使用できる。また多孔質状陰極板としては、例えば市販されているラス網やエキスパンドメタル、パンチングメタルなどの各種公知の多孔質体を使用できる。   The cathode plate having a plurality of through holes is not particularly limited, and a cathode plate in which a plurality of through holes having an arbitrary shape are formed may be used. For example, a net-like (including lattice-like, the same below) cathode plate or a porous cathode plate can be mentioned. Specifically, various known metal meshes such as a commercially available plain weave wire mesh, welded wire mesh, crimp wire mesh, and flat top wire mesh can be used as the mesh cathode plate. As the porous cathode plate, various known porous bodies such as a commercially available lath net, expanded metal, punching metal, and the like can be used.

金属網を用いる場合は、平均目開きや線径は特に限定されず、表面積増大効果が得られればよい。例えば平均目開きは好ましくは0.5mm〜3mm、線径は好ましくは0.25mm〜0.6mm程度でもよい。なお、平均とは、金属網の複数個所における目開きと線径を測定してこれを平均して求めた値である。金属網の平均目開きを0.5mm以上にすると金属含有溶液が陰極表面裏面(電場の裏側)へ回り込みやすくなり、より優れた表面積増大効果が得られる。平均目開きの上限は限定されないが、例えば3mm以下であればより優れた表面積増大効果が得られる。より好ましい平均目開きは1.24mm以下である。   In the case of using a metal net, the average opening and the wire diameter are not particularly limited as long as the surface area increasing effect can be obtained. For example, the average opening may be preferably 0.5 mm to 3 mm, and the wire diameter may be preferably about 0.25 mm to 0.6 mm. In addition, an average is the value calculated | required by measuring the opening and wire diameter in several places of a metal net | network, and averaging this. When the average mesh size of the metal mesh is 0.5 mm or more, the metal-containing solution can easily enter the cathode surface back surface (back side of the electric field), and a more excellent surface area increasing effect can be obtained. The upper limit of the average opening is not limited, but for example, if it is 3 mm or less, a more excellent surface area increasing effect can be obtained. A more preferable average opening is 1.24 mm or less.

上記多孔質状陰極板として多孔質体を用いる場合は、上記範囲の平均目開きや平均線径に相当する開口部を有している多孔質体を用いることが好ましい。   When a porous body is used as the porous cathode plate, it is preferable to use a porous body having openings corresponding to the average openings and average wire diameters in the above range.

なお、複数の貫通孔を有する陰極板を2枚以上用いる場合、各陰極板の貫通孔の形態の異同は問わない。したがって開口部の形状の異なる金網の組み合わせ、網状の陰極板と多孔質状の陰極板との組み合わせでもよい。もちろん、同じ開口部形状を有する網状の陰極同士、多孔質状の陰極板同士を組み合わせてもよい。   In addition, when using 2 or more cathode plates which have a some through-hole, the difference in the form of the through-hole of each cathode plate is not ask | required. Therefore, a combination of wire meshes having different shapes of openings, or a combination of a net-like cathode plate and a porous cathode plate may be used. Of course, you may combine the net-like cathodes which have the same opening part shape, and porous cathode plates.

また陰極板は、導電性を有すると共に、金属含有溶液(即ち、電解液)に溶解せず、且つ電解時にも溶出しない不溶性の材料であることが好ましい。具体的には、例えば、チタンやステンレス、或いは回収対象とする金属と同じ材料等が挙げられる。   The cathode plate is preferably an insoluble material that has conductivity and does not dissolve in the metal-containing solution (that is, the electrolytic solution) and does not dissolve during electrolysis. Specifically, for example, titanium, stainless steel, or the same material as the metal to be collected can be used.

なお、本発明の陰極板は、平板状、あるいは湾曲状、屈折状など任意の形状でよく、電解槽の壁面の形状に応じて所望の形状を採用できる。好ましくは陰極板の板面が同一平面上にある平板状陰極板である。平板状陰極板を用いると、各陰極板で同等の電流値が得やすく、また流通させる金属含有溶液の線速度や流れを阻害しないため望ましい。   The cathode plate of the present invention may have a flat plate shape, an arbitrary shape such as a curved shape or a refractive shape, and a desired shape can be adopted according to the shape of the wall surface of the electrolytic cell. Preferably, it is a flat cathode plate in which the plate surfaces of the cathode plate are on the same plane. The use of a flat cathode plate is desirable because it is easy to obtain an equivalent current value in each cathode plate and does not hinder the linear velocity and flow of the metal-containing solution to be circulated.

陰極板の数は電解槽のサイズ、各陰極板の電流値などの電解条件を考慮して適宜決定すればよい。陰極板の数が多くなると使用時に陽極から遠くに設置された陰極板に電流が届かず、十分な電解性能を有さない陰極板が生じることがある。所定の電流値を確保して電解効率を高めるためには、陰極板の数は好ましくは3枚以下、より好ましくは2枚である。   The number of cathode plates may be appropriately determined in consideration of electrolysis conditions such as the size of the electrolytic cell and the current value of each cathode plate. When the number of cathode plates increases, current may not reach a cathode plate installed far from the anode during use, and a cathode plate that does not have sufficient electrolytic performance may be generated. In order to secure a predetermined current value and increase the electrolysis efficiency, the number of cathode plates is preferably 3 or less, more preferably 2.

本発明の陰極を構成する全ての陰極板が上記複数の貫通孔を有する陰極板でなくてもよい。すなわち、2枚以上の陰極板のうち、[全陰極板数−1]枚以上の陰極板に上記複数の貫通孔を有する陰極板を用いれば本発明の効果を発揮できる。全ての陰極板が複数の貫通孔を有する陰極板であると、より優れた電解効率が得られるため好ましい。   All cathode plates constituting the cathode of the present invention may not be the cathode plates having the plurality of through holes. That is, if the cathode plate having the plurality of through holes is used for [total number of cathode plates −1] or more of the two or more cathode plates, the effect of the present invention can be exhibited. It is preferable that all the cathode plates are cathode plates having a plurality of through holes because more excellent electrolysis efficiency can be obtained.

また本発明では全陰極板のうち1枚は貫通孔を有さない板状陰極板、または貫通孔を1つのみ有する陰極板を用いて、陽極と複数の貫通孔を有する陰極板の間の電流の流れを阻害しない位置に配置してもよい。電解槽に本発明の陰極を設置した場合に貫通孔を有さない陰極板、または貫通孔を1つのみ有する陰極板が陽極から近い位置に配置されると、該陰極板よりも遠い位置に配置した陰極板への電流の供給が乏しくなり、電解効率が低下する。そのため、使用時には貫通孔を有さない陰極板、または貫通孔を1つのみ有する陰極板が陽極から最も遠くになるように配置することが好ましい。   In the present invention, one of all the cathode plates is a plate-like cathode plate having no through hole, or a cathode plate having only one through hole, and the current between the anode and the cathode plate having a plurality of through holes is measured. You may arrange | position in the position which does not inhibit a flow. When the cathode plate of the present invention is installed in the electrolytic cell, a cathode plate that does not have a through-hole or a cathode plate that has only one through-hole is disposed at a position closer to the anode. The current supply to the arranged cathode plate becomes poor, and the electrolysis efficiency decreases. Therefore, it is preferable to dispose the cathode plate having no through-hole or the cathode plate having only one through-hole at the farthest position from the anode in use.

本発明では、陰極板同士の間隔を維持するため、陰極板間の電流の流れを完全に遮蔽しないようにスペーサーなどの介在物を必要に応じて設けてもよい。スペーサーは所定の間隔を保持し、陰極板間の電流の流れを完全に遮蔽しなければサイズ、設置個数、設置方向、固定方法は限定されない。スペーサーの材料も電解液に対して耐食性を有していればよく、特に限定されない。スペーサーとして例えばチタン、ステンレスなど各種金属、ポリエチレン、ポリプロピレン、アクリルなどの各種樹脂、アルミナ、ジルコニアなどのセラミック、ガラスなどが例示される。   In this invention, in order to maintain the space | interval of cathode plates, you may provide inclusions, such as a spacer, as needed so that the electric current flow between cathode plates may not be shielded completely. The spacers are not limited in size, number of installation, installation direction, and fixing method unless the spacers are kept at a predetermined distance and the current flow between the cathode plates is not completely shielded. The spacer material is not particularly limited as long as it has corrosion resistance to the electrolytic solution. Examples of the spacer include various metals such as titanium and stainless steel, various resins such as polyethylene, polypropylene, and acrylic, ceramics such as alumina and zirconia, and glass.

また例えば陰極板を保持する枠(以下、「保持枠」という)をスペーサーとして用いてもよい。図1に示すように陰極板間が所望の間隔となるように厚みを調整した保持枠13の両側に陰極板(図示例では貫通孔を省略した透視図)7a、7bを並列に取り付けることで、保持枠13がスペーサーとして機能する。また必要に応じて保持枠13の内側にも適宜スペーサー10を設けることで、陰極板の撓みなどに起因する接触を抑制することも好ましい。図示例では金属含有溶液を陰極板の板面の長手方向(例えば図中矢印で示す縦方向)に沿って陰極板7a、7b間も流通するように、陰極板7a、7bの上端部側、および下端部側は開口した構成となっている。また保持枠13に電源と接続するためのリード接合部14を設けることで、保持枠13を介して各陰極板に電流を供給できる。もちろん、電源と接続するリード線は直接各陰極板と接続して並列回路としてもよい。   Further, for example, a frame for holding the cathode plate (hereinafter referred to as “holding frame”) may be used as the spacer. As shown in FIG. 1, cathode plates (a perspective view in which through holes are omitted in the illustrated example) 7a and 7b are attached in parallel on both sides of a holding frame 13 whose thickness is adjusted so that a desired spacing is obtained between the cathode plates. The holding frame 13 functions as a spacer. In addition, it is also preferable to suppress contact caused by bending of the cathode plate by appropriately providing a spacer 10 inside the holding frame 13 as necessary. In the illustrated example, the metal-containing solution is circulated between the cathode plates 7a and 7b along the longitudinal direction of the plate surface of the cathode plate (for example, the vertical direction indicated by the arrow in the figure), the upper end side of the cathode plates 7a and 7b, And the lower end part side becomes the structure opened. Further, by providing the holding frame 13 with the lead bonding portion 14 for connecting to the power source, current can be supplied to each cathode plate via the holding frame 13. Of course, the lead wire connected to the power source may be directly connected to each cathode plate to form a parallel circuit.

なお、陰極板を3枚以上用いる場合も同様に各陰極板の間にスペーサーや保持枠を設けて所望の間隔を確保してもよい。3枚以上の陰極板を設けた場合の夫々の陰極板間の間隔は同一であっても異なっていてもよい。   Similarly, when three or more cathode plates are used, a desired interval may be secured by providing a spacer or a holding frame between the cathode plates. When three or more cathode plates are provided, the interval between the cathode plates may be the same or different.

以下、図面を参照にしながら本発明の上記陰極を備えた電解装置について説明する。なお、本発明の電解装置は図示例に限定されず、適宜変更することが可能である。   Hereinafter, an electrolysis apparatus provided with the cathode of the present invention will be described with reference to the drawings. In addition, the electrolysis apparatus of this invention is not limited to the example of illustration, It can change suitably.

本発明の電解装置は、電解槽内に陽極と、該陽極の1つの面に対向する上記陰極(電気的に並列に接続された2枚以上の陰極板で構成された陰極)とを有する少なくとも1組の電極(以下、陰極と陽極をまとめて「電極」ということがある)が内設されている。図2は本発明の電解装置に用いられる電解槽の一例を示す側面断面図であり、陰極板間のスペーサー、配線を省略した簡略図である。電解槽2は内部が空洞になっており、金属含有溶液の供給口11と排出口12を有するハウジング構造であり、内部に電気的に並列に接続された2枚の陰極板7a、7bが互いに間隔を有して並列に配置された陰極15と、陽極6とが内設されている。   The electrolysis apparatus of the present invention has at least an anode in an electrolytic cell and the cathode (a cathode composed of two or more cathode plates electrically connected in parallel) facing one surface of the anode. A set of electrodes (hereinafter, the cathode and the anode may be collectively referred to as an “electrode”) is provided. FIG. 2 is a side sectional view showing an example of an electrolytic cell used in the electrolysis apparatus of the present invention, and is a simplified view in which spacers and wirings between cathode plates are omitted. The electrolytic cell 2 has a hollow structure and a housing structure having a supply port 11 and a discharge port 12 for a metal-containing solution, and two cathode plates 7a and 7b electrically connected in parallel to each other are connected to each other. A cathode 15 and an anode 6 arranged in parallel with a gap are provided.

本発明の電極を構成する陰極は、陽極に近接して設置された複数の貫通孔を有する陰極板と、該陰極板の陽極面と反対面側に設置された少なくとも1枚の陰極板で構成されている。本発明の電極の実施形態として、1つの陽極の1つの面に対向して陰極を設ける場合、陰極を構成する複数の陰極板のうち、陽極に近接して複数の貫通孔を有する陰極板を配置すると共に、他の陰極板は該近接設置した陰極板の陽極面と反対側に該陰極板を介して間接的に陽極と面し、また陰極板間は間隔を設けると共に、各陰極板の板面が並列するように配置する。例えば図2では電解槽2の一方の側から順に陽極6、該陽極6に近接して設置された複数の貫通孔を有する陰極板7a、該陰極板7aの陽極面と反対側に該陰極板7aを介して間接的に陽極6に面するように陰極板7bを配置している。   The cathode constituting the electrode of the present invention is composed of a cathode plate having a plurality of through-holes installed close to the anode, and at least one cathode plate installed on the side opposite to the anode surface of the cathode plate. Has been. As an embodiment of the electrode of the present invention, when a cathode is provided facing one surface of one anode, among the plurality of cathode plates constituting the cathode, a cathode plate having a plurality of through holes adjacent to the anode is provided. The other cathode plates face the anode indirectly through the cathode plate on the side opposite to the anode surface of the cathode plate placed close to the cathode plate, and the cathode plates are spaced apart from each other. Arrange so that the plate faces are parallel. For example, in FIG. 2, the anode 6 in order from one side of the electrolytic cell 2, the cathode plate 7 a having a plurality of through holes installed in the vicinity of the anode 6, and the cathode plate on the side opposite to the anode surface of the cathode plate 7 a A cathode plate 7b is arranged so as to face the anode 6 indirectly through 7a.

また本発明の電極の他の実施形態として、本発明の上記陰極の両側に陽極を設置する場合は、各陽極に近接して複数の貫通孔を有する陰極板を夫々配置すると共に、他の陰極板は上記構成と同様、該近接設置した陰極板の陽極面と反対側に該陰極板を介して間接的に陽極と面するように配置することが好ましい。例えば図3に示すように陽極6a、6bと、陰極板7a〜7cで構成される陰極とで構成される電極の場合、陽極6aに近接して複数の貫通孔を有する陰極板7aを設置すると共に、陰極板7b、7cは陰極板7aの陽極6a面とは反対側に互いに間隔を有して並列に設置し、間接的に陽極6aに面する。また同様に陽極6bに近接して陰極板7cを設置すると共に、陰極板7a、7bは陰極板7cを介して間接的に陽極6bに面するように互いに間隔を有して並列に設置する。   As another embodiment of the electrode of the present invention, when anodes are installed on both sides of the cathode of the present invention, a cathode plate having a plurality of through-holes is arranged close to each anode, and other cathodes In the same manner as in the above configuration, the plate is preferably arranged so as to indirectly face the anode through the cathode plate on the side opposite to the anode surface of the cathode plate installed in the vicinity. For example, as shown in FIG. 3, in the case of an electrode composed of anodes 6a and 6b and a cathode composed of cathode plates 7a to 7c, a cathode plate 7a having a plurality of through holes is provided in the vicinity of the anode 6a. At the same time, the cathode plates 7b and 7c are arranged in parallel at intervals opposite to the surface of the anode 6a of the cathode plate 7a, and indirectly face the anode 6a. Similarly, the cathode plate 7c is installed in the vicinity of the anode 6b, and the cathode plates 7a and 7b are installed in parallel with a distance from each other so as to indirectly face the anode 6b through the cathode plate 7c.

更に本発明の他の電極の実施形態として、1つの陽極の各面夫々に、本発明の上記陰極を設置する場合は、1つの陰極を構成する陰極板のうち、陽極に近接して複数の貫通孔を有する陰極板を配置すると共に、他の陰極板は間接的に陽極と面するように配置してもよい。例えば図4に示すように陽極6と、陰極板7a、7bで構成される陰極15Aとで構成される電極の場合、上記図3と同様、陽極6に近接して陰極板7aを設置すると共に、陰極板7bは間接的に陽極6に面するように陰極板7aと間隔を有して並列に設置する。また陽極6と陰極15Bで構成される電極も同様である。   Further, as another embodiment of the electrode of the present invention, when the cathode of the present invention is installed on each surface of one anode, among the cathode plates constituting one cathode, a plurality of electrodes are provided close to the anode. While disposing a cathode plate having a through hole, other cathode plates may be disposed so as to indirectly face the anode. For example, as shown in FIG. 4, in the case of an electrode composed of the anode 6 and the cathode 15A composed of the cathode plates 7a and 7b, the cathode plate 7a is installed close to the anode 6 as in FIG. The cathode plate 7b is placed in parallel with the cathode plate 7a so as to face the anode 6 indirectly. The same applies to the electrode composed of the anode 6 and the cathode 15B.

陰極板と陽極の設置角度は限定されないが、金属含有溶液の流れを阻害しないように配置することが好ましく、陰極板と陽極板の最大面が平行になるように配置することがより好ましい。   Although the installation angle of the cathode plate and the anode is not limited, it is preferably arranged so as not to hinder the flow of the metal-containing solution, and more preferably arranged so that the maximum surfaces of the cathode plate and the anode plate are parallel.

また本発明の電極を構成する陰極のうち、陽極から最も離れて設置された陰極板は、貫通孔を有する陰極板、または貫通孔を有さない陰極板であり、その他の陰極板は複数の貫通孔を有する陰極板であることも好ましい。陽極から最も離れて設置された陰極板に用いる「貫通孔を有する陰極板」の貫通孔の数は特に限定されず、単数、複数のいずれでもよく、複数の貫通孔を設ける場合は上記複数の貫通孔を有する陰極板との異同は問わない。陽極から最も離れて設置された陰極板とは、陽極と直接面している陰極板を介して間接的に陽極と面している陰極板のうち、最も離れた位置に設置された陰極板をいう。図2〜4では、陰極板7bが陽極から最も離れて設置された陰極板に該当する。なお、図3に示すように陽極6aと陽極6bの間に3枚の陰極板7a〜cを設けた場合、陽極から最も離れて設置された陰極板とは、両陽極のいずれとも離れて設置されている陰極板7bである。また陽極と陽極の間に4枚以上の偶数の陰極板で構成された陰極を配置する場合、両陽極から最も離れて設置されている陰極板は、内側に配置された陰極板2枚が該当することになるが、該陰極板2枚について貫通孔を有さない陰極板と貫通孔を有する陰極板の組み合わせは任意である。   Of the cathodes constituting the electrode of the present invention, the cathode plate installed farthest from the anode is a cathode plate having a through hole or a cathode plate having no through hole. A cathode plate having through holes is also preferred. The number of through holes of the “cathode plate having a through hole” used for the cathode plate installed farthest from the anode is not particularly limited, and may be either a single or plural. It does not matter whether it is different from a cathode plate having a through hole. The cathode plate installed farthest from the anode is the cathode plate installed at the furthest position among the cathode plates indirectly facing the anode through the cathode plate directly facing the anode. Say. 2 to 4, the cathode plate 7 b corresponds to the cathode plate installed farthest from the anode. As shown in FIG. 3, when three cathode plates 7a to 7c are provided between the anode 6a and the anode 6b, the cathode plate installed farthest from the anode is set apart from both of the anodes. This is the cathode plate 7b. In addition, when a cathode composed of four or more even-numbered cathode plates is arranged between the anodes, two cathode plates arranged on the inner side correspond to the cathode plates arranged farthest from both anodes. However, the combination of the cathode plate having no through hole and the cathode plate having the through hole is arbitrary for the two cathode plates.

陽極と、該陽極に近接して配置された複数の貫通孔を有する陰極板の間隔は特に限定されず、接触しなければよい。電極間の間隔が狭すぎると流通する金属含有溶液に対する抵抗が増大する。また析出した金属によって電極が接続されて短絡するおそれがある。電極間距離は好ましくは10mm以上である。   The interval between the anode and the cathode plate having a plurality of through-holes arranged close to the anode is not particularly limited, and may not be in contact. When the distance between the electrodes is too narrow, the resistance to the flowing metal-containing solution increases. Moreover, there exists a possibility that an electrode may be connected by the deposited metal and it may short-circuit. The distance between the electrodes is preferably 10 mm or more.

陽極のサイズは対向する陰極板と同じサイズでよい。また陽極は貫通孔を有さない平板状の陽極であることが好ましい。陽極には公知の不溶性陽極を用いることができる。   The size of the anode may be the same size as the opposing cathode plate. The anode is preferably a flat plate-like anode having no through hole. A known insoluble anode can be used as the anode.

電解槽の材料は金属含有溶液に対して耐食性を有するポリエチレン、ポリプロピレン、ポリ塩化ビニルなどの各種公知の材料であればよく、限定されない。   The material of the electrolytic cell is not limited as long as it is a variety of known materials such as polyethylene, polypropylene, and polyvinyl chloride that have corrosion resistance to the metal-containing solution.

金属イオンの陰極板の金属析出面での移動速度を速くすれば電解効率が向上するため、供給口11から十分な移動速度が得られるように金属含有溶液を供給することが好ましい。電解槽は開放型、密閉型のいずれでもよい。線速度を維持するためには好ましくは金属含有溶液の供給口と排出口以外は閉じられた液体密閉型のハウジング構造を有する電解槽である。また液体密閉型にした場合、金属含有溶液に含まれる気体や電解によって生じた気体などが電解槽内部に滞留すると電極と金属含有溶液の接触率が低下したり、発生した気体に水素や酸素が含まれていると発火などの原因となるため、気体を適宜抜き出すためのガス抜き機構を設けてもよい。   If the moving speed of the metal ion on the metal deposition surface of the cathode plate is increased, the electrolysis efficiency is improved. Therefore, it is preferable to supply the metal-containing solution from the supply port 11 so that a sufficient moving speed can be obtained. The electrolytic cell may be either an open type or a closed type. In order to maintain the linear velocity, the electrolytic cell preferably has a liquid sealed housing structure that is closed except for the supply port and the discharge port of the metal-containing solution. In addition, when the liquid-sealed type is used, if the gas contained in the metal-containing solution or the gas generated by electrolysis stays in the electrolytic cell, the contact rate between the electrode and the metal-containing solution decreases, or the generated gas contains hydrogen or oxygen. If it is contained, it may cause ignition and the like, and therefore, a gas venting mechanism for appropriately extracting gas may be provided.

電解槽に設ける金属含有溶液の供給口と排出口は、金属含有溶液が陰極板の板面に沿って一定方向に流れるように設置することが望ましい。図2では陰極板の板面の長手方向が電解槽の上下方向となるように設置すると共に、供給口11を電解槽の下側、排出口12を電解槽の上側に設けている。したがってこの構成では電解槽下部から供給された金属含有溶液は陰極の板面長手方向に沿って電解槽内を流通して排出口12から排出される。   The supply port and the discharge port of the metal-containing solution provided in the electrolytic cell are desirably installed so that the metal-containing solution flows in a certain direction along the plate surface of the cathode plate. In FIG. 2, while installing so that the longitudinal direction of the plate | board surface of a cathode plate may become the up-down direction of an electrolytic cell, the supply port 11 is provided below the electrolytic cell, and the discharge port 12 is provided above the electrolytic cell. Accordingly, in this configuration, the metal-containing solution supplied from the lower part of the electrolytic cell flows through the electrolytic cell along the longitudinal direction of the plate surface of the cathode and is discharged from the discharge port 12.

本発明の電解装置には、送液手段を設けることが好ましい。金属含有溶液を送液手段を介して本発明の陰極が内設された電解槽に一定以上の線速度で供給すると、金属イオンの移動速度が速くなって陰極板の金属析出面と金属イオンとの接触効率が高まり、電解効率を向上できる。金属含有溶液の線速度は限定されず、金属含有溶液中の電解対象金属含有量、電解槽のサイズ、電解能力などを考慮して、所望の電解効率が得られるように適宜ポンプ等の加圧手段、あるいは高低差を利用した送液手段などの公知の送液手段で線速度を調整すればよい。金属含有溶液の線速度は好ましくは0.07m/秒以上、より好ましくは0.13m/秒以上である。   The electrolysis apparatus of the present invention is preferably provided with a liquid feeding means. When the metal-containing solution is supplied to the electrolytic cell in which the cathode of the present invention is installed through the liquid feeding means at a linear velocity of a certain level or more, the movement speed of the metal ions increases, and the metal deposition surface of the cathode plate and the metal ions The contact efficiency is improved, and the electrolysis efficiency can be improved. The linear velocity of the metal-containing solution is not limited, and in consideration of the content of the metal to be electrolyzed in the metal-containing solution, the size of the electrolytic cell, the electrolysis capacity, etc. The linear velocity may be adjusted by a known liquid feeding means such as a means or a liquid feeding means using a height difference. The linear velocity of the metal-containing solution is preferably 0.07 m / second or more, more preferably 0.13 m / second or more.

電解槽に内設された電極には外部電源装置から所定の電気が供給され、これによって電解槽内に供給された金属含有溶液は電気分解されて所望の金属を陰極に析出させることができる。上記電解装置を用いて金属含有溶液を電気分解するときの電解条件は限定されず、所望の電流値が得られるように調整すればよい。電流密度は好ましくは7A/m2以上、より好ましくは15A/m2以上であって、好ましくは250A/m2以下、より好ましくは100A/m2以下である。 Predetermined electricity is supplied to the electrode provided in the electrolytic cell from an external power supply device, whereby the metal-containing solution supplied into the electrolytic cell can be electrolyzed to deposit a desired metal on the cathode. The electrolysis conditions for electrolyzing the metal-containing solution using the electrolyzer are not limited, and may be adjusted so as to obtain a desired current value. The current density is preferably 7 A / m 2 or more, more preferably 15 A / m 2 or more, preferably 250 A / m 2 or less, more preferably 100 A / m 2 or less.

優れた電解効率を得るためには、電解槽内で金属含有溶液と陰極板との接触面積はできるだけ大きいことが望ましい。また一定の線速度を確保しながら省スペース化を図るためには電解槽内の金属含有溶液の流路を折り返し部分が交互になるように接続した往復型とすることが望ましい。往復する流路の長さ、往復数は電解槽の構成や設置する電極の数、金属含有溶液中の金属濃度、金属の除去率などを考慮して適宜設定すればよい。   In order to obtain excellent electrolysis efficiency, it is desirable that the contact area between the metal-containing solution and the cathode plate is as large as possible in the electrolytic cell. In order to save space while ensuring a constant linear velocity, it is desirable to use a reciprocating type in which the flow path of the metal-containing solution in the electrolytic cell is connected so that the folded portions are alternated. The length of the reciprocating flow path and the number of reciprocations may be appropriately set in consideration of the configuration of the electrolytic cell, the number of electrodes to be installed, the metal concentration in the metal-containing solution, the metal removal rate, and the like.

図5は往復型の流路を有する電解槽の側面断面図であり、金属含有溶液の供給口11と排出口12以外は閉じられている液体密閉型電解槽である。図5の流路に設けた電極は図4に示す構成であるが、これに限定されず、例えば図2や図3に示すような電極の構成でもよい。また供給口11と排出口12の配置は図示例に限定されず、陰極板の板面(最大面)に沿って金属含有溶液が一定方向に流れるように設置すればよい。なお、図5ではガス抜き機構としてガス排出口17を設けているが、ガス抜き機構は必要に応じて設ければよく、また設置位置も任意である。   FIG. 5 is a side cross-sectional view of an electrolytic cell having a reciprocating flow path, and is a liquid-sealed electrolytic cell that is closed except for the supply port 11 and the discharge port 12 of the metal-containing solution. The electrode provided in the flow path of FIG. 5 has the configuration shown in FIG. 4, but is not limited to this, and for example, the electrode configuration as shown in FIG. 2 or 3 may be used. Further, the arrangement of the supply port 11 and the discharge port 12 is not limited to the illustrated example, and it may be installed so that the metal-containing solution flows in a certain direction along the plate surface (maximum surface) of the cathode plate. In addition, although the gas exhaust port 17 is provided as a gas venting mechanism in FIG. 5, a gas venting mechanism should just be provided as needed and the installation position is also arbitrary.

本発明の上記陰極を備えた電解装置は、メッキ処理設備や金属配線処理設備など金属含有溶液を排出する設備に付属して使用することが好ましい。代表例としてメッキ処理設備に付属して使用する場合は、メッキ処理設備の例えばメッキ品洗浄設備と本発明の電解装置とを接続して、メッキ処理設備から排出された金属含有溶液を電気分解すればよい。なお、メッキ処理設備から排出された金属含有溶液を随時電解装置に供給してもよいが、メッキ処理設備と電解装置の間に金属含有溶液を一時的に貯蔵する貯留槽を設けて所定の線速度となるように送給手段で電解装置に供給してもよい。   The electrolysis apparatus provided with the cathode of the present invention is preferably used by being attached to equipment for discharging a metal-containing solution, such as plating processing equipment and metal wiring processing equipment. As a typical example, when used in connection with a plating processing facility, for example, a plating product cleaning facility of the plating processing facility and the electrolysis apparatus of the present invention are connected to electrolyze the metal-containing solution discharged from the plating processing facility. That's fine. Note that the metal-containing solution discharged from the plating processing facility may be supplied to the electrolysis apparatus at any time, but a storage tank for temporarily storing the metal-containing solution is provided between the plating processing facility and the electrolysis apparatus, and a predetermined line is provided. You may supply to an electrolysis apparatus with a supply means so that it may become speed.

本発明を適用して陰極板に析出させて回収できる金属元素としては、特に限定されず、例えば、Au、Ag、白金族元素(Pd、Pt、Ir、Ru、およびRh)などの貴金属元素や、CuやNiなどが挙げられる。   The metal element that can be recovered by being deposited on the cathode plate by applying the present invention is not particularly limited. For example, noble metal elements such as Au, Ag, and platinum group elements (Pd, Pt, Ir, Ru, and Rh) Cu, Ni, etc. are mentioned.

本発明の対象となる金属含有溶液は、上記金属を含有していればよく、代表的にはメッキ処理廃液、配線処理廃液、写真の現像廃液、メッキ品を水洗した液、剥離液などが挙げられる。   The metal-containing solution that is the subject of the present invention only needs to contain the above-mentioned metal, and typically includes plating processing waste liquid, wiring processing waste liquid, photographic development waste liquid, a solution obtained by washing a plated product with water, a stripping solution, and the like. It is done.

また金属含有溶液中の金属濃度は排出源によって異なるため限定されない。金属含有溶液中の金属濃度は好ましくは100ppm以下、より好ましくは50ppm以下、更に好ましくは25ppm以下、より更に好ましくは10ppm以下、最も好ましくは5ppm以下である。   Moreover, since the metal concentration in a metal containing solution changes with discharge sources, it is not limited. The metal concentration in the metal-containing solution is preferably 100 ppm or less, more preferably 50 ppm or less, still more preferably 25 ppm or less, still more preferably 10 ppm or less, and most preferably 5 ppm or less.

上記所定の電解条件下で本発明の上記電解装置を用いれば、金属含有溶液から金属を効率的に除去して、再利用可能レベルまで金属含有濃度を低減できる。   If the electrolysis apparatus of the present invention is used under the predetermined electrolysis conditions, metal can be efficiently removed from the metal-containing solution and the metal-containing concentration can be reduced to a reusable level.

金属含有溶液は電解装置で処理した後、再利用するために各処理工程に返送してもよいし、一回の処理で十分に金属含有量を低減できなかった場合には、電解装置で再処理してもよい。また再利用する際には必要に応じて再生剤などを添加するなど任意の処理を行ってもよい。   The metal-containing solution may be returned to each processing step for reuse after being processed by the electrolytic device. If the metal content cannot be reduced sufficiently by a single treatment, the metal-containing solution is recycled by the electrolytic device. It may be processed. Moreover, when reusing, arbitrary treatments such as adding a regenerant may be performed as necessary.

なお、陰極板に電着した金属は、各種公知の方法で除去、回収できる。例えば析出した金属を溶解する溶液中に浸漬させて金属を溶出させて回収できる。   The metal electrodeposited on the cathode plate can be removed and collected by various known methods. For example, the metal can be recovered by being immersed in a solution in which the deposited metal is dissolved.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
実施例1では、図6に示す装置を用いて複数の陰極板を設置した場合の各陰極板の電流値を調べた。試験装置1は円筒形の電解槽2(内径30mm×高さ250mm)、金属含有溶液の循環槽3、金属含有溶液を昇圧させる送液手段であるポンプ4、電解槽2下方の供給口から金属含有溶液を供給するための配管5が設置されている。また電解槽2には平板状陽極6(横20mm×縦150mm、表面積30cm2、不溶性陽極)、陰極15を構成する陰極板(No.1−1〜1−6:各横20mm×縦150mm)、各電極と接続する電源8、および各電極に流れる電流を測定する電流計9を備えている。陽極6にはチタン基体電極(DSE:Dimentionally Stable Electrode:登録商標)を用いた。また陰極15を構成する各陰極板No.1−1〜1−5は平均目開き(ピッチ)1.24mm、平均線径0.57mm(14メッシュ)、表面積は約61cm2のステンレス(SUS)製網(以下、「網状陰極板」ということがある)、陰極板No.1−6は貫通孔を有さない通常の板状ステンレス製電極(以下、「板状陰極板」ということがある)を用いた。陰極板No.1−1〜1−6は夫々1.5mmの間隔を設けて並列させて陰極板全体が浸漬するように電解槽2内に設置した。なお、陰極板間の間隔は陰極間にスペーサーを設けて確保した。具体的には各陰極板の四隅に金属含有溶液の液流方向と平行になるようにアクリル板(幅8mm、厚さ1mm、溝深さ0.5mm)を接着剤で固定した。また陽極6と該陽極6に最も近接して配置した陰極板No.1―1の間隔は10mmとし、陽極6から最も離れた箇所が板状陰極板No.1−6となるように順次陰極板No.1−2〜1−6を設置した。
Example 1
In Example 1, the current value of each cathode plate when a plurality of cathode plates were installed using the apparatus shown in FIG. 6 was examined. The test apparatus 1 includes a cylindrical electrolytic cell 2 (inner diameter 30 mm × height 250 mm), a metal-containing solution circulation tank 3, a pump 4 which is a liquid feeding means for increasing the pressure of the metal-containing solution, and a metal from a supply port below the electrolytic cell 2. A pipe 5 for supplying the contained solution is installed. The electrolytic cell 2 has a flat plate-like anode 6 (width 20 mm × length 150 mm, surface area 30 cm 2 , insoluble anode) and cathode plate constituting the cathode 15 (No. 1-1 to 1-6: each width 20 mm × length 150 mm). A power supply 8 connected to each electrode and an ammeter 9 for measuring a current flowing through each electrode are provided. The anode 6 was a titanium substrate electrode (DSE: Dimentionally Stable Electrode: registered trademark). Each cathode plate No. 1 constituting the cathode 15 is also shown. 1-1 to 1-5 have an average mesh opening (pitch) of 1.24 mm, an average wire diameter of 0.57 mm (14 mesh), and a surface area of about 61 cm 2 made of stainless steel (SUS) (hereinafter referred to as “reticulated cathode plate”). Cathode plate no. No. 1-6 used a normal plate-like stainless steel electrode (hereinafter sometimes referred to as “plate-like cathode plate”) having no through hole. Cathode plate No. 1-1 to 1-6 were installed in the electrolytic cell 2 so that the entire cathode plate was immersed with an interval of 1.5 mm in parallel. The interval between the cathode plates was secured by providing a spacer between the cathodes. Specifically, acrylic plates (width 8 mm, thickness 1 mm, groove depth 0.5 mm) were fixed with adhesives at the four corners of each cathode plate so as to be parallel to the liquid flow direction of the metal-containing solution. In addition, the anode 6 and the cathode plate No. The interval 1-1 is 10 mm, and the portion farthest from the anode 6 is the plate cathode plate No. Cathode plate No. 1 in order so as to be 1-6. 1-2 to 1-6 were installed.

本実施例では金属含有溶液としてシアン系めっき水洗液(Au濃度12ppm、室温)を用いた。本実施例はバッチ式であり、循環槽3の下部に充填された金属含有溶液(1.2L)は、ポンプ4を介して一定の線速度(0.13m/s)で電解槽2下方に設けた供給口から供給された後、電解槽2上方からオーバーフローして再び循環槽3に貯留される循環型とした。   In this example, a cyan plating washing solution (Au concentration 12 ppm, room temperature) was used as the metal-containing solution. The present embodiment is a batch type, and the metal-containing solution (1.2 L) filled in the lower part of the circulation tank 3 passes through the pump 4 at a constant linear velocity (0.13 m / s) below the electrolytic cell 2. After being supplied from the provided supply port, it was a circulation type that overflowed from above the electrolytic cell 2 and stored again in the circulation vessel 3.

電流値、および電流密度の測定
表1に示す総電流値(A)に対して各陰極板に流れる電流値(A)を測定して表1に示した。また各陰極板の表面積当たりの電流密度(A/m2)を算出して表2に示すと共に総電流値と電流密度の関係を図7に示した。
Measurement of Current Value and Current Density Table 1 shows the current value (A) flowing through each cathode plate with respect to the total current value (A) shown in Table 1. The current density per surface area (A / m 2 ) of each cathode plate was calculated and shown in Table 2, and the relationship between the total current value and the current density is shown in FIG.

陰極板を6枚設置した場合、陽極側から数えて3枚目以降(No.1〜3〜1−6)は総電流値を上げても電流値が低く、陰極板の数を増やしても全体の電解効率向上には大きく寄与しないことがわかった。一方、総電流値を上げると、1、2枚目(No.1−1、1−2)の電流値も上昇するが、電解効率は飽和した。そのため陰極板の数を多くすると共に総電流値を高くしても電解効率向上効果は限られることがわかった。   When six cathode plates are installed, the third and subsequent plates (No. 1-3 to 1-6) counting from the anode side are low even if the total current value is increased, and the number of cathode plates is increased. It was found that it does not contribute greatly to the overall electrolytic efficiency improvement. On the other hand, when the total current value was increased, the current values of the first and second sheets (No. 1-1, 1-2) also increased, but the electrolytic efficiency was saturated. Therefore, it was found that the effect of improving the electrolytic efficiency is limited even when the number of cathode plates is increased and the total current value is increased.

また多数の陰極板を設置すると、陰極の総表面積は増大し、電流量も増大できるため電解効率も向上すると予想されるが、以上の結果からは、上記予想に反して多数の陰極板を用いても陽極と陰極板の距離が離れるほど、電流密度が低下して電解に十分寄与しない陰極板が生じるため、全体の電解効率が低下することがわかった。   In addition, if a large number of cathode plates are installed, the total surface area of the cathode increases and the amount of current can be increased, so that the electrolysis efficiency is expected to improve. From the above results, however, a large number of cathode plates were used contrary to the above prediction. However, it has been found that as the distance between the anode and the cathode plate increases, the current density decreases and a cathode plate that does not sufficiently contribute to electrolysis is generated, so that the overall electrolysis efficiency decreases.

実施例2
実施例2では、金属含有溶液としてシアン系めっき水洗液(Au濃度2.1ppm、室温)を用いて電気分解法によりAuを陰極に析出させ、Au濃度が2.0ppmになるまでの電着速度を調べた。
Example 2
In Example 2, electrodeposition rate until Au was deposited on the cathode by electrolysis using a cyan plating washing solution (Au concentration 2.1 ppm, room temperature) as the metal-containing solution, and the Au concentration reached 2.0 ppm. I investigated.

下記陰極に変更した以外は、実施例1と同様の構成を有する図8の試験装置を用いて電着速度を調べた。   The electrodeposition rate was examined using the test apparatus of FIG. 8 having the same configuration as in Example 1 except that the cathode was changed to the following cathode.

陰極
No.2−1
実施例1のNo.1−6と同じ貫通孔を有さない板状陰極板を1枚用いた。
Cathode No. 2-1
No. of Example 1 One plate-like cathode plate not having the same through hole as 1-6 was used.

No.2−2
平均目開き1mm、平均線径0.3mm(20メッシュ)のSUS製網状陰極板(各横20mm×縦150mm)を1枚用いた。
No. 2-2
One SUS mesh cathode plate (each 20 mm wide × 150 mm long) having an average aperture of 1 mm and an average wire diameter of 0.3 mm (20 mesh) was used.

No.2−3
上記No.2−2と同じ網状陰極板2枚をスペーサーを設けずに密着させた状態で固定した。
No. 2-3
No. above. Two reticulated cathode plates as in 2-2 were fixed in close contact with no spacers.

No.2−4
上記No.2−2と同じ網状陰極板を2枚用いた。No.2−4では陰極板の間隔を2mmに調整した以外は実施例1と同様にしてスペーサーを設けた。
No. 2-4
No. above. Two reticulated cathode plates as in 2-2 were used. No. In 2-4, spacers were provided in the same manner as in Example 1 except that the distance between the cathode plates was adjusted to 2 mm.

No.2−5
上記No.2−2と同じ網状陰極板を3枚用いた。No.2−5では各陰極板の間隔を2mmに調整した以外は実施例1と同様にしてスペーサーを設けた。
No. 2-5
No. above. Three reticulated cathode plates as in 2-2 were used. No. In 2-5, spacers were provided in the same manner as in Example 1 except that the interval between the cathode plates was adjusted to 2 mm.

電着速度
金属含有溶液の金濃度が2.1mg/Lから2.0mg/Lになるまでに要した時間に基づいて電着速度を測定した。電着速度は、金属含有溶液を循環させて電解槽2が充填された状態になってから電流を0.4Aとして電気分解を行って測定した。結果を表3に示す。
Electrodeposition rate The electrodeposition rate was measured based on the time required for the gold concentration of the metal-containing solution to change from 2.1 mg / L to 2.0 mg / L. The electrodeposition rate was measured by electrolyzing with a current of 0.4 A after the metal-containing solution was circulated and the electrolytic cell 2 was filled. The results are shown in Table 3.

表3に示すように網状陰極板同士が互いに接触しないように設置したNo.2−4とNo.2−5は、従来の板状陰極板を用いたNo.2−1と比べると、電着速度が9倍以上向上した。また陰極に使用する網状陰極板を1〜3枚に変更した場合、網状陰極板を複数枚用いたNo.2−4(2枚)、2−5(3枚)は、No.2−2(1枚)と比べると、電着速度は2倍以上向上した。これらの結果から、陰極には互いに間隔を有して並列に配置した複数枚の陰極板を用いることによって、電解効率が著しく向上することがわかった。なお、No.2−4(陰極板数2枚)とNo.2−5(陰極板数3枚)を比べると電着速度は同等であるが、電極の利用効率を考慮すると使用する陰極板の枚数は2枚が好適であることがわかった。   As shown in Table 3, the reticulated cathode plates were installed so as not to contact each other. 2-4 and no. No. 2-5 is No. 2 using a conventional plate-like cathode plate. Compared to 2-1, the electrodeposition rate was improved 9 times or more. In addition, when the number of mesh cathode plates used for the cathode is changed to 1 to 3, no. 2-4 (2 sheets) and 2-5 (3 sheets) are No. Compared with 2-2 (one sheet), the electrodeposition rate improved more than twice. From these results, it was found that the electrolysis efficiency was remarkably improved by using a plurality of cathode plates arranged in parallel with a space between each other as the cathode. In addition, No. 2-4 (two cathode plates) and No. 2 Compared with 2-5 (3 cathode plates), the electrodeposition rate was the same, but it was found that the number of cathode plates to be used is preferably 2 in consideration of the electrode utilization efficiency.

また2枚の網状陰極板間に隙間を設けたNo.2−4は、2枚の網状陰極板を密着させたNo.2−3と比べると、電極面積が大きいため電着速度が1.3倍以上向上した。電着速度が1.3倍異なると、No.2−3と比べてNo.2−4では電極面積を2〜3割削減しても同等の電着速度が得られることを意味しており、電解装置の小型化に極めて有効である。   In addition, No. 1 was provided with a gap between two reticulated cathode plates. No. 2-4 is No. 2 in which two reticulated cathode plates were adhered. Compared with 2-3, since the electrode area was large, the electrodeposition rate was improved 1.3 times or more. If the electrodeposition rate differs 1.3 times, No. Compared with 2-3. 2-4 means that the same electrodeposition rate can be obtained even if the electrode area is reduced by 20-30%, which is extremely effective for downsizing of the electrolyzer.

実施例3
実施例1と同様の構成を有する図9の試験装置を用いて電着速度を調べた。陰極15を構成する陰極板7a(表中、No.3−1)、7b(No.3−2)はいずれも横20mm×縦150mm、表面積は約73cm2であり、電流を流さない擬似陰極板16(No.3−3)は横20mm×縦150mm、表面積30cm2である。また陰極板7a、7bは平均目開き(ピッチ)0.50mm、平均線径0.29mm(32メッシュ)のステンレス製網状陰極板、擬似陰極板16は貫通孔を有さないPVC樹脂製板を用いた。陰極板7a、7bは間が表4に示す間隔となるように実施例1と同様にしてスペーサーを設けた。また陽極6と陰極板7aの間隔は表4に示す電極間距離となるように設置した。擬似陰極板16は陰極板7bと1.5mmの間隔を開けて設置した。なお、上記擬似陰極板16は陽極の近くに設置した陰極板7aによって陽極6から離れて設置した陰極板7bに電気的な影響が生じるかを観察するために設置した。
Example 3
The electrodeposition rate was examined using the test apparatus of FIG. 9 having the same configuration as in Example 1. Cathode plates 7a (No. 3-1 in the table) and 7b (No. 3-2) constituting the cathode 15 are both 20 mm wide × 150 mm long, a surface area of about 73 cm 2 , and a pseudo cathode that does not pass current. The plate 16 (No. 3-3) is 20 mm wide × 150 mm long and has a surface area of 30 cm 2 . The cathode plates 7a and 7b are stainless steel mesh cathode plates having an average aperture (pitch) of 0.50 mm and an average wire diameter of 0.29 mm (32 mesh), and the pseudo cathode plate 16 is a PVC resin plate having no through holes. Using. Spacers were provided in the same manner as in Example 1 so that the distances between the cathode plates 7a and 7b were as shown in Table 4. The distance between the anode 6 and the cathode plate 7a was set to be the distance between the electrodes shown in Table 4. The pseudo cathode plate 16 was installed with an interval of 1.5 mm from the cathode plate 7b. The pseudo cathode plate 16 was installed in order to observe whether the cathode plate 7a installed near the anode has an electrical influence on the cathode plate 7b installed away from the anode 6.

本実施例では金属含有溶液としてシアン系めっき水性液(Au濃度12ppm、室温)を用いた。本実施例はバッチ式であり、循環槽3に充填された金属含有溶液(1.2L)は、ポンプ4を介して一定の線速度(0.13m/秒)で電解槽2下方側から供給された後、電解槽2上方側からオーバーフローして再び循環槽3に貯留され循環させた。   In this example, a cyan plating aqueous solution (Au concentration 12 ppm, room temperature) was used as the metal-containing solution. This embodiment is a batch type, and the metal-containing solution (1.2 L) filled in the circulation tank 3 is supplied from the lower side of the electrolytic cell 2 through the pump 4 at a constant linear velocity (0.13 m / second). Then, it overflowed from the upper side of the electrolytic cell 2 and was stored again in the circulation tank 3 and circulated.

電流値の測定
表1に示す総電流値(A)に対して陰極板7a、7bに流れる電流値(A)を測定して表4に示した。また陰極板7bの電流値と陰極板7a、7b間の間隔との関係を図10に示した。
Measurement of Current Value The current value (A) flowing through the cathode plates 7a and 7b was measured with respect to the total current value (A) shown in Table 1 and shown in Table 4. FIG. 10 shows the relationship between the current value of the cathode plate 7b and the interval between the cathode plates 7a and 7b.

表4に示すように、陽極6と陰極板7aとの電極間距離の広狭は陽極から遠くに設置した陰極板7bの電流値にほとんど影響しなかった。一方、表4、図10に示すように、陰極板7a、7b間の間隔が広くなるほど、陽極近くに設置した陰極板7aの電流値は高くなるが、陽極6から遠くに設置した陰極板7bの電流値は低下した。なお、本実施例の場合、電流密度20A/m2で電着速度が飽和するため、陰極板間隔を広くして陰極板7aの電流値を高くしても陰極板7aの電着速度は向上しないが、陰極板7bの電流値が低下して陰極板7bの電着速度が低下するため、陰極全体の電着速度が低下した。 As shown in Table 4, the distance between the electrodes of the anode 6 and the cathode plate 7a hardly affected the current value of the cathode plate 7b disposed far from the anode. On the other hand, as shown in Table 4 and FIG. 10, as the distance between the cathode plates 7 a and 7 b increases, the current value of the cathode plate 7 a placed near the anode increases, but the cathode plate 7 b placed far from the anode 6. The current value decreased. In this embodiment, the electrodeposition rate is saturated at a current density of 20 A / m 2 , so that the electrodeposition rate of the cathode plate 7a is improved even if the cathode plate 7a is widened to increase the current value of the cathode plate 7a. However, since the current value of the cathode plate 7b decreased and the electrodeposition rate of the cathode plate 7b decreased, the electrodeposition rate of the entire cathode decreased.

以上の結果から陰極板間の間隔を8mmを超えて広げると、陽極6から遠い位置に設置した陰極板7bの電流値の低下に伴って電解効率が低下する傾向を示し、陰極全体の電解効率も低くなることがわかる。   From the above results, when the distance between the cathode plates is increased beyond 8 mm, the electrolysis efficiency tends to decrease with a decrease in the current value of the cathode plate 7b located far from the anode 6, and the electrolysis efficiency of the whole cathode It turns out that it becomes low.

実施例4
実施例4では、陰極板の貫通孔の種類が電着速度に及ぼす影響を調べた。具体的には金属含有溶液としてシアン系めっき水洗液(Au濃度2.1ppm、室温)を用いて電気分解法により金属含有溶液中のAu濃度が2.1ppmから2.0ppmになるまでの電着速度を調べた。
Example 4
In Example 4, the influence of the type of the through hole of the cathode plate on the electrodeposition rate was examined. Specifically, electrodeposition until the Au concentration in the metal-containing solution is reduced from 2.1 ppm to 2.0 ppm by electrolysis using a cyan plating washing solution (Au concentration 2.1 ppm, room temperature) as the metal-containing solution. The speed was examined.

表5に示す陰極に変更した以外は、実施例2と同様の構成を有する図8の試験装置を用いて各陰極の電着速度を調べた。各陰極No.4−1〜4−3は表5に示す種類の陰極板(横20mm×縦150mm)2枚で構成されており、実施例1と同様にしてスペーサーを入れて2mmの間隔を設けた。実施例2と同様に金属含有溶液を循環させるバッチ式で実験を行った。   Except for changing to the cathode shown in Table 5, the electrodeposition speed of each cathode was examined using the test apparatus of FIG. Each cathode No. Reference numerals 4-1 to 4-3 are each composed of two cathode plates of the type shown in Table 5 (width 20 mm × length 150 mm), and a spacer was inserted in the same manner as in Example 1 to provide an interval of 2 mm. In the same manner as in Example 2, the experiment was conducted in a batch system in which the metal-containing solution was circulated.

陰極
No.4−1
実施例2のNo.2−4の網状陰極板を2枚用いた。
Cathode No. 4-1
No. 2 in Example 2. Two 2-4 mesh cathode plates were used.

No.4−2
平均目開き2mm×5mm、板厚1mmのチタン製ラス網を2枚用いた。
No. 4-2
Two titanium lath nets having an average aperture of 2 mm × 5 mm and a plate thickness of 1 mm were used.

No.4−3
平均目開き1.5mm×3mm、板厚0.8mmのチタン製ラス網を2枚用いた。
No. 4-3
Two titanium lath nets having an average aperture of 1.5 mm × 3 mm and a plate thickness of 0.8 mm were used.

電着速度
電着速度は実施例2と同様にして測定した。結果を表5に示す。
Electrodeposition rate The electrodeposition rate was measured in the same manner as in Example 2. The results are shown in Table 5.

表5に示すように、表面積当たりの電着速度はほぼ同程度であり、いずれも優れた電解効率を有していたが、網状陰極板を用いた陰極No.4−1は、ラス網を用いた陰極No.4−2、4−3よりも電極面積当たりの電着速度が速く、より優れた電解効率を示した。 As shown in Table 5, the electrodeposition rates per surface area were almost the same, and both had excellent electrolytic efficiency. 4-1, cathode No. using a lath net. The electrodeposition rate per electrode area was faster than that of 4-2 and 4-3, and more excellent electrolysis efficiency was exhibited.

1 試験装置
2 電解槽
3 循環槽
4 ポンプ
5 配管
6、6a、6b 陽極
7、7a、7b、7c 陰極板
8 電源
9 電流計
10 スペーサー
11 供給口
12 排出口
13 保持枠
14 リード接合部
15、15A、15B 陰極
16 擬似陰極板
17 ガス排出口
DESCRIPTION OF SYMBOLS 1 Test apparatus 2 Electrolysis tank 3 Circulation tank 4 Pump 5 Piping 6, 6a, 6b Anode 7, 7a, 7b, 7c Cathode plate 8 Power supply 9 Ammeter 10 Spacer 11 Supply port 12 Discharge port 13 Holding frame 14 Lead junction 15 15A, 15B Cathode 16 Pseudo cathode plate 17 Gas outlet

Claims (7)

対向する陰極と陽極とを備えた電気分解法によって金属含有溶液から金属を陰極に析出させる電解装置に用いる陰極であって、
前記陰極は電気的に並列に接続された2枚以上の陰極板で構成されていると共に、
前記電気的に並列に接続された陰極板は互いに間隔を有して並列に配置されており、且つ、
前記2枚以上の陰極板のうち、[全陰極板数−1]枚以上の陰極板は複数の貫通孔を有するものであることを特徴とする電解装置用陰極。
A cathode used in an electrolysis apparatus for depositing metal on a cathode from a metal-containing solution by an electrolysis method having an opposing cathode and anode,
The cathode is composed of two or more cathode plates electrically connected in parallel,
The electrically connected cathode plates are arranged in parallel with an interval between them, and
Of the two or more cathode plates, the [total number of cathode plates −1] or more cathode plates have a plurality of through holes.
前記並列に配置された陰極板は互いに8mm以下の間隔を有するものである請求項1に記載の電解装置用陰極。   The cathode for an electrolysis device according to claim 1, wherein the cathode plates arranged in parallel have an interval of 8 mm or less. 前記陰極を構成する2枚以上の陰極板は、前記陰極板の貫通孔を通して並列する他の陰極板に電流が流れるように構成されている請求項1または2に記載の電解装置用陰極。   3. The cathode for an electrolysis apparatus according to claim 1, wherein two or more cathode plates constituting the cathode are configured such that a current flows to another cathode plate arranged in parallel through a through hole of the cathode plate. 前記陰極は2枚または3枚の陰極板で構成されている請求項1〜3のいずれかに記載の電解装置用陰極。   The cathode for an electrolysis device according to any one of claims 1 to 3, wherein the cathode is composed of two or three cathode plates. 前記陰極板間にスペーサーが配置されている請求項1〜4のいずれかに記載の電解装置用陰極。   The cathode for an electrolysis device according to any one of claims 1 to 4, wherein a spacer is disposed between the cathode plates. 請求項1〜5のいずれかに記載の陰極を備えた電解装置であって、
前記電解装置は、電解槽内に
陽極と、該陽極の1つの面に対向する前記陰極とを有する電極を少なくとも1組内設し、且つ、
前記陰極は、前記陽極に近接して配置された複数の貫通孔を有する陰極板と、該陰極板の陽極対向面と反対側に設置された少なくとも1枚の陰極板で構成されている電解装置。
An electrolysis apparatus comprising the cathode according to any one of claims 1 to 5,
The electrolyzer includes at least one set of electrodes each having an anode in an electrolytic cell and the cathode facing one surface of the anode, and
The cathode is composed of a cathode plate having a plurality of through holes arranged close to the anode, and at least one cathode plate installed on the opposite side of the cathode plate from the surface facing the anode. .
前記陰極板のうち前記陽極から最も離れて配置された陰極板は、貫通孔を有する陰極板、または貫通孔を有さない陰極板であり、その他の陰極板は複数の貫通孔を有する陰極板である請求項6に記載の電解装置。   Of the cathode plates, the cathode plate arranged farthest from the anode is a cathode plate having a through hole or a cathode plate having no through hole, and the other cathode plates are cathode plates having a plurality of through holes. The electrolyzer according to claim 6.
JP2015246490A 2015-12-17 2015-12-17 Negative electrode for electrolytic device, and electrolytic device including the same Pending JP2017110269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015246490A JP2017110269A (en) 2015-12-17 2015-12-17 Negative electrode for electrolytic device, and electrolytic device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015246490A JP2017110269A (en) 2015-12-17 2015-12-17 Negative electrode for electrolytic device, and electrolytic device including the same

Publications (1)

Publication Number Publication Date
JP2017110269A true JP2017110269A (en) 2017-06-22

Family

ID=59080452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015246490A Pending JP2017110269A (en) 2015-12-17 2015-12-17 Negative electrode for electrolytic device, and electrolytic device including the same

Country Status (1)

Country Link
JP (1) JP2017110269A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150384A (en) * 1993-11-30 1995-06-13 Konica Corp Electrolytic metal recovering method and device therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150384A (en) * 1993-11-30 1995-06-13 Konica Corp Electrolytic metal recovering method and device therefor

Similar Documents

Publication Publication Date Title
US8262873B2 (en) Anode assembly for electroplating
US3977951A (en) Electrolytic cells and process for treating dilute waste solutions
JPS6119319B2 (en)
US6899803B2 (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof
JPS63137191A (en) Electrolytic cell for electrolytic precipitation of metal
PL107640B1 (en) DEVICE FOR ELECTROLYTIC DEPOSITION OF METAL FROM WATER SOLUTION AND THE METHOD OF ELECTROLYTIC SETTING OF METAL FROM WATER SOLUTION
Simonsson A flow-by packed-bed electrode for removal of metal ions from waste waters
KR100874684B1 (en) Method and apparatus for high rated jewerly recovering
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
KR20160043209A (en) Electric plating apparatus with horizontal cell
JP5898346B2 (en) Operation method of anode and electrolytic cell
KR102400469B1 (en) Electrolytic cell and electrode plate for electrolytic cell
JP2017110269A (en) Negative electrode for electrolytic device, and electrolytic device including the same
KR101188475B1 (en) Electrolyzer for recovery apparatus of precious metal
CN111041543A (en) Anode device for platinizing inner wall of semi-closed container
KR101912205B1 (en) electrolysis-electrodeposition bath for water treatment
JP2004238704A (en) Electrolytic device, and electrolytic treatment method
KR101681196B1 (en) Apparatus for withdrawing valuable metal
KR20120041575A (en) Metal recovering apparatus with electrolysis
JP4185829B2 (en) Electrolyzed water generator
Grau et al. Silver electrodeposition from photographic processing solutions
JP3924537B2 (en) Electrolytic plating tank
TWI806328B (en) An improved process and device for copper electroplating with sulfate bath and insoluble anode
JP5524100B2 (en) Electrolytic recovery apparatus and method of using the same
KR20140095829A (en) Equipment for electrolytic withdrawal of metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181010

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303