WO2002077360A1 - Verfahren zur antimikrobiellen ausrüstung von fasern oder vliesstoffen - Google Patents

Verfahren zur antimikrobiellen ausrüstung von fasern oder vliesstoffen Download PDF

Info

Publication number
WO2002077360A1
WO2002077360A1 PCT/EP2002/002738 EP0202738W WO02077360A1 WO 2002077360 A1 WO2002077360 A1 WO 2002077360A1 EP 0202738 W EP0202738 W EP 0202738W WO 02077360 A1 WO02077360 A1 WO 02077360A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
wax
nonwovens
oil
millicapsules
Prior art date
Application number
PCT/EP2002/002738
Other languages
English (en)
French (fr)
Inventor
Anna Tacies
Josep-Lluis Viladot Petit
Marta Domingo
Rafael Pi Subirana
Original Assignee
Cognis Iberia S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Iberia S.L. filed Critical Cognis Iberia S.L.
Publication of WO2002077360A1 publication Critical patent/WO2002077360A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters

Definitions

  • the invention is in the field of textile technology and relates to a process for finishing fibers and fabrics using special emulsions ("preparations"), fibers, fabrics and end products produced therefrom, which have been treated with these preparations and the use of the preparations for Finishing of fibers and fabrics.
  • preparations special emulsions
  • fibers, fabrics and end products produced therefrom which have been treated with these preparations and the use of the preparations for Finishing of fibers and fabrics.
  • absorbent materials are used to absorb aqueous liquids.
  • this material is covered with a thin, water-permeable nonwoven.
  • nonwovens are usually made from synthetic fibers, such as polyolefin or polyester fibers, since these fibers are inexpensive to produce, have good mechanical properties and, in the case of polyolefins, are thermally solidifiable.
  • the disadvantage is that the nonwovens used in hygiene articles are in direct skin contact and are therefore exposed to considerable bacterial contamination. In unfavorable cases, e.g. B. in high humidity, a significant growth of bacteria on the nonwoven surface. In the case of slight injuries to the skin surface, for example, this can lead to inflammation of the skin, which must be avoided.
  • the object of the present invention was therefore to provide a process for the antimicrobial finishing of fibers, nonwovens and end products produced therefrom which reliably avoids the disadvantages of the prior art.
  • it should be ensured that the active ingredient is not released suddenly, but in portions and with a time delay, so that the equipment is guaranteed over the entire duration of the wearing process.
  • a care effect should also be associated with the antimicrobial finish.
  • the invention relates to a process for the antimicrobial finishing of fibers or nonwovens, especially those which consist entirely or predominantly of polyolefins or polyesters, which is characterized in that they are mixed with aqueous preparations of millicapsules with average diameters in the range from 0.1 to 5 mm which can be obtained by
  • the emulsions mentioned achieve the object on which the invention is based in an excellent manner.
  • the active ingredients can be very finely distributed in the gel matrix, which means that the fibers and nonwovens can be treated very easily and evenly with the microcapsules contained in the active ingredients.
  • the equipment against bacterial growth is ensured due to the careful distribution and the large number of capsules over the entire wearing period.
  • an effect against Staphylococcus aureus and Klebsiella pneumonia is achieved.
  • the latter are responsible for pneumonia or inflammation of the urinary tract and often occur in older people who are incontinent and therefore have to use appropriate products for hygiene.
  • antimicrobial agents that also have nourishing or other beneficial properties. gen, the quality of the end products can be further improved.
  • the preparations contain
  • An advantageous form of supply consists in introducing the aqueous preparations into cosmetic oils and selling these emulsions.
  • both natural and synthetic waxes can be used to produce the millicapsules as wax bodies.
  • natural waxes are candelilla wax, carnauba wax, Japanese wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax).
  • synthetic waxes are petrolatum, paraffin waxes, micro waxes, chemically modified waxes (hard waxes), such as e.g.
  • fatty alcohols which are solid at room temperature preferably those having 16 to 22 carbon atoms, such as in particular cetyl alcohol, stearyl alcohol, cetylstearyl alcohol or behenyl alcohol, wax ester, of fatty acids with fatty alcohols which are also solid at room temperature and preferably in total at least 20, preferably contain at least 26 carbon atoms as well as comparable other fatty substances, such as, for example, fatty ethers (eg distearyl ether) or ketones (eg stearone). It is advisable to use the wax bodies above their respective melting point, that is generally at 50 to 95, preferably 60 to 70 ° C.
  • antimicrobial agents such as those used in the field of hygiene products
  • surfactants such as those used in the field of hygiene products
  • emulsifiers such as those used in the field of hygiene products
  • biogenic agents such as those used in the field of hygiene products
  • deodorants such as those used in the field of hygiene products
  • perfume oils Typical examples of antimicrobial agents, such as those used in the field of hygiene products. It can be seen by the person skilled in the art that the degree of antimicrobial activity varies with the stated groups of substances. embossed. A lower effectiveness, however, may be offset by the additional nourishing properties.
  • Anionic, nonionic, cationic and / or amphoteric or amphoteric surfactants may be present as surface-active substances, the proportion of which in the compositions is usually about 1 to 70, preferably 5 to 50 and in particular 10 to 30% by weight.
  • anionic surfactants are soaps, alkylbenzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerin ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, hydroxidic ether amide sulfates, hydroxymether amide sulfates, hydroxymether ether sulfates, hydroxymether ether sulfates, hydroxymether ether sulfates, hydroxymether ether sulfates, sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfo
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides or especially fatty acid glucoric acid derivatives (GLCUs), glucoronic acid derivatives (GLCUs), glucoronic acid derivatives (GLCUs), and glucoronic acid derivatives (GLCU) Wheat-based products), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • cationic surfactants are quaternary ammonium compounds, such as, for example, dimethyldistearylammonium chloride, and esterquats, in particular quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The surfactants mentioned are exclusively known compounds.
  • J.Falbe ed.
  • Surfactants in Consumer Products “, Springer Verlag, Berlin, 1987, pp. 54-124 or J.Falbe (ed.),” Catalysts, surfactants and mineral oil additives ", Thieme Verlag, Stuttgart, 1978, pp. 123-217.
  • Typical examples for particular suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether, noglyceridsulfate Mo, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty klaresarcosinate, fatty acid taurides, fatty acid glutamates, ⁇ -olefinsulfonates, ether carboxylic acids, alkyl oligoglucosides, fatty acid glucamides acetals, alkylamidobetaines, Amphoa- and / or protein fatty acid condensates, the latter preferably based on wheat proteins. Because of their mild biocidal action, cationic surfactants, especially those with an ester quat structure, are also frequently used.
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups: adducts of 2 to 30 mol of ethylene oxide and / or 0 to 5 mol of propylene oxide with linear fatty alcohols with 8 to 22 C atoms, with fatty acids with 12 to 22 C -Atoms, on alkylphenols with 8 to 15 carbon atoms in the alkyl group and alkylamines with 8 to 22 carbon atoms in the alkyl radical; Alkyl and / or alkenyl oligoglycosides with 8 to 22 carbon atoms in the alk (en) yl radical and their ethoxylated analogs; Addition products of 1 to 15 moles of ethylene oxide with castor oil and / or hardened castor oil; Addition products of 15 to 60 moles of ethylene oxide with castor oil and / or hardened castor oil; Partial esters of glycerin and / or sorbitan with unsaturated, linear or
  • alkyl glucosides e.g. methyl glucoside, butyl glucoside, lauryl glucoside
  • polyglucosides saturated with (eg and / or unsaturated, linear or branched fatty acids with 12 to 22 carbon atoms and / or hydroxycarboxylic acids with 3 to 18 carbon atoms and their adducts with 1 to 30 moles of ethylene oxide;
  • Lanolin alcohol polysilane loxane-polyalkyl-polyether copolyzeolites
  • Copolymers e.g. Polyethylene glycol 30 dipolyhydroxystearate; Polymer emulsifiers, e.g. Pemulen types (TR-1, TR-2) from Goodrich; Polyalkylene glycols and glycerol carbonate.
  • Polyethylene glycol 30 dipolyhydroxystearate dipolyhydroxystearate
  • Polymer emulsifiers e.g. Pemulen types (TR-1, TR-2) from Goodrich
  • Polyalkylene glycols and glycerol carbonate e.g. Polyethylene glycol 30 dipolyhydroxystearate
  • Polymer emulsifiers e.g. Pemulen types (TR-1, TR-2) from Goodrich
  • Polyalkylene glycols and glycerol carbonate e.g. Polyalkylene glycols and glycerol carbonate.
  • the adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols or with castor oil are known, commercially available products. These are mixtures of homologues whose average degree of alkoxylation is the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate, with which the attachment reaction is carried out.
  • C ⁇ 2 i 8 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE 2024051 PS as refatting agents for cosmetic preparations.
  • Alkyl and / or alkenyl oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • the glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • Suitable partial glycerides are Hydroxystearin Textremonogly- cerid, hydroxystearic acid diglyceride, isostearic acid, Isostearin Text- rediglycerid, oleic acid monoglyceride, oleic acid diglyceride, Ricinolklaremoglycerid, ricinoleic klarediglycerid, Linolklaremonoglycerid, Linolklarediglycerid, Linolenklamo- noglycerid, LinolenLiterediglycerid, Erucaklaremonoglycerid, Erucaklakladiglycerid, Weinklaremonoglycerid, Weinklarediglycerid, CitronenLiteremonoglycerid, citric nendiglyceride, malic acid monoglyceride, malic acid diglyceride and their technical mixtures, which may still contain minor amounts of triglyceride from the manufacturing process. Addition products
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearate (Dehymuls® PGPH), polyglycerol-3-diisostearate (Lameform® TGI), polyglyceryl-4 isostearate (Isolan® GI 34), polyglyceryl-3 oleate, diisostearoyl polyglyceryl 3 diisostearates (Isolan® PDI), polyglyceryl-3 methylglucose distearate (Tego Care® 450), polyglyceryl-3 beeswax (Cera Bellina®), polyglyceryl-4 caprate (polyglycerol caprate T2010 / 90), polyglyceryl-3 cetyl ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) and Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Is
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like which are optionally reacted with 1 to 30 mol of ethylene oxide.
  • Typical anionic emulsifiers are aliphatic fatty acids with 12 to 22 carbon atoms, such as, for example, palmitic acid, stearic acid or behenic acid, and dicarboxylic acids with 12 to 22 carbon atoms, such as, for example, azelaic acid or sebacic acid.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example coconut acylaminopropyldimethylammonium glycinate, and 2 -Alkyl-3-carboxylmethyl-3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate
  • fatty acid amide derivative known under the CTFA name Cocamidopropyl Betaine.
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, apart from a C8 / ⁇ 8 alkyl or acyl group, contain at least one free amino group and at least one -COOH or -SO 3 H group and contain internal to form salts are capable.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltourines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each with about 8 to 18 carbon atoms in the alkyl group.
  • ampholytic surfactants are N-cocoalkylaminopropionate, minopropionat the Kokosacylaminoethyla- and C ⁇ 2 / ⁇ 8 acyl sarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methylquaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • biogenic active ingredients include tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, retinyl palmitate, bisabolol, allantoin, phytantriol, panthenol, chitosan, menthol, tea tree oil, AHA acids, kojamide, pseudoamides, amino acids, pentamides, pentamides To understand plant extracts and vitamin complexes.
  • Cosmetic deodorants counteract, mask or eliminate body odors.
  • Body odors arise from the action of skin bacteria on apocrine sweat, whereby unpleasant smelling breakdown products are formed. Accordingly, deodorants contain active ingredients which act as germ-inhibiting agents, enzyme inhibitors, odor absorbers or odor maskers.
  • germ-inhibiting agents such as.
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Düsseldorf / FRG). The substances inhibit enzyme activity and thereby reduce odor.
  • trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Düsseldorf / FRG).
  • the substances inhibit enzyme activity and thereby reduce odor.
  • esterase inhibitors include sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, glutaric acid mono- noethyl ester, glutaric acid diethyl ester, adipic acid, adipic acid monoethyl ester, adipic acid diethyl ester, malonic acid and malonic acid diethyl ester, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or tartaric acid diethyl ester and zinc glycinate.
  • dicarboxylic acids and their esters such as, for example, glutaric acid, glutaric acid mono- noethyl ester, glutaric acid diethyl ester, adipic acid, adipic acid monoethy
  • Suitable odor absorbers are substances that absorb odor-forming compounds and can retain them to a large extent. They lower the partial pressure of the individual components and thus also reduce their speed of propagation. It is important that perfumes must remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixators", such as, for example, the main component. B. extracts of Labdanum or Styrax or certain abietic acid derivatives. Fragrance agents or perfume oils act as odor maskers and, in addition to their function as odor maskers, give the deodorants their respective fragrance.
  • Perfume oils are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and branches as well as resins and balms. Animal raw materials, such as civet and castoreum, are also suitable. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and carbon type. Hydrogens.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, p-tert-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyd, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example the jonones and methylcedryl ketone, and the alcohols anethole, Citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams.
  • the aldehydes for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyd, cyclamenaldehyde, hydroxycitronella
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdanum oil and lavandin oil.
  • Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, Alcohols and hydrocarbons. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenylglycinate, allylcyclohexyl benzylatepylpropylate, stylate propionate, stylate propionate.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals with 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the jonones, oc-isomethyl ionone and methyl cedryl ketone
  • the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol JZLT
  • the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • the active compounds can be used in amounts such that the millicapsules have a content of 5 to 60, preferably 10 to 50, and in particular 15 to 25% by weight.
  • aqueous preparations of the millicapsules are introduced into cosmetic oils, stable emulsions are formed which can contain, for example, 25 to 75% by weight of millicapsules, 24 to 90% by weight of oil body and ad 100% by weight of water.
  • esters of linear C 6 -C 22 fatty acids with linear or branched C 6 -C 22 fatty alcohols or esters of branched C 6 -C ⁇ come as oil bodies, for example 3- carboxylic acids with linear or branched -C ⁇ fatty alcohols, such as myristyl myristate, myristyl palmitate, myristyl stearate, myristyl isostearate, myristyl oleate, myristyl behenate, myristylerate, cetyl myristate, cetyl palmitate, cetyl stearate, cetyl isolate, cetyl isolate, cetyl isolate, cetyl isolate, cetyl , Stearylisostearat, leat Stearylo-, stearyl behenate, Stearylerucat, isostearyl, Isostearylpa imitation Isostea-
  • esters of C22 fatty acids are linear C 6 -C with branched alcohols, especially 2-ethylhexanol, esters by C ⁇ 8 -C 38 alkyl hydroxy carboxylic acids with linear or branched alcohols (cf.
  • dioctyl malates esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimer diol or trimer triol) and / or Guerbet alcohols, triglycerides based on C ⁇ -C ⁇ 0 fatty acids, liquid Mono- / di- / triglyceride mixtures based on C ⁇ -C ⁇ 8 fatty acids, esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, especially benzoic acid, esters of C 2 -C ⁇ 2 dicarboxylic acids with linear or branched alcohols with 1 to 22 carbon atoms or polyols with 2 to 10 carbon atoms and 2 to 6 hydroxyl groups, vegetable oils, branched primary alcohols, substituted cyclohexanes, linear and branched C 6 -C 22 fatty alcohol carbonates, such as dicapryly
  • Finsolv® TN linear or branched, symmetrical or asymmetrical dialkyl ethers with 6 to 22 carbon atoms per alkyl group, such as dicaprylyl ether (Cetiol® OE), ring opening products of epoxidized fatty acid esters with polyols, silicone oils (cyclomethicones, silicon methicone types etc.) and / or aliphatic or naphthenic hydrocarbons, such as, for example, squalane, squalene or dialkylcyclohexanes.
  • dicaprylyl ether such as dicaprylyl ether (Cetiol® OE)
  • silicone oils cyclomethicones, silicon methicone types etc.
  • aliphatic or naphthenic hydrocarbons such as, for example, squalane, squalene or dialkylcyclohexanes.
  • aqueous preparations or the emulsions it is advisable to disperse the wax bodies and active ingredients in water or another suitable organic solvent, such as, for example, ethanol, acetone or xylene, in which the waxes are insoluble. It is advisable to work at temperatures above the melting point of the wax body, that is at about 50 to 95, preferably 60 to 75 ° C. In this way, millicapsules are obtained which have a homogeneous distribution of the active ingredient in the wax. Then the preparation is placed under the Cooled melting temperature of the wax body, which solidify on it. The resulting millicapsules can now be easily filtered off and then placed in water or oil bodies.
  • the aqueous preparations or emulsions can then be used in amounts of active substance from 0.1 to 10, preferably 0.2 to 5 and in particular 0.5 to 2% by weight, based on the weight of the fiber or nonwoven.
  • Polyolefin fibers are one of the most common fibers used to manufacture nonwovens.
  • suitable polyolefins are polypropylene, polyethylene or copolymers of ethylene or propylene with butadiene.
  • Polyester fibers mainly polyethylene terephthalate fibers, are also used.
  • other synthetic fibers suitable for producing nonwovens can also be used, for example fibers made of Nylon® . Fibers consisting of two or more components, for example polyester-copolyester fibers or polypropylene-polyethylene fibers, are also particularly suitable.
  • nonwovens used in the process according to the invention can be produced by all processes of nonwoven production known in the prior art, as described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 17, VCH Weinheim 1994, pages 572-581.
  • Nonwovens which are produced either by the so-called “dry laid” - or the spunbonded or spunbond process are preferred.
  • the "dry laid” process is based on staple fibers, which are usually produced by carding. Individual fibers are separated and then combined into an unconsolidated nonwoven using an aerodynamic or hydrodynamic process. This is then combined, for example, by a thermal treatment to form the finished nonwoven (the so-called “thermobonding”).
  • the synthetic fibers are either heated to such an extent that their surface melts and the individual fibers are connected to one another at the contact points, or the fibers are combined with an additive coated, which melts during the heat treatment and thus connects the individual fibers to one another.
  • the connection is fixed by cooling.
  • Spunbond formation starts from individual filaments which are formed by the melt spinning process from extruded polymers which are pressed through spinnerets under high pressure.
  • the filaments emerging from the spinnerets are bundled, stretched and laid down to form a nonwoven which is usually consolidated by "thermobonding".
  • the process according to the invention is particularly suitable for nonwovens which are produced by the spunbonded or the "dry laid" process.
  • aqueous preparations or the emulsions prepared therefrom (“preparations”) are applied to the untreated nonwoven fabric or the fibers by the process according to the invention.
  • preparations all methods and machines customary in textile technology, for example a foulard, can be used, but spraying or roller application or pin application is also possible.
  • the fibers or nonwovens are then dried and processed
  • Another object of the invention therefore relates to antimicrobial fibers which consist entirely or predominantly of polyolefins or polyesters or nonwovens which predominantly contain such fibers, and which are characterized in that they are produced by finishing with the aqueous preparations.
  • the finishing can be carried out by coating the emulsions (active substance) in amounts of 0.1 to 10% by weight, based on the weight of the fibers or nonwovens.
  • the invention also relates to hygiene products, such as feminine hygiene articles, diapers or wipes, which are distinguished by the fact that they contain the nonwovens finished as explained above.
  • a last object of the invention relates to the use of millicapsules with average diameters in the range from 0.1 to 5 mm, which can be obtained by:
  • Example 1 In a 100 ml three-necked flask, 2 g of chitosan (Hydagen® DCMF, Cognis Deutschland GmbH) were dissolved in 100 ml of aqueous ethanol, first heated to 60 ° C. and then, with vigorous stirring, in portions with 5 g of a melt of can. Delilla wax added. The preparation was then cooled to 0 ° C. and filtered. The resulting millicapsules had an average diameter of 0.5 mm
  • Example 2 In a 100 ml three-necked flask, 2 g of a 90% strength by weight solution of dicapryloylmethylethoxymonium methosulfate in isopropyl alcohol are first heated to 60 ° C. and then, with vigorous stirring, 5 g of a melt of Carnauba wax are added in portions. The preparation was then cooled to 0 ° C. and filtered. The resulting millicapsules had an average diameter of 0.5 mm
  • Example 3 In a 100 ml three-necked flask, 2 g of thymol were dispersed in 100 ml of acetone, first heated to 60 ° C. and then 5 g of a melt of candelilla wax were added in portions with vigorous stirring. The preparation was then cooled to 0 ° C. and filtered. The resulting millicapsules had an average diameter of 0.5 mm
  • Example 4 2 g of glycerol monostearate were dissolved in a 100 ml three-necked flask, first heated to 60 ° C. and then 5 g of a melt of beeswax were added in portions with vigorous stirring. The preparation was then cooled to 0 ° C. and filtered. The resulting millicapsules had an average diameter of 0.5 mm.

Abstract

Vorgeschlagen wird ein Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen, welches sich dadurch auszeichnet, dass man diese mit wässrigen Zubereitungen von Millikapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm behandelt, welche erhältlich sind, indem man (a) aus Wachskörpern und Wirkstoffen oberhalb der Schmelztemperatur der Wachskörper eine wässrige oder organische Matrix herstellt, in denen diese unlöslich sind, (b) die Matrix unter die Schmelztemperatur der Wachskörper abkühlt, und (c) die entstandenen Millikapseln abfiltriert.

Description

VERFAHREN ZUR ANTIMIKROBIELLEN AUSRÜSTUNG VON FASERN ODER VLIESSTOFFEN
Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der Textiltechnik und betrifft ein Verfahren zur Ausrüstung von Fasern und Stoffen unter Einsatz spezieller Emulsionen ("Präparationen"), Fasern, Stoffe und daraus hergestellte Endprodukte, die mit diesen Präparationen behandelt worden sind sowie die Verwendung der Präparationen zur Ausrüstung der Fasern und Stoffe.
Stand der Technik
Bei der Herstellung von Hygieneartikeln, wie Windeln oder Damenbinden, werden absorbierende Materialien verwendet, um wässrige Flüssigkeiten aufzunehmen. Um den direkten Kontakt mit dem absorbierenden Material beim Tragen zu verhindern und den Tragekomfort zu erhöhen, wird dieses Material mit einem dünnen, wasserdurchlässigen Vliesstoff umhüllt. Derartige Vliesstoffe werden üblicherweise aus synthetischen Fasern, wie Polyolefin- oder Polyesterfasern hergestellt, da diese Fasern preiswert zu produzieren sind, gute mechanische Eigenschaften aufweisen und im Fall von Polyolefinen thermisch zu verfestigen sind.
Von Nachteil ist, dass die in Hygieneartikeln verwendeten Vliesstoffe in direktem Hautkontakt stehen und somit einer erheblichen bakteriellen Kontamination ausgesetzt sind. Es kann daher in ungünstigen Fällen, z. B. bei hoher Feuchtigkeit, zu einem erheblichen Bakterienwachstum auf der Vliesoberfläche kommen. Dies kann beispielsweise bei leichten Verletzungen der Hautoberfläche zu einer Entzündung der Haut führen, die es zu vermeiden gilt.
Aus dem Stand der Technik ist eine Vielzahl von Schriften bekannt, die sich mit der Ausrüstung von Hygieneartikeln auseinandersetzen. Aus dem umfangreichen Schrifttum sei beispielsweise die WO 96/16682 (Procter & Gamble) und insbesondere die US 3,585,998 (Hayford) zitiert, die Windeln mit einem Gehalt an Mikrokapseln zum Gegenstand hat, welche das darin enthaltene Babyöl noch vor dem Anlegen unter mechanischem Druck freisetzen. Abgesehen davon, dass der Wirkstoff auf diese Weise unkon- trolliert und auf einmal freigesetzt wird, löst diese Anwendung das Problem des Bakterienwachstums auf der Vliesoberfläche nicht.
Die Aufgabe der vorliegenden Erfindung hat somit darin bestanden, ein Verfahren zur antimikrobiellen Ausrüstung von Fasern, Vliesstoffen sowie daraus hergestellten Endprodukten zur Verfügung zu stellen, welche die Nachteile des Stands der Technik zuverlässig vermeidet. Insbesondere sollte gewährleistet sein, dass der Wirkstoff nicht schlagartig, sondern portionsweise und zeitverzögert freigesetzt wird, so dass die Ausrüstung über die ganze Dauer des Tragevorgangs gewährleistet ist. Gleichzeitig sollte mit der antimikrobiellen Ausrüstung auch ein Pflegeeffekt verbunden sein.
Beschreibung der Erfindung
Gegenstand der Erfindung ist ein Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen, speziell solchen, die ganz oder überwiegend aus Polyolefinen oder Polyestern bestehen, welches sich dadurch auszeichnet, dass man diese mit wässrigen Zubereitungen von Millikapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm behandelt, welche erhältlich sind, indem man
(a) aus Wachskörpern und Wirkstoffen oberhalb der Schmelztemperatur der Wachskörper eine wässrige oder organische Matrix herstellt, in denen diese unlöslich sind,
(b) die Matrix unter die Schmelztemperatur der Wachskörper abkühlt, und
(c) die entstandenen Millikapseln abfiltriert.
Überraschenderweise wurde gefunden, dass die genannten Emulsionen die der Erfindung zugrundeliegende Aufgabe in vorzüglicher Weise lösen. Die Wirkstoffe lassen sich feinst in der Gelmatrix verteilen, was dazu führt, dass die Fasern und Vliesstoffe sehr einfach und gleichmäßig mit den die Wirkstoffe enthaltenen Mikrokapseln behandelt werden können. In der Folge wird wegen der sorgfältigen Verteilung und der Vielzahl der Kapseln über den gesamten Tragezeitraum die Ausrüstung gegen Bakterienwachstum sichergestellt ist. Im Sinne des erfindungsgemäßen Verfahrens wird insbesondere eine Wirkung gegenüber Staphylococcus aureus und Klebsiella pneumonia erzielt. Letztere sind verantwortlich für Lungenentzünden bzw. Entzündungen der Harnwege und treten häufig bei älteren Menschen auf, die inkontinent sind und daher entsprechende Produkte zur Hygiene benutzen müssen. Durch den Einsatz von antimikrobiellen Wirkstoffen, die gleichzeitig auch noch über pflegende oder sonst wie vorteilhafte Eigenschaften verfü- gen, kann die Qualität der Endprodukte weiter verbessert werden. In einer bevorzugten Ausführung der Erfindung enthalten die Zubereitungen
(a) 1 bis 75, vorzugsweise 25 bis 70 und insbesondere 30 bis 50 Gew.-% Mikrokapseln und
(b) 25 bis 99, vorzugsweise 30 bis 60 und insbesondere 40 bis 50 Gew.-% Wasser
mit der Maßgabe, dass sich die Mengenangaben gegebenenfalls mit Ölkörpem und weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% addieren. So besteht eine vorteilhafte An- bietungsform darin, dass man die wässrigen Zubereitungen in kosmetische Öle einbringt und diese Emulsionen verkauft.
Millikapseln
Im Sinne der Erfindung kommen zur Herstellung der Millikapseln als Wachskörper sowohl natürliche als auch synthetische Wachse in Frage. Typische Beispiele für natürliche Wachse sind Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs). Beispiele für synthetische Wachse sind Petrolatum, Paraffinwachse, Mikrowachse, chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie Polyalkylenwachse und Polyethylenglykol- wachse. Ebenfalls geeignet sind bei Raumtemperatur feste Fettalkohole vorzugsweise solche mit 16 bis 22 Kohlenstoffatomen, wie insbesondere Cetylalkohol, Stearylalkohol, -Cetylstearγlalkohol oder-Behenylalkohol, -Wachsester-von Fettsäuren mit -Fettalkoholen, welche ebenfalls bei Raumtemperatur fest sind und vorzugsweise in Summe mindestens 20, vorzugsweise mindestens 26 Kohlenstoffatome enthalten sowie vergleichbare andere Fettstoffe, wie beispielsweise Fettether (z.B. Distearylether) oder Ketone (z.B. Stearon). Es empfiehlt sich die Wachskörper oberhalb ihres jeweiligen Schmelzpunktes, also in der Regel bei 50 bis 95, vorzugsweise 60 bis 70 °C einzusetzen.
Typische Beispiele für antimikrobielle Wirkstoffe, wie sie im Bereich der Hygieneprodukte eingesetzt werden, sind Tenside, Emulgatoren, biogene Wirkstoffe, Deodorantien und keimhemmende Mittel sowie Parfümöle. Für den Fachmann ersichtlich, ist der Grad der antimikrobiellen Wirksamkeit bei den genannten Stoffgruppen unterschiedlich stark aus- geprägt. Eine geringere Wirksamkeit wird jedoch gegebenenfalls durch die zusätzlichen pflegenden Eigenschaften ausgeglichen.
> Tenside
Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder amphotere bzw. amphotere Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzol- sulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfo- nate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monogly- cerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäu- ren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpo- lyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpo- lyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure- N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkyl- amidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfo- betaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.)/ "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Mo- noglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fett- säuresarcosinate, Fettsäuretauride, Fettsäureglutamate, α-Olefinsulfonate, Ether- carbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine, Amphoa- cetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen. Wegen ihrer milden bioziden Wirkung werden auch häufig kationische Tenside, speziell solche mit einer Esterquatstruktur eingesetzt.
Emulgatoren
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage: Anlagerungsprodukte von 2 bis 30 Mol Ethy- lenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C- Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C- Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Al- kylrest; Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga; Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl; Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl; Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbon- -säuren-mit-3-bis 18-Kohlenstoffatomen-sowie-deren-Addukte mit-l- bis-30-Mol Ethylenoxid; Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pen- taerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Bu- tylglucosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid; Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin; Mono-, Di- und Trialkylphosphate sowie Mono- , Di- und/oder Tri-PEG-alkylphosphate und deren Salze; Wollwachsalkohole; Polysi- loxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate; Block-
Copolymere z.B. Polyethylenglycol-30 Dipolyhydroxystearate; Polymeremulgatoren, z.B. Pemulen-Typen (TR-l,TR-2) von Goodrich; Polyalkylenglycole sowie Glycerin- carbonat.
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlägerungsreaktion durchgeführt wird, entspricht. Cι2 i8-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonogly- cerid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäu- rediglycerid, Ölsäuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinol- säurediglycerid, Linolsäuremonoglycerid, Linolsäurediglycerid, Linolensäuremo- noglycerid, Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremonoglycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citro- nendiglycerid, Äpfelsäuremonoglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbi- tan-diisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sor- bitan-dioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitan- dierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbi- tandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitansesqui- hydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmo- notartrat, Sorbitansesqui-tartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmono- citrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbita ntricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitan-dimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbita nester.
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Po- lyglyceryl-4 Isostearate (Isolan® GI 34), Polyglyceryl-3 Oleate, Diisostearoyl Po- lyglyceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Po- lyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Ad- mul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol E- thylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pen- taerythrit mit Laurinsäure, Kokosfettsäure, Taigfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.
Typische anionische Emulgatoren sind aliphatische Fettsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Palmitinsäure, Stearinsäure oder Behensäure, sowie Dicarbonsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Azelainsäure o- der Sebacinsäure.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoni- umglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylami- nopropyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosacylami- nopropyldimethyl-ammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxye- thylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäurea- mid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8/ι8-Alkyl- oder Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropion-säuren, N-Alkylaminobuttersäuren, N- Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltau- rine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethyla- minopropionat und das Cι2/ι8-Acylsarcosin. Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind.
> Bioqene Wirkstoffe
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, To- copherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Retinylpalmitat, Bisabolol, Allantoin, Phytantriol, Panthenol, Chitosan, Menthol, Teebaumöl, AHA- Säuren, Kojisäure, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
> Deodorantien und keimhemmende Mittel
Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker fungieren.
Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N '-(3,4 dichlorphenyl)hamstoff, 2,4,4 '-Trichlor-2'-hydroxy- diphenylether (Triclosan), 4-Chlor-3,5-dimethylphenol, 2,2'-Methylen-bis(6-brom-4- chlorphenol), 3-Methyl-4-(l-methylethyl)phenol, 2-Benzyl-4-chlorphenol, 3-(4- Chlorphenoxy)-l,2-propandiol, 3-Iod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4'- Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n- octylamid oder Salicylsäure-n-decylamid.
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Trii- sopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cho- lesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw -phosphat, Dicar- bonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremo- noethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adi- pinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbnon- säuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure o- der Weinsäurediethylester, sowie Zinkglycinat.
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfüms unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlen- Wasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, p- tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Ben- zylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetalde- hyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eu- genol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen~verschiedener~Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Man- darinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E- Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
arfümöle
Als Parfümöle mit schwach antimikrobiellen Eigenschaften seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylace- tat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellylo- xyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und TerpineolJZLTden KohlenwasseTstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, -Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gam- ma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Die Wirkstoffe können dabei in solchen Mengen eingesetzt werden, dass sich in den Millikapseln ein G„ehalt von 5 bis 60, vorzugsweise_10_bis„50„und insbesondere 15 bis 25 Gew.-% ergibt.
Ölkörper
Werden die wässrigen Zubereitungen der Millikapseln in kosmetische Öle eingebracht, so entstehen stabile Emulsionen, die beispielsweise 25 bis 75 Gew.-% Millikapseln, 24 bis 90 Gew.-% Ölkörper und ad 100 Gew.-% Wasser enthalten können. Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-Cι3-Carbonsäuren mit linearen oder verzweigten -C^-Fettalkoholen, wie z.B. Myristylmyristat, Myristyl- palmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristyleru- cat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stear lpa Imitat, Stearylstearat, Stearylisostearat, Stearylo- leat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpa Imitat, Isostea- rylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, O- leylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oley- lerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behe- nyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat," Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Cι8-C38-Alkylhydroxycarbonsäuren mit linearen oder verzweigten
Figure imgf000013_0001
koholen (vgl. DE 19756377 AI), insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Cό-Cι0- Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von Cό-Cι8-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Cι2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, wie z.B. Dicaprylyl Carbonate (Cetiol® CC), Guerbetcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z.B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Siliciummethicontypen u.a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
Zur Herstellung der wässrigen Zubereitungen bzw. der Emulsionen empfiehlt es sich die Wachskörper und Wirkstoffe in Wasser oder einem anderen geeigneten organischen Lösungsmittel, wie beispielsweise Ethanol, Aceton oder Xylol, in denen die Wachse unlöslich sind, zu dispergieren. Dabei empfiehlt es sich, bei Temperaturen oberhalb des Schmelzpunktes der Wachskörper, also bei etwa 50 bis 95, vorzugsweise 60 bis 75 °C zu arbeiten. Auf diesem Wege werden Millikapseln erhalten, die eine homogene Verteilung des Wirkstoffs im Wachs aufweisen. Anschließend wird die Zubereitung wieder unter die Schmelztemperatur der Wachskörper abgekühlt, die sich darauf verfestigen. Die entstandenen Millikapseln können nun problemlos abfiltriert und dann in Wasser bzw. Öl- körpern eingebracht werden. Die wässrigen Zubereitungen oder Emulsionen können anschließend in Mengen Aktivsubstanz von 0,1 bis 10, vorzugsweise 0,2 bis 5 und insbesondere 0,5 bis 2 Gew.-% - bezogen auf das Faser- bzw. Vliesstoffgewicht - eingesetzt werden.
Ausrϋstunqsprodukte
Polyolefinfasem gehören zu den am häufigsten zur Herstellung von Vliesen eingesetzten Fasern. Beispiel für geeignete Polyolefine sind Polypropylen, Polyethylen oder Copoly- mere aus Ethylen oder Propylen mit Butadien. Weiterhin werden auch Polyesterfasern, hauptsächlich Polyethylenterephthalatfasern, verwendet. Es können neben den genannten Fasertypen auch andere zu Herstellung von Vliesen geeigneten synthetischen Fasern verwendet werden, beispielsweise Fasern aus Nylon®. Insbesondere geeignet sind auch Fasern, die aus zwei oder mehr Komponenten bestehen, beispielsweise Polyester-Copo- lyesterfasern oder Polypropylen-Polyethylenfasern.
Die im erfindungsgemäßen Verfahren verwendeten Vliesstoffe können nach allen im Stand der Technik bekannten Verfahren der Vliesherstellung, wie sie beispielsweise in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 17, VCH Weinheim 1994, Seiten 572 - 581, beschrieben werden, hergestellt werden. Bevorzugt sind dabei Vliese, die entweder nach dem sogenannte „dry laid"- oder dem Spinnvlies- oder spunbond-Verfahren hergestellt wurden. Das „dry laid" -Verfahren geht von Stapelfasern -aus,-die-üblicherweise-durch-Kardieren-in-Einzelfasern getrennt und anschließend unter Einsatz eines aerodynamischen oder hydrodynamischen Verfahrens zum unverfestigten Vliesstoff zusammengelegt werden. Dieser wird dann beispielsweise durch eine thermische Behandlung zum fertigen Vlies verbunden (das sogenannte „thermobonding"). Dabei werden die synthetischen Fasern entweder soweit erwärmt, dass deren Oberfläche schmilzt und die Einzelfasern an den Kontaktstellen miteinander verbunden werden, oder die Fasern werden mit einem Additiv überzogen, welches bei der Wärmebehandlung schmilzt und so die einzelnen Fasern miteinander verbindet. Durch Abkühlung wird die Verbindung fixiert. Neben diesem Verfahren sind natürlich auch alle anderen Verfahren geeignet, die im Stand der Technik zum Verbinden von Vliesstoffen eingesetzt werden. Die Spinnvliesbildung geht dagegen von einzelnen Filamenten aus, die nach dem Schmelzspinnverfahren aus extrudierten Polymeren gebildet werden, welche unter hohem Druck durch Spinndüsen gedrückt werden. Die aus den Spinndüsen austretenden Filamente werden gebündelt, gestreckt und zu einem Vlies abgelegt, welches üblicherweise durch „thermobonding" verfestigt wird. Das erfindungsgemäße Verfahren eignet sich insbesondere für Vliesstoffe, die nach dem Spinnvlies-oder dem „dry laid" -Verfahren hergestellt werden.
Diese wässrigen Zubereitungen bzw. die daraus hergestellten Emulsionen ("Präparationen") werden nach dem erfindungsgemäßen Verfahren auf den unbehandelten Vliesstoff bzw. die Fasern aufgebracht. Dazu können alle in der Textiltechnik üblichen Methoden und Maschinen, beispielsweise ein Foulard, eingesetzt werden, aber auch Sprühen oder eine Rollenapplikation oder Stiftapplikation ist möglich. Anschließend werden die Fasern oder Vliesstoffe getrocknet und weiterverarbeitet
Ein weiterer Gegenstand der Erfindung betrifft daher antimikrobiell ausgerüstete Fasern, die ganz oder überwiegend aus Polyolefinen oder Polyestern bestehen oder Vliesstoffe, die überwiegend solche Fasern enthalten, und sich dadurch auszeichnen, dass durch Ausrüstung mit den wässrigen Zubereitungen hergestellt werden. Die Ausrüstung kann dabei durch Auflage der Emulsionen (Aktivsubstanz) in Mengen von 0,1 bis 10 Gew.-% - bezogen auf das Faser- oder Vliesstoffgewicht - erfolgen.
Ebenfalls Gegenstand der Erfindung sind Hygieneprodukte, wie Damenhygieneartikel, Windeln oder Wischtücher, die sich dadurch auszeichnen dass sie die wie oben erläutert ausgerüsteten Vliesstoffe enthalten.
Ein letzter Gegenstand der Erfindung betrifft schließlich die Verwendung von Millikapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, welche erhältlich sind, indem man
(a) aus Wachskörpern und Wirkstoffen oberhalb der Schmelztemperatur der Wachskörper eine wässrige oder organische Matrix herstellt, in denen diese unlöslich sind,
(b) die Matrix unter die Schmelztemperatur der Wachskörper abkühlt, und
(c) die entstandenen Millikapseln abfiltriert,
zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen, die ganz oder überwiegend Polyolefine oder Polyester enthalten. Beispiele
Beispiel 1. In einem 100-ml-Dreihalskolben wurden 2 g Chitosan (Hydagen® DCMF, Cognis Deutschland GmbH) in 100 ml wässrigem Ethanol gelöst, zunächst auf 60 °C erwärmt und dann unter starkem Rühren portionsweise mit 5 g einer Schmelze von Can- delillawachs versetzt. Anschließend wurde die Zubereitung auf 0°C abgekühlt und filtriert. Die resultierenden Millikapseln besaßen einen mittleren Durchmesser von 0,5 mm
Beispiel 2. In einem 100-ml-Dreihalskolben 2 g einer 90 Gew.-%igen Lösung von Di- capryloylmethylethoxymonium Methosulfate in Isopropylalkohol zunächst auf 60 °C erwärmt und dann unter starkem Rühren portionsweise mit 5 g einer Schmelze von Car- naubawachs versetzt. Anschließend wurde die Zubereitung auf 0°C abgekühlt und filtriert. Die resultierenden Millikapseln besaßen einen mittleren Durchmesser von 0,5 mm
Beispiel 3. In einem 100-ml-Dreihalskolben wurden 2 g Thymol in 100 ml Aceton dispergiert, zunächst auf 60 °C erwärmt und dann unter starkem Rühren portionsweise mit 5 g einer Schmelze von Candelillawachs versetzt. Anschließend wurde die Zubereitung auf 0°C abgekühlt und filtriert. Die resultierenden Millikapseln besaßen einen mittleren Durchmesser von 0,5 mm
Beispiel 4. In einem 100-ml-Dreihalskolben wurden 2 g Glycerinmonostearat gelöst, zunächst auf 60 °C erwärmt und dann unter starkem Rühren portionsweise mit 5 g einer Schmelze von Bienenwachs versetzt. Anschließend wurde die Zubereitung auf 0°C abgekühlt und filtriert. Die resultierenden Millikapseln besaßen einen mittleren Durchmesser -von-0,5-mm-

Claims

Patentansprüche
1. Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen, dadurch gekennzeichnet, dass man diese mit wässrigen Zubereitungen von Millikapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm behandelt, welche erhältlich sind, indem man
(a) aus Wachskörpern und Wirkstoffen oberhalb der Schmelztemperatur der Wachskörper eine "wässrige oder organische Matrix herstellt, in denen diese unlöslich sind,
(b) die Matrix unter die Schmelztemperatur der Wachskörper abkühlt, und
(c) die entstandenen Millikapseln abfiltriert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Fasern oder Vliesstoffe ganz oder überwiegend aus Polyolefinen und/oder Polyestem bestehen.
3. Verfahren nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass man wässrige Zubereitungen einsetzt, welche
(a) 1 bis 75 Gew.-% Mikrokapseln und
(b) 25 bis 99 Gew.-% Wasser
mit der Maßgabe enthalten, dass sich die Mengenangaben gegebenenfalls mit Öl- körpern und weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% addieren.
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie antimikrobielle Wirkstoffe enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Tensiden, Emulgatoren, biogenen Wirkstoffen, Deodorantien, keimhemmenden Mitteln und Parfümölen.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man die Zubereitungen in Mengen von 0,1 bis 10 Gew.-% - bezogen auf das Faser- bzw. Vliesstoffgewicht - einsetzt.
6. Antimikrobiell ausgerüstete Fasern, die ganz oder überwiegend aus Polyolefinen oder Polyestern bestehen oder Vliesstoffe, die überwiegend solche Fasern enthalten, dadurch gekennzeichnet, dass diese durch ein Verfahren nach einem der Ansprüche 1 bis 5 hergestellt werden.
7. Fasern oder Vliesstoffe nach Anspruch 6, dadurch gekennzeichnet, dass diese mit einer Auflage der Zubereitungen (Aktivsubstanz) in Mengen von 0,1 bis 10 Gew.-% - bezogen auf das Faser- oder Vliesstoffgewicht - ausgerüstet sind.
8. Hygieneprodukte, wie Damenhygieneartikel, Windeln oder Wischtücher, dadurch gekennzeichnet, dass sie Vliesstoffe gemäß Anspruch 6 enthalten.
9. Verwendung von Millikapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm behandelt, welche erhältlich sind, indem man
(a) aus Wachskörpern und Wirkstoffen oberhalb der Schmelztemperatur der Wachskörper eine wässrige oder organische Matrix herstellt, in denen diese unlöslich sind,
(b) die Matrix unter die Schmelztemperatur der Wachskörper abkühlt, und
(c) die entstandenen Millikapseln abfiltriert,
zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen, die ganz oder überwiegend Polyolefine oder Polyester enthalten.
PCT/EP2002/002738 2001-03-22 2002-03-13 Verfahren zur antimikrobiellen ausrüstung von fasern oder vliesstoffen WO2002077360A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01107166.9 2001-03-22
EP01107166A EP1243690A1 (de) 2001-03-22 2001-03-22 Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen

Publications (1)

Publication Number Publication Date
WO2002077360A1 true WO2002077360A1 (de) 2002-10-03

Family

ID=8176903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/002738 WO2002077360A1 (de) 2001-03-22 2002-03-13 Verfahren zur antimikrobiellen ausrüstung von fasern oder vliesstoffen

Country Status (2)

Country Link
EP (1) EP1243690A1 (de)
WO (1) WO2002077360A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539025A2 (de) * 1991-09-25 1993-04-28 Unilever Plc Riechstoffmikrokapseln zur Behandlung von Wäsche
JPH07243172A (ja) * 1994-03-07 1995-09-19 Sakagami Taoru Kk 抗菌・防ダニ性の布製品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539025A2 (de) * 1991-09-25 1993-04-28 Unilever Plc Riechstoffmikrokapseln zur Behandlung von Wäsche
JPH07243172A (ja) * 1994-03-07 1995-09-19 Sakagami Taoru Kk 抗菌・防ダニ性の布製品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASAJI KONDO: "Microcapsule Processing and Technology", MARCEL DEKKER, NEW YORK (US), 1979, XP002175964 *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 01 31 January 1996 (1996-01-31) *

Also Published As

Publication number Publication date
EP1243690A1 (de) 2002-09-25

Similar Documents

Publication Publication Date Title
EP1338267B1 (de) Desodorierende Zubereitungen
DE10014529A1 (de) Desodorierende Zubereitungen mit nanoskaligen Chitosanen und/oder Chitosanderivaten
EP1242036B1 (de) Verwendung von nanoskaligen antischuppenwirkstoffen
EP1438017A1 (de) Imprägnierlösung für kosmetiktücher
DE10162026A1 (de) Hochkonzentriert fließfähige Perlglanzkonzentrate
EP1243323B1 (de) Nanokapseln
EP1247568A1 (de) Mikrokapseln (XIII)
DE10162184A1 (de) Imprägnierlösung für Kosmetiktücher
EP1242172B1 (de) Verwendung von nanoskaligen polymeren
DE19961939A1 (de) Verwendung von nanoskaligen kationischen Verbindungen
EP1243320A1 (de) Mikrokapseln (VIII)
EP1268740B1 (de) Feuchttücher (i)
EP1243318B1 (de) Mikrokapseln (VII)
DE19958521A1 (de) Verwendung von nanoskaligen Wachsen
DE10213031A1 (de) Verwendung von Extrakten des Olivenbaumes in Wasch-, Spül- und Reinigungsmitteln
EP1060740A1 (de) Wässerige Perlglanzkonzentrate
WO2001077281A1 (de) Feuchttücher (iii)
WO2001098578A1 (de) Textilhilfsmittel
WO2002077360A1 (de) Verfahren zur antimikrobiellen ausrüstung von fasern oder vliesstoffen
WO2002077359A1 (de) Verfahren zur antimikrobiellen ausrüstung von fasern oder vliesstoffen
EP1243322A1 (de) Mikrokapseln(X)
EP1067175A1 (de) Wässrige Perlglanzkonzentrate
DE19920555A1 (de) Verwendung von nanoskaligen Metallseifen
EP1243247A1 (de) Emulsionen vom Typ W/O bzw. O/W/O enthaltend Mikrokapseln bestehend aus Wirkstoffen und thermogelierenden Heteropolysacchariden oder Proteinen
EP1060737A1 (de) Wässerige Perlglanzkonzentrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP