EP1243690A1 - Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen - Google Patents

Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen Download PDF

Info

Publication number
EP1243690A1
EP1243690A1 EP01107166A EP01107166A EP1243690A1 EP 1243690 A1 EP1243690 A1 EP 1243690A1 EP 01107166 A EP01107166 A EP 01107166A EP 01107166 A EP01107166 A EP 01107166A EP 1243690 A1 EP1243690 A1 EP 1243690A1
Authority
EP
European Patent Office
Prior art keywords
fibers
nonwovens
wax
oil
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01107166A
Other languages
English (en)
French (fr)
Inventor
Ana Tacies
Marta Domingo
Rafael Pi Subirana
Josep-Lluis Viladot Petit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis Iberia SL
Original Assignee
Cognis Iberia SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Iberia SL filed Critical Cognis Iberia SL
Priority to EP01107166A priority Critical patent/EP1243690A1/de
Priority to PCT/EP2002/002738 priority patent/WO2002077360A1/de
Publication of EP1243690A1 publication Critical patent/EP1243690A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters

Definitions

  • the invention is in the field of textile technology and relates to a method for Finishing of fibers and fabrics using special emulsions ("preparations"), Fibers, fabrics and end products made from them, treated with these preparations and the use of the preparations for finishing the fibers and fabrics.
  • preparations special emulsions
  • Fibers, fabrics and end products made from them treated with these preparations and the use of the preparations for finishing the fibers and fabrics.
  • nonwovens are usually made of synthetic fibers such as polyolefin or Polyester fibers are manufactured because these fibers are inexpensive to produce, good mechanical Have properties and in the case of polyolefins are to be thermally solidified.
  • the disadvantage is that the nonwovens used in hygiene articles in direct skin contact stand and are therefore exposed to considerable bacterial contamination. It can therefore in unfavorable cases, e.g. B. in high humidity, to a significant bacterial growth come on the fleece surface. This can be the case with minor injuries, for example the skin surface lead to inflammation of the skin, which must be avoided.
  • the object of the present invention was therefore a method for antimicrobial Finishing of fibers, nonwovens and end products made from them to provide, which reliably avoids the disadvantages of the prior art.
  • it should be ensured that the active ingredient does not suddenly, but is released in portions and with a time delay, so that the equipment over the whole Duration of the wearing process is guaranteed.
  • the antimicrobial equipment also be associated with a care effect.
  • the millicapsules are both used as wax bodies natural as well as synthetic waxes in question.
  • natural waxes are candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, Rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, Shellac wax, Walrat, Lanolin (wool wax), Bürzelfett, Ceresin, Ozokerit (Erdwachs).
  • Examples for synthetic waxes, petrolatum, paraffin waxes, micro waxes are chemical modified waxes (hard waxes), e.g.
  • fatty alcohols which are solid at room temperature preferably those having 16 to 22 carbon atoms, such as in particular cetyl alcohol, stearyl alcohol, cetylstearyl alcohol or behenyl alcohol, Wax esters of fatty acids with fatty alcohols, which are also at room temperature are solid and preferably in total at least 20, preferably at least 26 carbon atoms contain as well as comparable other fatty substances, such as fatty ether (e.g. distearyl ether) or ketones (e.g. stearone).
  • fatty ether e.g. distearyl ether
  • ketones e.g. stearone
  • antimicrobial agents such as those in the field of hygiene products are used are surfactants, emulsifiers, biogenic agents, deodorants and germ-inhibiting Agents and perfume oils.
  • the level of antimicrobial is apparent to those skilled in the art Efficacy is different in the groups of substances mentioned. However, the additional caring effects may reduce effectiveness Characteristics balanced.
  • Anionic, nonionic, cationic and / or amphoteric or amphoteric surfactants may be present as surface-active substances, the proportion of which in the compositions is usually about 1 to 70, preferably 5 to 50 and in particular 10 to 30% by weight.
  • anionic surfactants are soaps, alkylbenzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, mono-ether ether sulfate, (hydroxymethoglysulfate), monohydric ether sulfate dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and salts thereof, fatty acid taurides, N-acylamino acids such as acyl lactylates, acy
  • nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides or especially glucoramide-acid-based vegetable derivatives, , Polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, these can have a conventional, but preferably a narrow, homolog distribution.
  • cationic surfactants are quaternary ammonium compounds, such as, for example, dimethyldistearylammonium chloride, and esterquats, in particular quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The surfactants mentioned are exclusively known compounds.
  • Typical examples of particularly suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefin sulfonates, ethercarboxylic acids, alkyl oligoglucosides, fatty acid glucamides, alkylamidobetaines, amphoacetals and / or protein fatty acid condensates, preferably based on wheat proteins. Because of their mild biocidal action, cationic surfactants, especially those with an ester quat structure, are also frequently used.
  • Suitable emulsifiers are, for example, nonionic surfactants from at least one of the following groups: addition products of 2 to 30 mol of ethylene oxide and / or 0 to 5 mol of propylene oxide with linear fatty alcohols with 8 to 22 C atoms, with fatty acids with 12 to 22 C atoms , on alkylphenols with 8 to 15 carbon atoms in the alkyl group and alkylamines with 8 to 22 carbon atoms in the alkyl radical; Alkyl and / or alkenyl oligoglycosides with 8 to 22 carbon atoms in the alk (en) yl radical and their ethoxylated analogs; Addition products of 1 to 15 moles of ethylene oxide with castor oil and / or hardened castor oil; Addition products of 15 to 60 moles of ethylene oxide with castor oil and / or hardened castor oil; Partial esters of glycerol and / or sorbitan with unsaturated, linear or saturated
  • alkyl glucosides e.g. methyl glucoside, butyl glucoside, lauryl glucoside
  • polyglucosaturated e.g. cellulose
  • unsaturated e.g.
  • cellulose linear or branched fatty acids with 12 to 22 carbon atoms and / or hydroxycarboxylic acids with 3 to 18 carbon atoms and their adducts with 1 to 30 moles of ethylene oxide; Mixed esters of pentaerythritol, fatty acids, citric acid and fatty alcohol according to DE 1165574 PS and / or mixed esters of fatty acids with 6 to 22 carbon atoms, methyl glucose and polyols, preferably glycerol or polyglycerol; Mono-, di- and trialkyl phosphates as well as mono-, di- and / or tri-PEG-alkyl phosphates and their salts; Lanolin alcohol; Polysiloxane-polyalkyl-polyether copolymers or corresponding derivatives; Block copolymers, for example polyethylene glycol 30 dipolyhydroxystearate; Polymer emulsifiers, for example Pemulen types (TR-1, TR-2) from Goodrich; Polyal
  • the adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols or with castor oil are known, commercially available products. These are mixtures of homologs whose average degree of alkoxylation is the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate, with which the addition reaction is carried out.
  • C 12/18 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE 2024051 PS as refatting agents for cosmetic preparations.
  • Alkyl and / or alkenyl oligoglycosides their preparation and their use are out known in the art. They are manufactured in particular through implementation of glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • Glycosidrestes applies that both monoglycosides in which a cyclic sugar residue is glycosidically bound to the fatty alcohol, as well as oligomeric Glycosides with a degree of oligomerization of up to preferably about 8 are suitable.
  • the Degree of oligomerization is a statistical mean, one for such technical Products based on the usual homolog distribution.
  • Typical examples of suitable partial glycerides are hydroxystearic acid monoglyceride, Hydroxystearic acid diglyceride, isostearic acid monoglyceride, isostearic acid diglyceride, Oleic acid monoglyceride, oleic acid diglyceride, ricinoleic acid moglyceride, ricinoleic acid diglyceride, Linoleic acid monoglyceride, linoleic acid diglyceride, linolenic acid monoglyceride, linolenic acid diglyceride, Erucic acid monoglyceride, erucic acid diglyceride, tartaric acid monoglyceride, Tartaric acid diglyceride, citric acid monoglyceride, citric diglyceride, malic acid monoglyceride, Malic acid diglyceride and their technical mixtures, the subordinate may still contain small amounts of triglyceride from the manufacturing process. Likewise Addition products of
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearates (Dehymuls® PGPH), polyglycerol-3-diisostearate (Lameform® TGI), polyglyceryl-4 Isostearate (Isolan® GI 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Isolan® PDI), polyglyceryl-3 methylglucose distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010 / 90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) and Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate isost
  • polystyrene resin examples include the mono-, di- and optionally reacted with 1 to 30 mol ethylene oxide Triester of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, Tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like.
  • Typical anionic emulsifiers are aliphatic fatty acids with 12 to 22 carbon atoms, such as palmitic acid, stearic acid or behenic acid, and dicarboxylic acids with 12 to 22 carbon atoms, such as azelaic acid or Sebacic acid.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example coconut acylaminopropyldimethylammonium glycinate, and 2-alkyl-3-carboxylm -hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C 8/18 alkyl or acyl group, contain at least one free amino group and at least one -COOH or -SO 3 H group in the molecule and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-coconut alkyl aminopropionate, coconut acyl aminoethyl aminopropionate and C 12/18 acyl sarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methylquaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • biogenic active ingredients examples include tocopherol, tocopherol acetate, tocopherol palmitate, Ascorbic acid, deoxyribonucleic acid, retinol, retinyl palmitate, bisabolol, Allantoin, phytantriol, panthenol, chitosan, menthol, tea tree oil, AHA acids, kojic acid, Amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin complexes to understand.
  • deodorants counteract body odors, mask them or eliminate them. Body odors arise from the action of skin bacteria on apocrine sweat, forming unpleasant smelling breakdown products become. Accordingly, deodorants contain active ingredients that are considered germ-inhibiting Agents, enzyme inhibitors, odor absorbers or odor maskers act.
  • Esterase inhibitors are suitable as enzyme inhibitors. This is about it is preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, Tributyl citrate and especially triethyl citrate (Hydagen® CAT, Henkel KGaA, Düsseldorf / FRG).
  • the substances inhibit enzyme activity and thereby reduce odor.
  • esterase inhibitors include sterolsulfates or phosphates, such as lanosterol, cholesterol, campesterol, Stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as for example glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, Monoethyl adipate, diethyl adipate, malonic acid and diethyl malonate, Hydroxycarboxylic acids and their esters such as citric acid, Malic acid, tartaric acid or tartaric acid diethyl ester, as well as zinc glycinate.
  • sterolsulfates or phosphates such as lanosterol, cholesterol, campesterol, Stigmasterol and sitosterol sulfate or phosphate
  • dicarboxylic acids and their esters such as for example glutaric acid, glutaric acid monoethyl
  • Substances which absorb odor-forming compounds are suitable as odor absorbers and can hold on to a large extent. They reduce the partial pressure of the individual components and thus reduce their speed of propagation. It is important that Perfumes must remain unaffected. Odor absorbers have no effectiveness against bacteria. For example, they contain a complex zinc salt as the main component the ricinoleic acid or special, largely odorless fragrances that the Are known in the art as "fixators" such. B. extracts of Labdanum or Styrax or certain abietic acid derivatives. Fragrances or act as odor maskers Perfume oils that, in addition to their function as odor maskers, deodorants their give each fragrance note. Mixtures may be mentioned as perfume oils from natural and synthetic fragrances.
  • Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and twigs as well as resins and balms. Furthermore come animal Raw materials in question, such as civet and castoreum.
  • Typical synthetic Fragrance compounds are products of the ester, ether, aldehyde, ketone, Alcohols and hydrocarbons. Fragrance compounds of the ester type are e.g.
  • ethers include, for example, benzyl ethyl ether, the aldehydes e.g.
  • the linear Alkanals with 8 to 18 carbon atoms citral, citronellal, citronellyloxyacetaldehyde, Cyclamenaldehyde, Hydroxycitronellal, Lilial and Bourgeonal, to the ketones e.g. the Jonone and methyl cedryl ketone, to the alcohols anethole, citronellol, eugenol, isoeugenol, Geraniol, linalool, phenylethyl alcohol and terpineol, to the hydrocarbons belong mainly to the terpenes and balms. However, mixtures are preferred different fragrances are used, which together produce an appealing fragrance.
  • perfume oils e.g. Sage oil, chamomile oil, clove oil, lemon balm oil, Mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, Galbanum oil, Labdanum oil and Lavandin oil.
  • Natural fragrances are extracts from Flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, Patchouli, Petitgrain), fruits (anise, coriander, caraway, juniper), fruit peels (Bergamot, lemon, oranges), roots (mace, angelica, celery, cardamom, Costus, Iris, Calmus), woods (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), needles and twigs (spruce, Fir, pine, mountain pine), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, Opoponax).
  • fragrance compounds are products from Type of esters, ethers, aldehydes, ketones, alcohols and hydrocarbons.
  • fragrance compounds of the ester type are e.g. Benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, Linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, Linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, to aldehydes e.g. the linear alkanals with 8 to 18 carbon atoms, Citral, Citronellal, Citronellyloxyacetaldehyde, Cyclamenaldehyde, Hydroxycitronellal, Lilial and bourgeonal, to the ketones e.g.
  • the hydrocarbons mainly include the terpenes and balms.
  • mixtures of different are preferred Fragrances are used, which together produce an appealing fragrance.
  • ethereal Low volatility oils which are mostly used as aroma components, are suitable as perfume oils, e.g.
  • Sage oil chamomile oil, clove oil, lemon balm oil, mint oil, Cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • the active substances can be used in such quantities that they are found in the millicapsules a content of 5 to 60, preferably 10 to 50 and in particular 15 to 25% by weight results.
  • aqueous preparations of the millicapsules are introduced into cosmetic oils, stable emulsions are formed which can contain, for example, 25 to 75% by weight of millicapsules, 24 to 90% by weight of oil body and ad 100% by weight of water.
  • esters of linear C 6 -C 22 fatty acids with linear or branched C 6 -C 22 fatty alcohols or esters of branched C 6 -C 4 come as oil bodies, for example 13 -carboxylic acids with linear or branched C 6 -C 22 -fatty alcohols, such as myristyl myristate, myristyl palmitate, myristyl stearate, Myristylisostearat, myristyl, Myristylbehenat, Myristylerucat, cetyl myristate, cetyl palmitate, cetyl stearate, Cetylisostearat, cetyl oleate, cetyl behenate, Cetylerucat, Stearylmyristat, stearyl palmitate, stearyl stearate , Stearylisostearat, stearyl ole
  • esters of linear C 6 -C 22 fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of C 18 -C 38 alkylhydroxycarboxylic acids with linear or branched C 6 -C 22 fatty alcohols cf.
  • DE 19756377 A1 are suitable , in particular dioctyl malates, esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimer diol or trimer triol) and / or Guerbet alcohols, triglycerides based on C 6 -C 10 fatty acids, liquid mono- / di- / triglyceride mixtures based of C 6 -C 18 fatty acids, esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, in particular benzoic acid, esters of C 2 -C 12 dicarboxylic acids with linear or branched alcohols with 1 to 22 carbon atoms or polyols with 2 to 10 carbon atoms and 2 to 6 hydroxyl groups, vegetable oils, branched primary alcohols, substituted cyclohexanes, linear and branched C 6 -C 22 fatty alcohol carbonates, such as D i
  • Finsolv® TN linear or branched, symmetrical or asymmetrical dialkyl ethers with 6 to 22 carbon atoms per alkyl group, such as dicaprylyl ether (Cetiol® OE), ring opening products of epoxidized fatty acid esters with polyols, silicone oils (cyclomethicones, silicon methicone types, etc.) and / or aliphatic or naphthenic hydrocarbons, such as for example Squalane, squalene or dialkylcyclohexanes.
  • dicaprylyl ether such as dicaprylyl ether (Cetiol® OE)
  • silicone oils cyclomethicones, silicon methicone types, etc.
  • aliphatic or naphthenic hydrocarbons such as for example Squalane, squalene or dialkylcyclohexanes.
  • aqueous preparations or emulsions Wax bodies and active substances in water or another suitable organic solvent, such as ethanol, acetone or xylene, in which the waxes are insoluble are to disperse. It is advisable to do this at temperatures above the melting point the wax body to work at about 50 to 95, preferably 60 to 75 ° C. In this way, millicapsules are obtained that have a homogeneous distribution of the active ingredient have in wax. Then the preparation is again below the melting temperature the wax body cooled, which solidify on it. The resulting millicapsules can now be easily filtered off and then introduced into water or oil bodies.
  • the aqueous preparations or emulsions can then be used in amounts of active substance from 0.1 to 10, preferably 0.2 to 5 and in particular 0.5 to 2% by weight on the fiber or nonwoven weight.
  • Polyolefin fibers are among the most commonly used to make nonwovens Fibers.
  • suitable polyolefins are polypropylene, polyethylene or copolymers from ethylene or propylene with butadiene.
  • polyester fibers are also mainly used Polyethylene terephthalate fibers used.
  • fibers consisting of two are also particularly suitable or more components, for example polyester copolyester fibers or polypropylene polyethylene fibers.
  • nonwovens used in the process according to the invention can be produced by all processes of nonwoven production known in the prior art, as described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 17, VCH Weinheim 1994, pages 572-581 .
  • Nonwovens which are produced either by the so-called “dry laid” method or by the spunbonded method or spunbond method are preferred.
  • the "dry laid” process is based on staple fibers, which are usually separated into individual fibers by carding and then folded together using an aerodynamic or hydrodynamic process to form the unconsolidated nonwoven. This is then connected, for example, to the finished nonwoven by a thermal treatment (the so-called "thermobonding").
  • the synthetic fibers are either heated to such an extent that their surface melts and the individual fibers are joined together at the contact points, or the fibers are coated with an additive that melts during the heat treatment and thus connects the individual fibers together.
  • the connection is fixed by cooling.
  • all other processes which are used in the prior art for connecting nonwovens are of course also suitable.
  • Spunbond formation starts from individual filaments, which after the Melt spinning processes are formed from extruded polymers, which under high Pressure is pressed through spinnerets.
  • the filaments emerging from the spinnerets are bundled, stretched and laid down to form a fleece, which is usually by "thermobonding" is solidified.
  • the method according to the invention is particularly suitable for nonwovens that are manufactured according to the spunbonded or "dry laid" process.
  • aqueous preparations or the emulsions prepared therefrom are on the untreated nonwoven fabric or the Fibers applied. All methods and machines common in textile technology, for example, a foulard, but also spraying or a roller application or pin application is possible. Then the fibers or nonwovens dried and processed
  • Another object of the invention therefore relates to antimicrobial fibers, which consist wholly or predominantly of polyolefins or polyesters or nonwovens which predominantly contain such fibers, and are characterized by the fact that equipment be prepared with the aqueous preparations.
  • the equipment can by Edition of the emulsions (active substance) in amounts of 0.1 to 10 wt .-% - based on the fiber or nonwoven weight.
  • the invention also relates to hygiene products, such as feminine hygiene articles, diapers or wipes that are characterized by the fact that they are equipped as explained above Nonwovens included.

Abstract

Vorgeschlagen wird ein Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen, welches sich dadurch auszeichnet, dass man diese mit wässrigen Zubereitungen von Millikapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm behandelt, welche erhältlich sind, indem man (a) aus Wachskörpern und Wirkstoffen oberhalb der Schmelztemperatur der Wachskörper eine wässrige oder organische Matrix herstellt, in denen diese unlöslich sind, (b) die Matrix unter die Schmelztemperatur der Wachskörper abkühlt, und (c) die entstandenen Millikapseln abfiltriert.

Description

Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der Textiltechnik und betrifft ein Verfahren zur Ausrüstung von Fasern und Stoffen unter Einsatz spezieller Emulsionen ("Präparationen"), Fasern, Stoffe und daraus hergestellte Endprodukte, die mit diesen Präparationen behandelt worden sind sowie die Verwendung der Präparationen zur Ausrüstung der Fasern und Stoffe.
Stand der Technik
Bei der Herstellung von Hygieneartikeln, wie Windeln oder Damenbinden, werden absorbierende Materialien verwendet, um wässrige Flüssigkeiten aufzunehmen. Um den direkten Kontakt mit dem absorbierenden Material beim Tragen zu verhindern und den Tragekomfort zu erhöhen, wird dieses Material mit einem dünnen, wasserdurchlässigen Vliesstoff umhüllt. Derartige Vliesstoffe werden üblicherweise aus synthetischen Fasern, wie Polyolefin- oder Polyesterfasern hergestellt, da diese Fasern preiswert zu produzieren sind, gute mechanische Eigenschaften aufweisen und im Fall von Polyolefinen thermisch zu verfestigen sind.
Von Nachteil ist, dass die in Hygieneartikeln verwendeten Vliesstoffe in direktem Hautkontakt stehen und somit einer erheblichen bakteriellen Kontamination ausgesetzt sind. Es kann daher in ungünstigen Fällen, z. B. bei hoher Feuchtigkeit, zu einem erheblichen Bakterienwachstum auf der Vliesoberfläche kommen. Dies kann beispielsweise bei leichten Verletzungen der Hautoberfläche zu einer Entzündung der Haut führen, die es zu vermeiden gilt.
Aus dem Stand der Technik ist eine Vielzahl von Schriften bekannt, die sich mit der Ausrüstung von Hygieneartikeln auseinandersetzen. Aus dem umfangreichen Schrifttum sei beispielsweise die WO 96/16682 (Procter & Gamble) und insbesondere die US 3,585,998 (Hayford) zitiert, die Windeln mit einem Gehalt an Mikrokapseln zum Gegenstand hat, welche das darin enthaltene Babyöl noch vor dem Anlegen unter mechanischem Druck freisetzen. Abgesehen davon, dass der Wirkstoff auf diese Weise unkontrolliert und auf einmal freigesetzt wird, löst diese Anwendung das Problem des Bakterienwachstums auf der Vliesoberfläche nicht.
Die Aufgabe der vorliegenden Erfindung hat somit darin bestanden, ein Verfahren zur antimikrobiellen Ausrüstung von Fasern, Vliesstoffen sowie daraus hergestellten Endprodukten zur Verfügung zu stellen, welche die Nachteile des Stands der Technik zuverlässig vermeidet. Insbesondere sollte gewährleistet sein, dass der Wirkstoff nicht schlagartig, sondern portionsweise und zeitverzögert freigesetzt wird, so dass die Ausrüstung über die ganze Dauer des Tragevorgangs gewährleistet ist. Gleichzeitig sollte mit der antimikrobiellen Ausrüstung auch ein Pflegeeffekt verbunden sein.
Beschreibung der Erfindung
Gegenstand der Erfindung ist ein Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen, speziell solchen, die ganz oder überwiegend aus Polyolefinen oder Polyestern bestehen, welches sich dadurch auszeichnet, dass man diese mit wässrigen Zubereitungen von Millikapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm behandelt, welche erhältlich sind, indem man
  • (a) aus Wachskörpern und Wirkstoffen oberhalb der Schmelztemperatur der Wachskörper eine wässrige oder organische Matrix herstellt, in denen diese unlöslich sind,
  • (b) die Matrix unter die Schmelztemperatur der Wachskörper abkühlt, und
  • (c) die entstandenen Millikapseln abfiltriert.
  • Überraschenderweise wurde gefunden, dass die genannten Emulsionen die der Erfindung zugrundeliegende Aufgabe in vorzüglicher Weise lösen. Die Wirkstoffe lassen sich feinst in der Gelmatrix verteilen, was dazu führt, dass die Fasern und Vliesstoffe sehr einfach und gleichmäßig mit den die Wirkstoffe enthaltenen Mikrokapseln behandelt werden können. In der Folge wird wegen der sorgfältigen Verteilung und der Vielzahl der Kapseln über den gesamten Tragezeitraum die Ausrüstung gegen Bakterienwachstum sichergestellt ist. Im Sinne des erfindungsgemäßen Verfahrens wird insbesondere eine Wirkung gegenüber Staphylococcus aureus und Klebsiella pneumonia erzielt. Letztere sind verantwortlich für Lungenentzünden bzw. Entzündungen der Harnwege und treten häufig bei älteren Menschen auf, die inkontinent sind und daher entsprechende Produkte zur Hygiene benutzen müssen. Durch den Einsatz von antimikrobiellen Wirkstoffen, die gleichzeitig auch noch über pflegende oder sonst wie vorteilhafte Eigenschaften verfügen, kann die Qualität der Endprodukte weiter verbessert werden. In einer bevorzugten Ausführung der Erfindung enthalten die Zubereitungen
  • (a) 1 bis 75, vorzugsweise 25 bis 70 und insbesondere 30 bis 50 Gew.-% Mikrokapseln und
  • (b) 25 bis 99, vorzugsweise 30 bis 60 und insbesondere 40 bis 50 Gew.-% Wasser
  • mit der Maßgabe, dass sich die Mengenangaben gegebenenfalls mit Ölkörpern und weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% addieren. So besteht eine vorteilhafte Anbietungsform darin, dass man die wässrigen Zubereitungen in kosmetische Öle einbringt und diese Emulsionen verkauft.
    Millikapseln
    Im Sinne der Erfindung kommen zur Herstellung der Millikapseln als Wachskörper sowohl natürliche als auch synthetische Wachse in Frage. Typische Beispiele für natürliche Wachse sind Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs). Beispiele für synthetische Wachse sind Petrolatum, Paraffinwachse, Mikrowachse, chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie Polyalkylenwachse und Polyethylenglykolwachse. Ebenfalls geeignet sind bei Raumtemperatur feste Fettalkohole vorzugsweise solche mit 16 bis 22 Kohlenstoffatomen, wie insbesondere Cetylalkohol, Stearylalkohol, Cetylstearylalkohol oder Behenylalkohol, Wachsester von Fettsäuren mit Fettalkoholen, welche ebenfalls bei Raumtemperatur fest sind und vorzugsweise in Summe mindestens 20, vorzugsweise mindestens 26 Kohlenstoffatome enthalten sowie vergleichbare andere Fettstoffe, wie beispielsweise Fettether (z.B. Distearylether) oder Ketone (z.B. Stearon). Es empfiehlt sich die Wachskörper oberhalb ihres jeweiligen Schmelzpunktes, also in der Regel bei 50 bis 95, vorzugsweise 60 bis 70 °C einzusetzen.
    Typische Beispiele für antimikrobielle Wirkstoffe, wie sie im Bereich der Hygieneprodukte eingesetzt werden, sind Tenside, Emulgatoren, biogene Wirkstoffe, Deodorantien und keimhemmende Mittel sowie Parfümöle. Für den Fachmann ersichtlich, ist der Grad der antimikrobiellen Wirksamkeit bei den genannten Stoffgruppen unterschiedlich stark ausgeprägt. Eine geringere Wirksamkeit wird jedoch gegebenenfalls durch die zusätzlichen pflegenden Eigenschaften ausgeglichen.
    Figure 00040001
    Tenside
    Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder amphotere bzw. amphotere Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid-(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Monound Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen. Wegen ihrer milden bioziden Wirkung werden auch häufig kationische Tenside, speziell solche mit einer Esterquatstruktur eingesetzt.
    Figure 00050001
    Emulgatoren
    Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage: Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest; Alkylund/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga; Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl; Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl; Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid; Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid; Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin; Mono-, Di- und Trialkylphosphate sowie Mono-, Diund/oder Tri-PEG-alkylphosphate und deren Salze; Wollwachsalkohole; Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate; Block-Copolymere z.B. Polyethylenglycol-30 Dipolyhydroxystearate; Polymeremulgatoren, z.B. Pemulen-Typen (TR-1,TR-2) von Goodrich; Polyalkylenglycole sowie Glycerincarbonat.
    Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. C12/18-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
    Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
    Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Ölsäuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linolsäuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid, Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremonoglycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citronendiglycerid, Äpfelsäuremonoglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
    Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitandiisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitandioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbitansesquitartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitandimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
    Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Isolan® GI 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Talgfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.
    Typische anionische Emulgatoren sind aliphatische Fettsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Palmitinsäure, Stearinsäure oder Behensäure, sowie Dicarbonsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Azelainsäure oder Sebacinsäure.
    Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylatund eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethyl-ammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8/18-Alkyl- oder Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropion-säuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12/18-Acylsarcosin. Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind.
    Figure 00080001
    Biogene Wirkstoffe
    Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Retinylpalmitat, Bisabolol, Allantoin, Phytantriol, Panthenol, Chitosan, Menthol, Teebaumöl, AHA-Säuren, Kojisäure, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
    Figure 00080002
    Deodorantien und keimhemmende Mittel
    Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker fungieren.
    Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N '-(3,4 dichlorphenyl)harnstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan), 4-Chlor-3,5-dimethylphenol, 2,2'-Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1-methylethyl)phenol, 2-Benzyl-4-chlorphenol, 3-(4-Chlorphenoxy)-1,2-propandiol, 3-Iod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-ndecylamid.
    Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbnonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkglycinat.
    Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfums unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
    Figure 00100001
    Parfümöle
    Als Parfümöle mit schwach antimikrobiellen Eigenschaften seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
    Die Wirkstoffe können dabei in solchen Mengen eingesetzt werden, dass sich in den Millikapseln ein Gehalt von 5 bis 60, vorzugsweise 10 bis 50 und insbesondere 15 bis 25 Gew.-% ergibt.
    Ölkörper
    Werden die wässrigen Zubereitungen der Millikapseln in kosmetische Öle eingebracht, so entstehen stabile Emulsionen, die beispielsweise 25 bis 75 Gew.-% Millikapseln, 24 bis 90 Gew.-% Ölkörper und ad 100 Gew.-% Wasser enthalten können. Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-C13-Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von C18-C38-Alkylhydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen (vgl. DE 19756377 A1), insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C6-C10-Fettsäuren, flüssige Mono-/Di-/Trigiyceridmischungen auf Basis von C6-C18-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-C12-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, wie z.B. Dicaprylyl Carbonate (Cetiol® CC), Guerbetcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z.B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Siliciummethicontypen u.a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
    Zur Herstellung der wässrigen Zubereitungen bzw. der Emulsionen empfiehlt es sich die Wachskörper und Wirkstoffe in Wasser oder einem anderen geeigneten organischen Lösungsmittel, wie beispielsweise Ethanol, Aceton oder Xylol, in denen die Wachse unlöslich sind, zu dispergieren. Dabei empfiehlt es sich, bei Temperaturen oberhalb des Schmelzpunktes der Wachskörper, also bei etwa 50 bis 95, vorzugsweise 60 bis 75 °C zu arbeiten. Auf diesem Wege werden Millikapseln erhalten, die eine homogene Verteilung des Wirkstoffs im Wachs aufweisen. Anschließend wird die Zubereitung wieder unter die Schmelztemperatur der Wachskörper abgekühlt, die sich darauf verfestigen. Die entstandenen Millikapseln können nun problemlos abfiltriert und dann in Wasser bzw. Ölkörpern eingebracht werden. Die wässrigen Zubereitungen oder Emulsionen können anschließend in Mengen Aktivsubstanz von 0,1 bis 10, vorzugsweise 0,2 bis 5 und insbesondere 0,5 bis 2 Gew.-% - bezogen auf das Faser- bzw. Vliesstoffgewicht ― eingesetzt werden.
    Ausrüstungsprodukte
    Polyolefinfasern gehören zu den am häufigsten zur Herstellung von Vliesen eingesetzten Fasern. Beispiel für geeignete Polyolefine sind Polypropylen, Polyethylen oder Copolymere aus Ethylen oder Propylen mit Butadien. Weiterhin werden auch Polyesterfasern, hauptsächlich Polyethylenterephthalatfasern, verwendet. Es können neben den genannten Fasertypen auch andere zu Herstellung von Vliesen geeigneten synthetischen Fasern verwendet werden, beispielsweise Fasern aus Nylon®. Insbesondere geeignet sind auch Fasern, die aus zwei oder mehr Komponenten bestehen, beispielsweise Polyester-Copolyesterfasern oder Polypropylen-Polyethylenfasern.
    Die im erfindungsgemäßen Verfahren verwendeten Vliesstoffe können nach allen im Stand der Technik bekannten Verfahren der Vliesherstellung, wie sie beispielsweise in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 17, VCH Weinheim 1994, Seiten 572 - 581, beschrieben werden, hergestellt werden. Bevorzugt sind dabei Vliese, die entweder nach dem sogenannte "dry laid"- oder dem Spinnvlies- oder spunbond-Verfahren hergestellt wurden. Das "dry laid"-Verfahren geht von Stapelfasern aus, die üblicherweise durch Kardieren in Einzelfasern getrennt und anschließend unter Einsatz eines aerodynamischen oder hydrodynamischen Verfahrens zum unverfestigten Vliesstoff zusammengelegt werden. Dieser wird dann beispielsweise durch eine thermische Behandlung zum fertigen Vlies verbunden (das sogenannte "thermobonding"). Dabei werden die synthetischen Fasern entweder soweit erwärmt, dass deren Oberfläche schmilzt und die Einzelfasern an den Kontaktstellen miteinander verbunden werden, oder die Fasern werden mit einem Additiv überzogen, welches bei der Wärmebehandlung schmilzt und so die einzelnen Fasern miteinander verbindet. Durch Abkühlung wird die Verbindung fixiert. Neben diesem Verfahren sind natürlich auch alle anderen Verfahren geeignet, die im Stand der Technik zum Verbinden von Vliesstoffen eingesetzt werden.
    Die Spinnvliesbildung geht dagegen von einzelnen Filamenten aus, die nach dem Schmelzspinnverfahren aus extrudierten Polymeren gebildet werden, welche unter hohem Druck durch Spinndüsen gedrückt werden. Die aus den Spinndüsen austretenden Filamente werden gebündelt, gestreckt und zu einem Vlies abgelegt, welches üblicherweise durch "thermobonding" verfestigt wird. Das erfindungsgemäße Verfahren eignet sich insbesondere für Vliesstoffe, die nach dem Spinnvlies-oder dem "dry laid"-Verfahren hergestellt werden.
    Diese wässrigen Zubereitungen bzw. die daraus hergestellten Emulsionen ("Präparationen") werden nach dem erfindungsgemäßen Verfahren auf den unbehandelten Vliesstoff bzw. die Fasern aufgebracht. Dazu können alle in der Textiltechnik üblichen Methoden und Maschinen, beispielsweise ein Foulard, eingesetzt werden, aber auch Sprühen oder eine Rollenapplikation oder Stiftapplikation ist möglich. Anschließend werden die Fasern oder Vliesstoffe getrocknet und weiterverarbeitet
    Ein weiterer Gegenstand der Erfindung betrifft daher antimikrobiell ausgerüstete Fasern, die ganz oder überwiegend aus Polyolefinen oder Polyestern bestehen oder Vliesstoffe, die überwiegend solche Fasern enthalten, und sich dadurch auszeichnen, dass durch Ausrüstung mit den wässrigen Zubereitungen hergestellt werden. Die Ausrüstung kann dabei durch Auflage der Emulsionen (Aktivsubstanz) in Mengen von 0,1 bis 10 Gew.-% - bezogen auf das Faser- oder Vliesstoffgewicht ― erfolgen.
    Ebenfalls Gegenstand der Erfindung sind Hygieneprodukte, wie Damenhygieneartikel, Windeln oder Wischtücher, die sich dadurch auszeichnen dass sie die wie oben erläutert ausgerüsteten Vliesstoffe enthalten.
    Ein letzter Gegenstand der Erfindung betrifft schließlich die Verwendung von Millikapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, welche erhältlich sind, indem man
  • (a) aus Wachskörpern und Wirkstoffen oberhalb der Schmelztemperatur der Wachskörper eine wässrige oder organische Matrix herstellt, in denen diese unlöslich sind,
  • (b) die Matrix unter die Schmelztemperatur der Wachskörper abkühlt, und
  • (c) die entstandenen Millikapseln abfiltriert,
  • zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen, die ganz oder überwiegend Polyolefine oder Polyester enthalten.
    Beispiele
  • Beispiel 1. In einem 100-ml-Dreihalskolben wurden 2 g Chitosan (Hydagen® DCMF, Cognis Deutschland GmbH) in 100 ml wässrigem Ethanol gelöst, zunächst auf 60 °C erwärmt und dann unter starkem Rühren portionsweise mit 5 g einer Schmelze von Candelillawachs versetzt. Anschließend wurde die Zubereitung auf 0°C abgekühlt und filtriert. Die resultierenden Millikapseln besaßen einen mittleren Durchmesser von 0,5 mm
  • Beispiel 2. In einem 100-ml-Dreihalskolben 2 g einer 90 Gew.-%igen Lösung von Dicapryloylmethylethoxymonium Methosulfate in Isopropylalkohol zunächst auf 60 °C erwärmt und dann unter starkem Rühren portionsweise mit 5 g einer Schmelze von Carnaubawachs versetzt. Anschließend wurde die Zubereitung auf 0°C abgekühlt und filtriert. Die resultierenden Millikapseln besaßen einen mittleren Durchmesser von 0,5 mm
  • Beispiel 3. In einem 100-ml-Dreihalskolben wurden 2 g Thymol in 100 ml Aceton dispergiert, zunächst auf 60 °C erwärmt und dann unter starkem Rühren portionsweise mit 5 g einer Schmelze von Candelillawachs versetzt. Anschließend wurde die Zubereitung auf 0°C abgekühlt und filtriert. Die resultierenden Millikapseln besaßen einen mittleren Durchmesser von 0,5 mm
  • Beispiel 4. In einem 100-ml-Dreihalskolben wurden 2 g Glycerinmonostearat gelöst, zunächst auf 60 °C erwärmt und dann unter starkem Rühren portionsweise mit 5 g einer Schmelze von Bienenwachs versetzt. Anschließend wurde die Zubereitung auf 0°C abgekühlt und filtriert. Die resultierenden Millikapseln besaßen einen mittleren Durchmesser von 0,5 mm
  • Claims (9)

    1. Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen, dadurch gekennzeichnet, dass man diese mit wässrigen Zubereitungen von Millikapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm behandelt, welche erhältlich sind, indem man
      (a) aus Wachskörpern und Wirkstoffen oberhalb der Schmelztemperatur der Wachskörper eine wässrige oder organische Matrix herstellt, in denen diese unlöslich sind,
      (b) die Matrix unter die Schmelztemperatur der Wachskörper abkühlt, und
      (c) die entstandenen Millikapseln abfiltriert.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Fasern oder Vliesstoffe ganz oder überwiegend aus Polyolefinen und/oder Polyestern bestehen.
    3. Verfahren nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass man wässrige Zubereitungen einsetzt, welche
      (a) 1 bis 75 Gew.-% Mikrokapseln und
      (b) 25 bis 99 Gew.-% Wasser
      mit der Maßgabe enthalten, dass sich die Mengenangaben gegebenenfalls mit Ölkörpern und weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% addieren.
    4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie antimikrobielle Wirkstoffe enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Tensiden, Emulgatoren, biogenen Wirkstoffen, Deodorantien, keimhemmenden Mitteln und Parfümölen.
    5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man die Zubereitungen in Mengen von 0,1 bis 10 Gew.-% - bezogen auf das Faserbzw. Vliesstoffgewicht ― einsetzt.
    6. Antimikrobiell ausgerüstete Fasern, die ganz oder überwiegend aus Polyolefinen oder Polyestern bestehen oder Vliesstoffe, die überwiegend solche Fasern enthalten, dadurch gekennzeichnet, dass diese durch ein Verfahren nach einem der Ansprüche 1 bis 5 hergestellt werden.
    7. Fasern oder Vliesstoffe nach Anspruch 6, dadurch gekennzeichnet, dass diese mit einer Auflage der Zubereitungen (Aktivsubstanz) in Mengen von 0,1 bis 10 Gew.-% - bezogen auf das Faser- oder Vliesstoffgewicht - ausgerüstet sind.
    8. Hygieneprodukte, wie Damenhygieneartikel, Windeln oder Wischtücher, dadurch gekennzeichnet, dass sie Vliesstoffe gemäß Anspruch 6 enthalten.
    9. Verwendung von Millikapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm behandelt, welche erhältlich sind, indem man
      (a) aus Wachskörpern und Wirkstoffen oberhalb der Schmelztemperatur der Wachskörper eine wässrige oder organische Matrix herstellt, in denen diese unlöslich sind,
      (b) die Matrix unter die Schmelztemperatur der Wachskörper abkühlt, und
      (c) die entstandenen Millikapseln abfiltriert,
      zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen, die ganz oder überwiegend Polyolefine oder Polyester enthalten.
    EP01107166A 2001-03-22 2001-03-22 Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen Withdrawn EP1243690A1 (de)

    Priority Applications (2)

    Application Number Priority Date Filing Date Title
    EP01107166A EP1243690A1 (de) 2001-03-22 2001-03-22 Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen
    PCT/EP2002/002738 WO2002077360A1 (de) 2001-03-22 2002-03-13 Verfahren zur antimikrobiellen ausrüstung von fasern oder vliesstoffen

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP01107166A EP1243690A1 (de) 2001-03-22 2001-03-22 Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen

    Publications (1)

    Publication Number Publication Date
    EP1243690A1 true EP1243690A1 (de) 2002-09-25

    Family

    ID=8176903

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01107166A Withdrawn EP1243690A1 (de) 2001-03-22 2001-03-22 Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen

    Country Status (2)

    Country Link
    EP (1) EP1243690A1 (de)
    WO (1) WO2002077360A1 (de)

    Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0539025A2 (de) * 1991-09-25 1993-04-28 Unilever Plc Riechstoffmikrokapseln zur Behandlung von Wäsche
    JPH07243172A (ja) * 1994-03-07 1995-09-19 Sakagami Taoru Kk 抗菌・防ダニ性の布製品

    Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0539025A2 (de) * 1991-09-25 1993-04-28 Unilever Plc Riechstoffmikrokapseln zur Behandlung von Wäsche
    JPH07243172A (ja) * 1994-03-07 1995-09-19 Sakagami Taoru Kk 抗菌・防ダニ性の布製品

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    ASAJI KONDO: "Microcapsule Processing and Technology", MARCEL DEKKER, NEW YORK (US), 1979, XP002175964 *
    PATENT ABSTRACTS OF JAPAN vol. 1996, no. 01 31 January 1996 (1996-01-31) *

    Also Published As

    Publication number Publication date
    WO2002077360A1 (de) 2002-10-03

    Similar Documents

    Publication Publication Date Title
    EP1338267B1 (de) Desodorierende Zubereitungen
    DE10014529A1 (de) Desodorierende Zubereitungen mit nanoskaligen Chitosanen und/oder Chitosanderivaten
    EP1242036B1 (de) Verwendung von nanoskaligen antischuppenwirkstoffen
    EP1438017A1 (de) Imprägnierlösung für kosmetiktücher
    DE10162026A1 (de) Hochkonzentriert fließfähige Perlglanzkonzentrate
    EP1247568A1 (de) Mikrokapseln (XIII)
    EP1243323A1 (de) Nanokapseln
    DE10162184A1 (de) Imprägnierlösung für Kosmetiktücher
    EP1242172B1 (de) Verwendung von nanoskaligen polymeren
    EP1267697B1 (de) Feuchttücher (ii)
    DE19961939A1 (de) Verwendung von nanoskaligen kationischen Verbindungen
    EP1243320A1 (de) Mikrokapseln (VIII)
    EP1268740B1 (de) Feuchttücher (i)
    EP1243321A1 (de) Mikrokapseln(IX)
    EP1243318A1 (de) Mikrokapseln (VII)
    EP1268741B1 (de) Feuchttücher (iii)
    DE19958521A1 (de) Verwendung von nanoskaligen Wachsen
    DE19920555B4 (de) Verwendung von nanoskaligen Metallseifen
    EP1243690A1 (de) Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen
    EP1243689A1 (de) Verfahren zur antimikrobiellen Ausrüstung von Fasern oder Vliesstoffen
    EP1243322A1 (de) Mikrokapseln(X)
    EP1243247A1 (de) Emulsionen vom Typ W/O bzw. O/W/O enthaltend Mikrokapseln bestehend aus Wirkstoffen und thermogelierenden Heteropolysacchariden oder Proteinen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010322

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    17Q First examination report despatched

    Effective date: 20030625

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20031106