WO2002076614A1 - Verfahren zum auftragen von washcoat auf einen wabenkörper - Google Patents

Verfahren zum auftragen von washcoat auf einen wabenkörper Download PDF

Info

Publication number
WO2002076614A1
WO2002076614A1 PCT/EP2002/002500 EP0202500W WO02076614A1 WO 2002076614 A1 WO2002076614 A1 WO 2002076614A1 EP 0202500 W EP0202500 W EP 0202500W WO 02076614 A1 WO02076614 A1 WO 02076614A1
Authority
WO
WIPO (PCT)
Prior art keywords
washcoat
honeycomb body
dispersion
channels
washcoat dispersion
Prior art date
Application number
PCT/EP2002/002500
Other languages
English (en)
French (fr)
Inventor
Wolfgang Maus
Original Assignee
Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft Für Emissionstechnologie Mbh filed Critical Emitec Gesellschaft Für Emissionstechnologie Mbh
Publication of WO2002076614A1 publication Critical patent/WO2002076614A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for applying a washcoat dispersion to a honeycomb body having channels.
  • Honeycomb bodies coated in this way are used in particular as catalytic converters for exhaust gas purification of an internal combustion engine.
  • honeycomb bodies are crossed by many essentially parallel channels and consist, for example, of a metallic honeycomb body which is constructed from a large number of partially structured and, if appropriate, wound sheet metal foils, or of a ceramic molded body.
  • a metallic honeycomb body which is constructed from a large number of partially structured and, if appropriate, wound sheet metal foils, or of a ceramic molded body.
  • the ceramic material e.g. Cordierite, mollite or ⁇ -alumina can be used.
  • the honeycomb bodies have very high channel densities, for example metallic honeycomb bodies with a cell density of up to 1500 cpsi (“cells per square inch”) are known.
  • a further enlargement of the catalytically active surface is achieved in that the relatively smooth channel walls are coated with a so-called washcoat, which has a very jagged surface.
  • this rugged surface ensures a sufficiently large amount of space for fixing a catalyst (e.g. platinum, rhodium, etc.) and, on the other hand, serves to swirl the exhaust gas flowing through, resulting in particularly intensive contact with the catalyst.
  • a catalyst e.g. platinum, rhodium, etc.
  • the application of the high-surface washcoat layer which requires catalysis, is carried out in such a way that the honeycomb body is immersed in or sprayed with a liquid washcoat dispersion. Then will the excess washcoat dispersion is removed, the washcoat is dried in the honeycomb body and finally calcined at temperatures usually above 450 ° C. During the calcination, the volatile constituents of the washcoat dispersion are driven off, so that a temperature-resistant and catalyzing layer with a high specific surface area is produced. If necessary, this process was repeated several times in order to achieve a desired layer thickness.
  • the washcoat usually consists of a mixture of a transition series aluminum oxide and at least one promoter oxide such as rare earth oxide, zirconium oxide, nickel oxide, iron oxide, germanium oxide and barium oxide.
  • the washcoat dispersion must have the best possible flow properties during application to the honeycomb body in order to achieve a desired, uniform layer thickness over the entire channel length. This is particularly important with regard to the channel cross-sections, which are becoming smaller and smaller in recent developments.
  • washcoat dispersions In order to achieve such a flow property, known washcoat dispersions have a specific pH, with only a limited proportion of solids being permitted. However, tests have shown that such a washcoat dispersion has a time-dependent viscosity. As a result, the washcoat dispersion gels very quickly and prevents the generation of a uniform layer thickness. This gelling is reinforced in particular in the case of ceramic honeycomb bodies in that the ceramic base material absorbs the liquid component of the washcoat dispersion, as a result of which the solids content of the washcoat dispersion is increased as a percentage.
  • washcoat dispersion for applying a washcoat dispersion to a honeycomb body having channels, it is proposed to bring the honeycomb body into contact with the washcoat dispersion, the washcoat dispersion being excited to vibrate at least during application.
  • the washcoat dispersion preferably comprises a carrier material uniformly distributed in a carrier fluid with a mixture of stabilized, high-surface aluminum oxide of the transition series and optionally at least one promoter oxide.
  • the method has the advantage that the washcoat dispersion gels prematurely during application. This has its origins essentially in the fact that the washcoat dispersion has many constituents of different specific density or mass. As a result, the individual components perform different movements due to the vibrations. This results, for example, in relative movements of the carrier material particles with respect to the carrier fluid, with forces and deformations occurring which prevent or at least significantly reduce the viscosity of the washcoat dispersion over a longer period of time (for example several minutes).
  • the washcoat dispersion is excited to vibrate even after application, in particular until An essentially uniform washcoat thickness is produced over a predeterminable length of the channels, which is preferably between 5 and 50 ⁇ m.
  • the vibration of the washcoat dispersion thus not only ensures a constant viscosity of the washcoat dispersion over a certain period of time, but also supports the distribution of the washcoat dispersion in the channels of the honeycomb body.
  • the washcoat thickness produced depends in particular on the thickness of the channel wall or the free cross-section of the channels, the washcoat thickness being reduced as the channel walls and cross-sections become smaller.
  • a washcoat thickness of 10 to 20 ⁇ m is preferred, in particular for channel walls with a thickness of less than 0.03 mm.
  • washcoat dispersion by means of a spray or immersion process.
  • a spraying process the washcoat dispersion is atomized finely and introduced over at least one end face of the honeycomb body.
  • the honeycomb body is at least partially immersed in a basin with the washcoat dispersion, this process preferably taking place only from one end face of the honeycomb body.
  • the washcoat dispersion is evenly distributed on the channel walls of the honeycomb body using the capillary action of the channels.
  • the washcoat dispersion is excited by vibrating the honeycomb body itself.
  • the generation of a vibration of the honeycomb body is simpler and more practical, in particular from the point of view of production engineering and process engineering, particularly with regard to the use of the spraying method for applying the washcoat dispersion.
  • the washcoat dispersion used must always be taken into account, since ultimately the relative movements of the carrier materials with respect to the carrier fluid are to be generated in it.
  • Investigations have shown that a vibration of the honeycomb body approximately perpendicular to an axis to which the channels are arranged essentially parallel, the maintenance of a certain viscosity of the washcoat dispersion is possible for a particularly long time.
  • the focus is on the uniform distribution of the washcoat dispersion over a predeterminable length of the channels, it is advantageous to vibrate the honeycomb body approximately in the direction of an axis to which the channels run essentially parallel.
  • the honeycomb body carries out a torsional vibration which preferably has an amplitude close to a circumference of the honeycomb body of less than 5 mm, in particular less than 2 mm.
  • a torsional vibration which preferably has an amplitude close to a circumference of the honeycomb body of less than 5 mm, in particular less than 2 mm.
  • the channels, which are arranged near the circumference of the honeycomb body oscillate with a relatively small amplitude in an alternating direction of the circumference.
  • This also has the consequence that in particular centrally arranged channels be stimulated to vibrate at a lower intensity. This is advantageous, for example, if the length and / or the cross section of the channels is not constant over the cross section of the honeycomb body.
  • Such a torsional vibration is therefore particularly well suited, for example, to conical honeycomb bodies which have channels with a greater channel length in the outer edge regions than in central regions.
  • the more pronounced vibration in these edge areas of the honeycomb body supports the flow properties of the washcoat dispersion and thus ensures a uniform distribution of washcoat on the channel walls of the honeycomb body.
  • washcoat dispersion essentially depends on the channel shape or the channel cross section, it may also be advantageous to combine the different types of vibration with one another.
  • the washcoat dispersion is excited with a predeterminable frequency, which can be selected in particular as a function of a consistency of the washcoat dispersion.
  • the consistency of the washcoat dispersion can be described using a variety of parameters: e.g. the viscosity, the ratio of carrier material to carrier fluid, type and / or size of the carrier material, density of the carrier fluid, temperature of the washcoat dispersion, pH of the dispersion, surface structure of the carrier material, etc.
  • a frequency in the ultrasound range has proven to be particularly advantageous.
  • the excitation took place in a frequency range from 20 kHz to 10 MHz.
  • Frequencies in the audible range have proven themselves, in particular in the case of indirect excitation, for example due to vibration of the honeycomb body, excitation with a frequency between 20 Hz and 15 in particular kHz has ensured a drop in viscosity over a very long period of time.
  • Figure 1 shows schematically and in perspective a metallic honeycomb body
  • Figure 2 schematically shows a detailed view of a coated with washcoat
  • FIG. 1 shows schematically and in perspective a honeycomb body 1, the honeycomb body 1 shown being formed from sheet metal foils 8, which are partially structured, spirally wound and arranged in a tubular casing 9.
  • the partially structured sheet metal foils 8 form channels 2 which are arranged essentially parallel to an axis 6 of the honeycomb body 1.
  • the exhaust gas to be cleaned flows through the honeycomb body 1, in which it enters the channels 3 from the end face 11, is guided past the inner channel walls 14 and brought into contact and ultimately emerges on the opposite face.
  • such a honeycomb body 1 is brought into contact with a washcoat dispersion, the washcoat dispersion 3 being excited to vibrate at least during application.
  • this movement can result from a torsional vibration of the honeycomb body 1 are superimposed, the torsional vibration preferably having an amplitude close to a circumference 7 of less than 5 mm. In this way it is ensured that the honeycomb body 1 has an essentially uniform washcoat thickness 5 (not shown) after the coating process up to a predeterminable length 4 of the channels 2.
  • the washcoat dispersion 3 is brought into contact with the honeycomb body 1 in such a way that the end face 11 of the honeycomb body 1 is immersed in a basin with the washcoat dispersion 3. Due to the capillary action in the channels 2, the washcoat dispersion 3 flows through the channels 2.
  • Figure 2 shows schematically in a detailed view a channel 2, which is formed with smooth and corrugated metal foils 8.
  • a honeycomb structure can also be produced, for example, by stacking smooth and corrugated sheet metal foils 8 and then S-shaped or involute twisting of the sheet metal foils 8.
  • the sheet metal foils 8 preferably have a foil thickness 10 of less than 0.03 mm.
  • the channels 2 have essentially rectangular cross-sectional areas when the honeycomb body 1 has been extruded from ceramic material.
  • the channel 2 shown has on its channel wall 14 a washcoat dispersion 3 with an essentially uniform washcoat thickness 5 of preferably 5 to 50 ⁇ m.
  • the washcoat dispersion 3 shown comprises a temperature-resistant carrier material 13 and catalysts 12.
  • Oxidic minerals such as aluminum oxide, titanium oxide, silicon oxide, tin oxide, zirconium oxide, magnesium oxide, aluminum silicate, zeolites and / or alkaline earth metal titanate are preferably used as the carrier material.
  • the carrier material 13 advantageously additionally comprises promoters such as rare earths, alkaline earth metals and or compounds of the elements of III. to V. main group of the periodic table of the Elements. Metals of the platinum group, such as platinum, palladium and / or rhodium, are usually used as catalyst 12.
  • the process according to the invention prevents premature gelation of the washcoat dispersion during and after application to a metallic or ceramic honeycomb body, ensuring a uniform washcoat thickness in the channels of the honeycomb body.
  • a honeycomb body as a catalytic converter for cleaning exhaust gases from an internal combustion engine in automobile construction, this leads to a highly effective converter which also withstands the high thermal and dynamic loads in such an exhaust system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

Verfahren zum Auftragen von einer Washcoat-Dispersion (3) auf einen Kanäle (2) aufweisenden abenkörper (1), wobei die Washcoat-Dispersion (3) vorzugsweise ein in einem Trägerfluid gleichmäßig verteiltes Trägermaterial (13) mit einer Mischung aus stabilisiertem, hochoberflächigen Aluminiumoxid der Übergangsreiheund mindestens einem Promotoroxid umfasst, bei dem der Wabenkörper (1) mit der Washcoat-Dispersion (3) in Kontakt gebracht wird, wobei die Washcoat-Dispersion (3) zumindest während des Auftragens zum Vibrieren angeregt wird. Dadurch wird ein frühzeitiges Gelieren der Washcoat-Dispersion verhindert und eine gleichmäßige Washcoatdicke in den Kanälen sichergestellt.

Description

Verfahren zum Auftragen von Washcoat auf einen Wabenkörper
Die Erfindung bezieht sich auf ein Verfahren zum Auftragen einer Washcoat- Dispersion auf einen Kanäle aufweisenden Wabenkörper. Derartig beschichtete Wabenkörper werden insbesondere als katalytische Konverter zur Abgasreinigung einer Verbrennungskraftmaschine eingesetzt.
Bekannte Wabenkörper sind von vielen im wesentlichen parallelen Kanälen durchzogen und bestehen beispielsweise aus einem metallischen Wabenkörper, der aus einer Vielzahl teilweise strukturierter und gegebenenfalls gewickelter Blechfolien aufgebaut ist, oder aus einem keramischen Formkörper. Als keramisches Material können z.B. Cordierit, Mollit oder α- Aluminiumoxid eingesetzt werden. In Hinblick auf eine hohe Effektivität der katalytischen Umsetzung von Schadstoffen im Abgas ist es erforderlich, eine möglichst große katalytisch aktive Kontaktfläche des Wabenkörpers zur Verfügung zu stellen. Die Wabenkörper weisen dazu sehr hohe Kanaldichten auf, so sind beispielsweise metallische Wabenkörper mit einer Zelldichte von bis zu 1500 cpsi („cells per square inch") be- kannt.
Eine weitere Vergrößerung der katalytisch aktiven Oberfläche wird dadurch erreicht, dass die relativ glatten Kanalwände mit einem sogenannten Washcoat beschichtet werden, der eine sehr zerklüftete Oberfläche aufweist. Diese zerklüftete Oberfläche gewährleistet einerseits ein ausreichend großes Platzangebot für die Fixierung eines Katalysators (z.B. Platin, Rhodium etc.) und dient andererseits zur Verwirbelung des durchströmenden Abgases, wobei ein besonders intensiver Kontakt zum Katalysator bewirkt wird.
Das Auftragen der die Katalyse fordernden hochoberflächigen Washcoat-Schicht erfolgt bekanntermaßen in der Weise, dass der Wabenkörper in eine flüssigen Washcoat-Dispersion getaucht oder mit dieser besprüht wird. Anschließend wird die überschüssige Washcoat-Dispersion entfernt, der Washcoat im Wabenkörper getrocknet und abschließend bei Temperaturen meist über 450 °C kalziniert. Während des Kalzinierens werden die flüchtigen Bestandteile der Washcoat- Dispersion ausgetrieben, so dass eine temperaturbeständige und katalysefordernde Schicht mit hoher spezifischer Oberfläche erzeugt wird. Gegebenenfalls wurde dieser Vorgang mehrfach wiederholt, um eine gewünschte Schichtdicke zu erreichen.
Der Washcoat besteht gewöhnlich aus einer Mischung eines Aluminiumoxids der Übergangsreihe und mindestens einem Promoteroxid wie beispielsweise Seltenerdoxiden, Zirkonoxid, Nickeloxid, Eisenoxid, Germaniumoxid und Bariumoxid. Die Washcoat-Dispersion muss dabei während des Auftragens auf den Wabenkörper eine möglichst gute Fließeigenschaft aufweisen, um eine gewünschte, gleichmäßige Schichtdicke über die gesamte Kanallänge zu erzielen. Dies ist ins- besondere in Hinblick auf die bei neueren Entwicklungen immer kleiner werdenden Kanalquerschnitte von besonderer Bedeutung.
Zur Erzielung einer derartigen Fließeigenschaft weisen bekannte Washcoat- Dispersionen einen bestimmten pH- Wert auf, wobei nur ein begrenzter Feststoff- anteil erlaubt wird. Allerdings haben Versuche gezeigt, dass eine derartige Washcoat-Dispersion eine zeitabhängige Viskosität aufweist. Dies hat zur Folge, dass die Washcoat-Dispersion sehr rasch geliert und die Generierung einer gleichmäßigen Schichtdicke verhindert. Dieses Gelieren wird insbesondere bei keramischen Wabenkörpern dadurch verstärkt, dass der keramische Grundwerkstoff den flüssi- gen Bestandteil der Washcoat-Dispersion aufsaugt, wodurch der Feststoffanteil der Washcoat-Dispersion prozentual erhöht wird.
Somit ist es Aufgäbe der vorliegenden Erfindung ein Verfahren zum Auftragen einer Washcoat-Dispersion auf einen Kanäle aufweisenden Wabenkörper an- zugeben, wobei ein frühzeitiges Gelieren der Washcoat-Dispersion verhindert und eine Washcoat-Schicht mit gleichmäßiger Waschcoatdicke auf den Kanalwänden sicherstellt wird.
Diese Aufgabe wird gelöst durch ein Verfahren gemäß den Merkmalen des Anspruchs 1. Weitere vorteilhafte Ausgestaltungen des Verfahrens sind in den abhängigen Ansprüchen beschrieben.
Erfindungsgemäß wird zum Auftragen einer Washcoat-Dispersion auf einen Kanäle aufweisenden Wabenkörper vorgeschlagen, den Wäbenkörper mit der Washcoat-Dispersion in Kontakt zu bringen, wobei die Washcoat-Dispersion zumindest während des Auftragens zum Vibrieren angeregt wird. Die Washcoat-Dispersion umfasst dabei vorzugsweise ein in einem Trägerfluid gleichmäßig verteiltes Trägermaterial mit einer Mischung aus stabilisiertem, hochoberflächigem Alumini- umoxid der Übergangsreihe und gegebenenfalls mindestens einem Promoteroxid.
Das Verfahren hat den Vorteil, dass ein frühzeitiges Gelieren der Washcoat- Dispersion während des Auftragens verhindert wird. Dies hat im wesentlichen seinen Ursprung darin, dass die Washcoat-Dispersion viele Bestandteile unter- schiedlicher spezifischer Dichte bzw. Masse hat. Das hat zur Folge, dass die einzelnen Bestandteile aufgrund der Vibrationen unterschiedliche Bewegungen ausführen. Somit kommt es beispielsweise zu Relativbewegungen der Trägermaterial-Teilchen gegenüber dem Trägerfluid, wobei Kräfte und Verformungen auftreten, die eine Absenkung der Viskosität der Washcoat-Dispersion über einen län- geren Zeitraum (z. B. mehrere Minuten) verhindern oder zumindest deutlich reduzieren.
Gemäß einer weiteren Ausgestaltung des Verfahrens wird die Washcoat- Dispersion auch nach dem Auftragen zum Vibrieren angeregt, insbesondere bis über eine vorgebbare Länge der Kanäle eine im wesentlichen einheitliche Wash- coatdicke hergestellt ist, die vorzugsweise zwischen 5 bis 50 μm beträgt. Die Vibration der Washcoat-Dispersion gewährleistet somit nicht nur eine über einen gewissen Zeitraum konstante Viskosität der Washcoat-Dispersion, sondern unter- stützt gleichzeitig die Verteilung der Washcoat-Dispersion in den Kanälen des Wabenkörpers. Die hergestellte Washcoatdicke ist dabei insbesondere von der Dicke der Kanalwand bzw. dem freien Querschnitt der Kanäle abhängig, wobei die Washcoatdicke bei kleiner werdenden Kanalwänden sowie Querschnitten reduziert wird. Dabei wird eine Washcoatdicke von 10 bis 20 μm bevorzugt, insbe- sondere bei Kanalwänden mit einer Dicke kleiner 0,03 mm.
Weiterhin wird vorgeschlagen, die Washcoat-Dispersion mittels einem Sprühoder Tauchverfahren aufzutragen. Bei einem Sprühverfahren wird die Washcoat- Dispersion fein zerstäubt und über mindestens eine Stirnseite des Wabenkörpers eingebracht. Beim Tauchverfahren wird der Wabenkörper zumindest teilweise in ein Becken mit der Washcoat-Dispersion eingetaucht, wobei dieser Vorgang vorzugsweise nur von einer Stirnseite des Wabenkörpers her erfolgt. Bei einem einseitigen Eintauchen erfolgt eine gleichmäßige Verteilung der Washcoat- Dispersion auf den Kanalwänden des Wabenkörpers mithilfe der Kapillarwirkung der Kanäle. Um einen besonders innigen Kontakt der Washcoat-Dispersion mit der Oberfläche der Kanalwände des Wabenkörpers bereitzustellen ist es vorteilhaft, die Washcoat-Dispersion durch den Wabenkörper hindurch zu pressen und/oder zu saugen. Dies bedeutet, dass die Kraft, welche die Relativbewegung in axialer Richtung der Kanäle (Hauptbewegungsrichtung) bewirkt, mit der Haupt- bewegungsrichtung gleichgerichtet (Pressrichtung) oder entgegen dieser ausgerichtet ist (Saugrichtung). An dieser Stelle sei angemerkt, dass dem Fachmann noch eine Vielzahl von alternativen Verfahren bekannt sind, welche zumindest teilweise auf die oben genannten „Grundtechniken" zurückgreifen. Diese, sowie Verfahren umfassend eine beliebige Kombination der oben genannten Techniken, sind hiermit ebenfalls umfasst, wobei diese Zuführung bzw. Einleitung der Washcoat-Dispersion in der Hauptbewegungsrichtung zusätzlich von der Vibration ü- berlagert wird.
Gemäß einer weiteren vorteilhaften Ausgestaltung des Verfahrens erfolgt die Anregung der Washcoat-Dispersion durch ein Vibrieren des Wäbenkörpers selbst. Die Erzeugung einer Vibration des Wabenkörpers ist insbesondere unter fertigungstechnischen und verfahrenstechnischen Gesichtspunkten einfacher und praktikabler, besonders in Hinblick auf die Verwendung des Sprühverfahrens zum Auftragen der Washcoat-Dispersion.
In Hinblick auf die Art und Richtung der von dem Wabenkörper ausgeführten Vibration ist stets die verwendete Washcoat-Dispersion zu berücksichtigen, da letztendlich in ihr die Relativbewegungen der Trägermaterialien gegenüber dem Trägerfluid generiert werden sollen. Untersuchungen haben dabei gezeigt, dass eine Vibration des Wabenkörpers etwa senkrecht zu einer Achse, zu der die Kanäle im wesentlichen parallel angeordnet sind, die Aufrechterhaltung einer bestimmten Viskosität der Washcoat-Dispersion besonders langzeitig möglich ist. Steht allerdings beispielsweise die gleichmäßige Verteilung der Washcoat-Dispersion über eine vorgebbare Länge der Kanäle im Vordergrund, so ist es vorteilhaft, den Wabenkörper etwa in Richtung einer Achse zu vibrieren, zu der die Kanäle im wesentlichen parallel verlaufen.
Gemäß einer weiteren Ausgestaltung des Verfahrens führt der Wabenkörper eine Drehschwingung aus, die vorzugsweise eine Amplitude nahe eines Umfangs des Wabenkörpers von kleiner 5 mm, insbesondere kleiner 2 mm hat. Das bedeutet, dass die Kanäle, die nahe dem Umfang des Wabenkörpers angeordnet sind, mit einer relativ kleinen Amplitude in abwechselnder Richtung des Umfangs schwingen. Das hat weiterhin zur Folge, dass insbesondere zentral angeordnete Kanäle zu einer Vibration mit geringerer Intensität angeregt werden. Dies ist beispielsweise dann vorteilhaft, wenn die Länge und/oder der Querschnitt der Kanäle über den Querschnitt des Wäbenkörpers nicht konstant ist. Eine solche Drehschwingung ist demnach beispielsweise für konusförmige Wabenkörper besonders gut geeignet, die in den äußeren Randbereichen Kanäle mit einer größeren Kanallänge ausgeführt sind als in zentralen Bereichen. Die stärker ausgeprägte Vibration in diesen Randbereichen des Wabenkörpers unterstützt die Fließeigenschaft der Washcoat-Dispersion und stellt somit eine gleichmäßige Verteilung von Washcoat an den Kanalwänden des Wabenkörpers sicher.
Da das Fließverhalten der Washcoat-Dispersion im wesentlichen von der Kanalform bzw. dem Kanalquerschnitt abhängt, kann es gegebenenfalls auch vorteilhaft sein, die verschiedenen Vibrationsarten miteinander zu kombinieren.
Gemäß noch einer weiteren Ausgestaltung des Verfahrens erfolgt die Anregung der Washcoat-Dispersion mit einer vorgebbaren Frequenz, welche insbesondere in Abhängigkeit einer Konsistenz der Washcoat-Dispersion wählbar ist. Die Konsistenz der Washcoat-Dispersion kann dabei mit einer Vielzahl von Parametern beschrieben werden: z.B. der Viskosität, dem Verhältnis von Trägermaterial zu Trä- gerfluid, Art und/oder Größe des Trägermaterials, Dichte des Trägerfluids, Temperatur der Washcoat-Dispersion, pH- Wert der Dispersion, Oberflächenstruktur des Trägermaterials usw..
Erfolgt beispielsweise eine direkte Anregung der Washcoat-Dispersion, so hat sich eine Frequenz im Ultraschall-Bereich als besonders vorteilhaft erwiesen. Die Anregung erfolgte dabei in einem Frequenzbereich von 20 kHz bis 10 MHz. Insbesondere bei einer indirekten Anregung, also beispielsweise aufgrund einer Vibration des Wabenkörpers, haben sich Frequenzen im hörbaren Bereich bewährt, wobei insbesondere eine Anregung mit einer Frequenz zwischen 20 Hz und 15 kHz ein Abfallen der Viskosität über einen sehr langen Zeitraum sichergestellt hat.
Das Verfahren wird nun anhand der folgenden Zeichnungen näher erläutert. Es zeigen:
Figur 1 schematisch und perspektivisch einen metallischen Wabenkörper und
Figur 2 schematisch eine Detailansicht eines mit Washcoat beschichteten
Kanals.
Figur 1 zeigt schematisch und perspektivisch einen Wabenkörper 1, wobei der dargestellte Wabenkörper 1 aus metallischen Blechfolien 8 gebildet ist, die teil- weise strukturiert, spiralig gewickelt und in einem Mantelrohr 9 angeordnet sind. Die teilweise strukturierten Blechfolien 8 bilden Kanäle 2, die im wesentlichen parallel zu einer Achse 6 des Wabenkörpers 1 angeordnet sind. Bei der Verwendung eines derartigen Wabenkörpers 1 beispielsweise als katalytischer Konverter für eine Abgasreinigung einer Verbrennimgskraftmaschine durchströmt das zu reinigende Abgas den Wabenlcörper 1, in dem es von der Stirnseite 11 in die Kanäle 3 eintritt, an den innenliegenden Kanalwänden 14 vorbeigeführt und in Kontakt gebracht wird und letztlich auf der gegenüberliegenden Stirnseite wieder austritt.
Ein solcher Wäbenkörper 1 wird erfϊndungsgemäß mit einer Washcoat-Dispersion in Kontakt gebracht, wobei die Washcoat-Dispersion 3 zumindest während des Auftragens zum Vibrieren angeregt wird. Dies erfolgt beispielsweise in der Form, dass der dargestellte Wabenkörper 1 etwa in Richtung der Achse 6 vibriert. Zusätzlich kann diese Bewegung von einer Drehschwingung des Wäbenkörpers 1 überlagert werden, wobei die Drehschwingung vorzugsweise eine Amplitude nahe eines Umfangs 7 kleiner 5 mm hat. Auf diese Weise ist gewährleistet, dass der Wabenkörper 1 nach dem Beschichtungsvorgang bis über eine vorgebbare Länge 4 der Kanäle 2 eine im wesentlichen einheitliche Washcoatdicke 5 (nicht dargestellt) aufweist. Die Washcoat-Dispersion 3 wird dabei so mit dem Wabenkörper 1 in Kontakt gebracht, dass die Stirnseite 11 des Wabenkörpers 1 in ein Becken mit der Washcoat-Dispersion 3 eingetaucht wird. Aufgrund der Kapillarwirkung in den Kanälen 2 fließt die Washcoat-Dispersion 3 durch die Kanäle 2 hindurch.
Figur 2 zeigt schematisch in einer Detailansicht einen Kanal 2, der mit glatten und gewellten Blechfolien 8 gebildet ist. Eine derartige Wabenstruktur kann beispielsweise auch durch das Aufeinanderstapeln von glatten und gewellten Blechfolien 8 und anschließendem S-förmigen oder evolventenförmigen Verwinden der Blechfolien 8 erzeugt werden. Die Blechfolien 8 weisen vorzugsweise eine Foliendicke 10 kleiner 0,03 mm auf. Die Kanäle 2 haben im wesentlichen rechteckige Querschnittsflächen, wenn der Wabenkörper 1 aus keramischem Material extrudiert wurde.
Der dargestellte Kanal 2 weist auf seiner Kanalwand 14 eine Washcoat- Dispersion 3 mit einer im wesentlichen einheitlichen Washcoatdicke 5 von vorzugsweise 5 bis 50 μm auf. Die dargestellte Washcoat-Dispersion 3 umfasst ein temperaturbeständiges Trägermaterial 13 sowie Katalysatoren 12. Als Trägermaterial werden vorzugsweise oxidische Mineralien wie Aluminiumoxid, Titanoxid, Siliciumoxid, Zinnoxid, Zirkonoxid, Magnesiumoxid, Aluminiumsilikat, Zeolithe und/oder Erdalkalititanat verwendet. Das Trägermaterial 13 umfasst vorteilhafterweise zusätzlich Promotoren wie Seltenen Erden, Erdalkalimetalle und oder Verbindungen der Elemente der III. bis V. Hauptgruppe des Periodensystems der Elemente. Als Katalysator 12 werden gewöhnlicherweise Metalle der Platingruppe wie Platin, Palladium und/oder Rhodium eingesetzt.
Das erfϊndungsgemäße Verfahren verhindert ein frühzeitiges Gelieren der Wash- coat-Dispersion während und nach dem Auftragen auf einem metallischen oder keramischen Wabenkörper, wobei eine gleichmäßige Washcoatdicke in den Kanälen des Wabenkörpers sichergestellt ist. Dies führt insbesondere in Hinblick auf die Verwendung eines derartigen Wabenkörpers als katalytischer Konverter zur Reinigung von Abgasen einer Verbrer ungskraftmaschine im Automobilbau zu einem hocheffektiven Konverter, der auch den hohen thermischen und dynamischen Belastungen in einem solchen Abgassystem standhält.
Bezugszeichenliste
Wabenkörper
Kanal
Washcoat-Dispersion
Länge
Washcoatdicke
Achse
Umfang
Blechfolien
Mantelrohr
Foliendicke
Stirnseite
Katalysator
Trägermaterial
Kanalwand

Claims

Patentansprüche
1. Verfahren zum Auftragen von einer Washcoat-Dispersion (3) auf einen Kanäle (2) aufweisenden Wabenkörper (1), wobei die Washcoat-Dispersion (3) vorzugsweise ein in einem Trägerfluid gleichmäßig verteiltes Trägermaterial (13) mit einer Mischung aus stabilisiertem, hochoberflächigem Aluminium- oxid der Übergangsreihe und mindestens einem Promotoroxid umfasst, bei dem der Wabenkörper (1) mit der Washcoat-Dispersion (3) in Kontakt gebracht wird, wobei die Washcoat-Dispersion (3) zumindest während des Auftragens zum Vibrieren angeregt wird.
2. Verfahren nach Anspruch 1, bei dem die Washcoat-Dispersion (3) auch nach dem Auftragen zum Vibrieren angeregt wird, insbesondere bis über eine vorgebbare Länge (4) der Kanäle (2) eine im wesentlichen einheitliche Washcoatdicke (5) hergestellt ist, die vorzugsweise zwischen 5 bis 50 μm beträgt.
3. Verfahren nach Anspruch 1 oder 2, bei dem die Washcoat-Dispersion (3) mit- tels einem Saug-, Press-, Sprüh- und/oder Tauchverfahren aufgetragen wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem der Wabenkörper (1) vibriert.
5. Verfahren nach Anspruch 4, wobei sich die Kanäle (2) im wesentlichen parallel zu einer Achse (6) des Wabenkörpers (1) erstrecken, bei dem der Wäbenkörper (1) etwa senkrecht zur Achse (6) vibriert.
6. Verfahren nach Anspruch 4 oder 5, wobei sich die Kanäle (2) im wesentlichen parallel zu einer Achse (6) des Wabenkörpers (1) erstrecken, bei dem der Wabenkörper (1) etwa in Richtung der Achse (6) vibriert.
7. Verfahren nach einem der Ansprüche 4 bis 6, wobei sich die Kanäle (2) im wesentlichen parallel zu einer Achse (6) des Wabenkörpers (1) erstrecken, bei dem der Wäbenkörper (1) eine Drehschwingung ausführt, vorzugsweise eine Drehschwingung mit einer Amplitude nahe eines Umfangs (7) kleiner 5 mm, insbesondere kleiner 2 mm.
8. Verfahren nach einem der Ansprüche 1 bis 6, bei dem die Washcoat- Dispersion (3) mit einer vorgebbarer Frequenz angeregt wird, die insbesondere in Abhängigkeit einer Konsistenz der Washcoat-Dispersion (3) wählbar ist.
9. Verfahren nach Anspruch 7, bei dem die Frequenz im Ultraschall-Bereich liegt, vorzugsweise zwischen 20 kHz und 10 MHz beträgt.
10. Verfahren nach Anspruch 7, bei dem die Frequenz im hörbaren Bereich liegt, vorzugsweise zwischen 20 Hz und 15 kHz beträgt.
PCT/EP2002/002500 2001-03-23 2002-03-07 Verfahren zum auftragen von washcoat auf einen wabenkörper WO2002076614A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10114328.1 2001-03-23
DE10114328A DE10114328A1 (de) 2001-03-23 2001-03-23 Verfahren zum Auftragen von Washcoat auf einen Wabenkörper

Publications (1)

Publication Number Publication Date
WO2002076614A1 true WO2002076614A1 (de) 2002-10-03

Family

ID=7678749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/002500 WO2002076614A1 (de) 2001-03-23 2002-03-07 Verfahren zum auftragen von washcoat auf einen wabenkörper

Country Status (2)

Country Link
DE (1) DE10114328A1 (de)
WO (1) WO2002076614A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1433528A1 (de) * 2001-09-28 2004-06-30 Ngk Insulators, Ltd. Wabenkatalysator und verfahren zur herstellung einer wabenzwischenstufe und eines wabenkatalysators
WO2007007370A1 (ja) 2005-07-07 2007-01-18 Cataler Corporation, 基材コーティング装置及び方法
WO2013079448A3 (de) * 2011-11-30 2014-04-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Diffusionssperrschicht bei einer abgasbehandlungseinheit
CN111601659A (zh) * 2018-01-16 2020-08-28 优美科股份公司及两合公司 用于生产scr催化转化器的超声辅助方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10329162A1 (de) 2003-06-27 2005-01-13 Alstom Technology Ltd Katalytischer Reaktor und zugehöriges Betriebsverfahren
DE102009056145B3 (de) 2009-11-27 2011-07-28 Süd-Chemie AG, 80333 Beschichtungssuspension zur Beschichtung von Katalysatorsubstraten
DE102017115138A1 (de) * 2017-07-06 2019-01-10 Umicore Ag & Co. Kg Kontaktlose Nivellierung einer Washcoatsuspension
DE102018100833A1 (de) * 2018-01-16 2019-07-18 Umicore Ag & Co. Kg Verfahren zur Herstellung eines SCR-Katalysators

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0370244A1 (de) * 1988-11-21 1990-05-30 General Electric Company Laminiertes Substrat für das katalytische Bett eines Verbrennungsreaktors
US5077093A (en) * 1989-05-13 1991-12-31 Degussa Aktiengesellschaft Means and device for uniformly loading one-piece carrier members with a defined quantity of dispersions or solutions
SU1726011A1 (ru) * 1990-04-09 1992-04-15 Институт элементоорганических соединений им.А.Н.Несмеянова Способ приготовлени катализатора гидрировани непредельных органических соединений
EP0730901A1 (de) * 1995-03-10 1996-09-11 Toyota Jidosha Kabushiki Kaisha Katalysator zur Behandlung von Kraftwagenabgasen
JPH1133412A (ja) * 1997-07-23 1999-02-09 Unitika Ltd 金属担持触媒の製造方法
US5878752A (en) * 1996-11-25 1999-03-09 Philip Morris Incorporated Method and apparatus for using, cleaning, and maintaining electrical heat sources and lighters useful in smoking systems and other apparatuses
DE19921263A1 (de) * 1999-05-07 2000-11-16 Emitec Emissionstechnologie Brennkraftmaschine mit einem kleinvolumigen Katalysator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE853998C (de) * 1950-10-20 1952-10-30 Hoechst Ag Verfahren und Vorrichtung zur Herstellung von UEberzuegen auf Werkstuecken, Rohren od. dgl.
DE3644377A1 (de) * 1986-12-24 1988-07-07 Hoechst Ag Abgaskatalysator, seine herstellung und seine verwendung zur reinigung der abgase von verbrennungskraftmaschinen
EP0528292B1 (de) * 1991-08-09 1998-01-07 Intermetallics Co., Ltd. Beschichtete Bauteile mit pulvergerüststrukturiertem Film und Verfahren zur ihrer Herstellung
US5210062A (en) * 1991-08-26 1993-05-11 Ford Motor Company Aluminum oxide catalyst supports from alumina sols
US6245104B1 (en) * 1999-02-28 2001-06-12 Inflow Dynamics Inc. Method of fabricating a biocompatible stent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0370244A1 (de) * 1988-11-21 1990-05-30 General Electric Company Laminiertes Substrat für das katalytische Bett eines Verbrennungsreaktors
US5077093A (en) * 1989-05-13 1991-12-31 Degussa Aktiengesellschaft Means and device for uniformly loading one-piece carrier members with a defined quantity of dispersions or solutions
SU1726011A1 (ru) * 1990-04-09 1992-04-15 Институт элементоорганических соединений им.А.Н.Несмеянова Способ приготовлени катализатора гидрировани непредельных органических соединений
EP0730901A1 (de) * 1995-03-10 1996-09-11 Toyota Jidosha Kabushiki Kaisha Katalysator zur Behandlung von Kraftwagenabgasen
US5878752A (en) * 1996-11-25 1999-03-09 Philip Morris Incorporated Method and apparatus for using, cleaning, and maintaining electrical heat sources and lighters useful in smoking systems and other apparatuses
JPH1133412A (ja) * 1997-07-23 1999-02-09 Unitika Ltd 金属担持触媒の製造方法
DE19921263A1 (de) * 1999-05-07 2000-11-16 Emitec Emissionstechnologie Brennkraftmaschine mit einem kleinvolumigen Katalysator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 1993-107658, XP002198627 *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 05 31 May 1999 (1999-05-31) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1433528A1 (de) * 2001-09-28 2004-06-30 Ngk Insulators, Ltd. Wabenkatalysator und verfahren zur herstellung einer wabenzwischenstufe und eines wabenkatalysators
EP1433528A4 (de) * 2001-09-28 2006-01-04 Ngk Insulators Ltd Wabenkatalysator und verfahren zur herstellung einer wabenzwischenstufe und eines wabenkatalysators
WO2007007370A1 (ja) 2005-07-07 2007-01-18 Cataler Corporation, 基材コーティング装置及び方法
EP1900442A1 (de) * 2005-07-07 2008-03-19 Cataler Corporation Vorrichtung und verfahren zum beschichten von basismaterial
EP1900442A4 (de) * 2005-07-07 2010-11-10 Cataler Corp Vorrichtung und verfahren zum beschichten von basismaterial
WO2013079448A3 (de) * 2011-11-30 2014-04-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Diffusionssperrschicht bei einer abgasbehandlungseinheit
KR101615841B1 (ko) * 2011-11-30 2016-04-26 콘티넨탈 에미텍 페어발퉁스 게엠베하 배기 가스 처리 유닛의 확산 장벽층
US9433897B2 (en) 2011-11-30 2016-09-06 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Process for producing a diffusion barrier layer and process for producing an exhaust gas treatment unit
RU2596561C2 (ru) * 2011-11-30 2016-09-10 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Блокирующий диффузию слой в устройстве для очистки отработавшего газа
CN111601659A (zh) * 2018-01-16 2020-08-28 优美科股份公司及两合公司 用于生产scr催化转化器的超声辅助方法
CN111601659B (zh) * 2018-01-16 2023-09-01 优美科股份公司及两合公司 用于生产scr催化转化器的超声辅助方法

Also Published As

Publication number Publication date
DE10114328A1 (de) 2002-10-02

Similar Documents

Publication Publication Date Title
DE60027688T3 (de) Honigwabenstruktur mit gewellter wandung und verfahren zu deren herstellung
EP1517750B1 (de) Verfahren und vorrichtung zum räumlich inhomogenen beschichten eines wabenkörpers
EP1567247A1 (de) Partikelfalle mit beschichteter faserlage
DE102018203504B4 (de) Verschlossene Wabenstruktur
DE69700964T2 (de) Katalytischer Umwandler
DE69310942T2 (de) Katalysator zur Entfernung von NOx der anorganische Fasern enthält
DE102005017378B4 (de) Abgasreinigungsvorrichtung für Fahrzeuge
WO2002076614A1 (de) Verfahren zum auftragen von washcoat auf einen wabenkörper
WO2008113561A1 (de) Katalysator für ein abgasnachbehandlungssystem für verbrennungsmotoren
EP2018221A1 (de) Trägerkörper zur abgasnachbehandlung mit disperser katalysatoranordnung
DE10235766A1 (de) Abgasfilter und Verfahren zum Reinigen eines Abgases
EP2250352B1 (de) Wabenkörper mit flexibilitätszonen
EP1243334A1 (de) Herstellung einer wasserabweisenden Katalysatorschicht auf einem keramischen oder metallischen Träger
DE69132576T2 (de) Betrieb eines katalytischen Konverters
DE19961483B4 (de) Reinigungskatalysator für das Abgas eines Verbrennungsmotors
DE4215481A1 (de) Geformter keramischer Katalysator und Verfahren zu seiner Herstellung
EP2229510B1 (de) Wabenkörper mit strukturiertem blechmaterial
DE4409142C2 (de) Verfahren zum Aufbringen einer Beschichtung auf die Wabenkörper eines Abgaskonverters und Verwendung des Abgaskonverters für die Abgasreinigung von Verbrennungsmaschinen
WO2000057040A1 (de) Katalysatorkörper mit anströmseitig verringerter wanddicke
DE4409625A1 (de) Verfahren zum Herstellen eines katalytischen Konverters
EP1756402A1 (de) Filtereinrichtung für ein abgassystem einer brennkraftmaschine, sowie verfahren zum herstellen einer solchen filtereinrichtung
DE19547598C1 (de) Verfahren zum Aufbringen einer Dispersionsbeschichtung auf wabenförmige Katalysator-Tragkörper
DE19547597C2 (de) Monolithischer Katalysator für die Abgasreinigung
EP1551534B1 (de) Katalysator-trägerkörper mit passivierungsschicht sowie verfahren zu dessen herstellung
DE10237512C1 (de) Metallischer Wabenkörper aus zumindest teilweise gelochten Blechlagen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP