WO2002070877A1 - Antriebseinheit mit einem verbrennungsmotor und einem abgasturbolader - Google Patents

Antriebseinheit mit einem verbrennungsmotor und einem abgasturbolader Download PDF

Info

Publication number
WO2002070877A1
WO2002070877A1 PCT/EP2002/001761 EP0201761W WO02070877A1 WO 2002070877 A1 WO2002070877 A1 WO 2002070877A1 EP 0201761 W EP0201761 W EP 0201761W WO 02070877 A1 WO02070877 A1 WO 02070877A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
hydrodynamic
drive unit
combustion engine
internal combustion
Prior art date
Application number
PCT/EP2002/001761
Other languages
English (en)
French (fr)
Inventor
Jürgen Friedrich
Peter Heilinger
Kai Kamossa
Original Assignee
Voith Turbo Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Turbo Gmbh & Co. Kg filed Critical Voith Turbo Gmbh & Co. Kg
Priority to US10/469,567 priority Critical patent/US6886337B2/en
Priority to JP2002569565A priority patent/JP4022471B2/ja
Priority to KR10-2003-7010905A priority patent/KR20030077032A/ko
Priority to DE10290840T priority patent/DE10290840B4/de
Publication of WO2002070877A1 publication Critical patent/WO2002070877A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/06Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels
    • B60T1/062Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels acting on transmission parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T10/00Control or regulation for continuous braking making use of fluid or powdered medium, e.g. for use when descending a long slope
    • B60T10/02Control or regulation for continuous braking making use of fluid or powdered medium, e.g. for use when descending a long slope with hydrodynamic brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/005Exhaust driven pumps being combined with an exhaust driven auxiliary apparatus, e.g. a ventilator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • F02B37/105Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump exhaust drive and pump being both connected through gearing to engine-driven shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D57/00Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders
    • F16D57/04Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders with blades causing a directed flow, e.g. Föttinger type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D67/00Combinations of couplings and brakes; Combinations of clutches and brakes
    • F16D67/02Clutch-brake combinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D33/00Rotary fluid couplings or clutches of the hydrokinetic type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a drive unit comprising an internal combustion engine.
  • TurboCompound execution In this unit, a turbine is provided, which is supplied with exhaust gas from the internal combustion engine during traction to drive the turbine.
  • the turbine is in drive connection with the crankshaft via a hydrodynamic coupling. In this way it is possible to utilize the residual energy still present in the exhaust gas.
  • a further exhaust gas line is connected downstream of the turbine.
  • An exhaust flap is provided in this exhaust pipe. The exhaust flap is closed during the transition from traction to braking. As a result, an exhaust gas pressure builds up behind the turbine, which leads to an opening of the exhaust gas flap when a certain value is reached.
  • the invention has for its object to design a drive unit of the type mentioned such that not only the residual energy contained in the exhaust gas is used during traction operation, but also such that the drive unit contributes to braking during braking operation.
  • the hydrodynamic unit with the two paddle wheels is specially designed.
  • the two paddle wheels are designed and arranged in such a way that they can work as rotors.
  • Their structure is basically the same as that of paddle wheels of a hydrodynamic clutch or a retarder.
  • the difference to a hydrodynamic coupling or to a retarder, however, is that one of the two rotors can be locked or locked against rotation.
  • the two rotors are arranged in one housing.
  • the work area is filled with a flowable medium, for example with water or with oil. Any type of locking device can be used to lock one of the two rotors, for example a multi-plate clutch.
  • Such a drive unit works as follows: in traction mode, i.e. when the engine is running under load, both run
  • the hydrodynamic unit thus works as an ordinary hydrodynamic coupling. Accordingly, it has its advantages, namely smooth starting, which is largely free of torque surges. This applies not only when starting off, but also during the entire traction operation. In this way, peak loads are buffered.
  • a parking brake for example a multi-plate clutch.
  • Figure 1 shows a schematic representation of a drive unit according to a first embodiment.
  • Figure 2 shows a schematic representation of a drive unit according to a second embodiment.
  • FIG. 3 shows a drive unit in which the individual components are shown in somewhat more concrete terms.
  • the drive unit shown schematically in Figure 1 according to the first embodiment comprises an exhaust gas turbine 3. This is acted upon by the exhaust gas flow of an engine, not shown here.
  • the exhaust gas turbine 3 is of course not part of an exhaust gas turbocharger.
  • An exhaust gas turbocharger can be connected upstream of the exhaust gas turbine 3 mentioned.
  • a hydrodynamic unit 4 can also be seen. This has a primary impeller 4.1 and a secondary impeller 4.2.
  • the two paddle wheels are designed in the same way as the paddle wheels of a hydrodynamic clutch or a hydrodynamic brake. However, both paddle wheels are basically freely rotatable.
  • a parking brake 4.3 is assigned to the primary wheel 4.1. This allows the primary wheel 4.1 to be determined.
  • the exhaust gas turbine 3 is in mechanical drive connection with the primary impeller, namely via a drive shaft 3.1, a first gear train 5 and a drive shaft 4.1.1.
  • the secondary vane wheel 4.2 is connected in a rotationally fixed manner to a further drive shaft 4.2.1. This works on a second gear train 6, which in turn is in drive connection with a shaft 7.
  • the shaft 7 can work on the crankshaft or act on another energy consumer, for example a fan wheel.
  • exhaust gas is supplied to the exhaust gas turbine 3.
  • the parking brake 4.5 is inoperative, so that the two wheels 4.1, 4.2 can rotate freely.
  • the exhaust gas turbine 3 is acted upon by the exhaust gas flow, so that it generates torque which is fed to the primary wheel 4.1 and sets it in circulation. Due to the hydrodynamic in the working space
  • Unit 4 containing working fluid is transmitted torque to the secondary wheel 4.2, and from there to the crankshaft 7 or to another energy consumer.
  • the drive unit of the second embodiment shown in FIG. 2 is constructed similarly to the drive unit of the first embodiment.
  • the hydrodynamic unit 4 comprises a hydrodynamic brake 4.1, 4.2 (retarder), and a hydrodynamic clutch 4.3, 4.4.
  • the bucket wheel 4.1 of the retarder forms the stator and the bucket wheel 4.2 the rotor.
  • the two wheels 4.3, 4.4 of the clutch are freely rotatable.
  • the wheels 4.2 of the retarder and 4.3 of the clutch are rotatably connected to one another so that they rotate together. They can even be made as a single casting.
  • the drive unit of the second embodiment works as follows: In the traction mode, the working space of the retarder 4.1, 4.2 is empty, while the working space of the clutch 4.3, 4.4 is filled with a working medium - generally an oil.
  • the exhaust gas turbine 3 is acted upon by an exhaust gas flow from the internal combustion engine, not shown here.
  • the exhaust gas turbine 3 drives the first gear train 5 via the shaft 3.1 and the primary wheel 4.4 of the clutch via the shaft 4.1.1.
  • These two wheels are non-rotatably connected and form a so-called back-to-back unit. From there, torque is transmitted further via the shaft 4.2.1 and the second gear train 6 to the crankshaft 7.
  • the working space of the retarder 4.1, 4.2 When braking, the working space of the retarder 4.1, 4.2 is filled. The working space of the hydrodynamic coupling 4.3, 4.4 remains filled. Because of the filling, the retarder 4.1, 4.2 performs its braking function. The exhaust gas turbine 3 now generates a back pressure in the exhaust line, which enters the cylinder chambers and increases the braking effect of the entire unit.
  • Figure 3 shows a drive unit. This comprises an internal combustion engine 1.
  • a main exhaust pipe 1.1 is connected to the internal combustion engine 1.
  • the exhaust gases flowing out of the turbine part 2.1 reach a further exhaust gas turbine 3 through a second exhaust line 1.2.
  • a hydrodynamic unit 4 can be seen. This comprises a primary wheel 4.1 and a secondary wheel 4.2.
  • the primary wheel 4.1 is in drive connection with the further exhaust gas turbine 3, specifically via a first gear train 5, which represents a high gear.
  • the secondary wheel 4.2 is in drive connection with the crankshaft 7 via a second gear train 6.
  • the two paddle wheels 4.1, 4.2 are rotatably mounted and are therefore basically designed as rotors. They have the usual blades of a hydrodynamic clutch or a hydrodynamic brake (retarder). The free edges of the blades face each other.
  • Paddle wheel 4.1 acts as the primary part, and paddle wheel 4.2 as the secondary part.
  • Paddle wheel 4.1 can be locked by a mechanical locking device, for example by a multi-plate clutch.
  • the drive unit naturally includes other components such as a cooling device and a fan, but these are only indicated schematically here.
  • the intake air is indicated by a white arrow, while the exhaust gases are indicated by black arrows.
  • the exhaust gases guided in the main exhaust line 1.1 act on the turbine part 2.1 of the exhaust gas turbocharger 2.
  • the compressor part 2.2 of the exhaust gas turbocharger 2 compresses in a known manner
  • the exhaust gases then enter the second exhaust line 1.2 and act on the turbine wheel of the further exhaust gas turbine 3.
  • the further exhaust gas turbine 3 drives the primary wheel 4.1 of the hydrodynamic unit via the first gear train 5
  • the decisive measure is to fix the primary wheel in the manner mentioned above, thus by means of a mechanical brake of some kind.
  • the primary wheel 4.1 now acts as a stator impeller.
  • the hydrodynamic unit thus acts as a retarder, so that no drive energy gets into the drive train, but on the contrary, energy is drawn from the drive train, so that a contribution is made to the braking work.
  • the paddle wheels of the hydrodynamic unit - possibly made up of a retarder and clutch - can be arranged inclined to the axis of rotation of the hydrodynamic unit, and thus not parallel to it.

Abstract

Die Erfindung betrifft eine Antriebseinheit, umfassend einen Verbrennungsmotor mit einer Kurbelwelle; eine Abgasleitung; eine von der Abgasleitung beaufschlagbare, dem Verbrennungsmotor nachgeschaltete Abgasturbien zum Übertragen eines positiven rehmomentes zur Kurbelwelle im Traktionsbetrieb; eine der Abgasturbine nachgeschaltete hydrodynamische Einheit mit zwei Schaufelrädern, die einen torusförmigen Arbeitsraum miteinander bilden; die hydrodynamische Einheit steht mit dem Antriebsstrang in Triebverbindung; zum Fixieren des Primärschaufelrades der Abgasturbine ist eine Feststellbremse vorgesehen.

Description

ANTRIEBSEINHEIT MIT EINEM VERBRENNUNGSMOTOR UND EINEM ABGASTURBOLADER
Die Erfindung betrifft eine Antriebseinheit, umfassend einen Verbrennungsmotor.
DE 195 16 971 beschreibt eine Antriebseinheit mit einem Verbrennungsmotor in
Turbocompoundausführung. Bei dieser Einheit ist eine Turbine vorgesehen, welcher beim Traktionsbetrieb Abgas aus dem Verbrennungsmotor zugeleitet wird, um die Turbine anzutreiben. Die Turbine steht über eine hydrodynamische Kupplung mit der Kurbelwelle in Triebverbindung. Auf diese Weise ist es möglich, die im Abgas noch vorhandene Restenergie auszunutzen.
Bei der genannten Antriebseinheit ist der Turbine eine weitere Abgasleitung nachgeschaltet. In dieser Abgasleitung ist eine Abgasklappe vorgesehen. Beim Übergang vom Traktionsbetrieb zum Bremsbetrieb wird die Abgasklappe geschlossen. Hierdurch baut sich hinter der Turbine ein Abgasdruck auf, der bei Erreichen eines gewissen Wertes zu einem Öffnen der Abgasklappe führt.
DE 37 28 681 C2 und DE 39 04 399 A1 beschreiben ebenfalls Antriebseinheiten mit Einrichtungen zum Rückgewinnen von Abgasenergie.
Antriebseinheiten dieser Art haben zwar den Vorteil, daß die im Abgas enthaltene Restwärme - gegebenenfalls nach Durchlaufen eines Abgasturboladers - ausgenutzt wird. Jedoch tragen sie beim Bremsbetrieb zum Bremsen nicht unmittelbar bei. Die genannte Abgasklappe übt die übliche, an sich bekannte Funktion als Ab- gas-Bremsdrosselung aus.
Der Erfindung liegt die Aufgabe zugrunde, eine Antriebseinheit der genannten Art derart zu gestalten, daß nicht nur die im Abgas enthaltene Restenergie beim Traktionsbetrieb ausgenutzt wird, sondern auch derart, daß die Antriebseinheit beim Bremsbetrieb zum Bremsen beiträgt.
Diese Aufgabe wird durch die Merkmale von Anspruch 1 gelöst. Demgemäß wird die hydrodynamische Einheit mit den beiden Schaufelrädern in besondererweise gestaltet. Die beiden Schaufelräder sind nämlich derart gestaltet und angeordnet, daß sie als Rotoren arbeiten können. Dabei ist ihr Aufbau grundsätzlich der gleiche wie derjenige von Schaufelrädern einer hydrodynamischen Kupplung oder eines Retarders. Der Unterschied zu einer hydrodynamischen Kupplung beziehungsweise zu einem Retarder besteht jedoch darin, daß der eine der beiden Rotoren gegen Verdrehen feststellbar oder fixjerbar ist. Die beiden Rotoren sind in einem Gehäuse angeordnet. Der Arbeitsraum ist mit einem fließfähigen Medium gefüllt, beispielsweise mit Wasser oder mit Öl. Zum Feststellen des einen der beiden Rotoren kann jegliche Art von Feststelleinrichtung dienen, beispielsweise eine Lamellenkupplung.
Eine solche Antriebseinheit arbeitet wie folgt: Im Traktionsbetrieb, das heißt wenn der Motor unter Last umläuft, laufen beide
Rotoren der hydrodynamischen Einheit um, da keiner der Rotoren drehfest gemacht ist. Der eine Rotor wird von der Turbine angetrieben, und er treibt seinerseits den anderen Rotor an, der somit Drehmoment an den Antriebsstrang liefert. Die hydrodynamische Einheit arbeitet somit als ganz gewöhnliche hydrodynami- sehe Kupplung. Sie hat demgemäß deren Vorzüge, nämlich sanftes Anfahren, das weitgehend frei von Drehmomentstößen ist. Dies gilt nicht nur beim Anfahren, sondern auch während des gesamten Traktionsbetriebes. Belastungsspitzen werden auf diese Weise abgepuffert.
Geht das Fahrzeug vom Traktionsbetrieb zum Bremsbetrieb über, so wird einer der beiden Rotoren stillgesetzt, so daß kein Drehmoment mehr auf den Antriebsstrang übertragen wird. Stattdessen wird dem Antriebsstrang Drehmoment entzogen. Dabei wird jener Rotor stillgesetzt, der sich auf der der Turbine zugewandten Seite der hydrodynamischen Einheit befindet (Primärrad). Alternativ zum Stillsetzen (Abbremsen) des einen Rotors sind auch andere Maßnahmen denkbar, die in das Arbeiten der hydrodynamischen Einheit eingreifen und zu einer Unterbrechung des Drehmomentenflusses führen.
Am besten wird das Primärrad mittels einer Feststellbremse abgebremst, beispielsweise einer Lamellenkupplung.
Die Erfindung ist anhand der Zeichnung näher erläutert. Darin ist im einzelnen folgendes dargestellt:
Figur 1 zeigt in schematischer Darstellung eine Antriebseinheit gemäß einer ersten Ausführungsform.
Figur 2 zeigt in schematischer Darstellung eine Antriebseinheit gemäß einer zweiten Ausführungsform.
Figur 3 zeigt eine Antriebseinheit, bei der die einzelnen Bauteile etwas konkreter dargestellt sind.
Die in Figur 1 schematisch dargestellte Antriebseinheit gemäß der ersten Ausführungsform umfaßt eine Abgasturbine 3. Diese wird vom Abgasstrom eines hier nicht gezeigten Motors beaufschlagt. Die Abgasturbine 3 ist wohlgemerkt nicht Bestandteil eines Abgasturboladers. Ein Abgasturbolader kann der genannten Abgasturbine 3 vorgeschaltet sein.
Man erkennt ferner eine hydrodynamische Einheit 4. Diese weist ein Primärschaufelrad 4.1 und ein Sekundärschaufelrad 4.2 auf. Die beiden Schaufelräder sind so gestaltet, wie die Schaufelräder einer hydrodynamischen Kupplung oder einer hydrodynamischen Bremse. Jedoch sind beide Schaufelräder grundsätzlich frei drehbar. Dem Primärrad 4.1 ist eine Feststellbremse 4.3 zugeordnet. Hiermit läßt sich das Primärrad 4.1 feststellen. Wie man sieht, steht die Abgasturbine 3 mit dem Primärschaufelrad in mechanischer Triebverbindung, und zwar über eine Antriebswelle 3.1 , einen ersten Zahnräderzug 5 sowie eine Antriebswelle 4.1.1.
Das Sekundärschaufelrad 4.2 ist mit einer weiteren Antriebswelle 4.2.1 drehfest verbunden. Diese arbeitet auf einen zweiten Zahnräderzug 6, der wiederum mit einer Welle 7 in Triebverbindung steht. Die Welle 7 kann auf die Kurbelwelle arbeiten oder einen anderen Energieverbraucher beaufschlagen, beispielsweise ein Lüfterrad.
Bei normaler Fahrt, wenn der Motor unter Last umläuft, wird Abgas der Abgasturbine 3 zugeführt. Die Feststellbremse 4.5 ist außer Funktion, so daß die beiden Räder 4.1 , 4.2 frei umlaufen können. Die Abgasturbine 3 wird vom Abgasstrom beaufschlagt, so daß sie Drehmoment erzeugt, das dem Primärrad 4.1 zugeführt wird und dieses in Umlauf setzt. Durch die im Arbeitsraum der hydrodynamischen
Einheit 4 enthaltene Arbeitsflüssigkeit wird Drehmoment auf das Sekundärrad 4.2 übertragen, und von dort auf die Kurbelwelle 7 beziehungsweise zu einem anderen Energieverbraucher.
Beim Bremsbetrieb fällt ohnehin nur ein geringer Abgasstrom an. Dieser wird umgeleitet, so daß er nicht die Turbine 3 beaufschlagt. Die Feststellbremse 4.5 wird betätigt, so daß Primärrad 4.1 festgesetzt wird. Damit wird die hydrodynamische Einheit 4 zum Retarder. Steht die Welle 7 in Triebverbindung mit der Kurbelwelle, so trägt die dargestellte Vorrichtung zum Bremsen bei.
Die in Figur 2 dargestellte Antriebseinheit der zweiten Ausführungsform ist ähnlich aufgebaut wie die Antriebseinheit erster Ausführungsform. Jedoch umfaßt die hydrodynamische Einheit 4 eine hydrodynamische Bremse 4.1 , 4.2 (Retarder), und eine hydrodynamische Kupplung 4.3, 4.4.
Schaufelrad 4.1 des Retarders bildet dabei den Stator, und Schaufelrad 4.2 den Rotor. Die beiden Räder 4.3, 4.4 der Kupplung sind frei drehbar. Die Räder 4.2 des Retarders und 4.3 der Kupplung sind drehfest miteinander verbunden, so daß sie gemeinsam umlaufen. Sie können sogar als ein einziges Gußteil ausgeführt sein.
Im übrigen sind bei der Antriebseinheit zweiter Ausführungsform dieselben oder gleichartige Elemente vorhanden wie bei der Antriebseinheit erster Ausführungsform, ausgenommen die Feststellbremse 4.5 der ersten Ausführungsform, die bei der zweiten Ausführungsform fehlt.
Die Antriebseinheit zweiter Ausführungsform arbeitet wie folgt: Beim Traktionsbetrieb ist der Arbeitsraum des Retarders 4.1 , 4.2 leer, während der Arbeitsraum der Kupplung 4.3, 4.4 mit einem Arbeitsmedium - im allgemeinen einem Öl - gefüllt ist.
Die Abgasturbine 3 wird mit einem Abgasstrom aus dem hier nicht dargestellten Verbrennungsmotor beaufschlagt. Die Abgasturbine 3 treibt über die Welle 3.1 den ersten Zahnräderzug 5 sowie die Welle 4.1.1 das Primärrad 4.4 der Kupplung an. Dieses überträgt Drehmoment auf die Tandemeinheit, gebildet aus dem Se- kundärrad 4.3 der Kupplung und dem Rad 4.2 des Retarders. Diese beiden Räder sind drehfest miteinander verbunden und bilden eine sogenannte Rücken-an- Rücken-Einheit. Von dort aus wird Drehmoment weiter übertragen über die Welle 4.2.1 und den zweiten Zahnräderzug 6 auf die Kurbelwelle 7.
Beim Bremsbetrieb wird der Arbeitsraum des Retarders 4.1 , 4.2 gefüllt. Der Arbeitsraum der hydrodynamischen Kupplung 4.3, 4.4 bleibt weiterhin gefüllt. Aufgrund der Füllung übt der Retarder 4.1 , 4.2 seine Bremsfunktion aus. Die Abgasturbine 3 erzeugt nunmehr in der Abgasleitung einen Gegendruck, der in die Zylinderräume gelangt und die Bremswirkung der gesamten Einheit verstärkt.
Figur 3 zeigt eine Antriebseinheit. Diese umfaßt einen Verbrennungsmotor 1. An den Verbrennungsmotor 1 ist eine Haupt-Abgasleitung 1.1 angeschlossen. Diese führt Abgas einem Abgasturbolader 2 zu, und zwar dessen Turbinenteil 2.1. Die vom Turbinenteil 2.1 ausströmenden Abgase gelangen durch eine zweite Abgasleitung 1.2 zu einer weiteren Abgasturbine 3.
Man erkennt eine hydrodynamische Einheit 4. Diese umfaßt ein Primärrad 4.1 und ein Sekundärrad 4.2. Das Primärrad 4.1 steht mit der weiteren Abgasturbine 3 in Triebverbindung, und zwar über einen ersten Zahnräderzug 5, das einen Hochgang darstellt. Das Sekundärrad 4.2 steht über einen zweiten Zahnräderzug 6 mit der Kurbelwelle 7 in Triebverbindung.
Die beiden Schaufelräder 4.1 , 4.2 sind drehbar gelagert und somit grundsätzlich als Rotoren konzipiert. Sie weisen die üblichen Schaufeln einer hydrodynamischen Kupplung oder einer hydrodynamischen Bremse (Retarder) auf. Die Schaufeln sind mit ihren freien Kanten einander zugewandt. Schaufelrad 4.1 wirkt als Primär- teil, und Schaufelrad 4.2 als Sekundärteil. Schaufelrad 4.1 ist durch eine mechanische Feststelleinrichtung arretierbar, beispielsweise durch eine Lamellenkupplung.
Die Antriebseinheit umfaßt natürlich weitere Bauteile wie beispielsweise eine Kühleinrichtung und einen Lüfter, die aber hier nur schematisch angedeutet sind. Die Ansaugluft ist mit einem weißen Pfeil angedeutet, die Abgase hingegen mit schwarzen Pfeilen.
Läuft der Motor 1 bei Träktionsbetrieb unter Last um, so beaufschlagen die in Haupt-Abgasleitung 1.1 geführten Abgase den Turbinenteil 2.1 des Abgasturbola- ders 2. Der Kompressorteil 2.2 des Abgasturboladers 2 verdichtet in bekannter
Weise die angesaugte Verbrennungsluft.
Die Abgase treten sodann in die zweite Abgasleitung 1.2 ein und beaufschlagen das Turbinenrad der weiteren Abgasturbine 3. Die weitere Abgasturbine 3 treibt über den ersten Zahnräderzug 5 das Primärrad 4.1 der hydrodynamischen Einheit
4 an. Sodann wird Drehmoment auf das Sekundärrad 4.2 übertragen, und zwar mittels der im Arbeitsraum der hydrodynamischen Einheit enthaltenen Arbeitsflüs- sigkeit. Das Sekundärrad 4.2 gibt dieses Drehmoment weiter an die Kurbelwelle 7 beziehungsweise an eine andere Bedarfsstelle innerhalb der Antriebseinheit. Die Abgase verlassen schließlich durch eine dritte Abgasleitung 1.3 die Antriebseinheit.
Beim Bremsbetrieb läuft der Motor im Leerlauf, bei dem Abgase nur in geringer Menge anfallen. Die weitere Abgasturbine 3 wird somit nur in geringem Maße beaufschlagt. Dabei ist es wünschenswert, daß sie überhaupt nicht beaufschlagt wird und somit auch keine Antriebsenergie in den Antriebsstrang einleitet. Deswegen ist es zweckmäßig, den beim Bremsen anfallenden geringen Abgasstrom auch noch umzuleiten, so daß er die weitere Abgasturbine 3 nicht beaufschlagen kann.
Die entscheidende Maßnahme besteht jedoch darin, das Primärrad auf die oben erwähnte Weise festzusetzen, somit durch eine irgendwie geartete mechanische Bremse. Nunmehr wirkt das Primärrad 4.1 als Stator-Schaufelrad. Damit wirkt die hydrodynamische Einheit als Retarder, so daß keine Antriebsenergie in den Antriebsstrang gelangt, sondern im Gegenteil Energie dem Antriebsstrang entnommen wird, so daß ein Beitrag zur Bremsarbeit geleistet wird.
Die Schaufelräder der hydrodynamischen Einheit - gegebenenfalls aus Retarder und Kupplung aufgebaut - können gegen die Drehachse der hydrodynamischen Einheit geneigt angeordnet sein, somit nicht parallel zu dieser.
Es versteht sich, daß statt der genannten Zahnräder auch andere Kraftübertra- gungseinheiten wie Kettentriebe verwendet werden können. Bezugszeichenliste
1 Motor
1.1 Haupt-Abgasleitung 1.2 zweite Abgasleitung
1.3 dritte Abgasleitung
2 Abgasturbolader
2.1 Turbinenteil des Abgasturboladers
2.2 Kompressorteil des Abgasturboladers 3 Abgasturbine
4 hydrodynamische Einheit
5 erster Zahnräderzug
6 zweiter Zahnräderzug
7 Kurbelwelle 10 Feststellbremse

Claims

Patentansprüche
1. Antriebseinheit, umfassend die folgenden Bauteile
1.1 einen Verbrennungsmotor (1) mit einer Kurbelwelle (7); 1.2 eine Abgasleitung (1.1);
1.3 eine von der Abgasleitung (1.1) beaufschlagbare, dem Verbrennungsmotor (1) nachgeschaltete Abgasturbine (3) zum Übertragen eines positiven Drehmomentes zur Kurbelwelle (7) im Traktionsbetrieb; gekennzeichnet durch die folgenden Merkmale: 1.4 eine der Abgasturbine (3) nachgeschaltete hydrodynamische Einheit (4) mit frei drehbaren Schaufelrädern (4.1, 4.2), die einen torusformigen Arbeitsraum miteinander bilden; 1.5 die hydrodynamische Einheit (4) steht mit dem Antriebsstrang in Triebverbindung; 1.6 zum Fixieren eines (4.1) der Schaufelräder (4.1 , 4.2) der hydrodynamischen Einheit ist eine Feststellbremse (4.5) vorgesehen.
2. Antriebseinheit nach Anspruch 1 , dadurch gekennzeichnet, daß der Feststellbremse (4.5) eine Lamellenkupplung zugeordnet ist.
3. Antriebseinheit, umfassend die folgenden Bauteile:
3.1 einen Verbrennungsmotor (1 ) mit einer Kurbelwelle (7);
3.2 eine Abgasleitung (1.1);
3.3 eine von der Abgasleitung (1.1) beaufschlagbare, dem Verbrennungsmotor (1 ) nachgeschaltete Abgasturbine (3) zum Übertragen eines positiven
Drehmomentes zur Kurbelwelle (7) im Traktionsbetrieb; gekennzeichnet durch die folgenden Merkmale:
3.4 der Abgasturbine (3) ist eine hydrodynamische Einheit (4) mit einer hydrodynamischen Kupplung (4.3, 4.4) sowie mit einer hydrodynamischen Brem- se (4.1 , 4.2) nachgeschaltet;
3.5 die hydrodynamische Kupplung (4.3, 4.4) und die hydrodynamische Bremse (4.1 , 4.2) sind koaxial zueinander angeordnet;
3.6 das Sekundärrad (4.3) der hydrodynamischen Kupplung sowie der Rotor (4.2) der hydrodynamischen Bremse sind in einer Rücken-an-Rücken- Anordnung drehfest miteinander verbunden;
3.7 der Arbeitsraum der hydrodynamischen Bremse (4.1 , 4.2) ist füll- und ent- leerbar.
4. Antriebseinheit nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß eine Bypassleitung zum Umleiten des in der Abgasleitung (1.1) geführten Abgasstromes um die Abgasturbine (3) herum vorgesehen ist.
5. Antriebseinheit nach einem der Ansprüche 1 bis 4, umfassend die folgenden Bauteile:
5.1 es ist ein Sensor vorgesehen, der den Betriebszustand des Motors (1 ) er- faßt und ein entsprechendes Signal an eine zentrale Prozeßeinheit liefert;
5.2 eine Stelleinrichtung zum Fixieren des Primärrades (4.1).
PCT/EP2002/001761 2001-03-01 2002-02-20 Antriebseinheit mit einem verbrennungsmotor und einem abgasturbolader WO2002070877A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/469,567 US6886337B2 (en) 2001-03-01 2002-02-20 Drive unit with an internal combustion engine and an exhaust gas turbocharger
JP2002569565A JP4022471B2 (ja) 2001-03-01 2002-02-20 内燃機関及び排気タービン過給機を備える駆動装置
KR10-2003-7010905A KR20030077032A (ko) 2001-03-01 2002-02-20 내연기관 및 배기가스 과급기를 구비한 구동 유닛
DE10290840T DE10290840B4 (de) 2001-03-01 2002-02-20 Antriebseinheit mit einem Verbrennungsmotor und einem Abgasturbolader

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10110011 2001-03-01
DE10110011.6 2001-03-01

Publications (1)

Publication Number Publication Date
WO2002070877A1 true WO2002070877A1 (de) 2002-09-12

Family

ID=7676025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/001761 WO2002070877A1 (de) 2001-03-01 2002-02-20 Antriebseinheit mit einem verbrennungsmotor und einem abgasturbolader

Country Status (5)

Country Link
US (1) US6886337B2 (de)
JP (1) JP4022471B2 (de)
KR (1) KR20030077032A (de)
DE (1) DE10290840B4 (de)
WO (1) WO2002070877A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040578A1 (de) * 2003-10-22 2005-05-06 Voith Turbo Gmbh & Co. Kg Verfahren zur optimierung des nutzungsgrades in einer antriebseinheit und antriebseinheit
WO2005064137A1 (de) * 2003-12-20 2005-07-14 Voith Turbo Gmbh & Co. Kg Antriebsstrang mit abgasnutzung und steuerungsverfahren
DE102006013003B3 (de) * 2006-03-22 2007-09-20 Voith Turbo Gmbh & Co. Kg Hydrodynamische Baugruppe mit einem Retarder und einer hydrodynamischen Kupplung
JP2007534898A (ja) * 2003-12-22 2007-11-29 フォイト・ターボ・ゲーエムベーハー・ウント・コンパニー・カーゲー ハイドロダイナミッククラッチ
DE102007024699A1 (de) * 2007-05-25 2008-10-30 Voith Patent Gmbh Verfahren zur Steuerung einer hydrodynamischen Maschine mit wenigstens zwei Arbeitsräumen
EP2055912A2 (de) * 2007-10-30 2009-05-06 Voith Patent GmbH Antriebsstrang, insbesondere Fahrzeugantriebsstrang
WO2011160833A1 (en) * 2010-06-22 2011-12-29 Volvo Lastvagnar Ab A turbo compound transmission and a method for controlling a turbo compound transmission
CN103306804A (zh) * 2013-05-31 2013-09-18 长城汽车股份有限公司 一种汽车发动机涡轮增压器
CN105705743A (zh) * 2013-11-06 2016-06-22 三井造船株式会社 内燃机的增压器剩余动力回收装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002215B3 (de) * 2004-01-15 2005-09-08 Voith Turbo Gmbh & Co. Kg Antriebskraftübertragungsvorrichtung mit hydrodynamischer Gegenlaufkupplung
DE102004029656A1 (de) * 2004-06-18 2006-01-19 Voith Turbo Gmbh & Co. Kg Hydrodynamische Kupplung mit Drehzahlschutz und Turbocompound-System
US7269992B2 (en) * 2005-06-15 2007-09-18 Honeywell International Inc. Magnet orientation and calibration for small package turbocharger speed sensor
US7378721B2 (en) * 2005-12-05 2008-05-27 Honeywell International Inc. Chip on lead frame for small package speed sensor
US7375406B2 (en) * 2005-12-20 2008-05-20 Honeywell International Inc. Thermoplastic overmolding for small package turbocharger speed sensor
CA2569441C (en) * 2006-11-30 2011-02-08 Supreme International Limited Fluid drive system
DE102007006420A1 (de) * 2007-02-05 2008-08-07 Voith Patent Gmbh Kraftfahrzeugantriebsstrang eines Kraftfahrzeugs mit einem Druckluftsystem
DE102007022042A1 (de) * 2007-05-08 2008-11-13 Voith Patent Gmbh Antriebsstrang, insbesondere für Kraftfahrzeuge
US8561403B2 (en) * 2008-08-05 2013-10-22 Vandyne Super Turbo, Inc. Super-turbocharger having a high speed traction drive and a continuously variable transmission
BRPI0823134A2 (pt) * 2008-10-30 2015-06-16 Volvo Lastvagnar Ab Um dispositivo e um método para ajustamento automaticamente de capacidade de transmissão de torque de uma transmissão de turbo composto
DE102008061711B3 (de) 2008-12-12 2010-07-29 Voith Patent Gmbh Verfahren zur Steuerung der Leistungsübertragung in einem Antriebsstrang und Antriebsstrang
DE102011012861A1 (de) * 2011-03-02 2012-09-06 Voith Patent Gmbh Turbo-Compound-System, insbesondere eines Kraftfahrzeugs
US9932884B2 (en) * 2011-04-21 2018-04-03 Volvo Lastvagnar Ab Power system with turbine bypass and method of operating a power system
DE102013225954B3 (de) * 2013-12-13 2015-05-13 Voith Patent Gmbh Kraftfahrzeugantriebsstrang mit einer im Abgasstrom positionierten Nutzturbine
CN108180070B (zh) * 2017-11-09 2020-11-17 江苏索特动力工程有限公司 可变截面涡轮增压器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728681A1 (de) * 1986-08-29 1988-03-10 Isuzu Motors Ltd Turbo-verbundkraftmaschine
EP0301547A2 (de) * 1987-07-30 1989-02-01 Isuzu Motors Limited Turbo-Verbundmaschine
DE3904399A1 (de) 1989-02-14 1990-08-16 Renk Tacke Gmbh Abgasenergie-rueckgewinnungseinrichtung
US5119633A (en) * 1990-09-25 1992-06-09 Cummins Engine Company, Inc. Power turbine bypass for improved compression braking
DE19516971A1 (de) 1994-05-13 1995-11-16 Scania Cv Ab Verbrennungsmotor in Turbocompoundausführung mit Abgasbremse

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452043A (en) * 1980-07-22 1984-06-05 South Western Industrial Research Limited Differential compound engine
DE8433594U1 (de) * 1984-11-16 1985-10-24 Voith-Turbo Gmbh & Co Kg, 7180 Crailsheim Kraftübertragungsaggregat zum Antrieb einer drehzahlvariablen Arbeitsmaschine
DE8519568U1 (de) * 1985-07-05 1985-08-14 Westfalia Separator Ag, 4740 Oelde Hydrodynamische Kupplung
JPS63162936A (ja) * 1986-12-26 1988-07-06 Isuzu Motors Ltd タ−ボコンパウンドエンジン
US4882906A (en) * 1987-05-22 1989-11-28 Isuzu Motors Limited Engine braking system
JPH0639901B2 (ja) * 1987-10-28 1994-05-25 いすゞ自動車株式会社 ターボコンパウンドエンジン
DE4429855C1 (de) * 1994-08-23 1995-08-17 Daimler Benz Ag Aufgeladene Brennkraftmaschine mit mechanischer Hochtriebsmöglichkeit eines Abgasturboladers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728681A1 (de) * 1986-08-29 1988-03-10 Isuzu Motors Ltd Turbo-verbundkraftmaschine
DE3728681C2 (de) 1986-08-29 1993-07-15 Isuzu Motors Ltd., Tokio/Tokyo, Jp
EP0301547A2 (de) * 1987-07-30 1989-02-01 Isuzu Motors Limited Turbo-Verbundmaschine
DE3904399A1 (de) 1989-02-14 1990-08-16 Renk Tacke Gmbh Abgasenergie-rueckgewinnungseinrichtung
US5119633A (en) * 1990-09-25 1992-06-09 Cummins Engine Company, Inc. Power turbine bypass for improved compression braking
DE19516971A1 (de) 1994-05-13 1995-11-16 Scania Cv Ab Verbrennungsmotor in Turbocompoundausführung mit Abgasbremse

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040578A1 (de) * 2003-10-22 2005-05-06 Voith Turbo Gmbh & Co. Kg Verfahren zur optimierung des nutzungsgrades in einer antriebseinheit und antriebseinheit
CN100429386C (zh) * 2003-10-22 2008-10-29 沃伊特涡轮两合公司 在驱动单元中使利用率最优化的方法和驱动单元
US7509806B2 (en) 2003-10-22 2009-03-31 Voith Turbo Gmbh & Co. Kg Method for optimizing the utilization ratio in a drive unit and drive unit
WO2005064137A1 (de) * 2003-12-20 2005-07-14 Voith Turbo Gmbh & Co. Kg Antriebsstrang mit abgasnutzung und steuerungsverfahren
JP2007534898A (ja) * 2003-12-22 2007-11-29 フォイト・ターボ・ゲーエムベーハー・ウント・コンパニー・カーゲー ハイドロダイナミッククラッチ
DE102006013003B3 (de) * 2006-03-22 2007-09-20 Voith Turbo Gmbh & Co. Kg Hydrodynamische Baugruppe mit einem Retarder und einer hydrodynamischen Kupplung
WO2007107314A1 (de) * 2006-03-22 2007-09-27 Voith Turbo Gmbh & Co. Kg Hydrodynamische baugruppe mit einem retarder und einer hydrodynamischen kupplung
DE102007024699A1 (de) * 2007-05-25 2008-10-30 Voith Patent Gmbh Verfahren zur Steuerung einer hydrodynamischen Maschine mit wenigstens zwei Arbeitsräumen
EP2055912A2 (de) * 2007-10-30 2009-05-06 Voith Patent GmbH Antriebsstrang, insbesondere Fahrzeugantriebsstrang
EP2055912A3 (de) * 2007-10-30 2014-08-06 Voith Patent GmbH Antriebsstrang, insbesondere Fahrzeugantriebsstrang
WO2011160833A1 (en) * 2010-06-22 2011-12-29 Volvo Lastvagnar Ab A turbo compound transmission and a method for controlling a turbo compound transmission
CN102947565A (zh) * 2010-06-22 2013-02-27 沃尔沃拉斯特瓦格纳公司 涡轮复合式变速器和用于控制该涡轮复合式变速器的方法
CN102947565B (zh) * 2010-06-22 2015-04-15 沃尔沃拉斯特瓦格纳公司 涡轮复合式变速器和用于控制该涡轮复合式变速器的方法
US9127589B2 (en) 2010-06-22 2015-09-08 Volvo Lastvagnar Ab Turbo compound transmission and a method for controlling a turbo compound transmission
CN103306804A (zh) * 2013-05-31 2013-09-18 长城汽车股份有限公司 一种汽车发动机涡轮增压器
CN105705743A (zh) * 2013-11-06 2016-06-22 三井造船株式会社 内燃机的增压器剩余动力回收装置

Also Published As

Publication number Publication date
US20040068986A1 (en) 2004-04-15
KR20030077032A (ko) 2003-09-29
JP2004522896A (ja) 2004-07-29
US6886337B2 (en) 2005-05-03
JP4022471B2 (ja) 2007-12-19
DE10290840D2 (de) 2004-04-15
DE10290840B4 (de) 2007-07-26

Similar Documents

Publication Publication Date Title
WO2002070877A1 (de) Antriebseinheit mit einem verbrennungsmotor und einem abgasturbolader
DE3728681C2 (de)
EP1704309B1 (de) Turbo-compound system
EP2142776B1 (de) Antriebsstrang, insbesondere für kraftfahrzeuge
WO2009144026A1 (de) Antriebsstrang und verfahren zum versorgen eines druckluftsystems
DE102010060943A1 (de) System zum Kompensieren eines Turbolochs
WO2011012441A1 (de) Antriebseinrichtung mit einem verbrennungsmotor und einer eine verlustwärme nutzenden expansionsmaschine
DE102011120614A1 (de) Antriebsstrang mit einem hydrodynamischen Retarder und Steuerungsverfahren hierfür
EP2379384A1 (de) Fahrzeugkühlkreislauf mit einem retarder oder einer hydrodynamischen kupplung
WO2007147465A1 (de) Turbocompound
WO2006079386A1 (de) Turbo-compound-system
DE102007052118A1 (de) Verfahren zur Steuerung der Leistungsübertragung in einem Antriebsstrang mit einem Turbocompoundsystem und Antriebsstrang
EP1685316B1 (de) Verfahren zur optimierung des nutzungsgrades in einer antriebseinheit und antriebseinheit
WO2015086547A1 (de) Kraftfahrzeugantriebsstrang
EP1694949A1 (de) Antriebsstrang mit abgasnutzung und steuerungsverfahren
DE102018110997A1 (de) Antriebsstrang eines Hybridfahrzeugs und Verfahren zur Steuerung eines Antriebs eines Hybridfahrzeugs
DE1933792C3 (de) Gasturbinenwerk, insbesondere für Kraftfahrzeuge
DE10319748A1 (de) Kraftfahrzeugantriebsstrang mit einer Abgasnutzturbine und einer hydrodynamischen Kupplung
DE102006004877A1 (de) Turboverbundsystem
WO2007107314A1 (de) Hydrodynamische baugruppe mit einem retarder und einer hydrodynamischen kupplung
DE1807070C3 (de) Hubkolbenbrennkraftmaschine mit einem Drosselorgan in der Abgasleitung
DE102009029735A1 (de) Brennkraftmaschine mit Abgasturbolader
DE1034925B (de) Kolbenbrennkraftmaschinenanlage und Verfahren zum Betrieb derselben
DE102018006871A1 (de) Antriebseinrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
DE1119591B (de) Fahrzeugbrennkraftmaschine mit Motorbremsung durch eine Bremsklappe in der Auspuffleitung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002569565

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037010905

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037010905

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10469567

Country of ref document: US

REF Corresponds to

Ref document number: 10290840

Country of ref document: DE

Date of ref document: 20040415

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10290840

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607