WO2002070806A1 - Procede et dispositif de fabrication d'une plaque composite a renfort fibreux multiaxial - Google Patents

Procede et dispositif de fabrication d'une plaque composite a renfort fibreux multiaxial Download PDF

Info

Publication number
WO2002070806A1
WO2002070806A1 PCT/FR2002/000636 FR0200636W WO02070806A1 WO 2002070806 A1 WO2002070806 A1 WO 2002070806A1 FR 0200636 W FR0200636 W FR 0200636W WO 02070806 A1 WO02070806 A1 WO 02070806A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
filaments
organic material
threads
unidirectional
Prior art date
Application number
PCT/FR2002/000636
Other languages
English (en)
Inventor
Dominique Loubinoux
Original Assignee
Saint-Gobain Vetrotex France S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Vetrotex France S.A. filed Critical Saint-Gobain Vetrotex France S.A.
Priority to JP2002569505A priority Critical patent/JP2004530053A/ja
Priority to CA002450672A priority patent/CA2450672A1/fr
Priority to DE60230597T priority patent/DE60230597D1/de
Priority to PL02363882A priority patent/PL363882A1/xx
Priority to MXPA03007803A priority patent/MXPA03007803A/es
Priority to EP02706881A priority patent/EP1373621B1/fr
Priority to BR0207763-9A priority patent/BR0207763A/pt
Priority to AU2002241047A priority patent/AU2002241047B2/en
Priority to SK1084-2003A priority patent/SK10842003A3/sk
Priority to US10/468,399 priority patent/US7226518B2/en
Priority to KR10-2003-7011414A priority patent/KR20040025666A/ko
Publication of WO2002070806A1 publication Critical patent/WO2002070806A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • D04H3/004Glass yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/105Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by needling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]

Definitions

  • the invention relates to the production of composite plates with multiaxial fibrous reinforcement, and more particularly of composite plates formed by the association of unidirectional layers of reinforcing fibers, such as glass fibers, arranged in different directions, and of a organic material.
  • One field of application of the invention is the production of composite plates with multiaxial fibrous reinforcement intended for the manufacture of molded parts made of composite materials, in particular parts requiring significant deformations during molding.
  • Composite plates are usually composed of at least two materials having different melting points, generally including a thermoplastic organic material serving as a matrix and a reinforcing material embedded in said matrix.
  • the thermoplastic organic material can assume the appearance of a liquid or a solid, such as a powder, a film, a sheet or threads.
  • the reinforcement material can, in turn, be in the form of continuous or cut son, mat of continuous or cut son, fabric, grid, ... The choice of shape and nature of each material to associate depends on the configuration and the final properties of the part to be produced.
  • composite plates are obtained by combining a bundle of parallel wires and a sheet of wires oriented transversely to the direction of the beam, then subjecting the assembly thus formed to heating followed by 'cooling.
  • the threads of the assembly are in majority co-mixed threads made up of filaments of glass and filaments of thermoplastic material intimately mixed.
  • the composite plates obtained are made up of orthogonal (90 °) crossed plies.
  • FR-A-2 743 822 it is proposed to manufacture a composite plate by continuously depositing, on a conveyor, a fabric of threads mixed with glass filaments and thermoplastic filaments, possibly combined with continuous or cut threads .
  • the assembly is then preheated in a hot air oven and then introduced into a "belt press" in which it is heated and cooled while being kept compressed.
  • a "belt press” in which it is heated and cooled while being kept compressed.
  • the object of the present invention is to propose a process for producing composite plates formed by the association of a thermoplastic organic material and unidirectional layers of reinforcing threads, in particular made of glass, arranged in different directions, with a view in particular to enabling the production of composite parts of complex shape (for example possibly having ribs connected or not to parts having a small radius of curvature, ...) and with high relief requiring significant deformations (i.e. large amplitude) of the fibrous structure.
  • the invention also aims to provide composite plates with homogeneous multiaxial fibrous reinforcement, having a regular orientation of the fibers, can have a high basis weight (of the order of 500 g / m 2 and up to
  • composite plates with multiaxial fibrous reinforcement having a character of symmetry with a main unidirectional ply (0 °) located on either side of unidirectional transverse plies making opposite angles (- ⁇ / + ⁇ ) by report to the main management.
  • Another object of the invention is to propose a method and a device for implementing this method making it possible to produce, continuously and in a single step, composite plates with multiaxial fibrous reinforcement of variable and relatively high areal mass from relatively wide unidirectional sheets, without the need to use connecting wires.
  • Another object of the invention is to provide a unidirectional sheet comprising co-mixed threads made up of reinforcing filaments and thermoplastic filaments, which has sufficient cohesion to be able to be handled, that is to say without the threads which compose it can disperse, but which however has a flexibility compatible with the topping operation.
  • plate (as well as by “strip”) is meant according to the present invention an element which is not very thick compared to its surface, generally flat (but possibly curved) and rigid while retaining the faculty, if necessary. , to be able to be collected and stored in rolled form, preferably on a support having an external diameter greater than 150 mm. In general, it is a solid or substantially full element, that is to say which has a ratio of the open surface to the total surface not exceeding 50%.
  • composite is meant according to the present invention the combination of at least two materials with different melting points, generally at least one organic thermoplastic material and at least one reinforcing material, the content of material having the point of lowest melting (organic matter) being at least equal to 10% by weight of said association, and preferably at least equal to 20%.
  • the terms “nappe”, “nappage” ... relative to a tablecloth it is necessary to understand here all that relates to the fact that a tablecloth is deposited on a surface, according to an alternating movement with a given amplitude the tablecloth being turned over at each change of direction.
  • the coating of the tablecloth is generally obtained using a spreader-lapper as described for example in EP-A-0 517 563.
  • cohesion is sufficient when the threads do not dissociate or hardly dissociate from each other or when there appear no defects, in particular tears, at the time of coating.
  • cohesion is sufficient when the ply has a tensile strength in the transverse direction greater than 5 N / 5 cm measured under the conditions of standard NF EN 29073-3.
  • moving support is meant a conveyor which transfers, from one point to another of a production line, the combination of reinforcing threads and organic matter. We also hear a unidirectional sheet of reinforcing threads and threads of organic material, distinct from each other.
  • the method according to the invention makes it possible to obtain composite plates with multiaxial fibrous reinforcement in a single operation, starting from simple starting structures.
  • the method according to the invention essentially uses unidirectional structures: in particular, the reinforcement material used in " ' ' the method according to the invention is provided only in the form of wires made cohesive by a mechanical treatment leading to a light entanglement of the filaments which compose them, by a moderate heat treatment or even by an appropriate chemical treatment, and not incorporated in "complex" structures such as fabrics, assemblies of threads held by bonding threads
  • Simple reinforcement structures in the manufacture of the plates according to the invention have advantages in particular in terms of cost and ease of implementation.
  • the method according to the invention makes it possible to directly form a unidirectional sheet having enough cohesion but also flexibility to be able to be covered, that is to say -to say to form transverse plies arranged symmetrically with respect to the drive direction.
  • the flexible nature is assessed in the following way: by maintaining a sheet horizontally by one end and by resting it on the generator of a cylinder 10 cm in diameter, the angle is measured that forms with the horizontal the free end of the tablecloth, over a length of 25 cm. Flexibility is sufficient when the angle value is equal to or greater than 70 °.
  • the method proves to be advantageous in that it is possible to vary the angle of the coating to a very large extent, for example from 30 to 85 °, preferably 40 to 70 °, and particularly preferred equal to 45 or 60 °, and also that the value of the angle can be easily modified by simple adaptation of the speed of the conveyor, and possibly by varying the width of the web deposited transversely if it is desired that the mass surface area of the organic reinforcing threads remains constant.
  • the method according to the invention is particularly rapid and economical, in particular because it makes it possible to continuously obtain the desired plates directly from wires, by eliminating transfers from one installation to another as well as the storage of intermediate structures (tablecloths, fabrics, grids).
  • the yarns forming part of the unidirectional layer consist, for at least 50% of them, of mixed yarns consisting of reinforcing filaments and filaments of an organic material intimately mixed (for example, as described in EP-A-0 599 695 and EP-A-
  • the ply comprises at least 80% by weight, and in a particularly preferred manner 100% by weight of mixed yarns.
  • the reinforcement material is generally chosen from the materials commonly used for the reinforcement of organic materials, such as glass, carbon, aramid, ceramics and vegetable fibers, for example flax, sisal or hemp, or can be understood in the broad sense as a material with a higher melting point or degradation than that of the abovementioned organic material.
  • the glass is chosen.
  • the organic material is, for example, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, phenylene polysulphide, a polymer chosen from polyamides and thermoplastic polyesters, or any other organic material of a thermoplastic nature.
  • the threads of the unidirectional sheet are chosen so that the content of organic material in the composite plate is at least equal to 10% by weight and that the content of reinforcing material is between 20 and 90% by weight. , preferably between 30 and 85% and particularly preferably between 40 and 80%.
  • the unidirectional ply may partly comprise threads made of one of the materials and partly of threads made of the other material, these threads then being arranged alternately in the ply.
  • the wires of the unidirectional sheet most often come from one or more supports (for example coils supported by one or more creels) or windings (for example beams) on which they are wound .
  • the step which consists in giving the unidirectional sheet sufficient cohesion to make it suitable for being coated must contribute to preserving the integrity of the reinforcing filaments so that they fulfill the reinforcement function which is assigned to them.
  • This step can be done in several ways.
  • the cohesion of the sheet can be imparted by a slight entanglement of the filaments constituting the threads by moderate needling or by exposure to a jet of water under pressure.
  • any suitable device can be used, for example a support provided with needles animated by a vertical reciprocating movement which penetrates through the entire thickness of the sheet, causing a transverse intermingling of the filaments.
  • the entanglement by exposure to a jet of pressurized water can be implemented by spraying the water onto the tablecloth arranged on a perforated support or passing over a metallic carpet and the jets of water bouncing on the carpet making a moderate intermingling of the threads.
  • the filaments are made cohesive by a moderate heat treatment, at a temperature close to the melting point of the organic matter. It is important that the melting of the threads takes place on the surface, that is to say over a small thickness, so that the sheet retains a flexibility compatible with subsequent coating. In general, the operation is carried out at a temperature a few ° C higher, and up to 15 ° C, at the melting point of said organic matter.
  • This variant is particularly suitable when the wires are close to each other, for example distant by less than 0.2 mm, the fusion then making it possible to bond the wires by contact.
  • the heat treatment can be carried out by any suitable heating means, for example heated cylinders, an irradiation device such as an infrared radiation device (oven, lamp (s), panel (s)) and / or one or several hot air blowing devices (hot air oven with forced convection).
  • an irradiation device such as an infrared radiation device (oven, lamp (s), panel (s)) and / or one or several hot air blowing devices (hot air oven with forced convection).
  • the cohesion of the sheet can be obtained by adding a chemical material having adhesive properties with regard to the threads.
  • This material can be liquid or solid, for example a powder, a film or a veil of a material.
  • the fusible material is compatible with the organic material of the threads and generally the two materials are identical.
  • Polyolefins are preferred, and more particularly polypropylene.
  • the fusible material is deposited in the form of a veil, or of a film, the latter advantageously comprising at least one additional layer of organic material of the same nature as that of the threads, preferably also in the form of fibers or of filaments.
  • the sticky material can be deposited by spraying or spraying when it is in liquid or powder form, and by applying film or sail followed by heating, preferably under compression, for example between the rollers of a calender.
  • This variant makes it possible to link wires which are relatively distant from each other, up to approximately 1 cm apart.
  • the association of the unidirectional layers within the composite plate with multiaxial fibrous reinforcement can be done in several ways.
  • the unidirectional sheet is coated transversely on a conveyor.
  • a biaxial fibrous reinforcement ply is formed consisting of unidirectional transverse plies whose directions make angles - ⁇ and + ⁇ with the direction of movement (0 °).
  • the unidirectional ply is coated transversely on a main unidirectional ply, itself deposited on a conveyor, and composed of reinforcing threads and threads of organic material.
  • a sheet with triaxial fibrous reinforcement is formed, made up of unidirectional transverse sheets, the directions of which make angles - ⁇ and + ⁇ with the direction of the main unidirectional sheet (0 °).
  • the association of reinforcing threads with organic matter passes under at least one zone where it is heated to a temperature between the melting or degradation points. materials constituting the association, this temperature also being lower than the degradation temperature of the material having the lowest melting point.
  • the degradation temperature here designates the minimum temperature at which a decomposition of the molecules constituting the material is observed (as traditionally defined and understood by those skilled in the art) or an undesirable alteration of the material (for example an inflammation , a loss of integrity resulting in a flow of the material out of the sheet) or an undesirable coloring (for example yellowing).
  • the combination of reinforcing yarns and organic material is heated enough to allow the bonding of at least part of the yarns to each other via the organic material after heating and / or compression, and in most cases to allow obtaining a substantially full structure.
  • the heating temperature can be of the order of 190 to 230 ° C. when the layer of wires is made of glass and polypropylene, around 280 to 310 ° C when the sheet is made of glass and polyethylene terephthalate and around 270 to 280-290 ° C when the wire sheet is made of glass and polybutylene terephthalate.
  • the heating of the reinforcement son-organic material association can be carried out in different ways, for example using a double-strip laminating machine, or using heated cylinders or a irradiation device such as an infrared radiation device (for example by means of an oven, lamp (s), panel (s)) and / or at least one device for blowing hot air (for example a hot air oven with forced convection).
  • a irradiation device such as an infrared radiation device (for example by means of an oven, lamp (s), panel (s)) and / or at least one device for blowing hot air (for example a hot air oven with forced convection).
  • the heating may be sufficient to allow the attachment of the reinforcement son-organic matter association via the molten organic matter (thermofixation).
  • the heated association is also subjected to compression which can be achieved by means of one or more calenders with two cylinders, the force exerted on the association generally being several daN / cm, or even several tens. daN / cm.
  • the pressure exerted in the compression device compacts the sheet of wires and makes it possible to obtain a homogeneous distribution of the molten thermoplastic material, the structure obtained being frozen by cooling and the cooling being able to take place, at least in part, simultaneously with the compression or can also be carried out after a hot compression step.
  • the compression device can comprise or consists of a belt press, for example fitted with steel bands, glass cloth or aramid coated with PTFE, which includes a hot zone followed by a cold zone.
  • the cooling can be done in the compression device, for example in a cold calender, or can be done outside the compression device, for example by natural or forced convection.
  • the composite strip after compression and cooling, can be wound on a mandrel of diameter adapted to the characteristics of the strip or can be cut into sheets for example using a cutter or a circular saw.
  • the present process although described with regard to the coating of a single unidirectional layer, can obviously be applied to the coating of several layers in the same manner as previously described. It is also possible to interpose between the plies at least one unidirectional ply comprising reinforcing threads associated or not with organic material, in a chain, in order to form plates of greater thickness.
  • the limit in terms of thickness essentially depends on the capacity of the heating device of the reinforcement son-organic material assembly to compact the sheet to obtain a plate in accordance with the invention.
  • the present invention also relates to a device for implementing the method.
  • This device comprises a conveyor, at least one device for feeding the threads, means making it possible to make a sheet of threads comprising co-mixed threads cohesive, at least one device making it possible to crosswise lay a sheet of threads on the said conveyor, at at least one device for heating the organic reinforcing thread son and at least one device for cooling said assembly.
  • the device according to the invention may further comprise at least one device for compressing said assembly and / or at least one cutting device and / or at least one device for collecting composite plates.
  • the cooling device can be a compression device separate from the cooling device or consist of a single device ensuring both the compression and cooling functions.
  • the composite plates obtained thanks to the combination of stages of the process according to the invention are, due to their multiaxial structure, perfectly suited to the production of parts made of composite materials by the molding and thermoforming processes.
  • the plates according to the invention have the remarkable feature that the different layers are not linked together and that the wires are therefore free to move relative to one another. It is therefore possible to obtain parts which have significant deformations and / or reliefs in the transverse direction relative to the direction of movement (0 °) when the reinforced plates are of the triaxial type (stacking 0 - / + ⁇ or 07- / + / 0 °) and also in other directions when the plates are of the biaxial type
  • the composite plates obtained have a thickness generally between a few tenths of a mm and about 2 mm, are rigid, easy to cut and have good mechanical properties. In addition, they have a good surface condition due in particular to the absence of crisscrossing of the threads, which results in low shrinking. It is possible to improve the appearance of the plate by depositing one or more films of a material fulfilling the required function on at least one of the external faces of the reinforcement-organic material assembly before the final heating step. aimed at forming the plate.
  • FIG. 1 represents a schematic view of a device allowing a first implementation of the invention
  • FIG. 2 represents a schematic top view of a device allowing a second implementation of the invention
  • Figure 3 shows a schematic view of a device for a third implementation of the invention.
  • the elements in common have the same references.
  • FIG. 1 describes a process for manufacturing a composite plate with biaxial fibrous reinforcement (- ⁇ / - ⁇ ) in its simpler embodiment.
  • the wires 1 coming from a beam 2 pass between the teeth of a comb 3 which keep them parallel until they enter a needling device 4 where they are linked together to form a unidirectional ply 5.
  • the web 5 is deposited on a moving conveyor 6 by means of a lapping device (spreader-lapper) 7 moving transversely to the direction of movement of the conveyor in an alternating movement in order to form a web with biaxial fibrous reinforcement 8 whose directions form with that of the displacement of opposite angles.
  • a lapping device preader-lapper
  • the biaxial sheet 8 then passes between the continuous strips 9 (made of glass fabric impregnated with polytetrafluoroethylene - PTFE -) of a flat laminating press 10.
  • This press comprises a heating zone 11, pressing cylinders 12 which compress molten thermoplastic material (pressure of the order of 10-20 N / cm 2 and a zone 13 cooled by a circulation of water.
  • the method of FIG. 2 describes a method of manufacturing a plate with triaxial fibrous reinforcement using a biaxial fibrous reinforcement ply (- ⁇ / - ⁇ ) and a unidirectional ply arranged in a chain (0 °).
  • a ply 5 is formed from the wires 1 of the beam 2 which are guided by the comb 3 towards the needling device 4.
  • the ply 5 is deposited by means of the device covering 7 on a unidirectional sheet 16 supported by the conveyor 6, the sheet 16 being formed here by the threads unwound from the beam 17 held parallel by the comb 18.
  • the association of the plies 19 passes, as in the process of FIG. 1, in the press 10 where it is heated in the zone 11, compressed between the rollers 12 and cooled in the zone 13.
  • the composite strip obtained is then wound on the support 20 in rotation.
  • FIG. 3 schematically describes a method of manufacturing a composite plate with triaxial fibrous reinforcement in which the lapped wires (- ⁇ / - ⁇ ) are held between two unidirectional layers arranged in a chain (0 °).
  • two unidirectional layers 16 and 21 are used, obtained from beams 17 and 22, these wires passing through combs 18 and
  • the sheet intended to be coated is formed at starting from the wires 1 coming from a beam 2, these wires passing over a comb 3 in order to keep them parallel.
  • the wires are then introduced into a heated device 26 which fixes them in a sheet 27 which is covered with the device 7 between the sheets 16 and 21.
  • the association of these sheets is then directed to the press 10 where, all as before, it is heated in zone 11, compressed between the rollers 12, cooled in zone 13 and finally wound on the support 20.
  • the composite strip obtained has a homogeneous appearance which can be improved by depositing a polymer film compatible with the organic matter of the son on one or the other of its faces or on both at the same time.
  • a polymer film compatible with the organic matter of the son on one or the other of its faces or on both at the same time.
  • two polypropylene films 28 and 29 are deposited on either side of the association of the sheets between the bands 9 of the press 10.
  • a composite plate is produced under the conditions of the method of FIG. 1 modified in that an additional unidirectional sheet is deposited on the sheet with biaxial glass reinforcement (as indicated in FIG. 3, sheet 21).
  • a unidirectional sheet 20 cm wide (2.2 threads / cm) is formed.
  • the yarns are rovings, with a linear title equal to 1870 tex, obtained by co-mixing glass filaments (60% by weight; diameter: 18.5 ⁇ m) and polypropylene filaments (40% by weight; diameter: 20 ⁇ m).
  • the tablecloth is drawn at a speed of 0.48 m / min in the needling machine 4, 1 m wide, equipped with 4000 needles (reference: 15x18x32 3.5RB30A 06/15) and adjusted for a penetration of 20 mm and 200 strokes / min, i.e. 140 strokes / cm 2 .
  • the sheet At the exit of the needling machine, the sheet has a width of 30 cm and a surface mass of 275 g / m 2 .
  • the needled web is then deposited on the conveyor driven by motor rollers, by means of the lapper 7, the web being deposited alternately in opposite directions (+ 76 ° and -76 ° respectively) relative to the direction of removal (0 °) and each part of the tablecloth deposited in a direction not covering the neighboring parts oriented in the same direction.
  • the unidirectional sheet 21 is deposited, in a chain, 60 cm wide composed of mixed threads of the same nature as those constituting the needled sheet.
  • the assembly formed then passes through the press 10 in which it is heated (220 ° C) then cooled (60 ° C) while being compressed (2 bars).
  • the composite plate has a surface mass equal to 825 g / m 2 and has, in the 0 ° direction, a breaking stress in bending equal to 180 MPa, a bending modulus equal to 12 GPa and an energy of shock absorption (Charpy) equal to 85 kJ / m 2 .
  • EXEMPLi_2 A composite plate is produced using a method in accordance with FIG. 3 modified in that the heating device 26 is replaced by a needling device 4.
  • first creel located in the extension of the conveyor, upstream of the latter, there are 330 coils of rovings of the same kind as those described in Example 1.
  • the rovings are also distributed over two combs (0.75 teeth / cm ), to form two identical unidirectional layers 2.15 m wide and 140 g / m 2 of areal mass.
  • the first layer 16 is deposited directly on the conveyor (speed: 1.5 m / min) and the second layer 21 is deposited downstream of the lapper.
  • 370 rovings (rovings) of the same type as those described in Example 1 are placed on a second creel.
  • the rovings are arranged between the teeth of a comb (2.2 teeth / cm) to form a unidirectional sheet (width: 1.68 m; areal mass: 410 g / m 2 ) which is directed towards the needling machine 4 (width: 3 m; speed: 2.5 m / min; 1000 strokes / min).
  • the needled sheet 5 (width: 2.5 m) is led to the lapper 7 which deposits it alternately at angles + 60 ° and -60 °, over a width of 2.15 m, on the first unidirectional sheet carried by the conveyor.
  • the second unidirectional layer 21 is deposited from the first creel.
  • the association of the biaxial sheet and the two unidirectional sheets is then directed to the press 10 in a first heated zone (220 ° C; length: 2.2 m), a calender of 300 mm in diameter (pressure: 2 bars) and a second cooling zone (10 ° C; length: 2.3 m).
  • Example 2 The procedure is carried out under the conditions of Example 2 modified in that the first creel comprises 660 coils of rovings separated into identical sheets (comb: 1.5 teeth / cm; areal mass: 280 g / m 2 )
  • the composite plate obtained has a thickness of approximately 0.75 mm and a surface mass equal to 1110 g / m 2 .
  • EXAMPLE 4 A composite plate is produced under the conditions of Example 2.
  • 370 rovings (rovings) of the same type as those described in Example 1 are placed on a creel.
  • the rovings are arranged between the teeth of a comb (2.2 teeth / cm) to form a unidirectional sheet (width: 1 , 68 m; areal mass: 410 g / m 2 ) which is directed towards the needling machine 4 (width: 3 m; speed: 2.5 m / min; 1000 strokes / min).
  • the needled web 5 (width: 2.5 m) is led to the lapper 7 which deposits it alternately at angles of + 45 ° and - 45 °, over a width of 1.25 m on the conveyor (speed: 2, 5 m / min).
  • the combination of plies is directed to the press 10 in a first heated zone (220 ° C; length: 2.2 m), a calender of 300 mm in diameter (pressure: 2 bars) and a second cooling zone (10 ° C; length: 2.3 m).
  • the composite plate formed has a surface mass equal to 650 g / m 2 .
  • a composite plate is produced by implementing the method described in FIG. 3.
  • the rovings are distributed over two combs (0.75 teeth / cm) so as to form two identical unidirectional sheets 16 and 21, 2.15 m wide and
  • the first layer 16 is deposited directly on the conveyor (speed: 1.5 m / min) and the second layer 21 is deposited downstream of the lapper.
  • the tablecloth-association goes through the air gap of a pair of rollers pressers heated to 140 ° C then to the lapper 7 which deposits it at angles of + 60 ° and -60 °, over a width of 2.15 m on the first unidirectional sheet carried by the conveyor.
  • On this association is deposited- 'the second unidirectional sheet 21 from the first creel and the assembly is directed to the press 10 successively consisting of a heated zone (220 ° C; length: 2.2 m), a grille 300 mm in diameter (pressure: 2 bar) and a cooling zone (10 ° C; length: 2.3 m).
  • a composite plate of approximately 0.6 mm in thickness and a surface mass equal to 900 g / m 2 is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

L'invention concerne la fabrication de plaques composites à renfort fibreux multiaxial qui consiste: - à former une nappe unidirectionnelle de fils de renfort dont au moins 50% en poids d'entre eux sont des fils co-mêlés constitués de filaments de renforcement et de filaments d'une matière organique intimement mélangés; - à conférer à ladite nappe une cohésion lui permettant d'être nappée; - à napper cette nappe sur un support en mouvement, dans une direction transversale par rapport à la direction du mouvement; - à chauffer l'ensemble fils de renfort-matière organique se déplaçant suivant la direction de mouvement et à le fixer par l'action de la chaleur, éventuellement en appliquant une pression, puis à le refroidir pour former une bande composite, et; à collecter ladite bande sous la forme d'une ou plusieurs plaques composites. La présente invention concerne également un dispositif de mise en oeuvre du procédé ainsi que les produits obtenus.

Description

PROCEDE ET DISPOSITIF DE FABRICATION D'UNE PLAQUE COMPOSITE A
RENFORT FIBREUX MULTIAXIAL
L'invention concerne la réalisation de plaques composites à renfort fibreux multiaxial, et plus particulièrement de plaques composites formées par l'association de nappes unidirectionnelles de fibres de renforcement, telles que des fibres de verre, disposées dans des directions différentes, et d'une matière organique.
Un domaine d'application de l'invention est la réalisation de plaques composites à renfort fibreux multiaxial destinées à la fabrication de pièces moulées en matériaux composites, en particulier de pièces nécessitant des déformations importantes lors du moulage.
Les plaques composites sont habituellement composées d'au moins deux matières ayant des points de fusion différents dont généralement une matière organique thermoplastique servant de matrice et une matière de renforcement noyée au sein de ladite matrice. Lors de la fabrication, la matière organique thermoplastique peut revêtir l'aspect d'un liquide ou d'un solide, tel qu'une poudre, un film, une feuille ou des fils. La matière de renforcement peut, quant à elle, se présenter sous la forme de fils continus ou coupés, de mat de fils continus ou coupés, de tissu, de grille, ... Le choix de la forme et de la nature de chaque matière à associer dépend de la configuration et des propriétés finales de la pièce à réaliser.
Il existe déjà de nombreux procédés permettant d'associer une matière de renforcement et une matière organique thermoplastique. Dans FR-A-2 500 360, on fabrique des plaques composites en pressant à chaud des couches superposées de tissus de fils de renforcement et de fils thermoplastiques, des derniers pouvant être disposés en chaîne, en trame ou les deux à la fois. L'utilisation des plaques composites obtenues reste cependant limitée à la production de panneaux plats ou de pièces courbes de configuration simple avec peu de déformation.
Dans la demande de brevet français n° 9910842, on obtient des plaques composites en associant un faisceau de fils parallèles et une nappe de fils orientés transversalement par rapport à la direction du faisceau, puis en soumettant l'ensemble ainsi formé à un chauffage suivi d'un refroidissement. Les fils de l'ensemble sont en majorité des fils co-mêlés constitués de filaments de verre et de filaments de matière thermoplastique intimement mélangés. Les plaques composites obtenues sont constituées de nappes croisées orthogonales (90°).
Dans FR-A-2 743 822, il est proposé de fabriquer une plaque composite en déposant, en continu, sur un convoyeur un tissu de fils co-mêlés de filaments de verre et de filaments thermoplastiques, éventuellement combiné à des fils continus ou coupés. L'ensemble est ensuite préchauffé dans un four à air chaud puis introduit dans une « presse à bandes » au sein de laquelle il est chauffé et refroidi en étant maintenus comprimé. Bien qu'étant particulièrement adaptée à la production de pièces de forme complexe par moulage ou par estampage, la plaque composite ne donne pas entière satisfaction lorsqu'il s'agit d'obtenir des pièces qui présentent, en outre, une amplitude importante de déformation.
Il a aussi été décrit dans US-A-4 277 531 une plaque composite apte à la réalisation de pièces de configuration complexe par moulage. D'après ce brevet, deux bandes de mats de fils continus de verre aiguilletés sont amenées suivant des trajets parallèles jusqu'à un dispositif de pressage à chaud où elles sont réunies. Les faces des bandes se trouvant en regard l'une de l'autre lors de la réunion sont enduites d'une matière thermoplastique liquide et les faces externes sont recouvertes d'un film de matière organique thermoplastique. Cet ensemble est simultanément chauffé et comprimé pour assurer la fusion des films, et refroidi. La fabrication d'une telle plaque composite est relativement complexe et elle ne permet pas, en outre, de disposer les fils de renforcement dans plusieurs directions.
La présente invention a pour but de proposer un procédé de réalisation de plaques composites formées par l'association d'une matière organique thermoplastique et de nappes unidirectionnelles de fils de renforcement, notamment en verre, disposées dans des directions différentes, en vue notamment de permettre la réalisation de pièces composites de forme complexe (par exemple pouvant comporter des nervures raccordées ou non à des parties présentant un faible rayon de courbure, ...) et à fort relief nécessitant des déformations importantes (c'est-à-dire de grande amplitude) de la structure fibreuse.
L'invention a aussi pour but de fournir des plaques composites à renfort fibreux multiaxial homogènes, présentant une orientation régulière des fibres, pouvant avoir une masse surfacique élevée (de l'ordre de 500 g/m2 et jusqu'à
1000 à 1500 g/m2, voire 3000 g/m2) et dont la largeur peut atteindre 3 mètres.
Sont tout particulièrement concernées les plaques composites à renfort fibreux multiaxial présentant un caractère de symétrie avec une nappe unidirectionnelle principale (0°) située de part et/ou d'autre de nappes unidirectionnelles transversales faisant des angles opposés (-α/+α) par rapport à la direction principale.
Un autre but de l'invention est de proposer un procédé et un dispositif de mise en œuvre de ce procédé permettant de réaliser, en continu et en une seule étape, des plaques composites à renfort fibreux multiaxial de masse surfacique variable et relativement élevée à partir de nappes unidirectionnelles relativement larges, sans nécessité d'utiliser des fils de liaison.
Un autre but de l'invention est de proposer une nappe unidirectionnelle comprenant des fils co-mêlés constitués de filaments de renforcement et de filaments thermoplastiques, qui présente une cohésion suffisante pour pouvoir être manipulée c'est-à-dire sans que les fils qui la composent puissent se disperser, mais qui possède cependant une souplesse compatible avec l'opération de nappage.
Les buts sont atteints grâce au procédé de l'invention qui comprend les étapes consistant :
• à former une nappe unidirectionnelle de fils de renfort dont au moins 50 % en poids d'entre eux sont des fils co-mêlés constitués de filaments de renforcement et de filaments d'une matière organique intimement mélangés
• à conférer à ladite nappe une cohésion lui permettant d'être nappée • à napper cette nappe sur un support en mouvement, dans une direction transversale par rapport à la direction du mouvement
• à chauffer l'ensemble fils de renfort-matière organique se déplaçant suivant la direction de mouvement et à le fixer par l'action de la chaleur, éventuellement en appliquant une pression, puis à le refroidir pour former une bande composite, et
• à collecter ladite bande sous la forme d'une ou plusieurs plaques composites.
Les différentes étapes du procédé telles que l'entraînement de la nappe unidirectionnelle, le nappage de la nappe, .... se font avantageusement en continu.
Par « plaque » (de même que par « bande »), on entend selon la présente invention un élément peu épais par rapport à sa surface, généralement plan (mais pouvant éventuellement être courbé) et rigide tout en conservant la faculté, le cas échéant, de pouvoir être collecté et conservé sous forme enroulée, de préférence sur un support présentant un diamètre externe supérieur à 150 mm. De façon générale, il s'agit d'un élément plein ou substantiellement plein, c'est-à-dire qui présente un rapport de la surface ouverte à la surface totale n'excédant pas 50 %.
Par « composite », on entend selon la présente invention l'association d'au moins deux matières de points de fusion différents, en général au moins une matière organique thermoplastique et au moins une matière de renforcement, la teneur en matière ayant le point de fusion le plus bas (matière organique) étant au moins égale à 10 % en poids de ladite association, et de préférence au moins égale à 20 %. S'agissant des termes « nappée », « nappage » ... relativement à une nappe, il faut comprendre ici tout ce qui se rapporte au fait qu'une nappe est déposée sur une surface, selon un mouvement alternatif avec une amplitude donnée, la nappe se trouvant retournée à chaque changement de direction. Le nappage de la nappe est généralement obtenu à l'aide d'un étaleur-nappeur comme décrit par exemple dans EP-A-0 517 563.
Par « cohésion suffisante » de la nappe unidirectionnelle, il faut entendre selon la présente invention que les éléments constituant ladite nappe sont liés entre eux de manière telle qu'ils permettent à la nappe de subir l'opération de nappage sans endommagement notable de sa structure. La cohésion est suffisante lorsque les fils ne se dissocient pas ou peu les uns des autres ou lorsqu'il n'apparaît pas de défauts, notamment des déchirures, au moment du nappage. Dans le contexte de l'invention, la cohésion est suffisante lorsque la nappe présente une résistance en traction dans le sens transversal supérieure à 5 N/5 cm mesurée dans les conditions de la norme NF EN 29073-3. Par « support en mouvement », on entend un convoyeur qui transfère, d'un point à un autre d'une ligne de fabrication, l'association fils de renforcement- matière organique. On entend également une nappe unidirectionnelle de fils de renforcement et de fils de matière organique, distincts les uns des autres.
Le procédé selon l'invention permet d'obtenir des plaques composites à renfort fibreux multiaxial en une seule opération, à partir de structures de départ simples. En effet, le procédé selon l'invention utilise essentiellement des structures unidirectionnelles : en particulier, la matière de renfort utilisée dans"'' le procédé selon l'invention est apportée uniquement sous la forme de fils rendus cohésifs par un traitement mécanique conduisant à un entremêlement léger des filaments qui les composent, par un traitement thermique modéré ou encore par un traitement chimique approprié, et non incorporés dans des structures « complexes » telles que des tissus, des assemblages de fils maintenus par des fils de liaison L'utilisation de ces structures de renfort simples dans la fabrication des plaques selon l'invention présente des avantages notamment en matière de coût et de facilité de mise en œuvre. A partir des structures simples que sont les fils, le procédé selon l'invention permet de former directement une nappe unidirectionnelle ayant suffisamment de cohésion mais aussi de souplesse pour pouvoir être nappée, c'est-à-dire pour former des nappes transversales disposées symétriquement par rapport à la direction d'entraînement. Dans le contexte de la présente invention, le caractère souple s'apprécie de la manière suivante : en maintenant une nappe horizontalement par une extrémité et en la faisant reposer sur la génératrice d'un cylindre de 10 cm de diamètre, on mesure l'angle que forme avec l'horizontale l'extrémité libre de la nappe, sur une longueur de 25 cm. La souplesse est suffisante lorsque la valeur de l'angle est égale ou supérieure à 70°.
En particulier, le procédé s'avère avantageux par le fait qu'il est possible de faire varier l'angle du nappage dans une très large mesure, par exemple de 30 à 85°, de préférence 40 à 70°, et de manière particulièrement préférée égale à 45 ou 60°, et aussi que la valeur de l'angle peut être facilement modifiée par simple adaptation de la vitesse du convoyeur, et éventuellement en faisant varier la largeur de la nappe déposée transversalement si l'on souhaite que la masse surfacique de l'ensemble fils de renfort-matière organique reste constante. Enfin, le procédé selon l'invention est particulièrement rapide et économique du fait notamment qu'il permet d'obtenir en continu les plaques recherchées directement à partir de fils, en supprimant les transferts d'une installation à une autre ainsi que le stockage de structures intermédiaires (nappes, tissus, grilles).
Conformément à l'invention, les fils entrant dans la constitution de la nappe unidirectionnelle sont constitués pour au moins 50 % d'entre eux de fils co-mêlés constitués de filaments de renforcement et de filaments d'une matière organique intimement mélangés (par exemple, comme décrits dans EP-A-0 599 695 et EP-A-
0 616 055). De préférence, la nappe comprend au moins 80 % en poids, ef e manière particulièrement préférée 100 % en poids de fils co-mêlés. La matière de renforcement est généralement choisie parmi les matières communément utilisées pour le renforcement des matières organiques, telles que le verre, le carbone, l'aramide, les céramiques et les fibres végétales, par exemple le lin, le sisal ou le chanvre, ou pouvant s'entendre au sens large comme une matière de point de fusion ou de dégradation plus élevé que celui de la matière organique précitée. De préférence, on choisit le verre.
La matière organique est par exemple du polyéthylène, du polypropylène, du polyéthylène téréphtalate, du polybutylène téréphtalate, du polysulfure de phénylène, un polymère choisi parmi les polyamides et les polyesters thermoplastiques, ou tout autre matière organique à caractère thermoplastique. De préférence, les fils de la nappe unidirectionnelle sont choisis de telle sorte que la teneur en matière organique dans la plaque composite soit au moins égale à 10 % en poids et que la teneur en matière de renforcement soit comprise entre 20 et 90 % en poids, de préférence entre 30 et 85 % et de manière particulièrement préférée entre 40 et 80 %. La nappe unidirectionnelle peut comprendre en partie des fils constitués de l'une des matières et en partie de fils constitués de l'autre matière, ces fils étant alors disposés en alternance dans la nappe.
Dans le procédé selon l'invention, les fils de la nappe unidirectionnelle sont le plus souvent issus d'un ou plusieurs supports (par exemple des bobines supportées par une ou plusieurs cantres) ou enroulements (par exemple des ensouples) sur lesquels ils sont bobinés.
L'étape qui consiste à conférer à la nappe unidirectionnelle une cohésion suffisante pour la rendre apte à être nappée doit contribuer à préserver l'intégrité des filaments de renfort afin que ceux-ci remplissent la fonction de renforcement qui leur est dévolue. Cette étape peut être réalisée de plusieurs façons.
Selon une première variante, la cohésion de la nappe peut être conférée par un léger enchevêtrement des filaments constituant les fils par un aiguilletage modéré ou par exposition à un jet d'eau sous pression. S'agissant de l'aiguilletage, on peut utiliser tout dispositif adapté, par exemple un support muni d'aiguilles animé d'un mouvement alternatif vertical qui pénètre à travers toute l'épaisseur de la nappe en provoquant un entremêlement transversal des filaments.
L'enchevêtrement par exposition à un jet d'eau sous pression peut être mis^en œuvre en projetant l'eau sur la nappe disposée sur un support perforé ou passant au-dessus d'un tapis métallique et les jets d'eau rebondissant sur le tapis réalisant un entremêlement modéré des fils.
Selon une deuxième variante, on rend les filaments cohésifs par un traitement thermique modéré, à une température proche de la température de fusion de la matière organique. Il est important que la fusion des fils se fasse en surface, c'est-à-dire sur une faible épaisseur, afin que la nappe conserve une souplesse compatible avec le nappage ultérieur. En général, on opère à une température supérieure de quelques °C, et jusqu'à 15°C, à la température de fusion de ladite matière organique. Cette variante est particulièrement adaptée lorsque les fils sont proches les uns avec les autres, par exemple distants de moins de 0,2 mm, la fusion permettant alors de lier les fils par contact.
Le traitement thermique peut être effectué par tout moyen de chauffage approprié, par exemple des cylindres chauffés, un dispositif d'irradiation tel qu'un dispositif à rayonnement infrarouge (four, lampe(s), panneau(x)) et/ou un ou plusieurs dispositifs de soufflage d'air chaud (four à air chaud à convection forcée).
Selon une troisième variante, la cohésion de la nappe peut être obtenue par apport d'une matière chimique présentant des propriétés adhésives au regard des fils. Cette matière peut être liquide ou solide, par exemple une poudre, un film ou un voile d'une matière. On préfère les matières qui développent leurs propriétés collantes à chaud (ou thermocollantes). De manière avantageuse, la matière thermocollante est compatible avec la matière organique des fils et généralement les deux matières sont identiques. On préfère les polyoléfines, et plus particulièrement le polypropylène.
De préférence, la matière thermocollante est déposée sous la forme d'un voile, ou d'un film, ce dernier comprenant avantageusement au moins une couche supplémentaire de matière organique de même nature que celle des fils, de préférence également sous forme de fibres ou de filaments.
On peut déposer la matière collante par projection ou pulvérisation lorsqu'elle est sous forme liquide ou de poudre, et par application du film ou du voile suivie d'un chauffage, de préférence sous compression, par exemple entre les rouleaux d'une calandre.
Cette variante permet de lier des fils qui sont relativement éloignés les uns des autres, jusque environ 1 cm de distance. L'association des nappes unidirectionnelles au sein de la plaque composite à renfort fibreux multiaxial peut se faire de plusieurs manières.
Selon un premier mode de réalisation, la nappe unidirectionnelle est nappée transversalement sur un convoyeur. On forme une nappe à renfort fibreux biaxial constituée de nappes transversales unidirectionnelles dont les directions font des angles -α et +α avec la direction du mouvement (0°).
Selon un deuxième mode de réalisation, la nappe unidirectionnelle est nappée transversalement sur une nappe unidirectionnelle principale, elle-même déposée sur un convoyeur, et composée de fils de renforcement et de fils de matière organique. De cette manière, on forme une nappe à renfort fibreux triaxial constituée de nappes transversales unidirectionnelles dont les directions font des angles -α et +α avec la direction de la nappe unidirectionnelle principale (0°).
L'association fils de renforcement-matière organique (se déplaçant avec une vitesse comprise par exemple entre 0,5 et 10 m/min) passe sous au moins une zone où elle est chauffée à une température comprise entre les points de fusion ou de dégradation des matières constituant l'association, cette température étant également inférieure à la température de dégradation de la matière ayant le point de fusion le plus bas. Par extension, la température de dégradation désigne ici la température minimale à laquelle on observe une décomposition des molécules constituant la matière (comme traditionnellement défini et compris par l'homme de l'art) ou une altération indésirable de la matière (par exemple une inflammation, une perte d'intégrité se traduisant par un écoulement de la matière hors de la nappe) ou une coloration indésirable (par exemple un jaunissement).
Dans la présente invention, l'association fils de renforcement-matière organique est chauffée suffisamment pour permettre la liaison d'une partie au moins des fils entre eux par l'intermédiaire de la matière organique après chauffage et/ou compression, et dans la plupart des cas pour permettre l'obtention d'une structure substantiellement pleine.
A titre d'exemples, la température de chauffage peut être de l'ordre de 190 à 230°C lorsque la nappe de fils est constituée de verre et de polypropylène, de l'ordre de 280 à 310°C lorsque la nappe est constituée de verre et de polyéthylène téréphtalate et de l'ordre de 270 à 280-290°C lorsque la nappe de fils est constituée de verre et de polybutylène téréphtalate.
Le chauffage de l'association fils de renforcement-matière organique peut être réalisé de différentes façons, par exemple à l'aide d'une machine de contre- collage à double-bandes, ou à l'aide de cylindres chauffés ou d'un dispositif d'irradiation tel qu'un dispositif à rayonnement infrarouge (par exemple au moyen d'un four, de lampe(s), de panneau(x)) et/ou au moins un dispositif de soufflage d'air chaud (par exemple un four à air chaud à convection forcée). Le chauffage peut être suffisant pour permettre la fixation de l'association fils de renforcement-matière organique par l'intermédiaire de la matière organique fondue (thermofixation). Dans de nombreux cas cependant, l'association chauffée subit en outre une compression qui peut être réalisée au moyen d'une ou plusieurs calandres à deux cylindres, la force exercée sur l'association étant généralement de plusieurs daN/cm, voire de plusieurs dizaines de daN/cm. La pression exercée dans le dispositif de compression compacte la nappe de fils et permet d'obtenir une répartition homogène de la matière thermoplastique fondue, la structure obtenue étant figée par refroidissement et le refroidissement pouvant s'effectuer, au moins en partie, simultanément à la compression ou pouvant également s'effectuer après une étape de compression à chaud.
Le dispositif de compression peut comprendre ou consiste en une presse à bandes, par exemple munie de bandes en acier, en toile de verre ou d'aramide enduite de PTFE, qui comprend une zone chaude suivie d'une zone froide.
Le refroidissement peut se faire dans le dispositif de compression, par exemple dans une calandre froide, ou peut se faire en dehors du dispositif de compression, par exemple par convection naturelle ou forcée.
Au sortir du dispositif de compression, il est possible d'accélérer le refroidissement de la bande composite en la faisant passer sur une table de refroidissement dans laquelle circule par exemple de l'eau froide. On peut adjoindre à la table des moyens supplémentaires (rouleaux presseurs, plaques, buses refroidis ou non) permettant d'améliorer encore le refroidissement. Au sortir de la table, il est également possible de placer des rouleaux d'appel qui permettent de tirer la bande composite.
La bande composite, après compression et refroidissement, peut être enroulée sur un mandrin de diamètre adapté aux caractéristiques de la bande ou peut être coupée en plaques par exemple à l'aide d'un massicot ou d'une scie circulaire.
Le présent procédé, bien que décrit au regard du nappage d'une seule nappe unidirectionnelle, peut bien évidemment être appliqué au nappage de plusieurs nappes de la même manière que précédemment décrit. Il est également possible d'intercaler entre les nappes au moins une nappe unidirectionnelle comprenant des fils de renforcement associés ou non à de la matière organique, en chaîne, afin de former des plaques d'épaisseur plus importante. La limite en matière d'épaisseur dépend essentiellement de la capacité du dispositif de chauffage de l'ensemble fils de renforcement-matière organique à compacter la nappe pour obtenir une plaque conforme à l'invention.
La présente invention concerne également un dispositif de mise en œuvre du procédé. Ce dispositif comprend un convoyeur, au moins un dispositif d'alimentation de fils, des moyens permettant de rendre cohésive une nappe de fils comprenant des fils co-mêlés, au moins un dispositif permettant de napper transversalement une nappe de fils sur ledit convoyeur, au moins un dispositif de chauffage de l'ensemble fils de renfort-matière organique et au moins un dispositif de refroidissement dudit ensemble.
Le dispositif selon l'invention peut comprendre, en outre, au moins un dispositif de compression dudit ensemble et/ou au moins un dispositif de coupe et/ou au moins un dispositif de collecte des plaques composites. Le dispositif de refroidissement peut être un dispositif de compression distinct du dispositif de refroidissement ou consister en un seul dispositif assurant à la fois les fonctions de compression et de refroidissement.
Les plaques composites obtenues grâce à la combinaison d'étapes du procédé selon l'invention sont, du fait de leur structure multiaxiale, parfaitement adaptées à la production de pièces en matériaux composites par les procédés de moulage et de thermoformage. En particulier, les plaques selon l'invention ont ceci de remarquable que les différentes nappes ne sont pas liées entre elles et que les fils sont donc libres de se déplacer les unes par rapport aux autres. Il est de ce fait possible d'obtenir des pièces qui présentent des déformations et/ou des reliefs importants dans le sens transversal par rapport à la direction de mouvement (0°) lorsque les plaques renforcées sont du type triaxial (empilement 0 - /+α ou 07- /+ /0°) et aussi dans d'autres directions lorsque les plaques sont du type biaxial
(-α/+α). Les plaques composites obtenues présentent une épaisseur généralement comprise entre quelques dixièmes de mm et environ 2 mm, sont rigides, faciles à couper et présentent de bonnes propriétés mécaniques. En outre, elles possèdent un bon état de surface dû notamment à l'absence d'entrecroisement des fils qui se traduit par un faible embuvage. Il est possible d'améliorer l'aspect de la plaque en déposant un voire plusieurs films d'une matière remplissant la fonction requise sur au moins une des faces externes de l'ensemble fils de renforcement-matière organique avant l'étape de chauffage ultime visant à former la plaque.
D'autres avantages et caractéristiques de l'invention apparaîtront à la lumière des dessins illustrant l'invention dans lesquels :
• la figure 1 représente une vue schématique d'un dispositif permettant une première mise en œuvre de l'invention,
• la figure 2 représente une vue schématique de dessus d'un dispositif permettant une deuxième mise en œuvre de l'invention,
• la figure 3 représente une vue schématique d'un dispositif permettant une troisième mise en œuvre de l'invention. Dans les figures, les éléments en commun portent les mêmes références.
La figure 1 décrit un procédé de fabrication d'une plaque composite à renfort fibreux biaxial (-α/-α) dans sa réalisation plus simple. Les fils 1 provenant d'une ensouple 2 passent entre les dents d'un peigne 3 qui les maintiennent parallèles jusqu'à leur entrée dans un dispositif d'aiguilletage 4 où ils sont liés entre eux pour former une nappe 5 unidirectionnelle. La nappe 5 est déposée sur un convoyeur 6 en mouvement au moyen d'un dispositif de nappage (étaleur- nappeur) 7 se déplaçant transversalement au sens de déplacement du convoyeur suivant un mouvement alternatif afin de former une nappe à renfort fibreux biaxial 8 dont les directions forment avec celle du déplacement des angles opposés. La nappe biaxiale 8 passe ensuite entre les bandes continues 9 (en tissu de verre imprégné de polytétrafluoroéthylène - PTFE -) d'une presse de contre- collage à plat 10. Cette presse comporte une zone 11 de chauffage, des cylindres presseurs 12 qui compriment la matière thermoplastique fondue (pression de l'ordre de 10-20 N/cm2 et une zone 13 refroidie par une circulation d'eau. La bande composite à renfort fibreux biaxial obtenue à la sortie de la presse
10 est ensuite découpée en continu au moyen des lames 14 et d'une cisaille automatique (non représentée) en plusieurs plaques 15.
Le procédé de la figure 2 décrit un procédé de fabrication d'une plaque à renfort fibreux triaxial mettant en œuvre une nappe à renfort fibreux biaxial (-α/-α) et une nappe unidirectionnelle disposée en chaîne (0°).
Comme dans le mode de réalisation de la figure 1 , on forme une nappe 5 à partir des fils 1 de l'ensouple 2 qui sont guidés par le peigne 3 vers le dispositif d'aiguilletage 4. La nappe 5 est déposée au moyen du dispositif de nappage 7 sur une nappe unidirectionnelle 16 supportée par le convoyeur 6, la nappe 16 étant constituée ici par les fils déroulés à partir de l'ensouple 17 maintenus parallèles à l'aide du peigne 18.
L'association des nappes 19 passe, comme dans le procédé de la figure 1 , dans la presse 10 où elle est chauffée dans la zone 11 , comprimée entre les rouleaux 12 et refroidie dans la zone 13. La bande composite obtenue est ensuite bobinée sur le support 20 en rotation.
La figure 3 décrit schématiquement un procédé de fabrication de plaque composite à renfort fibreux triaxial dans lequel les fils nappés (-α/-α) sont maintenus entre deux nappes unidirectionnelles disposées en chaîne (0°). Dans ce procédé, on utilise deux nappes unidirectionnelles 16 et 21 obtenues à partir des ensouples 17 et 22, ces fils passant dans des peignes 18 et
23 les maintenant parallèles, puis dans des cylindres d'appel 24 et 25 qui permettent de réduire les tensions des fils avant leur entrée dans la presse de contre-collage 10. Comme dans les procédés précédents, la nappe destinée à être nappée est formée à partir des fils 1 provenant d'une ensouple 2, ces fils passant sur un peigne 3 afin de les maintenir parallèles. Les fils sont ensuite introduits dans un dispositif 26 chauffé qui les fixe en une nappe 27 qui est nappée à l'aide du dispositif 7 entre les nappes 16 et 21. L'association de ces nappes est ensuite dirigée vers la presse 10 où, tout comme précédemment, elle est chauffée dans la zone 1 1 , comprimée entre les rouleaux 12, refroidie dans la zone 13 et enfin enroulée sur le support 20.
La bande composite obtenue présente un aspect homogène qui peut être amélioré en déposant un film polymère compatible avec la matière organique des fils sur l'une ou l'autre de ses faces ou sur les deux à la fois. Dans la figure 3, deux films 28 et 29 de polypropylène sont déposés de part et d'autre de l'association des nappes entre les bandes 9 de la presse 10.
Les exemples qui suivent permettent d'illustrer l'invention, sans toutefois la limiter.
EXEMPLE 1
On réalise une plaque composite dans les conditions du procédé de la figure 1 modifié en ce qu'une nappe unidirectionnelle supplémentaire est déposée sur la nappe à renfort en verre biaxial (comme indiqué dans la figure 3, nappe 21 ).
A partir de 48 fils de stratifils (rovings) disposés sur une cantre, on forme une nappe unidirectionnelle de 20 cm de large (2,2 fils/cm). Les fils sont des stratifils (rovings), de titre linéique égal à 1870 tex, obtenus par co-mêlage de filaments de verre (60 % en poids; diamètre : 18,5 μm) et de filaments de polypropylène (40 % en poids; diamètre : 20 μm).
La nappe est entraînée à la vitesse de 0,48 m/min dans l'aiguilleteuse 4 de 1 m de large équipée de 4000 aiguilles (référence : 15x18x32 3.5RB30A 06/15) et réglée pour une pénétration de 20 mm et 200 coups/min, soit 140 coups/cm2. A la sortie de l'aiguilleteuse, la nappe a une largeur de 30 cm et une masse surfacique de 275 g/m2.
La nappe aiguilletée est ensuite déposée sur le convoyeur entraîné par des rouleaux moteurs, au moyen du nappeur 7, la nappe étant déposée alternativement dans des directions opposées (+76° et -76° respectivement) par rapport à la direction de la dépose (0°) et chaque partie de nappe déposée dans une direction ne recouvrant pas les parties voisines orientées suivant la même direction. Sur la nappe biaxiale ainsi formée, en aval du nappeur, on dépose la nappe unidirectionnelle 21 , en chaîne, de 60 cm de large composée de fils co- mêlés de même nature que ceux constituant la nappe aiguilletée. L'assemblage formé passe ensuite dans la presse 10 au sein de laquelle il est chauffé (220°C) puis refroidi (60°C) tout en étant comprimé (2 bars). La plaque composite a une masse surfacique égale à 825 g/m2 et présente, dans la direction 0°, une contrainte de rupture en flexion égale à 180 MPa, un module de flexion égal à 12 GPa et une énergie d'absorption de choc (Charpy) égale à 85 kJ/m2. EXEMPLi_2 On réalise une plaque composite en utilisant un procédé conforme à la figure 3 modifié en ce que le dispositif chauffant 26 est remplacé par un dispositif d'aiguilletage 4.
Sur une première cantre située dans le prolongement du convoyeur, en amont de ce dernier, on dispose 330 bobines de stratifils de même nature que ceux décrits à l'exemple 1. On répartit également les stratifils sur deux peignes (0,75 dent/cm), pour former deux nappes unidirectionnelles identiques de 2,15 m de large et 140 g/m2 de masse surfacique. La première nappe 16 est déposée directement sur le convoyeur (vitesse : 1,5 m/min) et la deuxième nappe 21 est déposée en aval du nappeur.
On place sur une deuxième cantre 370 stratifils (rovings) de même nature que ceux décrits à l'exemple 1. Les stratifils sont disposés entre les dents d'un peigne (2,2 dents/cm) pour former une nappe unidirectionnelle (largeur : 1 ,68 m; masse surfacique : 410 g/m2) qui est dirigée vers l'aiguilleteuse 4 (largeur : 3 m ; vitesse : 2,5 m/min ; 1000 coups/min). La nappe aiguilletée 5 (largeur : 2,5 m) est conduite vers le nappeur 7 qui la dépose alternativement suivant des angles +60° et -60°, sur une largeur de 2,15 m, sur la première nappe unidirectionnelle portée par le convoyeur. En aval du nappeur, on dépose la deuxième nappe unidirectionnelle 21 issue de la première cantre. L'association de la nappe biaxiale et des deux nappes unidirectionnelles est ensuite dirigée vers la presse 10 dans une première zone chauffée (220°C ; longueur : 2,2 m), une calandre de 300 mm de diamètre (pression : 2 bars) et une deuxième zone de refroidissement (10°C ; longueur : 2,3 m).
On obtient une plaque composite à renfort de verre triaxial (empilement 07-607+6070°) d'environ 0,6 mm d'épaisseur, de masse surfacique égale à 830 g/m2 qui est soit bobinée, soit coupée en plaques rectangulaires au moyen d'une cisaille pilotée automatiquement. EXEMPLE 3
On procède dans les conditions de l'exemple 2 modifié en ce que la première cantre comprend 660 bobines de stratifils séparés en nappes identiques (peigne : 1 ,5 dent/cm ; masse surfacique : 280 g/m2)
La plaque composite obtenue présente une épaisseur d'environ 0,75 mm et une masse surfacique égale à 1110 g/m2. EXEMPLE 4 On réalise une plaque composite dans les conditions de l'exemple 2.
On place sur une cantre 370 stratifils (rovings) de même nature que ceux décrits à l'exemple 1. Les stratifils sont disposés entre les dents d'un peigne (2,2 dents/cm) pour former une nappe unidirectionnelle (largeur : 1,68 m; masse surfacique : 410 g/m2) qui est dirigée vers l'aiguilleteuse 4 (largeur : 3 m ; vitesse : 2,5 m/min ; 1000 coups/min). La nappe aiguilletée 5 (largeur : 2,5 m) est conduite vers le nappeur 7 qui la dépose alternativement suivant des angles de +45° et - 45°, sur une largeur de 1 ,25 m sur le convoyeur (vitesse : 2,5 m/min).
L'association des nappes est dirigée vers la presse 10 dans une première zone chauffée (220°C ; longueur : 2,2 m), une calandre de 300 mm de diamètre (pression : 2 bars) et une deuxième zone de refroidissement (10°C ; longueur : 2,3 m).
La plaque composite formée présente une masse surfacique égale à 650 g/m2. EXEMPLE 5
On réalise une plaque composite en mettant en œuvre le procédé décrit dans la figure 3.
Sur une première cantre située dans le prolongement convoyeur, en amont de ce dernier, on dispose 330 bobines de stratifils de titre linéique égale à 1870 tex, obtenus par co-mêlage de filaments de verre (57 % en poids; diamètre : 18,5 μm) et de filaments de polypropylène (43 % en poids; diamètre : 20 μm).
On répartit les stratifils sur deux peignes (0,75 dent/cm) de manière à former deux nappes unidirectionnelles identiques 16 et 21 de 2,15 m de large et
140 g/m2 de masse surfacique. La première nappe 16 est déposée directement sur le convoyeur (vitesse : 1 ,5 m/min) et la deuxième nappe 21 est déposée en aval du nappeur.
On place sur une deuxième cantre 370 bobines de stratifils de même nature que ceux de la première cantre et on répartit les stratifils entre les dents d'un peigne (1 ,5 dent/cm) pour former une nappe unidirectionnelle (largeur : 2,5 m; masse surfacique : 280 g/m2). On associe à cette nappe un voile fibreux comprenant une couche de polypropylène sous forme de fibres (masse surfacique : 30 g/m2) et une couche thermocollante à base d'une polyoléfine sous forme de fibres (masse surfacique : 30 g/m2), cette dernière couche étant dirigée vers la nappe. L'association nappe-voile passe dans l'entrefer d'une paire de rouleaux presseurs chauffés à 140°C puis vers le nappeur 7 qui la dépose suivant des angles de +60° et -60°, sur une largeur de 2,15 m sur la première nappe unidirectionnelle portée par le convoyeur. Sur cette association est déposée-' la deuxième nappe 21 unidirectionnelle issue de la première cantre et l'ensemble est dirigé vers la presse 10 constituée successivement d'une zone chauffée (220°C ; longueur : 2,2 m), d'une calandre de 300 mm de diamètre (pression : 2 bars) et d'une zone de refroidissement (10°C ; longueur : 2,3 m).
On obtient une plaque composite d'environ 0,6 mm d'épaisseur et de masse surfacique égale à 900 g/m2.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une plaque composite à renfort fibreux multiaxial comprenant les étapes qui consistent :
• à former une nappe unidirectionnelle de fils de renfort dont au moins 50 % en poids d'entre eux sont des fils co-mêlés constitués de filaments de renforcement et de filaments d'une matière organique intimement mélangés
• à conférer à ladite nappe une cohésion lui permettant d'être nappée
• à napper cette nappe sur un support en mouvement, dans une direction transversale par rapport à la direction du mouvement • à chauffer l'ensemble fils de renfort-matière organique se déplaçant suivant la direction de mouvement et à le fixer par l'action de la chaleur, éventuellement en appliquant une pression, puis à le refroidir pour former une bande composite, et
• à collecter ladite bande sous la forme d'une ou plusieurs plaques composites.
2. Procédé selon la revendication 1 , caractérisé en ce que le substrat est un convoyeur.
3. Procédé selon la revendication 1 , caractérisé en ce que le substrat est une nappe unidirectionnelle de fils de verre dont au moins une partie d'entre eux sont des fils co-mêlés constitués de filaments de verre et de filaments d'une matière organique thermoplastique.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que les filaments de renforcement sont des filaments de verre.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la nappe unidirectionnelle est exclusivement composée de fils co-mêlés principalement constitués de filaments de verre et de filaments de matière organique thermoplastique.
6. Procédé selon la revendication 5, caractérisé en ce que les fils comprennent au moins 20 % de verre.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'on rend la nappe cohésive par aiguilletage ou par exposition à un jet d'eau sous pression.
8. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'on rend la nappe cohésive par un traitement thermique modéré.
9. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la nappe est rendue cohésive par apport d'une matière adhésive.
10. Procédé selon la revendication 9, caractérisé en ce que la matière'-se présente sous la forme d'une poudre, d'un voile ou d'un film.
11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que la nappe est déposée sur le support par l'intermédiaire d'un étaleur-nappeur.
12. Procédé selon l'une des revendications 1 à 11 , caractérisé en ce que l'on dépose au moins une nappe unidirectionnelle de fils co-mêlés constitués de filaments de renforcement et de filaments d'une matière organique intimement mélangés sur la nappe déposée transversalement, avant d'effectuer le chauffage de l'ensemble fils de renfort-matière organique.
13. Procédé selon la revendication 12, caractérisé en ce que la matière de renforcement est le verre et que la matière organique est thermoplastique.
14. Dispositif de mise en œuvre du procédé selon l'une des revendications 1 à 13, comprenant un convoyeur, au moins un dispositif d'alimentation de fils, des moyens permettant de rendre cohésive une nappe de fils comprenant des fils co- mêlés, au moins un dispositif permettant de napper transversalement une nappe de fils sur ledit convoyeur, au moins un dispositif de chauffage de l'ensemble fils de renfort-matière organique et au moins un dispositif de refroidissement dudit ensemble.
15. Dispositif selon la revendication 14, caractérisé en ce qu'il comprend, en outre, au moins un dispositif de compression dudit ensemble et/ou au moins un dispositif de coupe et/ou au moins un dispositif de collecte des plaques composites.
16. Dispositif selon l'une des revendications 14 ou 15, caractérisé en ce que les moyens permettant de rendre la nappe cohésive consistent en un dispositif d'aiguilletage ou de projection de jets d'eau sous pression, un dispositif chauffant ou un dispositif permettant l'apport d'une matière adhésive.
17. Dispositif selon l'une des revendications 14 à 16, caractérisé en ce que le dispositif de dépose de la nappe est un étaleur-nappeur.
18. Plaque composite, à base d'une matière organique thermoplastique et de renfort fibreux multiaxial, obtenue par le procédé selon l'une des revendications 1 à 13, caractérisée en ce que le renfort est disposé selon des directions faisant avec la direction de mouvement des angles opposés variant entre 30 et 85°, de préférence 40 à 70°, notamment 45 ou 60°.
19. Utilisation de la plaque composite selon la revendication 18 pour former des pièces moulées présentant de fortes déformations. /'
20. Nappe unidirectionnelle à base fils co-mêlés constitués de filaments de verre et de filaments de matière thermoplastique intimement mélangés rendue cohésive par traitement selon l'une des revendications 7 à 9, caractérisée en ce qu'elle comprend au moins 50 % de fils co-mêlés et qu'elle présente une résistance en traction dans le sens transversal supérieure à 5 N/5 cm.
21. Nappe selon la revendication 20, caractérisée en ce qu'elle comprend au moins 20 % en poids de verre et 80 à 100 % de fils co-mêlés.
PCT/FR2002/000636 2001-03-01 2002-02-20 Procede et dispositif de fabrication d'une plaque composite a renfort fibreux multiaxial WO2002070806A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2002569505A JP2004530053A (ja) 2001-03-01 2002-02-20 多軸繊維強化材を有する複合シートの製造方法及び装置
CA002450672A CA2450672A1 (fr) 2001-03-01 2002-02-20 Procede et dispositif de fabrication d'une plaque composite a renfort fibreux multiaxial
DE60230597T DE60230597D1 (de) 2001-03-01 2002-02-20 Verfahren und vorrichtung zur herstellung einer verbundplatte mit multiaxialer faserverstärkung
PL02363882A PL363882A1 (en) 2001-03-01 2002-02-20 Method and device for making a composite sheet with multiaxial fibrous reinforcement
MXPA03007803A MXPA03007803A (es) 2001-03-01 2002-02-20 Metodo y dispositivo para la fabricacion de una hoja compuesta con refuerzo fibroso multiaxial.
EP02706881A EP1373621B1 (fr) 2001-03-01 2002-02-20 Procede et dispositif de fabrication d'une plaque composite a renfort fibreux multiaxial
BR0207763-9A BR0207763A (pt) 2001-03-01 2002-02-20 Processo de fabricação de uma placa compósita com reforço fibroso de eixos múltiplos, dispositivo de execução do processo, placa compósita, utilização da placa compósita, e, manta unidirecional à base de fios
AU2002241047A AU2002241047B2 (en) 2001-03-01 2002-02-20 Method and device for making a composite sheet with multiaxial fibrous reinforcement
SK1084-2003A SK10842003A3 (sk) 2001-03-01 2002-02-20 Spôsob a zariadenie na výrobu kompozitného plošného produktu s viacosovou vláknovou výstužou, kompozitný plošný produkt, jeho použitie a textilný pás
US10/468,399 US7226518B2 (en) 2001-03-01 2002-02-20 Method and device for making a composite sheet with multiaxial fibrous reinforcement
KR10-2003-7011414A KR20040025666A (ko) 2001-03-01 2002-02-20 다축 방향의 섬유 보강재를 갖는 복합 시트 제조를 위한방법 및 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/02837 2001-03-01
FR0102837A FR2821631B1 (fr) 2001-03-01 2001-03-01 Procede et dispositif de fabrication d'une plaque composite a renfort fibreux multiaxial

Publications (1)

Publication Number Publication Date
WO2002070806A1 true WO2002070806A1 (fr) 2002-09-12

Family

ID=8860638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/000636 WO2002070806A1 (fr) 2001-03-01 2002-02-20 Procede et dispositif de fabrication d'une plaque composite a renfort fibreux multiaxial

Country Status (16)

Country Link
US (1) US7226518B2 (fr)
EP (1) EP1373621B1 (fr)
JP (1) JP2004530053A (fr)
KR (1) KR20040025666A (fr)
CN (1) CN1507510A (fr)
AT (1) ATE419418T1 (fr)
AU (1) AU2002241047B2 (fr)
BR (1) BR0207763A (fr)
CA (1) CA2450672A1 (fr)
CZ (1) CZ20032358A3 (fr)
DE (1) DE60230597D1 (fr)
FR (1) FR2821631B1 (fr)
MX (1) MXPA03007803A (fr)
PL (1) PL363882A1 (fr)
SK (1) SK10842003A3 (fr)
WO (1) WO2002070806A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1586688A1 (fr) * 2004-04-15 2005-10-19 V.F.T.Inc. Structure extensible et volumineuse de forme cylindrique aplatie réalisée à partir de filaments continus
EP1693496A1 (fr) * 2005-02-18 2006-08-23 Fukui Prefecture Government Feuille renforcée par des fibres, procédé et machine pour la fabriquer
JP2007526152A (ja) * 2004-03-05 2007-09-13 アルカン テヒノロギー ウント メーニッジメント リミテッド 繊維強化されたプラスチックプレートの連続生産方法
CN100429343C (zh) * 2003-12-31 2008-10-29 美商.V.F.T.有限公司 以长纤为原料制作而成具伸展性、高膨度的扁平管状结构的方法、结构及其成型装置
US8541076B2 (en) 2004-01-07 2013-09-24 V.F.T. Inc. Stretchable high-loft flat-tube structure from continuous filaments
WO2015075190A1 (fr) * 2013-11-22 2015-05-28 Ahlstrom Corporation Renfort unidirectionnel, procédé de production de renfort unidirectionnel et utilisation associée

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861749B1 (fr) * 2003-11-03 2005-12-16 Saint Gobain Vetrotex Mat deformable a renfort fibreux pour la fabrication de composites a matrice thermoplastique
ES2290682T3 (es) * 2004-03-10 2008-02-16 SAERTEX GMBH & CO. KG Complejo multiaxial.
DE102005000115B4 (de) * 2004-09-14 2011-08-18 KARL MAYER Malimo Textilmaschinenfabrik GmbH, 09117 Verfahren zur Herstellung einer multidirektionalen Gelegebahn
US20060065352A1 (en) * 2004-09-28 2006-03-30 Kenneth Keuchel Stabilized fibrous structures and methods for their production
FR2887265B1 (fr) * 2005-06-15 2007-10-05 Saertex France Soc Par Actions Procede de realisation d'un renfort pour materiau composite a profil de resistance variable, renfort obtenu
JP4748717B2 (ja) * 2005-11-22 2011-08-17 倉敷紡績株式会社 繊維強化熱可塑性樹脂成形体
WO2007098786A1 (fr) * 2006-03-04 2007-09-07 Karl Mayer Malimo Textilmaschinenfabrik Gmbh Procede de fabrication d'une bande multidirectionnelle de non-tisse
US8131395B2 (en) * 2006-10-16 2012-03-06 Ebert Composites Corporation 90 degree ply placement system and method
EP2090423B1 (fr) 2006-11-22 2018-10-31 Fukui Prefectural Government Matériau en feuille multicouche de résine thermoplastique renforcé, procédé de fabrication de celui-ci et procédé de façonnage d'un matériau composite de résine thermoplastique moulé
EP2268469B1 (fr) 2008-03-26 2016-02-17 Gordon Holdings Inc. Procédé et appareil permettant de fabriquer des feuilles de matériau composite
KR101221286B1 (ko) 2008-06-11 2013-01-10 (주)엘지하우시스 복합시트의 제조방법
KR101234494B1 (ko) 2008-10-22 2013-02-18 (주)엘지하우시스 열가소성 플라스틱-연속섬유 혼성복합체 제조방법
FR2949122B1 (fr) * 2009-08-14 2013-02-01 Ferlam Tech Procede de fabrication d'un complexe multiaxial de nappes realisees a partir de cables craques sous forme de bandes et installation de fabrication
KR101244059B1 (ko) * 2009-10-20 2013-03-18 (주)엘지하우시스 기계적 물성이 뛰어난 보강직물 및 보강재
DE102010034777A1 (de) * 2010-08-18 2012-02-23 Hubert Hergeth Vlieslegemaschine und Verfahren zum Legen eines Vlieses
FR2974026B1 (fr) * 2011-04-13 2014-09-19 Snecma Machine d'enroulement d'une texture fibreuse sur un mandrin d'impregnation
CN103958755B (zh) 2011-09-30 2018-05-25 欧文斯科宁知识产权资产有限公司 从纤维材料形成幅材的方法
CN102700151B (zh) * 2012-05-15 2016-01-27 上海飞机制造有限公司 自动铺设预浸丝的方法和设备
DE202012102597U1 (de) * 2012-07-13 2013-10-14 Hi Tech Textile Holding Gmbh Vliesleger
CN103132245A (zh) * 2013-03-06 2013-06-05 上海劲纬高强纤维有限公司 无经编纱的多轴向织物
US20140299260A1 (en) * 2013-03-26 2014-10-09 F.A. Kümpers GmbH & Co. KG Method for Producing an Endless Semi-Finished Product with at least an Inclined Reinforced Layer
TW201700384A (zh) * 2015-06-18 2017-01-01 Chyau Ban Machinery Co Ltd 用於分離複數交叉折疊的纖維製品之分離裝置
DE202016104070U1 (de) * 2016-07-26 2017-10-27 Autefa Solutions Germany Gmbh Florprodukt mit unidirektional erhöhter Festigkeit zur Herstellung von CFK-Bauteilen
CN106319748A (zh) * 2016-08-30 2017-01-11 常州市宏发纵横新材料科技股份有限公司 热压增强多轴向织物复合材料的生产方法
CN106319747A (zh) * 2016-08-30 2017-01-11 常州市宏发纵横新材料科技股份有限公司 一种热压增强双轴向混编织物复合材料的生产工艺
EP3315288A1 (fr) 2016-10-31 2018-05-02 OCV Intellectual Capital, LLC Procédé et appareil de fabrication de revêtements à sec de réparation de tuyau
CN109162020A (zh) * 2018-11-23 2019-01-08 重庆璨月新材料有限公司 一种抗拉型玻璃纤维针刺毡及其生产工艺和设备
US12042954B2 (en) * 2019-05-11 2024-07-23 The Texas A&M University System B-staging of pre-preg using capacitively-coupled electromagnetic heating method
IT201900015180A1 (it) * 2019-08-28 2021-02-28 Lorenzo Coppini Un metodo e un sistema per la creazione di un tessuto non tessuto

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994762A (en) * 1972-07-21 1976-11-30 Hyfil Limited Carbon fiber composites
WO1997026397A2 (fr) * 1996-01-19 1997-07-24 Vetrotex France S.A. Procede et dispositif de fabrication d'un materiau composite
US5662761A (en) * 1992-07-21 1997-09-02 Amp-Akzo Lin Lam Vof Method of manufacturing a UD-reinforced PWB laminate
WO1998031857A1 (fr) * 1997-01-16 1998-07-23 Vetrotex France Procede et dispositif de fabrication de plaques composites
FR2761380A1 (fr) * 1997-03-28 1998-10-02 Europ Propulsion Procede et machine pour la realisation de nappes fibreuses multiaxiales
WO1999044810A1 (fr) * 1998-03-04 1999-09-10 Eldra Kunststofftechnik Gmbh Agencement de structure a fibres et procede pour la production d'une ebauche
WO2000048821A1 (fr) * 1999-02-19 2000-08-24 Alliedsignal Inc. Tissu souple forme a partir d'une toile fibreuse et matrice a domaines discontinue
FR2792952A1 (fr) * 1999-04-29 2000-11-03 Auguste Chomarat & Cie Ets Nouveau produit de renforcement
FR2797892A1 (fr) * 1999-08-27 2001-03-02 Vetrotex France Sa Procede et dispositif de fabrication de plaques composites
WO2001034892A1 (fr) * 1999-11-12 2001-05-17 Rhovyl Procede et installation d'elaboration d'une nappe fibreuse multidirectionnelle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE527064A (fr) * 1950-03-23 1900-01-01
US3903568A (en) * 1966-07-29 1975-09-09 Celanese Corp Production of batting
US3875616A (en) * 1968-01-18 1975-04-08 Celanese Corp Cross lapping apparatus
DE2245051A1 (de) * 1972-09-14 1974-03-21 Krupp Gmbh Kreuzleger zum vlieslegen
US4107822A (en) * 1977-06-08 1978-08-22 Roger Alan Brown Process for making a batt of modified basis weight profile and lengthwise uniformity
DE3343048C2 (de) * 1983-11-28 1987-05-14 Liba Maschinenfabrik Gmbh, 8674 Naila Verfahren und Vorrichtung zum Legen von Querschußfäden für eine Kettenwirkmaschine
CA1277188C (fr) * 1984-11-19 1990-12-04 James E. O'connor Articles thermoplastiques armes de fibres, et leur preparation
DE3501897A1 (de) * 1985-01-22 1986-07-24 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung einer mehrlagigen fasermatte
US5047109A (en) * 1986-10-23 1991-09-10 Jb Group, Inc. Apparatus for production of bias fabrics
GB8822521D0 (en) * 1988-09-26 1988-11-02 Tech Textiles Ltd Method of producing formable composite material
US5289617A (en) 1991-06-03 1994-03-01 Asselin (Societe Anonyme) Spreading and lap-forming machine
WO1993024692A1 (fr) * 1992-05-25 1993-12-09 Hergeth Hollingsworth Gmbh Procede de fabrication de non-tisses, ainsi que plisseur transversal
TW357200B (en) * 1995-09-13 1999-05-01 Owens Corning Fiberglas Tech Unidirectional fabric and method and apparatuses for forming the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994762A (en) * 1972-07-21 1976-11-30 Hyfil Limited Carbon fiber composites
US5662761A (en) * 1992-07-21 1997-09-02 Amp-Akzo Lin Lam Vof Method of manufacturing a UD-reinforced PWB laminate
WO1997026397A2 (fr) * 1996-01-19 1997-07-24 Vetrotex France S.A. Procede et dispositif de fabrication d'un materiau composite
WO1998031857A1 (fr) * 1997-01-16 1998-07-23 Vetrotex France Procede et dispositif de fabrication de plaques composites
FR2761380A1 (fr) * 1997-03-28 1998-10-02 Europ Propulsion Procede et machine pour la realisation de nappes fibreuses multiaxiales
WO1999044810A1 (fr) * 1998-03-04 1999-09-10 Eldra Kunststofftechnik Gmbh Agencement de structure a fibres et procede pour la production d'une ebauche
WO2000048821A1 (fr) * 1999-02-19 2000-08-24 Alliedsignal Inc. Tissu souple forme a partir d'une toile fibreuse et matrice a domaines discontinue
FR2792952A1 (fr) * 1999-04-29 2000-11-03 Auguste Chomarat & Cie Ets Nouveau produit de renforcement
FR2797892A1 (fr) * 1999-08-27 2001-03-02 Vetrotex France Sa Procede et dispositif de fabrication de plaques composites
WO2001034892A1 (fr) * 1999-11-12 2001-05-17 Rhovyl Procede et installation d'elaboration d'une nappe fibreuse multidirectionnelle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429343C (zh) * 2003-12-31 2008-10-29 美商.V.F.T.有限公司 以长纤为原料制作而成具伸展性、高膨度的扁平管状结构的方法、结构及其成型装置
US8541076B2 (en) 2004-01-07 2013-09-24 V.F.T. Inc. Stretchable high-loft flat-tube structure from continuous filaments
JP2007526152A (ja) * 2004-03-05 2007-09-13 アルカン テヒノロギー ウント メーニッジメント リミテッド 繊維強化されたプラスチックプレートの連続生産方法
EP1586688A1 (fr) * 2004-04-15 2005-10-19 V.F.T.Inc. Structure extensible et volumineuse de forme cylindrique aplatie réalisée à partir de filaments continus
EP1693496A1 (fr) * 2005-02-18 2006-08-23 Fukui Prefecture Government Feuille renforcée par des fibres, procédé et machine pour la fabriquer
WO2015075190A1 (fr) * 2013-11-22 2015-05-28 Ahlstrom Corporation Renfort unidirectionnel, procédé de production de renfort unidirectionnel et utilisation associée
US10022907B2 (en) 2013-11-22 2018-07-17 Ahlstrom-Munksjo Oyj Unidirectional reinforcement, a method of producing a unidirectional reinforcement and the use thereof
US10035301B2 (en) 2013-11-22 2018-07-31 Ahlstrom-Munksjo Oyj Unidirectional reinforcement, a method of producing a reinforcement and the use thereof
RU2672431C1 (ru) * 2013-11-22 2018-11-14 Альстром-Мункше Ойй Однонаправленный армирующий наполнитель, способ получения однонаправленного армирующего наполнителя и способ его применения

Also Published As

Publication number Publication date
CN1507510A (zh) 2004-06-23
US7226518B2 (en) 2007-06-05
EP1373621A1 (fr) 2004-01-02
FR2821631B1 (fr) 2003-09-19
MXPA03007803A (es) 2003-12-08
KR20040025666A (ko) 2004-03-24
PL363882A1 (en) 2004-11-29
DE60230597D1 (de) 2009-02-12
US20040082244A1 (en) 2004-04-29
ATE419418T1 (de) 2009-01-15
BR0207763A (pt) 2004-06-01
FR2821631A1 (fr) 2002-09-06
CZ20032358A3 (cs) 2004-04-14
JP2004530053A (ja) 2004-09-30
CA2450672A1 (fr) 2002-09-12
SK10842003A3 (sk) 2004-04-06
EP1373621B1 (fr) 2008-12-31
AU2002241047B2 (en) 2005-11-17

Similar Documents

Publication Publication Date Title
EP1373621B1 (fr) Procede et dispositif de fabrication d'une plaque composite a renfort fibreux multiaxial
EP0888471B1 (fr) Procede et dispositif de fabrication de plaques composites
EP0972102B1 (fr) Procédé pour la réalisation de nappes fibreuses multiaxiales
EP1001875B1 (fr) Procede de realisation d'un panneau de structure composite renforcee du type sandwich a ame alveolaire et panneau realise selon un tel procede
WO2019087141A1 (fr) Produit composite comprenant un treillis et un polymere
EP1226298B1 (fr) Procede et dispositif de fabrication de plaques composites
EP0745716B1 (fr) Procédé pour la fabrication d'une armature textile utilisable pour la réalisation de matériaux composites
EP1689924A1 (fr) Mat de verre aiguillete
EP2467524A1 (fr) Armature textile a fils de verre continus
EP2467518A2 (fr) Renfort á mèches de fils de verre parallèles
CA2768870C (fr) Procede de realisation d'une ame avec fibres de pontage integrees pour panneaux en materiaux composites, panneau obtenu et dispositif
FR2834726A1 (fr) Structure fibreuse pour la realisation de materiaux composites
EP0659923A1 (fr) Réseau de fils de verre et matériau composite renforcé par ledit réseau
FR3078010A1 (fr) Materiau composite et procede de realisation de ce materiau
EP0394081B1 (fr) Procédé de fabrication d'un matériau composite constitué d'une matrice thermoplastique renforcée par des fibres longues et matériau composite obtenu par ce procédé
EP1692334A1 (fr) Produit de renforcement a base de fibres, et procede pour sa realisation
FR2478693A1 (fr) Procede pour reduire la porosite d'un tissu, notamment de fibres de carbone, pre-impregne
WO2020182959A1 (fr) Procede de fabrication d'un renfort fibreux pre-impregne a partir d'un non-tisse thermoplastique et d'un renfort de fibres naturelles vegetales, et renfort fibreux pre-impregne obtenu
FR2861749A1 (fr) Mat deformable a renfort fibreux pour la fabrication de composites a matrice thermoplastique
FR3108056A1 (fr) Nouveaux matériaux de renfort à grammage élevé, adaptés à la constitution de pièces composites, procédés et utilisation
FR3101276A1 (fr) Procédé de réalisation d’une pièce en materiau composite de type sandwich par aiguilletage
EP2233624A1 (fr) Renfort textile pour materiau composite et procede de fabrication d'un tel renfort

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002706881

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2450672

Country of ref document: CA

Ref document number: 10842003

Country of ref document: SK

Ref document number: 1094/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10468399

Country of ref document: US

Ref document number: 1020037011414

Country of ref document: KR

Ref document number: PA/a/2003/007803

Country of ref document: MX

Ref document number: 01093/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002569505

Country of ref document: JP

Ref document number: PV2003-2358

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 2002241047

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 028093143

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002706881

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020037011414

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: PV2003-2358

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 2002241047

Country of ref document: AU