WO2002069450A1 - Antenne - Google Patents

Antenne Download PDF

Info

Publication number
WO2002069450A1
WO2002069450A1 PCT/JP2001/001463 JP0101463W WO02069450A1 WO 2002069450 A1 WO2002069450 A1 WO 2002069450A1 JP 0101463 W JP0101463 W JP 0101463W WO 02069450 A1 WO02069450 A1 WO 02069450A1
Authority
WO
WIPO (PCT)
Prior art keywords
element antennas
concentric circle
antenna
antenna device
concentric
Prior art date
Application number
PCT/JP2001/001463
Other languages
English (en)
French (fr)
Inventor
Masataka Ohtsuka
Isamu Chiba
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2002568466A priority Critical patent/JP3923431B2/ja
Priority to US10/250,520 priority patent/US6768475B2/en
Priority to EP01906351A priority patent/EP1365477A4/en
Priority to PCT/JP2001/001463 priority patent/WO2002069450A1/ja
Publication of WO2002069450A1 publication Critical patent/WO2002069450A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/242Circumferential scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • This effort relates to antenna devices, and more particularly to antenna devices that perform beam forming by arranging a plurality of element antennas, for example, in communications and radar.
  • Background art
  • FIG. 7 is a configuration diagram showing a configuration of a conventional antenna device, for example, an antenna device disclosed in Japanese Patent Application Laid-Open No. Hei 7-288417.
  • 1 is a plurality of element antennas arranged on a plane
  • 2 is a concentric circle (or concentric circumference) on which the element antenna 1 is arranged.
  • Feeding means (not shown) for adjusting the excitation amplitude and the excitation phase is connected to each element antenna 1.
  • the present antenna device can obtain desired radiation characteristics.
  • the conventional antenna device is configured as described above.However, if the interval between the element antennas 1 in the circumferential direction in each concentric circle 2 is increased, a high-level side rope is generated, and desired radiation characteristics cannot be obtained. There was a problem.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a low-cost antenna device having a minimum number of element antennas necessary for suppressing unnecessary side loops. Disclosure of the invention
  • a plurality of element antennas are arranged on a plurality of concentric circles having different radii supposed on a plane, and a maximum is obtained from a direction perpendicular to the plane.
  • An antenna device that forms a beam in a direction inclined only by an angle, the radius of the nth concentric circle from the inside is an, the number of element antennas arranged on the nth concentric circle from the inside is Mn , and the wave number is k Then, the number M n of element antennas arranged on each concentric circle is
  • an antenna device in which the element antennas are arranged at substantially equal intervals in a circumferential direction of each of the concentric circles.
  • the number M n of element antennas arranged on the n-th concentric circle from the inside is assumed to be an odd number.
  • the number IV ⁇ of the innermost concentric element antennas is odd. Also, assuming an arbitrary straight line passing through the center of a plurality of concentric circles, the element antennas on each concentric circle are arranged so as not to be aligned on a straight line parallel to the straight line.
  • the arrangement start position of the element antennas on each concentric circle, the straight line passing through the center of the concentric circles, respectively, shall be the position rotated by a predetermined angle delta eta randomly chosen. Also, assuming a straight line passing through the center of a plurality of concentric circles, the number of element antennas on one half of the straight line and the number of element antennas on the other half are approximately the same.
  • FIG. 1 is a diagram showing an element antenna arrangement of an antenna device according to Embodiment 1 of the present invention
  • FIG. 2 is an explanatory diagram for explaining the radiation characteristics of the antenna device of FIG. 1 in a wave number space
  • FIG. 3 is a vector space showing the addition of a single underlined term and a double underlined term in equation (2).
  • FIG. 4 is an explanatory diagram showing an element antenna arrangement of an antenna device according to a fifth embodiment of the present invention and a reference example for comparison therewith.
  • FIG. 5 is a diagram showing an element antenna arrangement of the antenna device according to the sixth embodiment of the present invention.
  • FIG. 6 is a diagram showing a feed structure of an antenna device according to a seventh embodiment of the present invention
  • FIG. 7 is a diagram showing an element antenna arrangement of a conventional antenna device.
  • FIG. 1 is a diagram showing an element antenna arrangement of an antenna device according to a first embodiment of the present invention.
  • FIG. 1 (a) is a perspective view
  • FIG. 1 (b) is a plan view.
  • 1 is an element antenna arranged on a plane
  • 2 is a concentric circle (or concentric circle) on which the element antenna is arranged
  • 3 is an element antenna interval along a concentric circumferential direction
  • 4 represents coordinates.
  • FIG. 2 is a diagram illustrating the radiation characteristics of the antenna device in a wave number space.
  • 5 represents wave number space coordinates
  • 6 represents the visible range.
  • a feeding means illustrated in the drawing for adjusting the excitation amplitude and the excitation phase for each element antenna 1. Is connected.
  • a plurality of element antennas 1 are arranged on a plurality of concentric circles 2 assumed on an X-y plane of coordinates 4.
  • concentric circles 2 are given numbers n (1 ⁇ n ⁇ N) in order from the inside, and the total number is N.
  • the n-th radius of concentric circle 2 and a n the number of antenna elements located on the n-th concentric circle 2, M n pieces.
  • the element antennas 1 are arranged at equal intervals in the circumferential direction of the concentric circle 2, and all the element antennas on the nth concentric circle 2 have the same excitation amplitude. Let it be n .
  • the n-th concentric circle 2 it is disposed element antennas 1 from position rotated by an angle delta n from the X-axis of the coordinate 4 'Ku intended to.
  • the angle ⁇ is randomly selected, and the reason will be described in detail in a fifth embodiment described later.
  • the antenna device obtains desired radiation characteristics by giving the Hata antenna 1 a predetermined excitation amplitude and excitation phase.
  • a case is considered in which an excitation phase is given in a predetermined direction (0., ⁇ .) So that the radiation phase of each element antenna 1 becomes co-phase.
  • the Iii eta th antenna element 2 as counted from the X axis, the angle ⁇ on the x _y plane mn, the wave number in the freedom space and k, the radiation characteristic of the antenna f ( ⁇ , ⁇ ) is expressed by the following equation.
  • Equation (2) is the first-order Bessel function of order ⁇ .
  • the radiation characteristic in the wave number space is the beam direction (sin0, cos ⁇ i). , ⁇ 0 sin ⁇ . It can be seen that the level changes sinusoidally on the circumference where the distance ⁇ from) is constant.
  • Figure 2 shows the situation.
  • the radiation pattern that appears in the actual physical space is within the circumference at a distance of 1 from the origin of wavenumber space coordinates 5 (visible range 6).
  • the double underlined part of Eq is the beam direction (sin0, cos ⁇ i).
  • the term of q> 1 can be ignored and the entire double underlined part becomes small.
  • the minimum M n that satisfies the above equation (3) is selected as the number of element antennas on each concentric circle 2, and by arranging them at substantially equal intervals, the side rope in the visible range 6 is suppressed.
  • an increase in mutual coupling between element antennas can be prevented, and an antenna device having a minimum number of element antennas capable of obtaining desired radiation characteristics can be configured.
  • the number of element antennas can be reduced to the minimum necessary, and the effect of cost reduction can be obtained.
  • an antenna device with the minimum number of element antennas capable of suppressing side lobes in the visible region 6 and obtaining desired radiation characteristics can be obtained. It can be configured and the effect of cost reduction can be obtained. Further, in the antenna device of the present embodiment, the distance between the element antennas is set in the radial direction. Since they are equally spaced in the circumferential direction, the element antennas 1 are arranged almost uniformly in the antenna aperture. This has the effect of increasing the aperture efficiency and configuring an antenna with a high gain.
  • FIG. 3 is a vector space that takes up one of the concentric circles 2 and represents the addition of the single underline and double underline terms of equation (2) at a given (k. An -p).
  • 7 is a single underlined term
  • 8 is a vector representing a certain term with a double underline
  • 9 is a vector (that is, a side rope) generated by adding both.
  • This embodiment is characterized in that the number of element antennas on each concentric circle 2 is odd in the arrangement of FIG. The following describes how the side rope behaves by making it odd.
  • Embodiment 4 is an antenna device according to Embodiment 2 in which the number of element antennas Mi on the first concentric circle 2 is odd.
  • FIG. 4 shows the arrangement of element antennas of the antenna device according to the fifth embodiment.
  • FIG. 4 (A) shows this antenna device, if shifted by delta eta each arrangement start position of the element antenna 1 of each concentric circle 2 from the X axis, FIG. 4 (b), in comparison with the configuration of the present invention described
  • This is a reference example in which the arrangement start positions of all the element antennas 1 are set on the X axis.
  • reference numeral 10 denotes a gap d between the element antennas 1 which appears near the center of the antenna when the arrangement start position of the element antennas 1 is set to be on the same straight line.
  • Other numbers are the same as those described above.
  • Embodiment 2 or 4 in which all circumferential element intervals are equal is taken as an example.
  • the element antenna 1 has been arranged from all the concentric circles 2 from the X axis. In this case, if the radius of the concentric circle 2 becomes large,
  • the arrangement start position of the element antenna 1 of each concentric circle 2 as shown in FIG. 4 in the present invention (a) from the X-axis, displaced by delta eta respectively, and chooses delta eta randomly Like that.
  • FIG. 5 shows an element antenna arrangement according to the sixth embodiment.
  • numerals in parentheses denoted by 11 indicate the number of element antennas on each concentric circle 2 above and below the X axis. Other numbers are the same as those described above.
  • the present embodiment exemplifies the arrangement described in Embodiment 4 in which all circumferential element intervals are equal and the number of element antennas on odd-numbered concentric circles 2 from the ⁇ side is odd. It is an object of the present invention to obtain a monopulse difference pattern in the radiation characteristics. For example, when a difference pattern is configured by the y-plane pattern in FIG. 5, it is necessary to make the number of element antennas arranged above and below the X axis approximately equal. Paying attention to each concentric circle 2, since the circumferential element spacing is equal, in the concentric circle 2 in which the number of element antennas is even, the number of element antennas is always equal above and below the axis.
  • Embodiment 4 is taken as an example, but the same method can be applied to the other embodiments described above without losing the effects obtained in each embodiment.
  • the above method may be applied so that the number of element antennas is equal on both sides of the y-axis.
  • FIG. 6 shows an antenna device according to the seventh embodiment.
  • FIG. 6A is a cross-sectional view
  • FIG. 6B is a top view.
  • 12 is a module connected to each element antenna 1 and equipped with an amplifier and phase shifter
  • 13 is a probe that electrically connects the module 12 and the radial waveguide
  • 14 is a radial waveguide
  • 1 Reference numeral 5 denotes a coaxial probe that supplies power to the radial waveguide 14.
  • the operation of the present embodiment will be described in the case of a transmitting antenna.
  • the radio wave radiated from the coaxial probe 15 travels inside the radial waveguide 14 by forming a cylindrical wavefront around the coaxial probe 15.
  • This radio wave is coupled to the module 12 via the probe 13 on the way.
  • the module 12 amplifies the combined radio wave to a desired amplitude and phase, adjusts the phase, and excites the element antenna 1.
  • the radiation pattern of the antenna device is synthesized by the radio waves emitted from each element antenna 1. In the case of the receiving antenna, the traveling direction of the radio wave is opposite to the above.
  • the element antenna arrangement shown in the above-described first to sixth embodiments is used. Therefore, the probes 13 are also arranged concentrically in the radial waveguide 14. That is, even if scattered waves are generated by the probe 13, the cylindrical wavefront is generally maintained due to its symmetry, and desired radiation characteristics can be obtained.
  • each module 12 can be fed by the radial waveguide 14, a feed network having a complicated structure combining a plurality of distributors, which is generally used for feeding an array antenna, is not required. In other words, there is an effect that the cost can be reduced by simplifying the power supply structure.
  • a plurality of element antennas are arranged on a plurality of concentric circles having different radii assumed on a plane, and a maximum of six antennas are arranged in a direction perpendicular to the plane.
  • the number of element antennas on the circumference is Mi
  • the radius of the nth concentric circle from the inner side is na
  • the number of element antennas on the circumference is Then, the number of elements on the innermost concentric circle I.
  • the element antenna spacing is set to be equal in the radial and circumferential directions to satisfy Vso, the element antennas are arranged almost uniformly in the antenna aperture, the aperture efficiency increases, and the gain increases. be able to.
  • the level of the side rope can be further reduced. Since the number of element antennas on the innermost concentric circle ⁇ ⁇ is odd, the number of element antennas on the first, third, fifth, ... and odd-numbered concentric circles can be odd. It can be kept small. Also, assuming an arbitrary straight line passing through the center of a plurality of concentric circles, the element antennas on each concentric circle are arranged so as not to be aligned on a straight line parallel to the straight line. It is possible to prevent the occurrence of regular gaps due to the arrangement, and to suppress the rise of the side rope.
  • the number of element antennas on one half of the straight line and the number of element antennas on the other half are approximately the same. Since the number of element antennas can be made equal on both sides of the straight line as a boundary, a monopulse difference pattern can be obtained with radiation characteristics.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

明 細 書 アンテナ装置 技術分野
この努明はアンテナ装置に関し、 特に、 例えば通信やレーダにおいて、 複数の 素子ァンテナを配置してビーム形成を行うァンテナ装置に関するものである。 背景技術
図 7は従来のアンテナ装置の構成を示した構成図であり、 例えば、 特開平 7— 2 8 8 4 1 7号公報に示されたアンテナ装置である。 図において、 1は平面に配 置された複数の素子アンテナ、 2は素子アンテナ 1が配置されている同心円 (ま たは同心円周) である。 各素子アンテナ 1には、 励振振幅や励振位相を調整する 給電手段 (図示せず) が接続されている。
次に動作について説明する。 給電手段によって、 各素子アンテナ 1の励振振幅 および励振位相を調整することにより、 本アンテナ装置は所望の放射特性を得る ことができる。
従来のアンテナ装置は以上のように構成されていたが、 各同心円 2において周 方向の素子アンテナ 1の間隔を広くすると、 高レベルなサイドロープを発生して しまい、 所望の放射特性を得られないという問題点があった。
また、 このサイドローブを回避するためには周方向の素子アンテナ間隔を狭く すれば良いが、 必要以上に間隔を狭くすると、 素子アンテナ数が増加してコスト が高くなるとともに、 素子アンテナ間の相互結合が増加して、 所望の放射特性を 得にくくなるという問題が発生する。
この発明はかかる問題点を解決するためになされたもので、 不要なサイドロー プを抑制するのに必要な最小限の素子アンテナ数を有する、 低コストなアンテナ 装置を得ることを目的とする。 発明の開示
この発明は、 平面上に想定された半径の異なる複数の同心円上に複数の素子ァ ンテナを配置し、 当該平面に垂直な方向から最大 。だけ傾いた方向にビームを 形成するアンテナ装置であって、 内側から n番目の同心円の半径を a n、 内側か ら n番目の同心円上に配置される素子アンテナの数を Mn、 波数を kとした場合 に、 各々の同心円上に配置される素子アンテナの数 Mnを次式
Μ,, + 0.81 · M > · fl„ · (1 + sin 6>0 )
を満たすように定め、 かつ、 上記素子アンテナを上記各々の同心円の周方向に 略々等間隔で配置するアンテナ装置である。
また、 最も内側にある同心円の半径を aい その周上にある素子アンテナの数 を]^^とし、 内側から n番目の同心円の半径を n aい その周上にある素子アン テナの数を n M とした場合に、 上記最も内側にある同心円上の素子アンテナの 数 Miを次式 , +0.81 、n J
を満たすように定めている。
また、 内側から n番目の同心円上に配置される素子アンテナの数 Mnを奇数と している。
また、 最も内側にある同心円上の素子アンテナの数 IV^を奇数としている。 また、 複数の同心円の中心を通過する任意の直線を想定した場合、 各同心円上 の素子アンテナが、 直線に平行な直線上に並ばないように配置している。
また、 各同心円上の素子アンテナの配置開始位置を、 同心円の中心を通過する 直線から、 それぞれ、 ランダムに選ばれた所定の角度 Δ ηだけ回転した位置とす る。 また、 複数の同心円の中心を通過する直線を想定し、 直線を境とした片方の半 面にある素子アンテナ数と、 他方の半面にある素子アンテナ数が略々同数となる ようにしている。
また、 複数の素子アンテナをラジアル導波路を介して給電する。 図面の簡単な説明
図 1は、 本発明の実施の形態 1によるアンテナ装置の素子アンテナ配置を示す 図、
図 2は、 図 1の本ァンテナ装置の放射特性を波数空間で説明する説明図、 図 3は、 式 (2 ) の一重下線の項と二重下線の項との加算を表すベクトル空間 を示した説明図、
図 4は、 本発明の実施の形態 5によるアンテナ装置の素子アンテナ配置と、 そ れと比較するための参考例とを示した説明図、
図 5は、 本発明の実施の形態 6によるアンテナ装置の素子アンテナ配置を示す 図、
図 6は、 本発明の実施の形態 7によるアンテナ装置の給電構造を示した図、 図 7は、 従来のアンテナ装置の素子アンテナ配置を示した図である。 発明を実施するための最良の形態
実施の形態 1 .
ここではまず、 同心円上に素子アンテナを配置したァレーアンテナの動作につ いて説明し、 本発明の効果を明らかにする。 図 1はこの発明の実施の形態 1によ るアンテナ装置の素子アンテナ配置を示す図であり、 図 1 ( a ) は斜視図、 図 1 ( b ) は平面図である。 図 1において、 1は平面に配置された素子アンテナ、 2 は素子アンテナが配置されている同心円 (または同心円周) 、 3は同心円周方向 に沿った素子アンテナ間隔、 4は座標を表す。 また、 図 2は上記アンテナ装置の 放射特性を波数空間で説明する図である。 図中 5は波数空間座標、 6は可視域を 表す。 なお、 本アンテナ装置においても、 上述した従来のアンテナ装置と同様に、 各素子アンテナ 1に対する励振振幅および励振位相を調整する給電手段 (図示せ ず) が接続されている。
次に本アンテナ装置の構造について説明する。 本アンテナ装置は、 座標 4の X 一 y平面上に想定される複数の同心円 2上のそれぞれに複数の素子アンテナ 1を 配置したものである。 同心円 2は、 図 1 (b) に示すように、 内側から順に番号 n (1≤n≤N) をつけることとし、 その総数は N個である。 また、 第 n番目の 同心円 2の半径は a nとし、 第 n番目の同心円 2上にある素子アンテナ数を Mn 個とする。 一つの同心円 2内では、 素子アンテナ 1は同心円 2の周方向に等間隔 にならんでいるものとし、 また第 n番目の同心円 2上にある素子アンテナは全て 励振振幅が等しいものとし、 これを Enとする。 さらに第 n番目の同心円 2では、 座標 4の X軸から角度 Δ nだけ回転した位置から素子アンテナ 1が配置されてい 'くものとする。 なお、 この角度 Δηはランダムに選ぶものとし、 その理由につい ては、 後述の実施の形態 5において詳細に説明する。
次に本ァンテナ装置の動作について説明する。 本ァンテナ装置は上記秦子ァン テナ 1に所定の励振振幅および励振位相を与えることで所望の放射特性を得る。 本実施の形態では、 所定の方向 (0。, Φ。) で各素子アンテナ 1の放射位相が 共相となるように励振位相を与える場合を考える。 第 η番目同心円 2上における、 X軸から数えて ΐίΐη番目の素子アンテナ 2の、 x _y面上の角度 φを mn、 自 由空間中の波数を kとすると、 このアンテナの放射特性 f (θ , φ) は次式で表 現される。
+ sin sin sin
Figure imgf000006_0001
{s 9a cos cos^In +sin0Q sin^0 sin " )} (i) ただし =t, ·
上記式 (1) を、 sin 0 cos と sin 0 sin φを直交軸とする波数空間で表現す ると次式 (2) のようになる。 ただし、 次式 (2) で J ηは η次の第 1種べッセ ル関数である。
Figure imgf000007_0001
+ 22 · (k-a„'p)- cos (M„ · - Δ„ )) ί (2)
ただし ? = sin0cos0— sin0o cos0o) + (sin θδΐ φ- sm θ0 sin 0 f
(sin Θ cos φ - sin θη cos φ0 )
cos^
(sm 0 cos ー sm θ0 cos φ。† + (sm 0 sin ^ - sm θ0 sin φ。 )'
上式 (2) より波数空間の放射特性は、 ビーム方向 (sin0。cos<i)。, βίηθ 0 sin φ。) からの距離 ρが一定の円周上において正弦状にレベルが変化すること がわかる。 図 2にその様子を示す。 図 2において、 波数空間座標 5の原点から 1 の距離にある円周内が実際の物理空間に現れる放射パターンである (可視域 6) 。 さらに、 式 (2) より、 0次の第 1種ベッセル関数を有する式 (2) の一重下線 部は、 メインビーム =0の位置) およびサイドローブ (/0〉0の領域) に寄 与するが、 式 (2) の二重下線部は、 で値を持たない 1次以上の第 1種べ ッセル関数で形成されるため、 ρ >0のサイドローブのみに寄与することがわか る。 したがって、 可視域 6において二重下線部の値が充分に小さくなればサイド 口ーブを低くすることができる。
1次以上の第 1種ベッセル関数 J η (x) は、 概ね x = 0〜nにおいてその値 は極めて小さく、 これより大きい Xで正弦状の変化をする。 したがって式 (2) の二重下線部において、 q == 1の項が可視域 6内で充分小さければ、 q > 1の項 は無視でき、 二重下線部全体が小さくなる。 上記アンテナ装置において、 天頂
(図 1の z軸) からのビーム走査が最大 0。まで行われる場合、 図 2に示すよう に、 可視域における pの最大値は (l +sin0。) である。 また、 第 1種べッセ ル関数 Jn (x) の最初のピーク位 は
X «« + 0.81 · 1/3
n で表される。 したがって式 (2) の二重下線部を十分小さくするには、 各同心円 2上の素子アンテナ数 Mnが次式 (3) を満たすように選べば良い。
Μ,, + 0.81 · M > . ィ 1 + sin 。 ) (3)
以上のように、 上記式 (3) を満たす最小の Mnを各同心円 2上の素子アンテ ナ数として選び、 それらを略々等間隔で配置することで、 可視域 6におけるサイ ドロープを抑制し、 かつ、 素子アンテナ間の相互結合の増加を防止でき、 所望の 放射特性を得ることが可能な最小素子アンテナ数のアンテナ装置を構成すること ができる。 これにより、 素子アンテナ数を必要最小限に抑えることができたため、 コスト低減の効果を得ることができる。
実施の形態 2.
ここでは図 1に基づき、 第 2の実施の形態について説明する。 実施の形態 1に おいて各同心円 2の半径 a n間の間隔を等しくし、 a n=n ' a iとする。 また、 内側から 1番目の同心円 2上の素子アンテナ数を とした場合、 第 n番目の同 心円 2上の素子アンテナ数は Mn=n とする。 この場合、 各同心円 2の周 方向に沿った素子アンテナ間隔は、 いずれの同心円 2においても 2 π a 1/M1 となる。
以上のような条件において、 実施の形態 1において上述した式 (3) は次式の ようになる。
M、 >k-a1 -(l + sin( 0) (4)
Figure imgf000008_0001
上記式 (4) を満たすように を選定すれば、 実施の形態 1と同様に、 可視 域 6におけるサイドローブを抑圧して所望の放射特性を得ることができる最小素 子アンテナ数のアンテナ装置を構成でき、 コスト低減の効果を得ることができる。 さらに本実施の形態のアンテナ装置では、 素子アンテナ間隔を半径方向おょぴ 周方向で等間隔にしたので、 アンテナ開口にほぼ均一に素子アンテナ 1が配置さ れることになる。 このため開口効率が高くなり、 利得が高いアンテナを構成でき るという効果を得る。
実施の形態 3 .
ここでは、 上式 (2 ) と図 3に基づいて、 第 3の実施の形態について説明する。 図 3は上記同心円 2の一つを取り上げ、 所定の (k . a n - p ) における式 ( 2 ) の一重下線と二重下線の項の加算を表すベクトル空間である。 図中 7は一 重下線の項、 8は二重下線のとある 1項を表すべクトルであり、 9は両者の加算 で発生するべクトル (すなわち、 サイドロープ) を表す。
本実施の形癉は、 図 1の配列において、 各同心円 2上の素子アンテナ数を奇数 にしたことを特長とする。 奇数にすることでサイドロープがどのような振る舞い をするかを以下に述べる。
式 (2 ) のサイドローブに寄与する二重下線部の内、 もっとも早く可視域内に 現れ、 かつ、 振幅が大きいのは、 q = lの項である。 実施の形態 1〜2ではこの 項を抑制するような素子アンテナ数を選択したが、 広角においてはこの q = 1の 項のピークは見えなくても、 その立ち上がりが見えて、 サイドロープが大きくな る場合がある。 このサイドローブを抑制するには各同心円 2上の素子アンテナ数 を奇数にすれば良い。
第 n番目の同心円 2上の素子アンテナ 1によって形成される放射パターンにつ いて、 広角にあたる所定の (k · a n · p ) での振る舞いを考える。 式 (2 ) の 一重下線の項 7は素子アンテナ数に係わらず常に実数である。 これに対して、 式
( 2 ) の二重下線部で q = lの項 8は、 Mnが偶数の場合には実数となり、 奇数 の場合には虚数となる。 項 7と項 8の合成 9を図 3に示す。 Mnが偶数の場合に は、 図 3 ( a ) に示すように、 両者の位相が合って大きなサイドローブ 9が形成 されるが、 奇数の場合には、 図 3 ( b ) に示すように、 両者が直交するため、 サ イドロープ 9は小さくなる。 このことは一^ 3の同心円 2に限らず、 複数の同心円 2を合成したときにも同様の現象が生じる。 したがって、 各同心円 2上の素子ァ ンテナ数を奇数にすることで、 サイドローブレベルをさらに小さく抑えることが できるという効果を有する。 実施の形態 4 .
実施の形態 4は、 実施の形態 2のアンテナ装置に いて、 第 1番目の同心円 2 上の素子アンテナ数 M iを奇数としたものである。 実施の形態 2のアンテナ装置 では、 全ての素子アンテナ間隔を等しくして概ね均一な素子アンテナ配置を実現 するために、 同心円 2の半径に a n = n · aい また、 周方向素子アンテナ数に Μη = η · なる関係を設けている。 このため全ての同心円 2上の素子アンテ ナ数を奇数にすることはできないが、 I ^を奇数とすることで、 第 1、 3、 … と奇数番目の同心円 2上の素子アンテナ数を奇数にすることができる。 これによ り実施の形態 3と同様の効果によって、 サイドロープを抑制することができる。 なお、 補足ながら、 IV^を偶数にした場合には、 全ての同心円 2上の素子アン テナ数が偶数となるため、 奇数素子アンテナ数によるサイドロープ抑制の効果は 得られなくなる。 しかしながら、 もちろん本手法においても、 実施の形態 2と同 様、 ァンテナ開口にほぼ均一に素子ァンテナが配置されることにより開口効率が 高くなり、 利得が高いアンテナ装置を構成できるという効果は得られるものであ る。
実施の形態 5 .
実施の形態 5におけるァンテナ装置の素子アンテナ配置を図 4に示す。 図 4
( a ) は、 本アンテナ装置を示し、 各同心円 2の素子アンテナ 1の配置開始位置 を X軸からそれぞれ Δ ηだけずらした場合、 図 4 ( b ) は、 本発明の構成と比較 して説明するための参考例であり、 全ての素子アンテナ 1の配置開始位置を X軸 としたものである。 図中 1 0は、 素子アンテナ 1の配置開始位置を同一直線上に したことによってァンテナの中心付近に現れた素子ァンテナ 1間の隙間 dである。 他の番号は前述のものと同じである。
本実施の形態では、 実施の形態 2または 4で述べた、 全ての周方向素子間隔が 等しい配列を例にしている。 図 4 ( b ) は全ての同心円 2において素子アンテナ 1を X軸から配置し始めている。 この場合同心円 2の半径が大きくなると、 図 4
( b ) に示すように、 X軸の上下に、 X軸から d « 2παχ I Mx の間隔 1 0だけ離れた x軸に並行な直線上に、 一様に素子アンテナ 1が並ぶよう になる。 このため素子アンテナ 1の集団が、 2 dの間隔をもって X軸の上下に分 布するようにみえる。 このように規則的な隙間が発生すると大きなサイドローブ が発生するという問題が生じる。
これを解決するために、 本発明では図 4 ( a ) のように各同心円 2の素子アン テナ 1の配置開始位置を X軸から、 それぞれ Δ ηだけずらし、 かつ、 Δ ηをラン ダムに選ぶようにしている。 この手法により、 素子アンテナ 1が直線上に並ぶこ とによる規則的な隙間が発生することを防ぎ、 上記サイドローブの上昇を抑制で きるという効果を得る。
実施の形態 6.
実施の形態 6の素子アンテナ配置を図 5に示す。 図中 1 1の示す括弧付きの数 字は各同心円 2上における X軸の上側と下側にある素子アンテナ数を示している。 他の番号は前述のものと同じである。
本実施の形態では、 実施の形態 4で述べた、 全ての周方向素子間隔が等しく、 かつ、 內側から奇数番目の同心円 2上の素子アンテナ数が奇数となる配列を例に している。 本発明の目的は、 放射特性でモノパルス差パターンを得ることである。 例えば図 5の y— ζ面パターンで差パターンを構成する場合、 X軸の上下に配置 された素子アンテナ数を概ね等しくする必要がある。 各同心円 2に注目すると、 周方向素子間隔が等しいため、 素子アンテナ数が偶数の同心円 2では、 必ず 軸 の上下で素子アンテナ数が等しくなる。 しかしながら素子アンテナ数が奇数の同 心円 2では、 X軸の上下のどちらかで 1個素子アンテナ数が多くなる。 そこで図 5のように、 X軸の上側の素子アンテナ数が多い同心円 2と、 下側が多い同心円 2を、 内側から交互に組合せることで、 アンテナ装置全体として X軸の上下で素 子アンテナ数をほぼ等しくすることができる。 この手法によりモノパルス差パタ ーンを形成できるアンテナ装置を得る。
ここでは実施の形態 4の場合を例に取ったが、 前述の他の実施の形態において も、 それぞれの実施の形態で得た効果を失うことなく、 同様の手法を適用するこ とができる。
y一 z面の他に X— z面でもモノパルス差パターンを形成したい場合は、 X軸 の上下おょぴ y軸の左右でも素子アンテナ数が等しくなるように、 上記手法を適 用すれば良い。
実施の形態 7 .
実施の形態 7のアンテナ装置を図 6に示す。 図 6 ( a ) は断面図、 図 6 ( b ) は上面図である。 図中、 1 2は各素子アンテナ 1と接続し、 増幅器や移相器を備 えたモジュール、 1 3はモジュール 1 2とラジアル導波路を電気的に結合させる プローブ、 1 4はラジアル導波路、 1 5はラジアル導波路 1 4に給電する同軸プ ローブである。
本実施の形態の動作を送信アンテナの場合で説明する。 同軸プローブ 1 5から 放射された電波はラジアル導波路 1 4の内部を、 同軸プローブ 1 5を中心とする 円筒状の波面を形成して進行する。 この電波は途中プローブ 1 3を介してモジュ ール 1 2に結合する。 モジュール 1 2は結合した電波を所望の振幅 ·位相に増幅、 位相調整し、 素子アンテナ 1を励振する。 各素子アンテナ 1から出た電波により アンテナ装置の放射パターンが合成される。 なお、 受信アンテナの場合には電波 の進行方向が上記と逆になる。
ラジアル導波路 1 4でアンテナを給電する場合に重要なのは、 円筒状の波面を 崩さないことである。 ラジアル導波路 1 4内に不規則にプローブ等の散乱体が存 在する場合、 波面が乱れて各モジュール 1 2を定まつた振幅位相で給電できなく なり、 所望の放射特性を得ることが困難になる。 本実施の形態では、 前述の実施 の形態 1〜 6で示した素子アンテナ配列を用いており , したがってプローブ 1 3 もラジアル導波路 1 4内に同心円状に配列されている。 すなわちプローブ 1 3に よる散乱波が発生してもその対称性から上記円筒状の波面が概ね維持され、 所望 の放射特性を得ることができる。
本実施の形態では、 ラジアル導波路 1 4で各モジュール 1 2を給電できるので 、 アレーアンテナの給電に一般に用いられる、 複数の分配器を組み合わせた複雑 な構造の給電回路網が不要となる。 すなわち給電構造を簡易化することで低コス ト化を図ることができるとレ、う効果を有する。 産業上の利用可能性
以上のように、 本発明にかかるアンテナ装置は、 平面上に想定された半径の異 なる複数の同心円上に複数の素子アンテナを配置し、 当該平面に垂直な方向から 最大 6。だけ傾いた方向にビームを形成するアンテナ装置であって、 内側から n 番目の同心円の半径を a n、 内側から n番目の同心円上に配置される素子アンテ ナの数を Mn、 波数を kとした場合に、 各々の同心円上に酉 S置される素子アンテ ナの数 Mnを次式
M„+0.8l-M]3 >k-an-(l + sm0o) を満たすように定め、 かつ、 上記素子アンテナを上記各々の同心円の周方向に 略々等間隔で配置するように構成したので、 サイドロープの発生を抑制するのに 必要な最小限の素子アンテナを選択することにより、 低コスト化を図り、 力つ、 所望の放射特性を得ることができる。
また、 最も内側にある同心円の半径を aい その周上にある素子アンテナの数 を Miとし、 内側から n番目の同心円の半径を n aい その周上にある素子アン テナの数を とした場合に、 上記最も内側にある同心円上の素子ァ.ンテナの 数 I^を次式
( M
,+0.81- - >/c-aI.(l + sin¾)
V ソ を満たすように定めて、 素子アンテナ間隔を半径方向おょぴ周方向で等間隔にし たので、 アンテナ開口にほぼ均一に素子アンテナが配置されて、 開口効率が高く なり、 利得を高くすることができる。
また、 内側から n番目の同心円上に配置される素子アンテナの数 Mnを奇数と したことにより、 サイドロープのレベルをさらに小さく抑えることができる。 また、 最も内側にある同心円上の素子アンテナの数 ΐ^を奇数としたので、 第 1, 3, 5、 …と奇数番目の同心円上の素子アンテナ数を奇数にできるため、 サ ィドローブのレベルを小さく抑えることができる。 また、 複数の同心円の中心を通過する任意の直線を想定した場合、 各同心円上 の素子アンテナが、 直線に平行な直線上に並ばないように配置しているので、 素 子アンテナが直線上に並ぶことによる規則的な隙間が発生することを防ぎ、 サイ ドロープの上昇を抑制することができる。
また、 各同心円上の素子アンテナの配置開始位置を、 同心円の中心を通過する 直線から、 それぞれ、 ランダムに選ばれた所定の角度 A nだけ回転した位置とす るので、 素子アンテナが直線上に並ぶことによる規則的な隙間が発生することを 防ぎ、 サイドローブの上昇を抑制することができる。
また、 複数の同心円の中心を通過する直線を想定し、 直線を境とした片方の半 面にある素子ァンテナ数と、 他方の半面にある素子ァンテナ数が略々同数となる ようにしているので、 直線を境としてその両側で素子アンテナ数を等しくするこ とができるため、 放射特性でモノパルス差パターンを得ることができる。
また、 複数の素子アンテナをラジアル導波路を介して給電するようにしたので 、 通常用いられている複雑な構造の給電回路網が不要となり、 給電構造を簡易化 することにより、 低コスト化を図ることができる。

Claims

請 求 の 範 囲
1 . 平面上に想定された半径の異なる複数の同心円上に複数の素子アンテナを配 置し、 上記平面に垂直な方向から最大 0。だけ傾いた方向にビームを形成するァ ンテナ装置であって、
内側から n番目の上記同心円の半径を a n、 上記内側から n番目の同心円上に 配置される素子アンテナの数を Mn、 波数を kとした場合に、 上記各々の同心円 上に配置される素子ァンテナの数 Mnを次式
Mn + 0.81 · Mf > : · αΜ -(1 + sin を満たすように定め、 かつ、 上記素子アンテナを上記各々の同心円の周方向に 略々等間隔で配置する
ことを特徴とするァンテナ装置。
2 . 最も内側にある同心円の半径を aい その周上にある素子アンテナの数を M iとし、 内側から n番目の上記同心円の半径を η aい その周上にある素子アン テナの数を nlV^とした場合に、 上記最も内側にある同心円上の素子アンテナの 数 IV^を次式
Figure imgf000015_0001
を満たすように定めた
ことを特徴とする請求項 1記載のアンテナ装置。
3 . 上記内側から n番目の同心円上に配置される素子ァンテナの数 Mnを奇数と したことを特徴とする請求項 1記載のアンテナ装置。
4 . 上記最も内側にある同心円上の素子アンテナの数 IV^を奇数としたことを特 徴とする請求項 2記載のァンテナ装置。
5 . 上記複数の同心円の中心を通過する任意の直線を想定した場合、 上記各同心 円上の素子アンテナが、 上記直線に平行な直線上に並ばないように配置したこと を特徴とする請求項 1ないし 4のいずれかに記載のアンテナ装置。
6 . 上記各同心円上の素子アンテナの配置開始位置を、 上記同心円の中心を通過 する上記直線から、 それぞれ、 ランダムに選ばれた所定の角度 Δ ηだけ回転した 位置とすることを特徴とする請求項 5記載のアンテナ装置。
7 . 上記複数の同心円の中心を通過する直線を想定し、 上記直線を境とした片方 の半面にある素子アンテナ数と、 他方の半面にある素子アンテナ数が略々同数と なるようにしたことを特徴とする請求項 1ないし 6のいずれかに記載のアンテナ
8 . 上記複数の素子ァンテナをラジアル導波路を介して給電することを特徴とす る請求項 1ないし 7のいずれかに記載のアンテナ装置。
PCT/JP2001/001463 2001-02-27 2001-02-27 Antenne WO2002069450A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002568466A JP3923431B2 (ja) 2001-02-27 2001-02-27 アンテナ装置
US10/250,520 US6768475B2 (en) 2001-02-27 2001-02-27 Antenna
EP01906351A EP1365477A4 (en) 2001-02-27 2001-02-27 ANTENNA
PCT/JP2001/001463 WO2002069450A1 (fr) 2001-02-27 2001-02-27 Antenne

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/001463 WO2002069450A1 (fr) 2001-02-27 2001-02-27 Antenne

Publications (1)

Publication Number Publication Date
WO2002069450A1 true WO2002069450A1 (fr) 2002-09-06

Family

ID=11737071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001463 WO2002069450A1 (fr) 2001-02-27 2001-02-27 Antenne

Country Status (4)

Country Link
US (1) US6768475B2 (ja)
EP (1) EP1365477A4 (ja)
JP (1) JP3923431B2 (ja)
WO (1) WO2002069450A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163321A (ja) * 2005-12-14 2007-06-28 Mitsubishi Electric Corp 電波到来方向測定装置およびそのためのアレーアンテナ装置
CN104037506A (zh) * 2014-06-11 2014-09-10 成都科力夫科技有限公司 一种dvor反射网系统
CN107275806A (zh) * 2017-05-19 2017-10-20 北京空间飞行器总体设计部 一种相控阵天线阵面加权方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538561A (ja) * 2006-05-24 2009-11-05 ウェーブベンダー インコーポレーテッド 一体型導波管アンテナ及びアレイ
US20080303739A1 (en) * 2007-06-07 2008-12-11 Thomas Edward Sharon Integrated multi-beam antenna receiving system with improved signal distribution
US8743004B2 (en) * 2008-12-12 2014-06-03 Dedi David HAZIZA Integrated waveguide cavity antenna and reflector dish
CN102662170B (zh) * 2012-04-27 2014-02-19 中国人民解放军国防科学技术大学 毫米波全息成像圆面错位线阵
KR102008338B1 (ko) 2013-09-04 2019-10-21 삼성전자주식회사 안테나소자들을 이용하여 빔 폭을 구현하는 배열 안테나 장치
US9887455B2 (en) * 2015-03-05 2018-02-06 Kymeta Corporation Aperture segmentation of a cylindrical feed antenna
US9905921B2 (en) 2015-03-05 2018-02-27 Kymeta Corporation Antenna element placement for a cylindrical feed antenna
US10608719B2 (en) * 2016-10-12 2020-03-31 Rohde & Schwarz Gmbh & Co. Kg Antenna array, method for testing a device under test and test system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514051A (ja) * 1991-07-05 1993-01-22 Yagi Antenna Co Ltd 平面アンテナ
JPH06326510A (ja) * 1992-11-18 1994-11-25 Toshiba Corp ビーム走査アンテナ及びアレーアンテナ
JPH07131239A (ja) * 1993-10-28 1995-05-19 Hitachi Ltd 多重円形配列アレーアンテナ
JPH07288417A (ja) * 1994-04-15 1995-10-31 Hitachi Ltd 指向性可変アンテナ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2218487A (en) * 1938-02-19 1940-10-15 Frederick E Terman Directional radiating system
JPS52120653A (en) 1976-04-02 1977-10-11 Mitsubishi Electric Corp Circular array antenna
JPH02189008A (ja) * 1989-01-18 1990-07-25 Hisamatsu Nakano 円偏波アンテナ装置
US5838284A (en) * 1996-05-17 1998-11-17 The Boeing Company Spiral-shaped array for broadband imaging
US6205224B1 (en) * 1996-05-17 2001-03-20 The Boeing Company Circularly symmetric, zero redundancy, planar array having broad frequency range applications
US6147657A (en) * 1998-05-19 2000-11-14 Harris Corporation Circular phased array antenna having non-uniform angular separations between successively adjacent elements
EP1365476A4 (en) * 2001-02-26 2005-02-02 Mitsubishi Electric Corp ANTENNA SYSTEM
US6583768B1 (en) * 2002-01-18 2003-06-24 The Boeing Company Multi-arm elliptic logarithmic spiral arrays having broadband and off-axis application
US6646621B1 (en) * 2002-04-25 2003-11-11 Harris Corporation Spiral wound, series fed, array antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514051A (ja) * 1991-07-05 1993-01-22 Yagi Antenna Co Ltd 平面アンテナ
JPH06326510A (ja) * 1992-11-18 1994-11-25 Toshiba Corp ビーム走査アンテナ及びアレーアンテナ
JPH07131239A (ja) * 1993-10-28 1995-05-19 Hitachi Ltd 多重円形配列アレーアンテナ
JPH07288417A (ja) * 1994-04-15 1995-10-31 Hitachi Ltd 指向性可変アンテナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1365477A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163321A (ja) * 2005-12-14 2007-06-28 Mitsubishi Electric Corp 電波到来方向測定装置およびそのためのアレーアンテナ装置
JP4708179B2 (ja) * 2005-12-14 2011-06-22 三菱電機株式会社 電波到来方向測定装置
CN104037506A (zh) * 2014-06-11 2014-09-10 成都科力夫科技有限公司 一种dvor反射网系统
CN107275806A (zh) * 2017-05-19 2017-10-20 北京空间飞行器总体设计部 一种相控阵天线阵面加权方法
CN107275806B (zh) * 2017-05-19 2019-11-12 北京空间飞行器总体设计部 一种相控阵天线阵面加权方法

Also Published As

Publication number Publication date
JPWO2002069450A1 (ja) 2004-07-02
US20040051678A1 (en) 2004-03-18
EP1365477A1 (en) 2003-11-26
US6768475B2 (en) 2004-07-27
JP3923431B2 (ja) 2007-05-30
EP1365477A4 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
WO2006009122A1 (ja) モノパルスレーダ装置およびアンテナ切換スイッチ
EP3038206B1 (en) Augmented e-plane taper techniques in variable inclination continuous transverse stub antenna arrays
US6781560B2 (en) Phased array antenna including archimedean spiral element array and related methods
WO2002069450A1 (fr) Antenne
GB2410130A (en) Planar phased array radio antenna for orbital angular momentum (OAM) vortex modes
EP3231037B1 (en) High coverage antenna array and method using grating lobe layers
JP2013098835A (ja) アレーアンテナ装置及びレーダ装置
US8390181B2 (en) Electronic array probe for ultrasonic imaging
JP4724862B2 (ja) アレーアンテナ
JP2010093399A (ja) アンテナ装置
US20110074630A1 (en) Aperiodic Antenna Array
US7559897B2 (en) Electronic array probe for ultrasonic imaging
JP2008278034A (ja) アレーアンテナ装置
WO2010089941A1 (ja) アレイアンテナ、及びアレイアンテナの製造方法
JP2007243352A (ja) アレーアンテナ装置
AU2020406407B2 (en) Multibeam antenna
JP2013179440A (ja) アレーアンテナ装置
JP4651700B2 (ja) レーダ装置
JP2020156089A (ja) アンテナ装置
JP2005303801A (ja) アンテナ装置
JP3903868B2 (ja) アレーアンテナおよびアレーアンテナ装置
Bianchi et al. Design of linear arrays by employing randomly-overlapped subarrays
JP2009246748A (ja) アレーアンテナ
JP2003152440A (ja) アレーアンテナ
JP2004120591A (ja) アレーアンテナ装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 568466

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10250520

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001906351

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001906351

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001906351

Country of ref document: EP