WO2002064503A1 - Sintesis en medio alcalino de la zeolita itq-16 - Google Patents

Sintesis en medio alcalino de la zeolita itq-16 Download PDF

Info

Publication number
WO2002064503A1
WO2002064503A1 PCT/ES2002/000057 ES0200057W WO02064503A1 WO 2002064503 A1 WO2002064503 A1 WO 2002064503A1 ES 0200057 W ES0200057 W ES 0200057W WO 02064503 A1 WO02064503 A1 WO 02064503A1
Authority
WO
WIPO (PCT)
Prior art keywords
family
materials according
microporous materials
synthesis
molar ratio
Prior art date
Application number
PCT/ES2002/000057
Other languages
English (en)
French (fr)
Inventor
Avelino Corma Canos
Teresa Navarro Villalba
Susana Valencia Valencia
Fernando Rey Garcia
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Cientificas
Priority to JP2002564441A priority Critical patent/JP2004523457A/ja
Priority to EP02710892A priority patent/EP1364913A1/en
Priority to CA002437132A priority patent/CA2437132A1/en
Publication of WO2002064503A1 publication Critical patent/WO2002064503A1/es
Priority to US10/632,535 priority patent/US7056489B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/023Preparation of physical mixtures or intergrowth products of zeolites chosen from group C01B39/04 or two or more of groups C01B39/14 - C01B39/48
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/08Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the aluminium atoms being wholly replaced
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/27Beta, e.g. NU-2

Definitions

  • Beta zeolite is a microporous material with channels formed by 12-member rings, which has a characteristic diffraction pattern (Pérez-Pariente, J., Martens, J.A., Jacobs, P.A., Applied Catalysis, 3. (1987) 35).
  • This zeolite is formed by an inter-growth of different polymorphs related to each other, as described in the literature (JM Newsam, MMJ Treacy, WT Koetsier, CB de Gruyter, Proc. R. Soc. London A, 420 (1988) 375).
  • polymorphs A and B are the ones that fundamentally make up the intercreation called zeolite Beta (Zeolites, 5/6, (1996), 641) while polymorph C is in a smaller proportion in said intergrowth
  • the present invention relates to a synthesis method in OH medium " and in the absence of fluorides, of a new family of zeolitic materials that are included in the ITQ-16 designation, and to their catalytic applications.
  • the ITQ-16 zeolite is related with the Beta zeolite, but it presents a different X-ray diffractogram that is attributed to the presence of a different proportion of the different polymorphs to which I have been found in the Beta zeolite
  • the ITQ-16 zeolite could be constituted, in addition to the polymorphs A and B characteristic of the beta zeolite, by another polymorph that could correspond to the polymorph C proposed by Newsam et al.
  • the diffractogram obtained by the powder method and using a slit variable divergence shown in Table I, and is characterized by the following values of angle 2 ⁇ (degrees) and relative intensities (I / I), where l is 0 the intensity of the most intense peak to which a value of 100 is assigned.
  • the variation in angle 2 ⁇ measurements due to instrumental error is estimated at ⁇ 0.05 degrees.
  • the positions, widths and relative intensities of the diffraction peaks can be modified according to the chemical composition of the material (type of structure directing agent, Si / Ge ratio, presence of other trivalent and / or tetravalent heteroatoms (one or more) in the network , in addition to silicon and / or germanium, such as: aluminum, boron, titanium, vanadium, etc.), as well as the degree of hydration and crystal size.
  • Table 2 shows the values of angle 2 ⁇ and relative intensities (l / l 0 ) of the reflections of the powder X-ray diffractogram of the previous ITQ-16 sample after being calcined at 580 ° C to eliminate organic compounds occluded inside the zeolite ,.
  • d, m, f and mf have the same meanings as in table I.
  • the X-ray diffraction pattern of the ITQ-16 zeolite differs mainly, from that of the Beta zeolite, in that at low angles it presents, in addition to a wide peak around a value of 2 ⁇ d & 7.6 °, two peaks at angles 20 of 6.9 ° and 9.6 °, which generally show a smaller width at half height than the peak at 7.6 °.
  • this procedure describes the synthesis procedure of a family of materials that have as extreme and external limits the zeolite Beta and another polymorph that could be polymorph C.
  • the peaks at 6.9 °, 7.6 ° and 9.6 ° angles are not found simultaneously.
  • the present invention relates to a new method of synthesis of a material called ITQ-16, characterized by a means of synthesis with an initial pH between 14 and 9 and preferably between 13 and 10 and the use of hydroxide anions as a mineralizing agent, and without introducing fluoride anions as mineralizing agents, and the presence of organic compounds as structure directing agents.
  • Said organic compounds can be tetraalkylammonium type cations with general formula (R1 R2R3R4N) + where R1, R2, R3 and R4 can be alkyl or aromatic chains from 1 carbon to 16 carbons, which may or may not form cycles on the nitrogen atom.
  • n refers to the number of carbons that form some of the bridge alkyl chains between two contiguous nitrogen can vary between 1 and 6
  • p refers to the number of bridge alkyl chains existing between nitrogen atoms and can vary between 2 and 24
  • R refers to alkyl or aryl groups linked to a single atom of nitrogen (N) containing between 1 and 12 carbons and m being a value that can vary between 0 and 36.
  • the preparation process of the present invention is based on heating at temperatures between 80 ° C and 250 ° C and preferably between 130 ° C and 175 ° C of a reaction mixture containing a source of Si, among which are preferred amorphous silica, colloidal silica, gel. of silica, tetraalkylortosilicate, sodium silicate, and a source of germanium such as for example oxide, halides or alkoxides of germanium.
  • the synthesis mixture contains as the structure directing agent one or more of the following organic cations in their hydroxide form, without being therefore limiting: TEA + , BD + , BQ + , m-
  • XydQ 2+ , M 4 BQ 2+ , M 4 BD 2+ , C and HMP + , MC and HMP + Alternatively, it is possible to use the organic cation in salt form (for example, a halide, preferably chloride or bromide) and add a source of alkaline or alkaline earth ions, preferably in the form of hydroxide.
  • a source of alkaline or alkaline earth ions preferably in the form of hydroxide.
  • trivalent cations such as Al, B, Ga, Fe or
  • composition of the synthesis mixture is characterized by the following ranges of molar ratios:
  • BD / (Si0 2 + GeO 2 ) between 3 and 0.01, and preferably between 1 and 0.03.
  • HO / (S ⁇ O 2 + GeO 2 ) between 1000 and 0.5, and preferably between 100 and 2.
  • Ge ⁇ 2 / (YesO 2 + GeO 2 ), defined as g; between 0.8 and 0.005, and preferably between 0.5 and 0.032, and more preferably between 0.333 and 0.0625.
  • Si + Ge / X between 5 and ⁇ , and preferably greater than 15, and more preferably greater than 20.
  • Si ⁇ 2 + GeO 2 / T ⁇ 2 between 10 and ⁇ , and preferably greater than 20.
  • M n 7Si ⁇ 2 + Ge ⁇ 2 between 2 and 0, preferably between 1 and O, and more preferably between 0.5 and 0.
  • X represents a element in its trivalent oxidation state such as Al, B, Fe, Ga or Cr
  • T is an element in its tetravalent oxidation state such as Ti, Sn or V
  • M is an alkaline or alkaline earth cation such as Na + , Ba 2+ , K + , Ca 2+ , etc.
  • the solids are separated from the mother liquors by filtration or by centrifugation. As a result, a highly crystalline solid containing occluded organic material is obtained.
  • the solid product obtained has a characteristic diffraction pattern (CuK ⁇ radiation) as presented in Table I, and that bears some similarity with that of the Beta zeolite (US Patent Re28341) at a high angle 2 ⁇ > 20 °, where ⁇ It is the Bragg angle, and little similarity at low angles.
  • the occluded organic matter is removed by calcination under vacuum, air, N 2 'or other inert gas, at a temperature greater than 450 ° C, and preferably at a temperature greater than 500 ° C and less than 900 ° C.
  • the X-ray diffraction pattern of the calcined material is presented in Table II.
  • the calcined ITQ-16 zeolite has a diffraction peak around 7.6 °, characterized by a half-height width of about 1 ° and characteristic of the Beta zeolite (Newsam et al., Proc. R. Soc. London A, 1988, 420, 375) with an inter-growth of the determined polymorphs A and B, but also presents two peaks at 6.9 ° and 9.6 ° corresponding to the presence of another polymorph that could be polymorph C.
  • the ITQ-16 zeolite has a different degree of intergrowth than that of the Beta zeolite.
  • the material in its calcined form has the following empirical formula: x (MXO 2 ): fTO 2 : gGeO 2 : (1-g) SiO 2 where T can be one or more elements with oxidation state +4 other than Ge and Si as for example Ti, V, Sn; X can be one or more elements with oxidation state +3 such as for example Al, Ga, B, Cr, Fe and M can be H + or one or more inorganic cations of charge compensation + n such as Li + , Na + , K + , Ca 2+ , Mg 2+ , etc.
  • the value of g should be between 0.8 and 0.005, and preferably between 0.5 and 0.032, and more preferably between 0.333 and 0.0625.
  • the Si ⁇ 2 + Ge ⁇ 2 ⁇ 2 ratio is between 10 and ⁇ , preferably greater than 20. If you want to synthesize the ITQ-16 zeolite with trivalent cations, X, such as Al, with the Si + Ge ratio / AI is between 5 and ⁇ , and preferably greater than 15, and more preferably greater than 20.
  • ITQ-16 zeolite synthesized herein the following applications are described: - as components of catalysts in a cracking process, catalytic cracking of hydrocarbons, and in general of organic compounds, in a hydrocracking process, a process of hydroisomerization of olefins, a process of isomerization of light paraffins, a process of dewaxing or isodeparaffinization, - As a component or additive of isomerization catalysts of light paraffins.
  • catalysts in a hydrocracking process selected from mild hydrocracking of hydrocarbons and mild hydrocracking of functionalized hydrocarbons
  • catalysts in an alkylation process selected from alkylation of olefins with isoparaffins, alkylation of isoparaffins with olefins and alkylation of aromatics or aromatics substituted with olefins or alcohols, in particular in a process of alkylation of benzene with propylene, - as catalysts in an oxidation process of Oppenauer, or a reduction process of the Meerwein-Pondorf-Verley type or
  • Materials prepared according to the process of the invention containing Ti, V or Sn can be used in processes of selective oxidation of organic compounds using H 2 O 2 or organic peroxides or hydroperoxides as oxidants.
  • the materials prepared according to the process of the invention containing Sn can be used in oxidation processes of the Baeyer-type
  • the materials prepared according to the process of the invention can also be used as catalyst components for the removal of organic vapors (VOCs).
  • VOCs organic vapors
  • the ITQ-16 containing Ti its use is claimed as a catalyst for epoxidation of olefins, oxidation of alkanes, oxidation of alcohols and oxidation of thioethers to sulfoxides and sulfones using hydroperoxide, organic or inorganic, such as H 2 O 2 , tertbutylhydroperoxide, eumene hydroperoxide, as oxidizing agents.
  • Figure 1 shows a characteristic diffraction pattern of the Beta zeolite
  • Figure 2 shows a diffractogram of polymorph C of the Beta zeolite calculated from the structure proposed in Proc. R. Soc. London A, 420 (1988) 375.
  • Figure 3 shows an X-ray diffractogram of ITQ-16 zeolite without calcining, whose network is composed of materials containing only silicon oxide and germanium, which corresponds to the data collected in Table I.
  • Figure 4 shows several organic cations that can be used as the structure director.
  • Figure 5 shows the diffraction pattern of the calcined ITQ-16 zeolite, which corresponds to the data given in Table II.
  • Figure 6 shows a characteristic diffraction pattern of the ITQ-16 zeolite prepared according to example 2
  • Figure 7 shows a characteristic diffraction pattern of the ITQ-16 zeolite prepared according to example 3
  • Figure 8 shows a characteristic diffraction pattern of the ITQ-16 zeolite prepared according to example 4
  • Figure 9 shows a characteristic diffraction pattern of the ITQ-16 zeolite prepared according to example 5.
  • TEOS tetraethylorthosilicate
  • 20.22 g of an aqueous solution of BD 9.27.10 "4 moles of BD (OH) / g).
  • GeO 2 0.653 g of GeO 2 is added .
  • the mixture by stirring and evaporating the ethanol formed in the hydrolysis of TEOS, and 12.3 g of water
  • the resulting mixture is heated in autoclaves internally coated with PTFE at 150 ° C. After 4.5 days of heating the mixture is filtered and 22 g of ITQ-16 zeolite are obtained for every 100 g of synthesis gel.
  • the X-ray diffraction pattern is presented in Figure 3.
  • TEOS tetraethylorthosilicate
  • TEOS tetraethylorthosilicate
  • TEOS tetraethylorotsilicate
  • Example 5 5.21 g of tetraethylorthosilicate (TEOS) is hydrolyzed into 14.9 g of an aqueous solution of m-XydQ (9.37.10 "3 ⁇ m-XydQ (OH) 2 / g): Next, 1 , 307 g of Ge ⁇ 2. The mixture is left stirring and evaporating the ethanol, formed in the hydrolysis of TEOS, and 2.8 g of water. The resulting mixture is heated in autoclaves internally coated with PTFE at 150 ° C. After 7 On heating days the mixture is filtered and 13 g of ITQ-16 zeolite are obtained per 100 g of synthesis gel. The X-ray diffraction pattern is presented in Figure 9.

Abstract

La presente invención se refiere a un procedimiento de síntesis en medio OH- y en ausencia de fluoruros de una familia de materiales zeolíticos que se engloban dentro de la denominación ITQ-16, y a sus aplicaciones catalíticas. Esta familia de materiales, zeolita ITQ-16, se caracteriza por tener relaciones diferentes de los distintos polimorfos A, B y C descritos como posibles intercrecimientos en la zeolita Beta, y que por consiguiente presenta patrones de difracción de rayos X diferentes al descrito para la zeolita Beta. La zeolita ITQ-16 en su forma calcinada tiene la siguiente fórmula empírica: x(MXO¿2?) : tTO2 : gGeO2 : (1-g)SiO2 donde T es uno o varios elementos con estado de oxidación +4 distintos de Ge y Si; X es uno o varios elementos con estado de oxidación +3 y M puede ser H?+ ¿o uno o varios cationes inorgánicos de carga +n.

Description

Título
SÍNTESIS EN MEDIO ALCALINO DE LA ZEOLITA ITQ-16.
Campo de la Técnica Materiales cristalinos microporosos
Antecedentes
La zeolita Beta es un material microporoso con canales formados por anillos de 12 miembros, que presenta un patrón de difracción característico (Pérez-Pariente, J., Martens, J.A., Jacobs, P.A., Applied Catalysis, 3 . (1987) 35).
Esta zeolita está formada por un intercrecimiento de distintos polimorfos relacionados entre sí, tal y como ha sido descrito en la literatura (J.M. Newsam, M.M.J. Treacy, W.T. Koetsier, C.B. de Gruyter, Proc. R. Soc. London A, 420 (1988) 375). De entre todos los polimorfos descritos, parece que los polimorfos A y B son los que fundamentalmente conforman el intercrecimiento denominado zeolita Beta (Zeolites, 5/6, (1996), 641) mientras que el polimorfo C se encuentra en una menor proporción en dicho intercrecimiento
Debería pues ser posible sintetizar nuevos materiales con proporciones diferentes de los distintos polimorfos A, B y C que conllevarían a estructuras con un difractograma de Rayos X diferente al de la zeolita Beta tal y como se define de acuerdo a su difractograma de Rayos X, y diferente al del polimorfo C puro.
Descripción de la Invención
La presente invención se refiere a un procedimiento de síntesis en medio OH" y en ausencia de fluoruros, de una nueva familia de materiales zeolíticos que se engloban dentro de la denominación ITQ-16, y a sus aplicaciones catalíticas. La zeolita ITQ-16 está relacionada con la zeolita Beta, pero presenta un difractograma de rayos X diferente que se atribuye a la presencia de una diferente proporción de los distintos polimorfos a la que se he encontrado en la zeolita Beta. Así, la zeolita ITQ-16 podría estar constituida, además de por los polimorfos A y B característicos de la zeolita Beta, por otro polimorfo que podría corresponderse con el polimorfo C propuesto por Newsam y col. (J.M. Newsam, M.M.J. Treacy, W.T. Koetsier, C.B. de Gruyter, Proc. R. Soc. London A, 420 (1988) 375). Por tanto, la presencia de este otro polimorfo, confiere al material ITQ-16 un patrón de difracción de rayos X característico y diferente al de la zeolita Beta.
El patrón de difracción de rayos X del material ITQ-16, tal y como se sintetiza, se ha obtenido en un difractómetro Philips PW 1830 con un controlador PW 1710 y empleando la radiación Kα del Cu. El difractograma obtenido mediante el método de polvo y utilizando una rendija de divergencia variable se muestra en la Tabla I, y se caracteriza por los siguientes valores del ángulo 2Θ (grados) e intensidades relativas (I/lo), siendo l0 la intensidad del pico más intenso al cual se le asigna un valor de 100. Las intensidades relativas se han expresado en los siguientes términos: d= intensidad débil (entre 0 y 20%); m= intensidad media (entre 20 y 40%); f= intensidad fuerte (entre 40 y 60%) y mf= intensidad muy fuerte (entre 60 y 100%).
Tabla 1
2Θ (grados) Intensidad
6,91 d
7,68 d
9,60 m
15,16 d
19,35 d
21 ,03 d
21 ,39 d
22,00 mf
23,19 d
25,03 d
26,04 d
27,08 m
27,89 d
29,32 d
30,51 d
32,83 d
34,46 d
35,27 d
35,93 d
39,22 d
La variación en las medidas del ángulo 2Θ debido al error instrumental se estima en ±0,05 grados. Las posiciones, anchuras e intensidades relativas de los picos de difracción pueden modificarse según la composición química del material (tipo de agente director de estructura, relación Si/Ge, presencia de otros heteroátomos trivalentes y/o tetravalentes (uno o varios) en la red, además de silicio y/o germanio, como por ejemplo: aluminio, boro, titanio, vanadio, etc.), así como del grado de hidratación y el tamaño de cristal. En particular, el patrón representado en la tabla I se refiere a materiales cuya red está compuesta exclusivamente por óxido de silicio y germanio, con una relación Si/Ge = 5 y sintetizado usando el catión bencil-DABCO (BD+), como agente director de estructura.
En la tabla II se presentan los valores del ángulo 2Θ e intensidades relativas (l/l0) de las reflexiones del difractograma de rayos X de polvo de la anterior muestra de ITQ-16 tras ser calcinada a 580°C para eliminar los compuestos orgánicos ocluidos en el interior de la zeolita,. donde d, m, f y mf tienen los mismos significados que en la tabla I.
Tabla II
2Θ (grados) Intensidad
6,87 f
7,64 m
9,60 f
13,32 d
13,88 d
15,39 d
19,25 d
19,97 d
21 ,15 m
22,10 mf
23,24 d
25,01 d
26,81 m
27,98 d
29,25 d
30,28 d
31 ,79 d
32,88 d
34,36 d
35,16 d
35,97 d
39,25 d El patrón de difracción de rayos X de la zeolita ITQ-16 se diferencia principalmente, respecto al de la zeolita Beta, en que a ángulos bajos presenta, además de un pico ancho en torno a un valor de 2Θ d& 7,6°, dos picos a ángulos 20 de 6,9° y 9,6°, que en general muestran una menor anchura a media altura que el pico a 7,6°.
La intensidad relativa de estos picos varía al variar la proporción de los polimorfos A, B y C en la estructura de la zeolita ITQ-16, siendo sus límites el puro polimorfo C, propuesto por Newsan, y la zeolita Beta (Pérez-Pariente, J., Martens, J.A., Jacobs, P.A., Applied Catalysis, 3 . (1987) 35) (Patente US Re28341 ).
Por tanto, en esta memoria se describe el procedimiento de síntesis de una familia de materiales que tiene como límites extremos y externos la zeolita Beta y otro polimorfo que podría ser el polimorfo C. En la zeolita Beta y en el posible polimorfo C, contrariamente a lo que ocurre en la zeolita ITQ-16 no se encuentran simultáneamente los picos a ángulos 6,9°, 7,6° y 9,6°.
La presente invención se refiere a un nuevo procedimiento de síntesis de un material denominado ITQ-16, caracterizado por un medio de síntesis con un pH inicial entre 14 y 9 y preferentemente entre 13 y 10 y la utilización de aniones hidróxido como agente mineralizante, y sin introducir aniones fluoruros como agentes mineralizantes, y la presencia de compuestos orgánicos como agentes directores de estructura.
Dichos compuestos orgánicos pueden ser cationes del tipo tetraalquilamonio con fórmula general (R1 R2R3R4N)+ donde R1 , R2, R3 y R4 pueden ser cadenas alquílicas o aromáticas desde 1 carbono a 16 carbonos, que pueden formar o no ciclos sobre el átomo de nitrógeno. Además, también se describe el empleo de policationes orgánicos de fórmula general RmNx((CH2)n)p donde x puede tomar valores entre 2 y 12, n se refiere al número de carbonos que forman algunas de las cadenas alquílicas puente entre dos nitrógenos contiguos pudiendo variar entre 1 y 6, p se refiere al número de cadenas alquílicas puente existentes entre átomos de nitrógeno y puede variar entre 2 y 24, y R se refiere a grupos alquilo o arilo ligados a un solo átomo de nitrógeno (N) conteniendo entre 1 y 12 carbonos y siendo m un valor que puede variar entre 0 y 36.
El procedimiento de preparación de la presente invención se basa en el calentamiento a temperaturas entre 80°C y 250°C y preferentemente entre 130°C y 175°C de una mezcla de reacción que contiene una fuente de Si, entre las que se prefieren sílice amorfa, sílice coloidal, gel . de sílice, tetraalquilortosilicato, silicato sódico, y una fuente de germanio como por ejemplo óxido, haluros o alcóxidos de germanio. La mezcla de síntesis contiene como agente director de estructura uno o más de los siguientes cationes orgánicos en su forma hidróxido, sin ser por ello limitante: TEA+, BD+, BQ+, m-
XydQ2+, M4BQ2+, M4BD2+, CyHMP+, MCyHMP+. Alternativamente, es posible utilizar el catión orgánico en forma de sal (por ejemplo, un haluro, preferiblemente cloruro o bromuro) y añadir una fuente de iones alcalinos o alcalinoterreos, preferentemente en forma de hidróxido. Opcionalmente, cationes trivalentes como por ejemplo Al, B, Ga, Fe o
Cr, y/o tetravalentes como Ti, V o Sn pueden ser introducidos en el > gel de síntesis.
En ocasiones puede ser conveniente además introducir en* algún momento de la preparación un material cristalino, preferentemente zeolítico y más preferentemente cristales de ITQ-16 (entre 0,01 y un 25% en peso respecto al conjunto de óxidos inorgánicos, preferiblemente entre un 0,05% y un 10% en peso) como promotores de la cristalización (sembrado).
En el caso particular de utilizar el catión BD como agente director de estructura la composición de la mezcla de síntesis se caracteriza por los siguientes rangos de relaciones molares:
BD/(Si02+GeO2) = entre 3 y 0,01 , y preferentemente entre 1 y 0,03. H O/(S¡O2 + GeO2) = entre 1000 y 0,5, y preferentemente entre 100 y 2. Geθ2/(SíO2+GeO2), definido como g; = entre 0,8 y 0,005, y preferentemente entre 0,5 y 0,032, y más preferentemente entre 0,333 y 0,0625.
(Si+Ge)/X = entre 5 y ∞, y preferentemente mayor de 15, y más preferentemente mayor de 20. Siθ2+GeO2/Tθ2 = entre 10 y ∞, y preferentemente mayor de 20. Mn7Siθ2+Geθ2 = entre 2 y 0, preferentemente entre 1 y O, y más preferentemente entre 0,5 y 0. donde X representa a un elemento en su estado de oxidación trivalente tal como Al, B, Fe, Ga o Cr; T es un elemento en su estado de oxidación tetravalente tal como Ti, Sn o V y M es un catión alcalino o alcalinotérreo tal como Na+, Ba2+, K+, Ca2+, etc.
Una vez la cristalización está completa, los sólidos se separan de las aguas madre por filtración o por centrifugación. Como resultado se obtiene un sólido altamente cristalino que contiene material orgánico ocluido.
El producto sólido obtenido posee un patrón de difracción característico (radiación CuKα) tal y como se presenta en la tabla I, y que guarda cierta similitud con el de la zeolita Beta (US Patent Re28341) a alto ángulo 2Θ > 20°, donde θ es el ángulo de Bragg, y poca similitud a ángulos bajos. La materia orgánica ocluida se elimina por calcinación en vacío, aire, N2 ' u otro gas inerte, a temperatura superior a 450°C, y preferentemente a temperatura superior a 500°C e inferior a 900°C. El patrón de difracción de rayos X del material calcinado se presenta en la tabla II.
Así, la zeolita ITQ-16 calcinada presenta un pico de difracción entorno a 7,6°, caracterizado por una anchura a media altura de alrededor de 1° y característico de la zeolita Beta (Newsam et al., Proc. R. Soc. London A, 1988, 420, 375) con un intercrecimiento de los polimorfos A y B determinado, pero presenta además dos picos a 6,9° y 9,6° correspondientes a la presencia de otro polimorfo que podría ser el polimorfo C. Así pues, la zeolita ITQ-16 presenta un grado de intercrecimiento diferente al de la zeolita Beta.
El material en su forma calcinada tiene la siguiente fórmula empírica: x (MXO2) : fTO2 : gGeO2 : (1-g)SiO2 donde T puede ser uno o varios elementos con estado de oxidación +4 distintos de Ge y Si tal y como por ejemplo Ti, V, Sn; X puede ser uno o varios elementos con estado de oxidación +3 tal y como por ejemplo Al, Ga, B, Cr, Fe y M puede ser H+ o uno o varios cationes inorgánicos de compensación de carga +n como por ejemplo Li+, Na+, K+, Ca2+, Mg2+, etc. El valor de g debe estar comprendido entre 0,8 y 0,005, y preferentemente entre 0,5 y 0,032, y más preferentemente entre 0,333 y 0,0625. La relación Siθ2+Geθ2 θ2 está comprendida entre 10 y ∞, preferentemente mayor de 20. En el caso de que se quiera sintetizar la zeolita ITQ-16 con cationes trivalentes, X, como por ejemplo Al, ¡a relación Si+Ge/AI está comprendida entre 5 y ∞, y preferentemente mayor de 15, y más preferentemente mayor de 20.
Para la zeolita ITQ-16 sintetizada en la presente memoria se describen las siguientes aplicaciones: - como componentes de catalizadores en un proceso de craqueo, de craqueo catalítico de hidrocarburos, y en general de compuestos orgánicos, en un proceso de hidrocraqueo, un proceso de hidroisomerización de olefinas, un proceso de isomerización de parafinas ligeras, un proceso de desparafinado o isodesparafinado, - Como componente o aditivo de catalizadores de isomerización de parafinas ligeras.
- como componentes de catalizadores en un proceso de hidrocraqueo seleccionado entre hidrocraqueo suave de hidrocarburos e hidrocraqueo suave de hidrocarburos funcionalizados, - como catalizadores en un proceso de alquilación seleccionado entre alquilación de olefinas con isoparafinas, alquilación de isoparafinas con olefinas y alquilación de aromáticos o aromáticos sustituidos con olefinas o alcoholes, en particular en un proceso de alquilación de benceno con propileno, - como catalizadores en un proceso de oxidación de Oppenauer, o un proceso de reducción del tipo Meerwein-Pondorf-Verley o
- como catalizadores en reacciones de acilación de compuestos aromáticos sustituidos utilizando ácidos, cloruros de ácido o anhídridos de ácidos orgánicos como agentes acilantes. Los materiales preparados según el procedimiento de la invención que contienen Ti, V o Sn, se pueden usar en procesos de oxidación selectiva de compuestos orgánicos usando H2O2 o peróxidos o hidroperóxidos orgánicos como oxidantes. Los materiales preparados según el procedimiento de la invención que contienen Sn, se pueden usar en procesos de oxidación del tipo Baeyer-
Villiger.
Los materiales preparados según el procedimiento de la invención se pueden usar también como componentes de catalizadores para la eliminación de vapores orgánicos (VOC).
En el caso de la ITQ-16 conteniendo Ti, se reivindica su uso como catalizador de epoxidación de olefinas, oxidación de alcanos, oxidación de alcoholes y oxidación de tioéteres a sulfóxidos y sulfonas utilizando hidroperóxido, orgánicos o inorgánicos, como por ejemplo H2O2, tertbutilhidroperóxido, hidroperóxido de eumeno, como agentes oxidantes.
En el caso de contener Sn se reivindica su uso como catalizadores de oxidación en reacciones Bayer-Williger utilizando H2O2 como agente oxidante.
Finalmente, se reivindica su uso en amoximación de ciclohexanona a ciclohexanona oxima con NH3 y H2O2.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 muestra un patrón de difracción característico de la zeolita Beta
La figura 2 muestra un difractograma del polimorfo C de la zeolita Beta calculado a partir de la estructura propuesta en Proc. R. Soc. London A, 420 (1988) 375.
La figura 3 muestra un un difractograma de rayos X de zeolita ITQ-16 sin calcinar, cuya red está compuesta por materiales que sólo contienen óxido de silicio y germanio, que se corresponde con los datos recogidos en la Tabla I.
La figura 4 muestra varios cationes orgánicos que pueden ser usados como agente director de estructura.
La figura 5 muestra el patrón de difracción de la zeolita ITQ-16 calcinada, que se corresponde con los datos dados en la Tabla II. La figura 6 muestra un patrón de difracción característico de la zeolita ITQ-16 preparada según el ejemplo 2
La figura 7 muestra un patrón de difracción característico de la zeolita ITQ-16 preparada según el ejemplo 3 La figura 8 muestra un patrón de difracción característico de la zeolita ITQ-16 preparada según el ejemplo 4
La figura 9 muestra un patrón de difracción característico de la zeolita ITQ-16 preparada según el ejemplo 5.
EJEMPLOS Ejemplo 1.
7,21 g de tetraetilortosilicato (TEOS) se hidrolizan en 20,22 g de una solución acuosa de BD (9,27.10"4 moles de BD(OH)/g). A continuación se adicionan 0,653g de GeO2. Se deja la mezcla agitando y evaporando el etanol . formado en la hidrólisis del TEOS, y 12,3 g de agua. La mezcla resultante se calienta en autoclaves recubiertos internamente de PTFE a 150°C. Tras 4,5 días de calentamiento se filtra la mezcla y se obtienen 22 g de zeolita ITQ-16 por cada 100 g de gel de síntesis. El patrón de difracción de rayos X se presenta en la figura 3.
Ejemplo 2.
7,21 g de tetraetilortosilicato (TEOS) se hidrolizan en 20,22 g. de una solución acuosa de BD (9,27.10"4 moles de BD(OH)/g). A continuación, se adicionan 0,653 g de Geθ2 y 0,077 g de isopropóxido de aluminio Se deja la mezcla agitando y evaporando el etanol, formado en la hidrólisis del TEOS, y 12,3 g de agua. La mezcla resultante se calienta en autoclaves recubiertos internamente de PTFE a 150°C. Tras 7 días de calentamiento se filtra la mezcla y se obtienen 18 g de zeolita ITQ-16 por cada 100 g de gel de síntesis. El patrón de difracción de rayos X se presenta en la figura 6. Ejemplo 3.
9,37 g de tetraetilortosilicato (TEOS) se hidrolizan en 20,71 g de una solución acuosa de BD (2,0.10"3 moles de BD(OH)/g). A continuación se adicionan 0,313g de GeO2 Se deja la mezcla agitando y evaporando el etanol, formado en la hidrólisis del TEOS, y 10,34 g de agua. La mezcla resultante se calienta en autoclaves recubiertos internamente de PTFE a 135°C. Tras 6 días de calentamiento se filtra la mezcla y se obtienen 24 g de zeolita ITQ-16 por cada 100 g de gel de síntesis. El patrón de difracción de rayos X se presenta en la figura 7.
Ejemplo 4.
5.21 g de tetraetilorotsilicato (TEOS) se hidrolizan en 20,2 g de una disolución acuosa de BD (9,27-10"4 moles BD(OH)/g). A continuación se adicionan 1 ,307 g de GeO2. Se deja la mezcla agitando y evaporando el etanol, formado durante la hidrólisis del TEOS, y 12,5 g de agua. La mezcla resultante se calienta en 5,21 g de tetraetilortosilicato (TEOS) se hidrolizan en 20,2 g de una solución acuosa de BD (9,27.10"4 m BD(OH)/g). A continuación se adicionan 1 ,307 g de GeO2. Se deja la mezcla agitando y evaporando el etanol, formado en la hidrólisis del TEOS, autoclaves recubiertcs internamente de PTFE a 150°C. Tras 1 día de calentamiento se filtra la mezcla y se obtienen 13 g de zeolita ITQ-16 por cada 100 g de gel de síntesis. El patrón de difracción de rayos X se presenta en la figura 8.
Ejemplo 5. 5,21 g de tetraetilortosilicato (TEOS) se hidrolizan en 14,9 g de una solución acuosa de m-XydQ (9,37.10"3 m m-XydQ(OH)2/g): A continuación se adicionan 1 ,307 g de Geθ2. Se deja la mezcla agitando y evaporando el etanol, formado en la hidrólisis del TEOS, y 2,8 g de agua. La mezcla resultante se calienta en autoclaves recubiertos internamente de PTFE a 150°C. Tras 7 días de calentamiento se filtra la mezcla y se obtienen 13 g de zeolita ITQ-16 por cada 100 g de gel de síntesis. El patrón de difracción de rayos X se presenta en la figura 9.

Claims

Reivindicaciones
1. Un procedimiento de síntesis de una familia de materiales microporosos, que se engloban bajo la denominación ITQ-16, con un patrón de difracción de rayos X como el presentado en la tabla I que comprende picos de difracción a ángulos 2Θ de 6,9°, 7,6° y 9,6°, y en el que la intensidad relativa de los picos a 6,9° y 9,6° con respecto a la intensidad del pico a 7,6° cumple que la relación Ig.6°/l7.6° es mayor que cero y menor que ∞, caracterizado porque la síntesis se lleva a cabo utilizando aniones hidróxido como agente mineralizante, sin introducir fluoruros como agente mineralizante, y en presencia de compuestos orgánicos como agentes directores de estructura.
2. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 1 , caracterizado porque como agentes directores de estructura se usan cationes orgánicos seleccionados entre el grupo formado por
- cationes orgánicos del tipo tetraalquilamonio con fórmula general (R1 R2R3R4N)+ donde R1 , R2, R3 y R4 pueden ser cadenas alquílicas o aromáticas desde 1 carbono a 16 carbonos, que pueden formar o no ciclos sobre el átomo de nitrógeno, y - policationes orgánicos de fórmula general RmNx((CH2)n)p donde x varía entre 2 y 12, n se refiere al número de carbonos que forman algunas de las cadenas alquílicas puente entre dos nitrógenos contiguos y varía entre 1 y 6, p se refiere al número de cadenas alquílicas puente existentes entre átomos de nitrógeno y varía entre 2 y 24, R representa grupos alquilo o arilo ligados a un solo átomo de nitrógeno (N) conteniendo entre 1 y 12 carbonos, y m varía entre 0 y 36.
3. Un procedimiento de síntesis de una familia de materiales microporosos según una cualquiera de las reivindicaciones 1 ó 2, caracterizado porque comprende calentar a una temperatura entre 80°C y 250°, a un pH inicial comprendido entre 14 y 9, una mezcla de reacción que al menos contiene: una fuente de SiO2, una fuente de Geθ2, un catión orgánico y H2O.
4. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 3, caracterizado porque la mezcla de reacción se calienta a una temperatura entre 130°C y 175°C.
5. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 3, caracterizado porque el pH de la mezcla inicial de reacción está comprendido entre 13 y 10.
6. Un procedimiento de síntesis de una familia de materialas microporosos de acuerdo con la reivindicación 3, caracterizado porque la mezcla de reacción contiene además una fuente de un catión trivalente.
7. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 6, caracterizado porque el catión trivalente está seleccionado entre Al, B, Fe, y Cr.
8. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 3, caracterizado porque la mezcla de reacción contiene además una fuente de un catión tetravalente.
9. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 8, caracterizado porque el catión tetravalente está seleccionado entre Ti, Sn y V.
10. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizado porque el catión orgánico es uno cualquiera de los indicados en la figura 4.
11. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizado porque el catión orgánico usado como agente director de estructura es BD+, y porque la composición de la mezcla de reacción en términos de relaciones molares está dentro de los intervalos: BD7(S¡O2+GeO2): entre 3 y 0,01 ,
H2O/(SiO2 + GeO2): entre 1000 y 0,5, GeO2/(SiO2+GeO2), definido como g: entre 0,8 y 0,005.
12. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 11 , caracterizado porque la relación molar
BD7(SiO2+GeO2) está entre 1 y 0,03.
13. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 11 , caracterizado porque la relación molar H2O/(S¡O2 + Ge02) está entre 100 y 2.
14. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 11 , caracterizado porque la relación molar GeO2/(SiO2+Ge02), está entre 0,5 y 0,032.
15. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 11 , caracterizado porque la relación molar GeO2/(SiO2+Ge02), está entre 0,333 y 0,0625.
16. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 11 , caracterizado la mezcla de reacción comprende además al menos un elemento trivalente y la relación molar (Si+Ge)/X, donde X representa dicho elemento en estado de oxidación trivalente, está comprendida entre 5 y ∞.
17. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 16, caracterizado porque la relación molar
(Si+Ge)/X es mayor de 15.
18. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 16, caracterizado porque la relación molar (Si+Ge)/X es mayor de 20.
19. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 11 , caracterizado porque la mezcla de reacción comprende además al menos un elemento tetravalente, T, distinto de Ge y Si.
20. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 19, caracterizado porque la relación molar SiO2+GeO2/TO2 está entre 10 y ∞.
21. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 19, caracterizado porque el elemento tetravalente, T, está seleccionado entre Ti, Sn, y V.
22. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 19, caracterizado porque la relación molar
Siθ2+Geθ2/TO2 en la mezcla de reacción es mayor de 20.
23. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 11 , caracterizado porque la mezcla de reacción comprende además al menos un catión alcalino o alcalinotérreo, M+n.
24. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 23, caracterizado porque el catión alcalino o alcalinotérreo está seleccionado entre Na, Ba, K, Ca y Mg.
25. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 23, caracterizado porque la relación molar M+n/ S¡O2 + GeO2está entre 2 y 0.
26. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 23, caracterizado porque la relación molar M+n/
S¡O2 + GeO2está entre 1 y 0.
27. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 23, caracterizado porque la relación molar M+n/ SiO2 + GeO2 está entre 0,5 y 0.
28. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con una cualquiera de las reivindicaciones 3 a 26, caracterizado porque comprende además una etapa posterior de calcinación a temperatura superior a 450°C.
29. Un procedimiento de síntesis de una familia de materiales microporosos de acuerdo con la reivindicación 28, caracterizado porque en la etapa de calcinación se obtiene un material calcinado y anhidro de fórmula empírica: x (MXO2) : -TO2 : gGeO2 : (1-g)Si02 en la que:
- T representa al menos un elemento tetravalente, T, distinto de Ge y Si,
- X representa al menos un elemento en estado de oxidación trivalente,
- M representa al menos un catión alcalino o alcalinotérreo, - la relación molar GeO2/(SiO2+GeO2), definido como g: está entre 0,8 y
0,005,
- la relación molar (Si+Ge)/X está entre 5 y ∞., y - la relación molar SiO2+GeO2/TO2 está entre 10 y ∞.
30. Material microporoso preparado según el procedimiento de la reivindicación 29, caracterizado porque en forma calcinada y anhidra presenta la fórmula empírica: x (MXO2) : fTO2 : gGeO2 : (1-g)Si02 en la que:
- T representa al menos un elemento tetravalente, T, distinto de Ge y Si,
- X representa al menos un elemento en estado de oxidación trivalente, - M representa al menos un catión alcalino o alcalinoíérreo,
- la relación molar GeO2/(SiO2+GeO2), definido como g: está entre 0,8 y 0,005,
- la relación molar (Si+Ge)/X está entre 5 y ∞, y
- la relación molar SiO2+Geθ2/Tθ2 está entre 10 y ∞.
31. Uso de los materiales preparados según cualquiera de las reivindicaciones 1 a 29 como componentes de catalizadores en un proceso seleccionado entre
- un proceso de craqueo,
- un proceso de hidrocraqueo, - un proceso de hidroisomerización de olefinas
- un proceso de isomerización de parafinas ligeras,
- un proceso de desparafinado o isodesparafinado.
32. Uso de los materiales preparados según cualquiera de la's reivindicaciones 1 a 29 como componentes de catalizadores en un proceso de hidrocraqueo seleccionado entre hidrocraqueo suave de hidrocarburos é hidrocraqueo suave de hidrocarburos funcionalizados.
33. Uso de los materiales preparados según cualquiera de las reivindicaciones 1 a 29 como catalizadores en un proceso seleccionado entre
- un proceso de alquilación seleccionado entre alquilación de olefinas con ¡soparafinas, alquilación de aromáticos con olefinas o alcoholes, alquilación de isoparafinas con olefinas y alquilación de aromáticos o aromáticos sustituidos con olefinas o alcoholes,
- un proceso de oxidación de Oppenauer,
- un proceso de reducción del tipo Meerwein-Pondorf-Verley, - amoximación de ciclohexanona, y
- acilación de compuestos aromáticos sustituidos utilizando ácidos, cloruros de ácido o anhídridos de ácidos orgánicos como agentes acilantes.
34. Uso de los materiales preparados según cualquiera de jas reivindicaciones 1 a 29 como catalizadores en un proceso de alquílación de benceno con propileno.
35. Uso de los materiales preparados según cualquiera de las reivindicaciones 1 a 29 y conteniendo Ti, V o Sn, en procesos de oxidación selectiva de compuestos orgánicos usando H O2 o peróxidos o hidroperóxidos orgánicos como oxidantes.
36. Uso de los materiales preparados cualquiera de las reivindicaciones 1 a 29 que comprenden Sn en procesos de oxidación del tipo Bayer-Villiger..
37. Uso de los materiales preparados cualquiera de las reivindicaciones 1 a 29 y que comprenden Ti, como catalizador en un proceso seleccionado entre un epoxidación de olefinas, oxidación de alcanos, oxidación de alcoholes y oxidación de tioéteres a sulfóxidos y sulfonas, utilizando hidroperóxido, orgánicos o inorgánicos.
38. Uso de los materiales preparados según cualquiera de las reivindicaciones 1 a 29 como componentes de catalizadores para la eliminación de vapores orgánicos (VOC).
PCT/ES2002/000057 2001-02-09 2002-02-08 Sintesis en medio alcalino de la zeolita itq-16 WO2002064503A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002564441A JP2004523457A (ja) 2001-02-09 2002-02-08 アルカリ性媒体中でのゼオライトitq−16の合成
EP02710892A EP1364913A1 (en) 2001-02-09 2002-02-08 Synthesis of zeolite itq-16 in an alkaline medium
CA002437132A CA2437132A1 (en) 2001-02-09 2002-02-08 Synthesis of zeolite itq-16 in an alkaline medium
US10/632,535 US7056489B2 (en) 2001-02-09 2003-08-01 Synthesis of zeolite ITQ-16 in an alkaline medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200100385 2001-02-09
ES200100385A ES2200624B1 (es) 2001-02-09 2001-02-09 Sintesis en medio alcalino de la zeolita itq.-16.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/632,535 Continuation US7056489B2 (en) 2001-02-09 2003-08-01 Synthesis of zeolite ITQ-16 in an alkaline medium

Publications (1)

Publication Number Publication Date
WO2002064503A1 true WO2002064503A1 (es) 2002-08-22

Family

ID=8496800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000057 WO2002064503A1 (es) 2001-02-09 2002-02-08 Sintesis en medio alcalino de la zeolita itq-16

Country Status (6)

Country Link
US (1) US7056489B2 (es)
EP (1) EP1364913A1 (es)
JP (1) JP2004523457A (es)
CA (1) CA2437132A1 (es)
ES (1) ES2200624B1 (es)
WO (1) WO2002064503A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064318A1 (es) 2012-10-25 2014-05-01 Consejo Superior De Investigaciones Científicas (Csic) Catalizador y proceso catalítico para la eterificación/reducción de furfuril derivados a tetrahidro-furfuril éteres

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2196963B1 (es) * 2001-07-03 2005-02-16 Universidad Politecnica De Valencia Sintesis de itq-17 en ausencia de iones fluoruro.
JP2004010537A (ja) * 2002-06-06 2004-01-15 Mitsubishi Chemicals Corp 水熱合成用テンプレート、ケイ素含有層状化合物の製造方法及びケイ素含有層状化合物
FR2860224B1 (fr) * 2003-09-26 2006-06-02 Inst Francais Du Petrole Solide cristallise im-12 et son procede de preparation
EP1973847A1 (en) * 2005-12-20 2008-10-01 ExxonMobil Research and Engineering Company Itq-26, new crystalline microporous material
CA2584876A1 (en) * 2007-02-02 2008-08-02 Albemarle Netherlands Bv A crystalline microporous material of zeolitic nature
WO2009134534A2 (en) * 2008-05-02 2009-11-05 Exxonmobil Chemical Patents Inc. Treatment of small pore molecular sieves and their use in the conversion of oxygenates to olefins
US8865121B2 (en) 2009-06-18 2014-10-21 Basf Se Organotemplate-free synthetic process for the production of a zeolitic material
CN104692407B (zh) * 2015-02-28 2016-08-31 中国石油天然气股份有限公司 一种ith结构稀土硅铝分子筛及其合成方法
CN105905921A (zh) * 2016-06-29 2016-08-31 北京化工大学 一种itq-16分子筛的合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022507A1 (en) * 1994-02-18 1995-08-24 Chevron U.S.A. Inc. Zeolite ssz-42
WO1998029338A1 (en) * 1996-12-31 1998-07-09 Chevron U.S.A. Inc. Zeolite ssz-45
ES2128961A1 (es) * 1996-12-18 1999-05-16 Univ Politecnica De Valencia C Zeolitaitq-4.
ES2152143A1 (es) * 1998-02-06 2001-01-16 Univ Valencia Politecnica Sintesis de zeolitas y zeotipos de poro grande.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE28341E (en) 1964-05-01 1975-02-18 Marshall dann
US6787124B2 (en) * 2002-03-15 2004-09-07 Exxonmobil Research And Engineering Company Synthetic porous crystalline material, EMM-1, its synthesis and use
US6733742B1 (en) * 2002-12-26 2004-05-11 Chevron U.S.A. Inc. Molecular sieve SSZ-63 composition of matter and synthesis thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022507A1 (en) * 1994-02-18 1995-08-24 Chevron U.S.A. Inc. Zeolite ssz-42
ES2128961A1 (es) * 1996-12-18 1999-05-16 Univ Politecnica De Valencia C Zeolitaitq-4.
WO1998029338A1 (en) * 1996-12-31 1998-07-09 Chevron U.S.A. Inc. Zeolite ssz-45
ES2152143A1 (es) * 1998-02-06 2001-01-16 Univ Valencia Politecnica Sintesis de zeolitas y zeotipos de poro grande.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CORMA A. ET AL.: "ITQ-16: a new zeolite family of the beta group with different proportions of polymorphs A, B and C", CHEM. COMMUN., vol. 18, 2001, pages 1720 - 1721, XP002953329 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064318A1 (es) 2012-10-25 2014-05-01 Consejo Superior De Investigaciones Científicas (Csic) Catalizador y proceso catalítico para la eterificación/reducción de furfuril derivados a tetrahidro-furfuril éteres

Also Published As

Publication number Publication date
US20040089587A1 (en) 2004-05-13
CA2437132A1 (en) 2002-08-22
US7056489B2 (en) 2006-06-06
ES2200624A1 (es) 2004-03-01
EP1364913A1 (en) 2003-11-26
ES2200624B1 (es) 2005-05-01
JP2004523457A (ja) 2004-08-05

Similar Documents

Publication Publication Date Title
JP7045401B2 (ja) モレキュラーシーブscm-14、その合成方法および使用
EP3640207B1 (en) Molecular sieve scm-15, synthesis method therefor and use thereof
US5098686A (en) Synthesis of zeolites of faujasite structure
JPH0142889B2 (es)
WO1997019021A1 (es) Zeolita itq-1
US20040209759A1 (en) Solid crystalline IM-9, and a process for its preparation
ES2241877T3 (es) Zeolita itq-16.
ES2228271B1 (es) Metodo para la preparacion de nanozeolita zsm-5 de elevada superficie externa por cristalizacion de nucleos sililados.
JPH0250045B2 (es)
EP0851837B1 (en) Synthesis of zeolite and zeotypes isomorphous with zeolite beta
WO2002064503A1 (es) Sintesis en medio alcalino de la zeolita itq-16
US6896869B2 (en) Microporous crystalline material (ITQ-17), method for the preparation thereof and its use in processes for separating and transforming organic compounds
US5192520A (en) Synthesis of aluminosilicate zeolites of faujasite structure
US5158757A (en) Synthesis of gallosilicate zeolites having faujasite structure
JP4756308B2 (ja) Lta型構造を有するim−11結晶質固体、およびそれを調製するための方法
US6409986B1 (en) Zeolite ITQ-5
JP2576151B2 (ja) 結晶性ジンコシリケート及びその製造方法
US5370858A (en) Process for the synthesis of zeolites having an aluminosilicate framework belonging to the faujasite structural family, products obtained and their use in adsorption and catalysis
JPH0524820A (ja) モルデナイト構造を有するチタン含有アルミノシリケートゼオライトおよびその製造方法
US5385717A (en) Process for the synthesis of zeolites having an aluminosilicate framework belonging to the faujasite structural family, products obtained and their use in adsorption and catalysis
JP2551060B2 (ja) 結晶性メタロシリケート及びその製造方法
WO1999040026A1 (es) Sintesis de zeolitas y zeotipos de poro grande
ES2208084A1 (es) Material cristalino microporoso de naturaleza zeolitica (zeolita itq-22), su metodo de sintesis y su uso como catalizador.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2437132

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10632535

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002564441

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002710892

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002710892

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642