WO2002060591A1 - Disposito y procedimiento para producir chorros líquidos compuestos multicomponentes estacionarios y cápsulas de tamaños micro y nanométrico - Google Patents

Disposito y procedimiento para producir chorros líquidos compuestos multicomponentes estacionarios y cápsulas de tamaños micro y nanométrico Download PDF

Info

Publication number
WO2002060591A1
WO2002060591A1 PCT/ES2002/000047 ES0200047W WO02060591A1 WO 2002060591 A1 WO2002060591 A1 WO 2002060591A1 ES 0200047 W ES0200047 W ES 0200047W WO 02060591 A1 WO02060591 A1 WO 02060591A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
tips
liquids
feeding
capillary
Prior art date
Application number
PCT/ES2002/000047
Other languages
English (en)
French (fr)
Inventor
Antonio Barrero Ripoll
Alfonso Gañan Calvo
Ignacio González Loscertales
Raul Cortijo Bon
Original Assignee
Universidad De Sevilla
Universidad De Málaga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla, Universidad De Málaga filed Critical Universidad De Sevilla
Priority to JP2002560778A priority Critical patent/JP2004531365A/ja
Priority to EP02711878A priority patent/EP1364718B1/en
Priority to DE60222858T priority patent/DE60222858T2/de
Priority to CA002436524A priority patent/CA2436524C/en
Publication of WO2002060591A1 publication Critical patent/WO2002060591A1/es
Priority to US10/631,496 priority patent/US20040069632A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only

Definitions

  • the present invention describes a process for generating multi-component capillary liquid jets of immiscible liquids whose diameters can vary from a few tens of nanometers to hundreds of microns, as well as a relatively monodispersed spray of electrically charged multicomponent drops generated from the rupture due to capillary instabilities of compound jets.
  • Said immiscible liquids flow, at appropriate flow rates, through metallic needles connected to high voltage sources.
  • the electrical conductivity of a liquid, or more than one is sufficiently high, then the liquid can be charged through itself and can be injected through non-metallic needles (i.e. silica tube).
  • the needles are arranged so that one of the needles contains the rest of the needles inside, and may or may not be located concentrically with each other.
  • the electric forces can extrude the jets until they reach diameters in a range from 100 microns to a few nanometers.
  • the device and method objects of the present invention are applicable to fields such as Materials Science and Food Technology, where the generation and controlled manipulation of structured jets of micro or nanometric size is an essential part of the process.
  • this invention uses electrohydrodynamic forces (EHD) to extrude and atomize a liquid jet.
  • EHD electrohydrodynamic forces
  • a liquid flow rate is emitted in the form of a micro jet from the tip of a Taylor cone.
  • the rupture of said jet produces a mist of charged drops called electrospray.
  • This configuration is often referred to as electrospray in cone-jet mode (M. Cloupeau and B. Prunet-Foch, J. Electrostatics, 22, 135-159, 1992).
  • the laws of scale of the emitted comment and the size of the drops of this type of electrospray are well described in the literature (J.
  • Multilayer flow electrospray ion source using improved sheath liquid (1991) two or more miscible liquids are injected and mixed into the Taylor cone, for the purpose of improving ion transmission, stability and sensitivity of a mass spectrometer
  • the novel contribution of the present invention lies in the use of immiscible (or poorly miscible) liquids to form, by means of EHD, a structured Taylor cone surrounded by a dielectric atmosphere (gas, liquid or vacuum), as shown in the Figure 1.
  • the highly charged structured micro / nanometer jet emitted from the apex of the Taylor cone finally breaks into a spray of highly charged structured micro / nanometer monodispersed drops.
  • structured micro / nanometric jet we mean an almost cylindrical jet composed of layers approximately concentric of immiscible liquids, whose outer diameter varies between 50 microns and a few nanometers.
  • highly charged structured micro / nanometric monodispersed drops spray we mean particles with net charge, formed by layers of different liquids or by an outer layer of the liquid that is injected by the outside and a heart of an emulsion.
  • the external diameter of said particle can vary between 50 microns and a few nanometers.
  • An advantage of this invention is that the particles that are formed have a uniform size, and that said size can be easily varied from tens of microns to a few nanometers, depending on the properties of the injected liquids and flows.
  • the outer liquid is a solution containing monomers, which polymerize under an appropriate excitation to produce micro / nanometric capsules.
  • the aerosol can be neutralized, for example, by a corona discharge.
  • the present invention aims at the device and the method for producing multi-component stationary liquid jets and micro and nanometric capsules.
  • the device consists of a number N of N liquid feeding tips, such that a flow rate Qi of an ith liquid flows through each i-nth feed tip, i being a value between 1 and N.
  • Said feeding tips are connected to a electric potential Vi with respect to a reference electrode, and arranged so that the liquid (il) -th surrounds the ith feed tip.
  • the ith liquid that circulates through the ith feed tip is immiscible or poorly miscible with liquids (+ +)) ésth and il ()) ésth.
  • an electrified liquid capillary meniscus is formed with a substantially conical shape and from whose apex a stationary capillary stream formed by the N liquids is emitted, such that the ith liquid surrounds the liquid (i +1) - th.
  • the capillary stream has a diameter between 100 microns and 15 nanometers that is smaller than the characteristic diameter of the electrified liquid meniscus from which it emanates.
  • the device can also be arranged requiring only that the external liquid surround all the feeding tips.
  • an electrically capillary meniscus is formed in a substantially conical manner and from whose apex a stationary capillary stream formed by the N liquids is emitted, so that the liquid 1 surrounds the rest of the liquids.
  • the N power tips of the device must have diameters between 0.0 lmm and 5 mm.
  • the feed rate of the liquid flowing through the outermost feed tip is between 10 "15 m 3 / s and 10 " 7 m 3 / s, and the feed rates of the liquids flowing through the internal feed tips are between 10 "15 m 3 / s and 10 " 7 m 3 / s.
  • the applied electrical potential must be between ION and 30KV.
  • the device object of the invention consists of: a) a supply tip 1 through which a flow rate Ql of a liquid 1 flows and connected to an electric potential VI. b) a feed tip 2 through which a flow rate Q2 of a liquid 2 flows and connected to an electrical potential V2 arranged in such a way that the feed tip 2 is surrounded by the liquid 1 and the potentials VI and V2 are differential values with respect to an electrode connected to a reference potential.
  • Liquids 1 and 2 are immiscible or poorly miscible.
  • a electrically liquid capillary meniscus is formed in a substantially conical manner and a stationary capillary stream formed by liquids 1 and 2 is emitted from its apex, so that liquid 1 completely surrounds liquid 2.
  • Said hair jet has a diameter between 100 microns and 15 nanometers that is smaller than the characteristic diameter of the electrified liquid meniscus from which it emanates.
  • the process object of the invention will produce stationary liquid jets and micro and nanometric size capsules by flowing N flow rates Qi of liquid through each of the N feeding tips of the device described above so that the ith liquid which circulates through the ith feed tip, surrounds the feed tip (i + 1) -th, and is immiscible or poorly miscible with liquids (i + 1) -th and e-il).
  • an electrified liquid capillary meniscus is formed with a substantially conical shape and from whose apex a stationary capillary stream formed by the N liquids is emitted, such that the ith liquid surrounds the liquid (i +1) - th.
  • Said capillary jet has a diameter between 100 microns and 15 nanometers that is smaller than the characteristic diameter of the electrified liquid meniscus from which it emanates. When the jet ruptures spontaneously, capsules of size between 100 microns and 15 nanometers are formed.
  • Figure 1 Scheme of the device used to produce liquid jets composed of micro and nanometric sizes
  • the basic apparatus used in both configurations consists of: (1) a means for supplying a first liquid 1 through a metal tube TI, whose outer and inner diameters are approximately 1 and 0.7 mm respectively. (2) means for supplying a second liquid 2, immiscible with liquid 1, through a metal tube T2, whose outer diameter is smaller than the inner diameter of TI. In this case, T2 is concentrically located inside of IT. The end of the tubes does not have to be in the same axial position. (3) A reference electrode, such as a metal ring, located about 8 mm in front of the end of T2; The hole in the ring is aligned with the IT axis. (4) A high voltage source, with one of the poles connected to IT and the other connected to the reference electrode. IT and
  • T2 may not be connected to the same electrical potential. All components are immersed in a dielectric atmosphere that can be a gas, a liquid immiscible with liquid 1, or a vacuum. Part of the spray generated, or even the jet structured, it can be extracted through the hole in (3) for further processing or characterization.
  • a dielectric atmosphere can be a gas, a liquid immiscible with liquid 1, or a vacuum. Part of the spray generated, or even the jet structured, it can be extracted through the hole in (3) for further processing or characterization.
  • EHD forces need to act on at least one of the two liquids, although they can do so on both.
  • the motor liquid that on which the EHD forces act to form the Taylor cone.
  • the motor liquid flows through the annular space between TI and T2 while in the second configuration the motor liquid flows through T2 and the second liquid flows through the annular space between TI and T2.
  • the electrical conductivity of the "motor liquid" be high enough to allow the formation of the Taylor cone.
  • the liquid 1 when a sufficiently high electric potential difference between TI and (3) is applied, the liquid 1 (motor liquid) can develop a Taylor cone, from whose apex a charged stationary micro / nanometer jet is emitted ( cone-jet mode stationary).
  • the characteristic conical shape of the meniscus is due to a balance between surface tension forces and electrical forces acting simultaneously on the surface of the meniscus.
  • the movement of the liquid is caused by the electrical tangential stress acting on the surface of the meniscus, pulling the liquid towards the tip of the Taylor cone.
  • the mechanical balance described above is no longer satisfied, so the meniscus surface changes from conical to cylindrical.
  • the reasons for this loss of balance may be due, depending on the operating regime, the importance of the kinetic energy of the liquid or the finite value of its electrical conductivity.
  • the ejected liquid due to EHD forces, must be continuously replaced by the appropriate injection of liquid 1 through TI in order to achieve a steady state; let Ql be the flow supplied to IT.
  • the stability of this precursor state can be characterized by monitoring the current / transported by the jet and the aerosol that is collected in (3).
  • the movement of liquid 1 inside the Taylor cone may be dominated by viscosity, in which case the velocity of the liquid at any point inside the Taylor cone It is predominantly directed towards the tip of the cone.
  • the flow inside the cone can exhibit strong recirculations, which should be avoided to produce a structured micro / nanometric jet.
  • the flow In the event that the flow is dominated by viscosity, then it is able to form a structured micro / nanometric jet.
  • liquid 2 must be supplied continuously through T2.
  • the liquid meniscus 2, which is formed inside the Taylor cone developed by liquid 1 is suctioned towards the tip of the cone by the action of the movement of 1.
  • the meniscus of the liquid 2 can develop a conical tip from which the movement of A is capable of extracting a micro / nanometric jet.
  • the liquid 2 must be continuously supplied to T2 (say at a flow rate Q2) to achieve a steady state.
  • a photopolymer can be used as the outer liquid.
  • the rupture of the structured jet by capillary instability results in the formation of a spray of structured drops that, under the action of an ultraviolet light source, manage to encapsulate the inner liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mycology (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Formation And Processing Of Food Products (AREA)
  • Medicinal Preparation (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

Esta invención describe un dispositivo y procedimiento para generar chorros líquidos capilares compuestos multi-componentes de líquidos inmiscibles cuyos diámetros pueden variar desde unas decenas de nanómetros hasta cientos de micras, así como un aerosol relativamente monodisperso de gotas multicomponentes, cargadas eléctricamente, generadas mediante la rotura por inestabilidades capilares de los chorros compuestos. Dichos líquidos inmiscibles fluyen, a caudales apropiados, a través de agujas metálicas conectadas a fuentes de alto voltaje, de tal modo que una de las agujas contiene en su interior a las demás, pudiento o no situarse concéntricamente entre sí. Las fuerzas eléctricas extrusionan los chorros hasta conseguir diámetros en un rango desde 100 micras hasta pocos nanómetros. El dispositivo y procedimiento objetos de la presente invención son aplicables a campos como Ciencia de los Materials y Technología de Alimentos, donde la generación y manipulación controlada de chorros estructurados de tamaño micro o nanométrico sea parte esencial del proceso.

Description

TITULO
Dispositivo y procedimiento para producir chorros líquidos compuestos multicomponentes estacionarios y cápsulas de tamaño micro y nanométrico.
OBJETO DE LA INVENCIÓN
El presente invento describe un procedimiento para generar chorros líquidos capilares compuestos multi-componentes de líquidos inmiscibles cuyos diámetros pueden variar desde unas decenas de nanómetros hasta cientos de mieras, así como un aerosol relativamente monodisperso de gotas multicomponentes, cargadas eléctricamente, generadas a partir de la rotura por inestabilidades capilares de los chorros compuestos.
Dichos líquidos inmiscibles fluyen, a caudales apropiados, a través de agujas metálicas conectadas a fuentes de alto voltaje. En el caso en que la conductividad eléctrica de un líquido, o mas de uno, sea suficientemente alta, entonces el líquido puede cargarse a través de si mismo y puede ser inyectado a través de agujas no metálicas (i.e. tubo de sílica).
Las agujas se disponen de modo que una de las agujas contiene en su interior al resto de agujas, pudiendo o no situarse concéntricamente entre sí. Las fuerzas eléctricas pueden extrusionar los chorros hasta conseguir diámetros en un rango desde 100 mieras hasta unos pocos nanómetros.
El dispositivo y procedimiento objetos de la presente invención son aplicables a campos como la Ciencia de Materiales y la Tecnología de Alimentos, donde la generación y manipulación controlada de chorros estructurados de tamaño micro o nanométrico sea una parte esencial del proceso.
ESTADO DE LA TÉCNICA De entre los muchos procedimientos habitualmente usados para , producir chorros líquidos estacionarios y aerosoles, esta invención utiliza fuerzas electrohidrodinámicas (EHD) para extrusionar y atomizar un chorro líquido. Bajo unas condiciones de operación apropiadas, un caudal de líquido se emite en forma de micro chorro desde la punta de un cono de Taylor. La rotura de dicho chorro produce una niebla de gotas cargadas denominada electrospray. Esta configuración se suele denominar electrospray en modo cono-chorro (M. Cloupeau and B. Prunet-Foch, J. Electrostatics, 22, 135-159, 1992). Las leyes de escala de la comente emitida y del tamaño de las gotas de este tipo de electrospray está bien descrita en la literatura ( J. Fernández de la Mora & I. G. Loscertales, J. Fluid Mech. 260, 155-184, 1994; A.M. Gañán-Calvo, J. Dávila & A. Barrero, J. Aerosol Sel, 28, 249-275, 1997, A. M. Gañán-Calvo, Phys. Rev. Lett. 79, 217-220, 1997; R.P.A. Hartman, D.J Brunner, D.M.A. Camelot, J.C.M. Marijnissen, & B. Scarlett, J. Aerosol Sci. 30., 823-849, 1999). En particular, es bien conocida la habilidad de este proceso para generar chorros líquidos estacionarios y aerosoles monodispersos en un rango de tamaños que comprende desde pocos nanómetros hasta cientos de mieras (I.G. Loscertales & J. Fernández de la Mora, J. Chem. Phys. 103, 5041-5060, 1995.). Sin embargo, todos los resultados referentes al electrospray se restringen al uso ,de un único líquido o solución para formar el cono de Taylor, excepto en el procedimiento descrito en la patente US 5122670 (y subsecuentes: US4977785, US4885076, US575183). En dicha patente, "Multilayer flow electrospray ion source using improved sheath liquid (1991)", dos o más líquidos miscibles se inyectan y mezclan en el cono de Taylor, con el propósito de mejorar la transmisión de iones, la estabilidad y la sensibilidad de un espectrómetro de masa.
La novedosa aportación de la presente invención radica en el uso de líquidos inmiscibles (o pobremente miscibles) para formar, mediante EHD, un cono de Taylor estructurado rodeado de una atmósfera dieléctrica (gas, líquido o vacío), tal y como se muestra en la figura 1. El chorro micro/nanométrico estructurado y altamente cargado que se emite desde el vértice del cono de Taylor finalmente se rompe formando un spray de gotas monodispersas micro/nanométricas estructuradas altamente cargadas. Con el término "chorro micro/nanométrico estructurado" nos referimos a un chorro casi cilindrico compuesto de capas aproximadamente concéntricas de líquidos inmiscibles, cuyo diámetro exterior varia entre 50 mieras y unos pocos nanómetros. Con el término "spray de gotas monodispersas micro/nanométricas estructuradas altamente cargadas" nos referimos a partículas con carga neta, formadas por capas de diferentes líquidos o por una capa exterior del líquido que se inyecta por el exterior y un corazón de una emulsión. El diámetro externo de dicha partícula puede variar entre 50 mieras y unos pocos nanómetros.
Una ventaja de esta invención reside en que las partículas que se forman tienen un tamaño uniforme, y que dicho tamaño puede variarse fácilmente desde decenas de mieras hasta unos pocos nanómetros, dependiendo de las propiedades de los líquidos y los caudales inyectados.
Otra ventaja del invento emana del hecho de que la rotura del chorro micro/nanométrico estructurado produce gotas micro/nanométricas estructuradas. En algunas aplicaciones, el líquido exterior es una solución que contiene monómeros, los cuales polimerizan bajo una excitación apropiada para producir cápsulas micro/nanométricas.
En casos en que se requieran gotas neutras, el aerosol puede neutralizarse, por ejemplo, mediante una descarga de corona.
EXPLICACIÓN DE LA INVENCIÓN
La presente invención tiene por objeto el dispositivo y el procedimiento para producir chorros líquidos compuestos multi-componentes estacionarios y cápsulas de tamaño micro y nanométrico.
El dispositivo consta de un número N de puntas de alimentación de N líquidos, tales que por cada punta de alimentación i-ésima fluye un caudal Qi de un líquido i-ésimo, siendo i un valor entre 1 y N. Dichas puntas de alimentación están conectadas a un potencial eléctrico Vi respecto a un electrodo de referencia, y dispuestas de forma que el líquido (i-l)-ésimo rodea la punta de alimentación i-ésima. Además el líquido i- ésimo que circula por la punta de alimentación i-ésima es inmiscible o pobremente miscible con los líquidos (i+l)-ésimo e (i-l)-ésimo. A la salida de las puntas de alimentación se forma un menisco capilar líquido electrificado con una forma sensiblemente cónica y de cuyo vértice se emite un chorro capilar estacionario formado por los N líquidos, de tal forma que el líquido i-ésimo rodea al líquido (i+1)- ésimo. Además el chorro capilar tiene un diámetro comprendido entre 100 mieras y 15 nanómetros que es menor que el diámetro característico del menisco líquido electrificado del cual emana.
El dispositivo también puede disponerse exigiendo sólo que el líquido externo rodee todas las puntas de alimentación. En este caso se forma un menisco capilar electrificado de forma sensiblemente cónica y de cuyo vértice se emite un chorro capilar estacionario formado por los N líquidos, de forma que el líquido 1 rodea al resto de los líquidos.
Las N puntas de alimentación del dispositivo han de tener diámetros comprendidos entre 0,0 lmm y 5 mm.
El caudal de alimentación del líquido que fluye por la punta de alimentación más externa está comprendido entre 10"15 m3/s y 10"7 m3/s, y los caudales de alimentación de los líquidos que fluyen por las puntas de alimentación internas están comprendidos entre 10"15 m3/s y 10"7 m3/s.
Cuando la distancia entre la punta de alimentación y el electrodo de referencia está comprendida entre 0,0 lmm y 5cm, el potencial eléctrico aplicado ha de estar comprendido entre ION y 30KV.
En el caso particular en el que Ν=2, el dispositivo objeto de la invención consta de: a) una punta de alimentación 1 por la cual fluye un caudal Ql de un líquido 1 y conectada a un potencial eléctrico VI. b) una punta de alimentación 2 por la cual fluye un caudal Q2 de un líquido 2 y conectada a un potencial eléctrico V2 dispuestas de tal forma que la punta de alimentación 2 está rodeada por el líquido 1 y los potenciales VI y V2 son valores diferenciales respecto a un electrodo conectado a un potencial de referencia. Los líquidos 1 y 2 son inmiscibles o pobremente miscibles. En la salida de las puntas de alimentación se forma un menisco capilar líquido electrificado de forma sensiblemente cónica y de su vértice se emite un chorro capilar estacionario formado por los líquidos 1 y 2, de forma que el líquido 1 rodea completamente al líquido 2. Dicho chorro capilar tiene un diámetro comprendido entre 100 mieras y 15 nanómetros que es menor que el diámetro característico del menisco líquido electrificado del cual emana.
El procedimiento objeto de la invención va a producir chorros líquidos estacionarios y cápsulas de tamaño micro y nanométrico haciendo fluir N caudales Qi de líquidos i- ésimos por cada una de las N puntas de alimentación del dispositivo anteriormente descrito de forma que el líquido i-ésimo que circula por la punta de alimentación i- ésima, rodea la punta de alimentación (i+l)-ésima, y es inmiscible o pobremente miscible con los líquidos (i+l)-ésimo e (i-l)-ésimo. A la salida de las puntas de alimentación se forma un menisco capilar líquido electrificado con una forma sensiblemente cónica y de cuyo vértice se emite un chorro capilar estacionario formado por los N líquidos, de tal forma que el líquido i-ésimo rodea al líquido (i+1)- ésimo. Dicho chorro capilar tiene un diámetro comprendido entre 100 mieras y 15 nanómetros que es menor que el diámetro característico del menisco líquido electrificado del cual emana. Al producirse espontáneamente la ruptura del chorro se forman cápsulas de tamaño comprendido entre 100 mieras y 15 nanómetros.
Este procedimiento puede realizarse exigiendo sólo que el líquido externo rodee todas las puntas de alimentación. En este caso se forma un menisco capilar electrificado de forma sensiblemente cónica y de cuyo vértice se emite un chorro capilar estacionario formado por los N líquidos, de forma que el líquido 1 rodea al resto de los líquidos. Por último, son objeto de la presente invención las cápsulas multicapa formadas espontáneamente por la ruptura del chorro capilar que se forma utilizando el dispositivo y procedimiento mencionados.
BREVE DESCRIPCIÓN DE LA FIGURA
Figura 1 :. Esquema del dispositivo empleado para producir chorros líquidos compuestos de tamaños micro y nanométrico
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
A continuación se describen dos posibles configuraciones que permiten la generación de un flujo de dos líquidos inmiscibles que resulta, por la acción única de fuerzas electrohidrodinámicas, en la formación de un chorro capilar micro/nanométrico estructurado. Este chorro micro/nanométrico estructurado está inmerso en una atmósfera dieléctrica (inmiscible con el líquido más exterior que forma el chorro) que podría ser un gas, líquido o vacío.
El aparato básico utilizado en ambas configuraciones consiste en: (1) un medio para suministrar un primer líquido 1 a través de un tubo metálico TI, cuyos diámetros exterior e interior son aproximadamente 1 y 0,7 mm respectivamente. (2) un medio para suministrar un segundo líquido 2, inmiscible con el líquido 1 , a través de un tubo metálico T2, cuyo diámetro exterior es menor que el diámetro interior de TI. En este caso, T2 está situado concéntricamente en el interior de TI. El extremo de los tubos no tiene por qué situarse en la misma posición axial. (3) Un electrodo de referencia, como por ejemplo un anillo metálico, situado unos 8 mm enfrente del extremo de T2; el orificio del anillo está alineado con el eje de TI. (4) Una fuente de alto voltaje, con uno de los polos conectado a TI y el otro conectado al electrodo de referencia. TI y
T2 pueden no estar conectados al mismo potencial eléctrico. Todos los componentes se encuentran inmersos en una atmósfera dieléctrica que puede ser un gas, un líquido inmiscible con el líquido 1, o el vacío. Parte del aerosol generado, o incluso el chorro estructurado, puede extraerse a través del orificio en (3) para su posterior procesado o caracterización.
Las fuerzas EHD necesitan actuar al menos sobre uno de los dos líquidos, aunque pueden hacerlo sobre los dos. Denominamos líquido motor aquél sobre el que las fuerzas EHD actúan para formar el cono de Taylor. En la primera configuración, el líquido motor fluye a través del espacio anular entre TI y T2 mientras que en la segunda configuración el líquido motor fluye a través de T2 y el segundo líquido fluye a través del espacio anular entre TI y T2. En cualquier caso, es necesario que la conductividad eléctrica del "líquido motor" sea lo suficientemente elevada como para permitir la formación del cono de Taylor.
Refiriéndonos a la configuración primera, cuando se aplica una diferencia de potencial eléctrico suficientemente elevada entre TI y (3), el líquido 1 (líquido motor) puede desarrollar un cono de Taylor, desde cuyo vértice se emite un chorro micro/nanométrico estacionario cargado (modo cono-chorro estacionario). La forma cónica característica del menisco es debida a un balance entre las fuerzas de tensión superficial y las fuerzas eléctricas que actúan simultáneamente sobre la superficie del menisco. El movimiento del líquido es causado por el esfuerzo tangencial eléctrico que actúa sobre la superficie del menisco, tirando del líquido hacia la punta del cono de Taylor. En cierto punto, el equilibrio mecánico anteriormente descrito deja de satisfacerse, por lo que la superficie del menisco cambia de cónica a cilindrica. Las razones de esta pérdida de equilibrio pueden ser debidas, dependiendo del régimen de operación, a la importancia de la energía cinética del líquido o al valor finito de su conductividad eléctrica. El líquido eyectado, debido a fuerzas EHD, debe ser continuamente reemplazado mediante la inyección apropiada de líquido 1 a través de TI para poder conseguir un estado estacionario; sea Ql el caudal suministrado a TI. La estabilidad de este estado precursor puede caracterizarse mediante la monitorización de la corriente / transportada por el chorro y el aerosol que es recogido en (3). Dependiendo de las propiedades del líquido 1 y de Ql, el movimiento del líquido 1 en el interior del cono de Taylor puede estar dominado por la viscosidad, en cuyo caso la velocidad del líquido en cualquier punto del interior del cono de Taylor está predominantemente dirigida hacia la punta del cono. De lo contrario, el flujo en el interior del cono puede exhibir fuertes recirculaciones, que deben de evitarse para producir un chorro micro/nanométrico estructurado. En el supuesto de que el flujo esté dominado por la viscosidad, entonces se está en condiciones de formar un chorro micro/nanométrico estructurado. Para ello se debe suministrar líquido 2 de forma continua a través de T2. El menisco de líquido 2, que se forma en el interior del cono de Taylor desarrollado por el líquido 1 , es succionado hacia la punta del cono por la acción del movimiento de 1. Bajo ciertas condiciones de operación, que dependen de las propiedades de ambos líquidos (y de las propiedades líquido 1 -líquido 2), el menisco del líquido 2 puede desarrollar una punta cónica desde la que el movimiento de A es capaz de extraer un chorro micro/nanométrico. En esta situación, pueden existir regímenes en los que el chorro de 2 fluye concéntricamente por el interior del chorro de 1. De nuevo, el líquido 2 debe suministrarse de forma continua a T2 (digamos a un caudal Q2) para conseguir un régimen estacionario.
Cuando el dispositivo opera en la configuración segunda el proceso es enteramente similar salvo que, en este caso, el movimiento del líquido motor no necesita estar dominado por la viscosidad.
Nuestros experimentos indican que la formación de chorros líquidos concéntricos requiere que los valores de las tensiones superficiales de los diferentes pares de fluidos que aparecen en el problema satisfagan la desigualdad σa¡-σao0¡, donde σa¡ es la tensión superficial del líquido 2 y la atmósfera dieléctrica, σao es la tensión superficial del líquido 1 y la atmósfera dieléctrica, y σ0¡ es la tensión superficial líquido 1 -líquido 2, respectivamente.
Para dar una idea de los valores típicos de los diferentes parámetros que aparecen en el proceso, la siguiente tabla recoge medidas experimentales de la corriente eléctrica transportada por el chorro para diferentes valores de caudal del líquido interior y un caudal fijo de líquido exterior.
QΪ-50 μí/mín
Figure imgf000011_0001
Nótese que en este ejemplo, que corresponde al caso en el que Ql es mucho mayor
1 /9 que Q2, el valor de la corriente / sigue la conocida ley lo (Q2) del electrospray.
Para la producción de cápsulas nanométricas mediante el procedimiento de la invención se puede usar un fotopolímero como líquido exterior. En efecto, la rotura del chorro estructurado por acción de inestabilidades capilares da lugar a la formación de un aerosol de gotas estructuradas que, bajo la acción de una fuente de luz ultravioleta, logran encapsular al líquido interior.

Claims

REIVINDICACIONES :
1.- Dispositivo para producir chorros líquidos compuestos multi-componentes estacionarios y cápsulas de tamaño micro y nanométrico, consistente en un número N de puntas de alimentación de N líquidos, tales que por cada punta de alimentación i- ésima fluye un caudal Qi de un líquido i-ésimo, siendo i un valor entre 1 y N, donde dichas puntas de alimentación están dispuestas de tal forma que el líquido (i-l)-ésimo rodea la punta de alimentación i-ésima y están cada una de dichas puntas de alimentación conectadas a un potencial eléctrico Vi respecto a un electrodo de referencia, caracterizado porque el líquido i-ésimo que circula por la punta de alimentación i-ésima es inmiscible o pobremente miscible con los líquidos (i+1)- ésimo e (i-l)-ésimo, formándose a la salida de las puntas de alimentación un menisco capilar líquido electrificado con una forma sensiblemente cónica y de cuyo vértice se emite un chorro capilar estacionario formado por los N líquidos, de tal forma que el líquido (i-l)-ésimo rodea al líquido i-ésimo y tal que dicho chorro capilar tiene un diámetro comprendido entre 100 mieras y 15 nanómetros que es menor que el diámetro característico del menisco líquido electrificado del cual emana.
2.- Dispositivo para producir chorros líquidos compuestos multi-componentes estacionarios y cápsulas de tamaño micro y nanométrico, tal que se presenta un número N de puntas de alimentación de N líquidos, tales que por cada punta de alimentación i-ésima fluye un caudal Qi de un líquido i-ésimo, donde dichas puntas de alimentación están dispuestas de tal forma que el líquido 1 rodea al resto de puntas de alimentación, tales que el líquido i-ésimo es inmiscible o pobremente miscible con el líquido 1, tales que cada punta de alimentación está conectada a un potencial eléctrico
Vi, donde i varía de 1 a N, respecto a un electrodo de referencia, tales que se forma un menisco capilar líquido electrificado con una forma sensiblemente cónica y de cuyo vértice se emite un chorro capilar estacionario formado por los N líquidos, de tal manera que el líquido 1 rodea al resto de líquidos, y tal que dicho chorro capilar tiene un diámetro comprendido entre 100 mieras y 15 nanómetros que es menor que el diámetro característico del menisco líquido electrificado del cual emana.
3.- Dispositivos para producir chorros líquidos compuestos multi-componentes estacionarios y cápsulas de tamaño micro y nanométrico según las reivindicaciones 1 y
2, caracterizados porque las N puntas de alimentación tienen diámetros comprendidos entre 0,0 lmm y 5 mm.
4.- Dispositivos para producir chorros líquidos compuestos multi-componentes estacionarios y cápsulas de tamaño micro y nanométrico según las reivindicaciones 1-
3, caracterizados porque el caudal de alimentación del líquido que fluye por la punta de alimentación más externa esta comprendido entre 10"15 m3/s y 10"7 m3/s, y porque los caudales de alimentación de los líquidos que fluyen por las puntas de alimentación internas están comprendidos entre gl O"15 m3/s y 10"7 m3/s.
5.- Dispositivos para producir chorros líquidos compuesto multi-componentes estacionarios y cápsulas de tamaño micro y nanométrico según las reivindicaciones 1- 4, caracterizados porque para una distancia entre la punta de alimentación y el electrodo de referencia comprendida entre 0,0 lmm y 5cm, el potencial eléctrico aplicado está comprendido entre 10V y 30KV.
6.- Dispositivo para producir chorros líquidos compuestos multi-componentes estacionarios y cápsulas de tamaño micro y nanométrico según las reivindicaciones 1- 5, siendo el número de puntas de alimentación N=2 y conteniendo el dispositivo: a) una punta de alimentación 1 por la cual fluye un caudal Ql de un líquido 1 y conectada a un potencial eléctrico VI . b) una punta de alimentación 2 por la cual fluye un caudal Q2 de un líquido 2 y conectada a un potencial eléctrico V2 tales que la punta de alimentación 2 está rodeada por el líquido 1 y los potenciales VI y V2 son valores diferenciales respecto a un electrodo conectado a un potencial de referencia y caracterizado porque los líquidos 1 y 2 son inmiscibles o pobremente miscibles formándose en la salida de las puntas de alimentación un menisco capilar líquido electrificado con una forma sensiblemente cónica y de cuyo vértice se emite un chorro capilar estacionario formado por ambos líquidos 1 y 2, tal que el líquido 1 rodea completamente al líquido 2 y tal que dicho chorro capilar tiene un diámetro comprendido entre 100 mieras y 15 nanómetros que es menor que el diámetro característico del menisco líquido electrificado del cual emana.
7.- Procedimiento para producir chorros líquidos compuestos multi-componentes estacionarios y cápsulas de tamaño micro y nanométrico mediante un dispositivo según las reivindicaciones 1, 3,4,5 consistente en hacer fluir caudales Qi de líquidos i- ésimos por cada una de N puntas de alimentación, siendo i un valor entre 1 y N y estando cada una de las puntas de alimentación conectada a un potencial Vi, caracterizado porque el líquido i-ésimo que circula por la punta de alimentación i- ésima es inmiscible o pobremente miscible con los líquidos (i+l)-ésimo e (i-l)-ésimo, formándose en la salida de las puntas de alimentación un menisco capilar líquido electrificado con una forma sensiblemente cónica y de cuyo vértice se emite un chorro capilar estacionario formado por los N líquidos, de tal forma que el líquido (i-l)-ésimo rodea completamente al líquido i-ésimo y tal que dicho chorro capilar tiene un diámetro comprendido entre 100 mieras y 15 nanómetros que es menor que el diámetro característico del menisco líquido electrificado del cual emana, produciéndose espontáneamente la ruptura del chorro dando lugar a la formación de cápsulas de tamaño comprendido entre 100 mieras y 15 nanómetros.
8.- Procedimiento para producir chorros líquidos compuestos multi-componentes estacionarios y cápsulas de tamaño micro y nanométrico mediante un dispositivo según las reivindicaciones 2, 3, 4 y 5 consistente en hacer fluir caudales Qi de líquidos i-ésimos por cada una de N puntas de alimentación, siendo i un valor entre 1 y N y estando cada una de las puntas de alimentación conectada a un potencial Vi, caracterizado porque el líquido 1 que circula por la punta de alimentación 1 es inmiscible o pobremente miscible con el resto de los líquidos, formándose en la salida de las puntas de alimentación un menisco capilar líquido electrificado con una forma sensiblemente cónica y de cuyo vértice se emite un chorro capilar estacionario formado por los N líquidos, de tal forma que el líquido 1 rodea a cada uno de los restantes líquidos, y tal que dicho chorro capilar tiene un diámetro comprendido entre 100 mieras y 15 nanómetros que es menor que el diámetro característico del menisco líquido electrificado del cual emana, produciéndose espontáneamente la ruptura del chorro dando lugar a la formación de cápsulas de tamaño comprendido entre 100 mieras y 15 nanómetros.
9.- Cápsulas multicomponente y/o multicapa de tamaño comprendido entre 1000 mieras y 15 nanómetros, resultantes de la ruptura del chorro obtenido mediante los procedimientos según las reivindicaciones 7 y 8.
PCT/ES2002/000047 2001-01-31 2002-01-31 Disposito y procedimiento para producir chorros líquidos compuestos multicomponentes estacionarios y cápsulas de tamaños micro y nanométrico WO2002060591A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002560778A JP2004531365A (ja) 2001-01-31 2002-01-31 安定した複数成分の液体毛管ストリームを生成するデバイスおよび方法、ならびにマイクロメートルおよびナノメートルサイズのカプセル
EP02711878A EP1364718B1 (en) 2001-01-31 2002-01-31 Device and method for producing stationary multi-component liquid capillary streams and micrometric and nanometric sized capsules
DE60222858T DE60222858T2 (de) 2001-01-31 2002-01-31 Vorrichtung und verfahren zur herstellung von stationären mehrkomponentenflüssigkeits-kapillarströmen und kapseln in mikrometergrösse und nanometergrösse
CA002436524A CA2436524C (en) 2001-01-31 2002-01-31 Device and procedure to generate steady compound jets of immiscible liquids and micro/nanometric sized capsules
US10/631,496 US20040069632A1 (en) 2001-01-31 2003-07-31 Device and procedure to generate steady compound jets of immiscible liquids and micro/nanometric sized capsules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200100231A ES2180405B1 (es) 2001-01-31 2001-01-31 Dispositivo y procedimiento para producir chorros liquidos compuestos multicomponentes estacionarios y capsulas multicomponente y/o multicapa de tamaño micro y nanometrico.
ESP0100231 2001-01-31

Publications (1)

Publication Number Publication Date
WO2002060591A1 true WO2002060591A1 (es) 2002-08-08

Family

ID=8496581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000047 WO2002060591A1 (es) 2001-01-31 2002-01-31 Disposito y procedimiento para producir chorros líquidos compuestos multicomponentes estacionarios y cápsulas de tamaños micro y nanométrico

Country Status (8)

Country Link
US (1) US20040069632A1 (es)
EP (1) EP1364718B1 (es)
JP (1) JP2004531365A (es)
AT (1) ATE375207T1 (es)
CA (1) CA2436524C (es)
DE (1) DE60222858T2 (es)
ES (2) ES2180405B1 (es)
WO (1) WO2002060591A1 (es)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120264A2 (es) * 2005-05-12 2006-11-16 Universidad De Sevilla Procedimiento y dispositivo para producir nanoemulsiones por vía electrohidrodinámica y nanoemulsiones obtenidas
EP2127736A1 (en) * 2003-04-10 2009-12-02 The President and Fellows of Harvard College Formation and control of fluidic species
US7914714B2 (en) 2003-05-14 2011-03-29 The Regents Of The University Of Colorado Methods and apparatus using electrostatic atomization to form liquid vesicles
US7972661B2 (en) 1997-06-12 2011-07-05 Regents Of The University Of Minnesota Electrospraying method with conductivity control
US8028646B2 (en) 2001-05-16 2011-10-04 Regents Of The University Of Minnesota Coating medical devices
US8337778B2 (en) 2002-06-28 2012-12-25 President And Fellows Of Harvard College Method and apparatus for fluid dispersion
US8765485B2 (en) 2003-08-27 2014-07-01 President And Fellows Of Harvard College Electronic control of fluidic species
US9040816B2 (en) 2006-12-08 2015-05-26 Nanocopoeia, Inc. Methods and apparatus for forming photovoltaic cells using electrospray
US9050611B2 (en) 2000-05-16 2015-06-09 Regents Of The University Of Minnesota High mass throughput particle generation using multiple nozzle spraying
US9068699B2 (en) 2007-04-19 2015-06-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US9108217B2 (en) 2006-01-31 2015-08-18 Nanocopoeia, Inc. Nanoparticle coating of surfaces
US9248217B2 (en) 2006-01-31 2016-02-02 Nanocopocia, LLC Nanoparticle coating of surfaces
US9328344B2 (en) 2006-01-11 2016-05-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US9440232B2 (en) 2007-02-06 2016-09-13 Raindance Technologies, Inc. Manipulation of fluids and reactions in microfluidic systems
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US9642694B2 (en) 2006-01-31 2017-05-09 Regents Of The University Of Minnesota Device with electrospray coating to deliver active ingredients
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US10639597B2 (en) 2006-05-11 2020-05-05 Bio-Rad Laboratories, Inc. Microfluidic devices
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
US10732649B2 (en) 2004-07-02 2020-08-04 The University Of Chicago Microfluidic system
US11077415B2 (en) 2011-02-11 2021-08-03 Bio-Rad Laboratories, Inc. Methods for forming mixed droplets
US11168353B2 (en) 2011-02-18 2021-11-09 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11174509B2 (en) 2013-12-12 2021-11-16 Bio-Rad Laboratories, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US11187702B2 (en) 2003-03-14 2021-11-30 Bio-Rad Laboratories, Inc. Enzyme quantification
US11254968B2 (en) 2010-02-12 2022-02-22 Bio-Rad Laboratories, Inc. Digital analyte analysis
US11390917B2 (en) 2010-02-12 2022-07-19 Bio-Rad Laboratories, Inc. Digital analyte analysis
US11511242B2 (en) 2008-07-18 2022-11-29 Bio-Rad Laboratories, Inc. Droplet libraries
US11635427B2 (en) 2010-09-30 2023-04-25 Bio-Rad Laboratories, Inc. Sandwich assays in droplets
US11786872B2 (en) 2004-10-08 2023-10-17 United Kingdom Research And Innovation Vitro evolution in microfluidic systems
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US11898193B2 (en) 2011-07-20 2024-02-13 Bio-Rad Laboratories, Inc. Manipulating droplet size
US12038438B2 (en) 2008-07-18 2024-07-16 Bio-Rad Laboratories, Inc. Enzyme quantification
US12097475B2 (en) 2004-07-02 2024-09-24 The University Of Chicago Microfluidic system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2245874B1 (es) * 2004-03-22 2007-08-01 Universidad De Sevilla Procedimiento para generar nanotubos y nanofibras compuestas a partir de chorros coaxiales.
JP2008506547A (ja) * 2004-06-21 2008-03-06 スリーエム イノベイティブ プロパティズ カンパニー 半導体ナノ粒子のパターン形成および配列
US7258428B2 (en) * 2004-09-30 2007-08-21 Kimberly-Clark Worldwide, Inc. Multiple head concentric encapsulation system
US7575707B2 (en) * 2005-03-29 2009-08-18 University Of Washington Electrospinning of fine hollow fibers
KR101396737B1 (ko) 2005-10-31 2014-05-26 더 트러스티즈 오브 프린스턴 유니버시티 전기수력학적 인쇄 및 제조
US20080187487A1 (en) * 2006-05-03 2008-08-07 Gustavo Larsen Methods for producing multilayered particles, fibers and sprays and methods for administering the same
WO2008116950A1 (es) * 2007-03-27 2008-10-02 Universidad De Sevilla Método de generación de gotas y burbujas micro y submicrométricas mediante coflujos viscosos
GB0712862D0 (en) 2007-07-03 2007-08-08 Eastman Kodak Co A method of continuous ink jet printing
GB0712861D0 (en) 2007-07-03 2007-08-08 Eastman Kodak Co Continuous ink jet printing of encapsulated droplets
EP2020261A1 (en) 2007-07-20 2009-02-04 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Multi component particle generating system
ES2320618B1 (es) 2007-11-23 2010-02-26 Nanobiomatters S.L. Procedimiento para la fabricacion de envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos mediante la incorporacion de polimeros obtenidos por tecnicas de electroestirado.
EP2172264A1 (en) * 2008-01-02 2010-04-07 Ziel Biopharma Ltd Process and apparatus for the production of microcapsules
JP2010169701A (ja) * 2008-05-13 2010-08-05 Sony Corp マイクロチップ
JP4661942B2 (ja) * 2008-05-13 2011-03-30 ソニー株式会社 マイクロチップとその流路構造
EP2202336A1 (en) 2008-12-12 2010-06-30 Eads Construcciones Aeronauticas S.A. Method for producing nanofibres of epoxy resin for composite laminates of aeronautical structures to improve their electromagnetic characteristics
EP2213366A1 (en) 2009-02-03 2010-08-04 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Multi component particle generating system
EP3415235A1 (en) 2009-03-23 2018-12-19 Raindance Technologies Inc. Manipulation of microfluidic droplets
GB201102148D0 (en) 2011-02-08 2011-03-23 Ucl Business Plc Layered bodies, compositions containing them and processes for producing them
RU2688586C1 (ru) * 2017-12-08 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Устройство для коаксиального электрогидродинамического формования полимерных микро- или субмикронных структур
US10369579B1 (en) 2018-09-04 2019-08-06 Zyxogen, Llc Multi-orifice nozzle for droplet atomization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH563807A5 (en) * 1973-02-14 1975-07-15 Battelle Memorial Institute Fine granules and microcapsules mfrd. from liquid droplets - partic. of high viscosity requiring forced sepn. of droplets
WO1999030832A1 (en) * 1997-12-17 1999-06-24 Universidad De Sevilla Stabilized capillary microjet and devices and methods for producing same
FR2776538A1 (fr) * 1998-03-27 1999-10-01 Centre Nat Rech Scient Moyens de pulverisation electrohydrodynamique

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8504254D0 (en) * 1985-02-19 1985-03-20 Ici Plc Spraying apparatus
US4748043A (en) * 1986-08-29 1988-05-31 Minnesota Mining And Manufacturing Company Electrospray coating process
US5170053A (en) * 1990-08-30 1992-12-08 Finnigan Corporation Electrospray ion source and interface apparatus and method
US5122670A (en) * 1991-05-17 1992-06-16 Finnigan Corporation Multilayer flow electrospray ion source using improved sheath liquid
GB9406255D0 (en) * 1994-03-29 1994-05-18 Electrosols Ltd Dispensing device
US5873523A (en) * 1996-02-29 1999-02-23 Yale University Electrospray employing corona-assisted cone-jet mode
EP0912251B1 (en) * 1996-07-23 2004-04-07 Battelle Memorial Institute A dispensing device and method for forming material
US6297499B1 (en) * 1997-07-17 2001-10-02 John B Fenn Method and apparatus for electrospray ionization
US6245227B1 (en) * 1998-09-17 2001-06-12 Kionix, Inc. Integrated monolithic microfabricated electrospray and liquid chromatography system and method
WO2003031931A2 (en) * 2001-10-05 2003-04-17 Yale University Method and apparatus to produce ions and nanodrops from taylor cones of volatile liquids at reduced pressures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH563807A5 (en) * 1973-02-14 1975-07-15 Battelle Memorial Institute Fine granules and microcapsules mfrd. from liquid droplets - partic. of high viscosity requiring forced sepn. of droplets
WO1999030832A1 (en) * 1997-12-17 1999-06-24 Universidad De Sevilla Stabilized capillary microjet and devices and methods for producing same
FR2776538A1 (fr) * 1998-03-27 1999-10-01 Centre Nat Rech Scient Moyens de pulverisation electrohydrodynamique

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7972661B2 (en) 1997-06-12 2011-07-05 Regents Of The University Of Minnesota Electrospraying method with conductivity control
US9050611B2 (en) 2000-05-16 2015-06-09 Regents Of The University Of Minnesota High mass throughput particle generation using multiple nozzle spraying
US8028646B2 (en) 2001-05-16 2011-10-04 Regents Of The University Of Minnesota Coating medical devices
US8986628B2 (en) 2002-06-28 2015-03-24 President And Fellows Of Harvard College Method and apparatus for fluid dispersion
US8337778B2 (en) 2002-06-28 2012-12-25 President And Fellows Of Harvard College Method and apparatus for fluid dispersion
US11187702B2 (en) 2003-03-14 2021-11-30 Bio-Rad Laboratories, Inc. Enzyme quantification
JP2011025243A (ja) * 2003-04-10 2011-02-10 President & Fellows Of Harvard College 流体種の形成および制御
US9038919B2 (en) 2003-04-10 2015-05-26 President And Fellows Of Harvard College Formation and control of fluidic species
US20150283546A1 (en) 2003-04-10 2015-10-08 President And Fellows Of Harvard College Formation and control of fluidic species
EP2127736A1 (en) * 2003-04-10 2009-12-02 The President and Fellows of Harvard College Formation and control of fluidic species
JP2014111257A (ja) * 2003-04-10 2014-06-19 President & Fellows Of Harvard College 流体種の形成および制御
US11141731B2 (en) 2003-04-10 2021-10-12 President And Fellows Of Harvard College Formation and control of fluidic species
US10293341B2 (en) 2003-04-10 2019-05-21 President And Fellows Of Harvard College Formation and control of fluidic species
US7914714B2 (en) 2003-05-14 2011-03-29 The Regents Of The University Of Colorado Methods and apparatus using electrostatic atomization to form liquid vesicles
US8765485B2 (en) 2003-08-27 2014-07-01 President And Fellows Of Harvard College Electronic control of fluidic species
US10625256B2 (en) 2003-08-27 2020-04-21 President And Fellows Of Harvard College Electronic control of fluidic species
US9878325B2 (en) 2003-08-27 2018-01-30 President And Fellows Of Harvard College Electronic control of fluidic species
US11383234B2 (en) 2003-08-27 2022-07-12 President And Fellows Of Harvard College Electronic control of fluidic species
US9789482B2 (en) 2003-08-27 2017-10-17 President And Fellows Of Harvard College Methods of introducing a fluid into droplets
US12097475B2 (en) 2004-07-02 2024-09-24 The University Of Chicago Microfluidic system
US10732649B2 (en) 2004-07-02 2020-08-04 The University Of Chicago Microfluidic system
US11786872B2 (en) 2004-10-08 2023-10-17 United Kingdom Research And Innovation Vitro evolution in microfluidic systems
WO2006120264A2 (es) * 2005-05-12 2006-11-16 Universidad De Sevilla Procedimiento y dispositivo para producir nanoemulsiones por vía electrohidrodinámica y nanoemulsiones obtenidas
ES2282009B1 (es) * 2005-05-12 2008-09-01 Universidad De Sevilla Dispositivo y procedimiento para la generacion de nanoemulsiones y microemulsiones simples y dobles mediante chorros coaxiales electrificados en medios liquidos dielectricos.
ES2282009A1 (es) * 2005-05-12 2007-10-01 Universidad De Sevilla Dispositivo y procedimiento para la generacion de nanoemulsiones y microemulsiones simples y dobles mediante chorros coaxilaes electrificados en medios liquidos dielectricos.
WO2006120264A3 (es) * 2005-05-12 2006-12-21 Univ Sevilla Procedimiento y dispositivo para producir nanoemulsiones por vía electrohidrodinámica y nanoemulsiones obtenidas
US9410151B2 (en) 2006-01-11 2016-08-09 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9534216B2 (en) 2006-01-11 2017-01-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9328344B2 (en) 2006-01-11 2016-05-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9642694B2 (en) 2006-01-31 2017-05-09 Regents Of The University Of Minnesota Device with electrospray coating to deliver active ingredients
US9248217B2 (en) 2006-01-31 2016-02-02 Nanocopocia, LLC Nanoparticle coating of surfaces
US9108217B2 (en) 2006-01-31 2015-08-18 Nanocopoeia, Inc. Nanoparticle coating of surfaces
US10252289B2 (en) 2006-01-31 2019-04-09 Nanocopoeia, Inc. Nanoparticle coating of surfaces
US11351510B2 (en) 2006-05-11 2022-06-07 Bio-Rad Laboratories, Inc. Microfluidic devices
US10639597B2 (en) 2006-05-11 2020-05-05 Bio-Rad Laboratories, Inc. Microfluidic devices
US12091710B2 (en) 2006-05-11 2024-09-17 Bio-Rad Laboratories, Inc. Systems and methods for handling microfluidic droplets
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US9040816B2 (en) 2006-12-08 2015-05-26 Nanocopoeia, Inc. Methods and apparatus for forming photovoltaic cells using electrospray
US11819849B2 (en) 2007-02-06 2023-11-21 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US10603662B2 (en) 2007-02-06 2020-03-31 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US9440232B2 (en) 2007-02-06 2016-09-13 Raindance Technologies, Inc. Manipulation of fluids and reactions in microfluidic systems
US10357772B2 (en) 2007-04-19 2019-07-23 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US9068699B2 (en) 2007-04-19 2015-06-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US11618024B2 (en) 2007-04-19 2023-04-04 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US10960397B2 (en) 2007-04-19 2021-03-30 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US11224876B2 (en) 2007-04-19 2022-01-18 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US10675626B2 (en) 2007-04-19 2020-06-09 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US12038438B2 (en) 2008-07-18 2024-07-16 Bio-Rad Laboratories, Inc. Enzyme quantification
US11596908B2 (en) 2008-07-18 2023-03-07 Bio-Rad Laboratories, Inc. Droplet libraries
US11511242B2 (en) 2008-07-18 2022-11-29 Bio-Rad Laboratories, Inc. Droplet libraries
US11534727B2 (en) 2008-07-18 2022-12-27 Bio-Rad Laboratories, Inc. Droplet libraries
US11390917B2 (en) 2010-02-12 2022-07-19 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US11254968B2 (en) 2010-02-12 2022-02-22 Bio-Rad Laboratories, Inc. Digital analyte analysis
US10808279B2 (en) 2010-02-12 2020-10-20 Bio-Rad Laboratories, Inc. Digital analyte analysis
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US11635427B2 (en) 2010-09-30 2023-04-25 Bio-Rad Laboratories, Inc. Sandwich assays in droplets
US11077415B2 (en) 2011-02-11 2021-08-03 Bio-Rad Laboratories, Inc. Methods for forming mixed droplets
US11768198B2 (en) 2011-02-18 2023-09-26 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11168353B2 (en) 2011-02-18 2021-11-09 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11965877B2 (en) 2011-02-18 2024-04-23 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11747327B2 (en) 2011-02-18 2023-09-05 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11754499B2 (en) 2011-06-02 2023-09-12 Bio-Rad Laboratories, Inc. Enzyme quantification
US11898193B2 (en) 2011-07-20 2024-02-13 Bio-Rad Laboratories, Inc. Manipulating droplet size
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US11174509B2 (en) 2013-12-12 2021-11-16 Bio-Rad Laboratories, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions

Also Published As

Publication number Publication date
CA2436524A1 (en) 2002-08-08
ATE375207T1 (de) 2007-10-15
ES2180405A1 (es) 2003-02-01
US20040069632A1 (en) 2004-04-15
CA2436524C (en) 2009-10-27
DE60222858T2 (de) 2008-07-24
ES2180405B1 (es) 2004-01-16
DE60222858D1 (de) 2007-11-22
EP1364718B1 (en) 2007-10-10
ES2292731T3 (es) 2008-03-16
JP2004531365A (ja) 2004-10-14
EP1364718A1 (en) 2003-11-26

Similar Documents

Publication Publication Date Title
WO2002060591A1 (es) Disposito y procedimiento para producir chorros líquidos compuestos multicomponentes estacionarios y cápsulas de tamaños micro y nanométrico
Jaworek Micro-and nanoparticle production by electrospraying
Jaworek et al. Jet and drops formation in electrohydrodynamic spraying of liquids. A systematic approach
Bocanegra et al. Multiple electrosprays emitted from an array of holes
Jaworek et al. Classification of the modes of EHD spraying
AU737688B2 (en) Device and method for creating dry particles
US6174469B1 (en) Device and method for creating dry particles
Gañán-Calvo et al. A novel pneumatic technique to generate steady capillary microjets
Barrero et al. The role of the electrical conductivity and viscosity on the motions inside Taylor cones
Hijano et al. Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid
US20120315768A1 (en) Method for generating charged particles
JP2009513842A (ja) 電気流体力学的印刷および製造
Kong et al. Dynamics of electrified jets in electrohydrodynamic atomization
WO2020241098A1 (ja) スプレーイオン化装置、分析装置および表面塗布装置
WO2005115088A2 (en) Nano particle generator and a method for generating nanoparticles by said device
Wang et al. Electrohydrodynamic instability and disintegration of low viscous liquid jet
Yang et al. Visualization on electrified micro-jet instability from Taylor cone in electrohydrodynamic atomization
Cooper et al. A review of some experimental spray methods for marine cloud brightening
US8267914B1 (en) Method and apparatus for AC electrospray
JP4709998B2 (ja) 液体導入プラズマ装置
JP7028486B2 (ja) プラズマトーチ、プラズマ発生装置および分析装置
Arumuganathar et al. Aerodynamically assisted jet processing of viscous single-and multi-phase media
ES2282009B1 (es) Dispositivo y procedimiento para la generacion de nanoemulsiones y microemulsiones simples y dobles mediante chorros coaxiales electrificados en medios liquidos dielectricos.
WO2016163046A1 (ja) エレクトロスプレーイオン化法に用いる放電ノズル
Bodnár Electrospraying of polymer solutions for the generation of micro-particles, nano-structures, and granular films

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2436524

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002560778

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002711878

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002711878

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002711878

Country of ref document: EP