WO2002055465A1 - Methode et appareil de reaction chimique faisant appel a un catalyseur a membrane - Google Patents

Methode et appareil de reaction chimique faisant appel a un catalyseur a membrane Download PDF

Info

Publication number
WO2002055465A1
WO2002055465A1 PCT/JP2001/011542 JP0111542W WO02055465A1 WO 2002055465 A1 WO2002055465 A1 WO 2002055465A1 JP 0111542 W JP0111542 W JP 0111542W WO 02055465 A1 WO02055465 A1 WO 02055465A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
activated
substance
compound
group
Prior art date
Application number
PCT/JP2001/011542
Other languages
English (en)
French (fr)
Inventor
Fujio Mizukami
Shuichi Niwa
Makoto Toba
Naotsugu Itoh
Tomonari Saito
Takemi Nanba
Hirosi Shoji
Kazuhiko Haba
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Nok Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001000403A external-priority patent/JP2002205968A/ja
Priority claimed from JP2001088282A external-priority patent/JP2002284727A/ja
Application filed by National Institute Of Advanced Industrial Science And Technology, Nok Corporation filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to EP01273197A priority Critical patent/EP1357103B1/en
Priority to US10/451,624 priority patent/US6911563B2/en
Priority to CA002434162A priority patent/CA2434162C/en
Publication of WO2002055465A1 publication Critical patent/WO2002055465A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/007Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J14/00Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor
    • B01J14/005Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • B01J35/59
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/58Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/40Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with ozone; by ozonolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00099Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor the reactor being immersed in the heat exchange medium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a reaction method using a substance activated by the action of a catalyst, a method for producing aromatic alcohols using the method, and a reaction apparatus for these methods.
  • Oxygen oxidation which oxidizes hydrocarbons with oxygen or air in the presence of an oxidation catalyst, is very important in the organic chemical industry.
  • oxygen-containing organic compound obtained by such a reaction include ketones such as acetate, cyclohexanone, and cyclopentanone; and carboxyls such as terephthalic acid, phthalic anhydride, and maleic anhydride. Acids; examples include alkylene oxides such as ethylene oxide.
  • oxygenated organic compounds include aromatic alcohols, many of which are important as basic chemicals in the organic chemical industry, of which phenol and cresol are particularly important. It is a chemical. These are used, for example, for the polycondensation reaction with formaldehyde to produce so-called phenol resin-cresol resin. These resins are widely used as paints, lacquers, or resin materials for compression molding or foam molding.
  • phenol is used as a raw material for bisphenol A and bisphenol F, which are important as raw materials for epoxy resins.
  • cyclohexanol obtained by hydrogenating phenol is used for ⁇ -caprolactam, a raw material for nylon. Used for manufacturing.
  • the most ideal method for industrial production of phenol by the above oxidation method is the direct oxidation method, in which benzene is directly and partially oxidized.
  • the direct oxidation method has difficulty in controlling the reaction and further oxidizes the phenol generated by the oxidation of benzene, so a practical production method has not yet been established.
  • the cumene method is a method in which propylene and benzene are reacted to produce cumene, which is then oxidized in air with, for example, a cobalt salt catalyst to give a cumene hydroperoxide, which is then decomposed into an acid catalyst to phenol and acetone.
  • This method has a high selectivity and is a very good method.However, since acetone is produced in equimolar proportion to phenol production, the price of phenol fluctuates depending on the demand of acetone. There are drawbacks.
  • the indirect oxidation method generally has many reaction steps, is complicated, and has the disadvantage of generating unnecessary by-products. Therefore, development of a direct oxidation method for directly reacting oxygen with hydrocarbons has been desired.
  • the production of oxygen-containing organic compounds by the direct oxidation method involves mixing raw material hydrocarbons with oxygen-containing gas and flowing the mixture through a fixed-bed flow reactor to a reactor filled with a solid catalyst. Is common. However, this method has a problem that the reaction yield is very low.
  • the generated oxygen-containing compound has a lower ionization potential of the molecule, and thus is more susceptible to oxidation than the starting hydrocarbon, and the product over-reacts one after another, that is, undergoes a sequential oxidation reaction.
  • the selectivity of the target product is reduced.
  • Another reason is that in order to suppress this overreaction, the reaction must be carried out under dilute concentration conditions where the raw material is always in a large excess compared to the product.
  • this type of reaction is basically a mixture of combustibles and oxygen (combustion) that causes combustion. Therefore, there is a danger of explosion, and in order to avoid this, it must be operated at low concentration and low reaction rate. All of the above cause low yields.
  • Japanese Unexamined Patent Publication (Kokai) No. 11-518017 discloses a gas-phase oxidation reaction of propylene to propylene oxide by a silver catalyst supported on a solid support, but is specifically disclosed.
  • the raw material propylene concentration in the mixed gas introduced into the reactor was as low as 10% or less, and the propylene conversion was as low as 3 to 5%. A reaction is taking place.
  • membrane reactor for a certain kind of gas-phase oxidation reaction using hydrocarbons as a raw material, a method using a membrane reactor, a so-called membrane reactor (membrane reactor), has been reported.
  • a membrane reactor can be used for producing C 2 hydrocarbons by an oxidative pulling reaction of methane.
  • the diaphragm type catalyst used here is a composite oxide having high oxygen ion mobility and mixed conductivity, that is, an ion conductor, in which oxygen taken in from one of the diaphragms is oxygen ion O. 2 ⁇ flows to the other side and participates in the reaction.
  • oxygen ion O. 2 ⁇ flows to the other side and participates in the reaction.
  • Japanese Patent Application Laid-Open No. 5-194281 discloses a method in which a hydrogen permeable membrane is used in combination with a dehydrogenation catalyst in a catalytic dehydrogenation reaction of saturated hydrocarbons. This method converts the hydrogen generated by the dehydrogenation reaction into a membrane. This allows the chemical equilibrium in the system to shift to the dehydrogenation reaction side by passing through the reaction system, thereby achieving a conversion rate that exceeds the equilibrium conversion rate.
  • the product is a hydrocarbon compound and not an oxygen-containing organic compound. That is, a method for producing an oxygen-containing organic compound using a membrane reactor has not been proposed so far.
  • an object of the present invention is to provide a method for reacting a substance activated by the action of a catalyst such as oxygen or hydrogen with a substance which reacts with the substance such as hydrocarbons, for example.
  • An object of the present invention is to provide a method for obtaining a target product safely and in a high yield while avoiding the problem. Disclosure of the invention
  • the present invention provides a method of reacting a substance activated by the action of a catalyst with a substance that reacts with the activated substance, wherein the activation of the substance to be activated is performed by passing the activated substance through a membrane catalyst. This is a reaction method characterized in that the reaction is performed in a single step.
  • the present invention provides a method in which a substance to be reactivated by the above-mentioned diaphragm type catalyst is provided in one of the adjacent chambers of the plurality of chambers in the reaction vessel divided into a plurality of sections by the diaphragm type catalyst for activating the passing substance. And the compound to be reacted with the activated substance is passed through the other chamber adjacent to the divided chamber, and the substance to be activated passes through the membrane catalyst. In the above reaction method, the compound is activated and reacted with the compound to be reacted.
  • the present invention provides a method for producing aromatic alcohols in a single reaction step in which oxygen and hydrogen are reacted with aromatic hydrocarbons, wherein hydrogen activated by a diaphragm type catalyst for activating a substance passing therethrough is provided.
  • a method for producing aromatic alcohols characterized by reacting aromatic hydrocarbons and oxygen.
  • a diaphragm type catalyst for dividing the vessel into a plurality of sections is provided in the reaction vessel, and hydrogen is contained in one of the chambers adjacent to the plurality of compartments formed in the reaction vessel.
  • Aromatic hydrocarbons and oxygen are allowed to flow in the other chamber adjacent to the divided chamber, and hydrogen activated when passing through the membrane catalyst is
  • a diaphragm catalyst for activating a substance passing therethrough is provided in the reaction vessel so as to divide the vessel into a plurality of sections, and a plurality of partitioned chambers in the reaction vessel are adjacent to each other.
  • a gas of a substance to be reactivated by the above-mentioned diaphragm type catalyst can flow, and in the other chamber adjacent to the divided chamber, the above-mentioned activated substance
  • the reaction is characterized in that the compound to be activated is allowed to flow and the substance to be activated is activated when passing through the membrane catalyst, and reacts with the compound to be reacted.
  • Device BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a drawing schematically showing a cross section of an embodiment of the diaphragm type catalytic reactor of the present invention.
  • FIG. 2 is a drawing schematically showing a cross section of another embodiment of the diaphragm type catalytic reactor of the present invention.
  • FIG. 3 is a drawing schematically showing a cross section of another embodiment of the diaphragm type catalytic reactor of the present invention.
  • FIG. 4 is a perspective view of another embodiment of the membrane-type catalytic reactor of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing still another embodiment of the membrane-type catalytic reactor of the present invention. It is a drawing.
  • diaphragm-type catalyst j refers to a catalyst in the form of a film capable of partitioning a reaction zone of a reaction vessel into two or more. Are divided into two, for example, and one of the substances involved in the reaction is activated when passing through the membrane-type catalyst, and this is reacted with the compound to be reacted, which is present on the other side of the membrane-type catalyst.
  • the use of a plurality of membrane-type catalysts can make the reaction more efficient and can respond to scale-up.
  • the substance to be activated (hereinafter referred to as “activating substance”) is oxygen, and the compound to be reacted with the activated substance (
  • the reaction hereinafter referred to as “reaction compound”) is a hydrocarbon, and the resulting compound (hereinafter, referred to as “product”) is an oxygen-containing organic compound (hereinafter, referred to as “first embodiment reaction”).
  • first embodiment reaction A reaction in which the substance is hydrogen, the reaction compounds are hydrocarbons and oxygen, and the product is an oxygen-containing organic compound (hereinafter, referred to as “second embodiment reaction”).
  • a specific example of the first embodiment reaction is an oxidation reaction in which a raw material hydrocarbon is oxidized with activated oxygen to produce an oxygen-containing organic compound.
  • Manufacture of alkylene-based oxides from raw materials Manufacture of ketones from raw-refined hydrocarbons and cyclic hydrocarbons; Manufacture of aldehydes from raw-refined hydrocarbons; Production of carboxylic acids using hydrogen, olefin hydrocarbons, and aromatic hydrocarbons as raw materials is exemplified.
  • the second mode reaction there is a reaction of producing a oxygen-containing organic compound by reacting hydrocarbons as raw materials with hydrogen activated by oxygen, for example, propylene-butene and the like. Production of aldehydes, ketones, alkylene oxides or aromatic alcohols using olefins as raw materials.
  • An important component in the present invention is a membrane catalyst.
  • This diaphragm catalyst has an action of activating a substance passing therethrough.
  • the metal or alloy itself which is a catalyst active component, may be formed into a porous film, or the surface of a film-shaped porous support may be used.
  • a catalytically active component include the following diaphragm catalysts.
  • the metal of (A), the alloy of (B), the noble metal of (C), or the transition metal oxide or lanthanide-based oxide of (D) are active components of the catalyst, respectively.
  • the metal film (A) for example, a metal film made of a metal selected from the group consisting of palladium, niobium, tantalum and vanadium can be mentioned. Furthermore, a metal film formed by coating palladium on a metal film composed of a metal selected from the group consisting of niobium, tantalum and vanadium can also be used.
  • the alloy film of (B) may be, for example, at least one element selected from the group consisting of a first transition metal element, a second transition metal element, a third transition metal element, a lanthanide element, and an actinide element. And an alloy film composed of an element selected from the group consisting of palladium, nickel, tantalum, and vanadium. Also, an alloy composed of an alloy of at least one element selected from the group consisting of yttrium, cerium, silver, nickel and titanium and a metal selected from the group consisting of palladium, niobium, tantalum and vanadium Membrane can also be used.
  • the first transition metal element is an element of Group 4A to Group 8A in the fourth period of the periodic table
  • the second transition metal element is an element of Group 4A in the fifth period of the periodic table
  • the group 8A element and the third transition metal element mean the group 4A to group 8A elements of the sixth period of the periodic table, respectively.
  • a lanthanide element means an element of the lanthanide series of the periodic table
  • an actidide element means an element of the actinide series of the periodic table.
  • the metal (A) or the alloy (B) is formed into a porous film by itself. It may be shaped, or may be carried on a film such as a porous metal oxide described below.
  • the noble metal supported on the porous metal oxide film (C) includes a noble metal selected from the group consisting of silver, gold, platinum and palladium.
  • the transition metal oxide supported on the metal oxide porous membrane of (D) includes chromium, manganese, iron, cobalt, nickel, osmium, ruthenium, vanadium, molybdenum, tungsten, and bismuth. Transition metal oxides selected from the group consisting of cerium, lanthanum, and samarium, and the lanthanide-based oxide supported on the metal oxide porous film of (D). Oxides of the elements are mentioned.
  • the porous metal oxide used in the above (C) and (D) is not particularly limited as long as it can uniformly disperse and support the active component of the catalyst and is effective as a carrier for the oxidation reaction catalyst and the like.
  • a porous body of an oxide composed of a metal selected from the group consisting of silica, alumina, titania and zirconia, and a multi-layer selected from a composite of two or more of these four metal oxides A porous body, or a porous body of a zealite light can be used.
  • silica, alumina, titania, zirconia, zirconite, etc. are coated by dip coating, spray coating, spin coating, hydrothermal synthesis, etc. in order to appropriately suppress and reduce gas permeability.
  • What is supported on a porous ceramic film can also be used as a porous body.
  • the above-described porous metal oxide is basically in the form of a film, but is not particularly limited as long as the gaseous reaction component as a raw material can permeate from one side to the other. Quality materials can be used.
  • the pore size of the porous body is selected according to the type and conditions of the desired reaction, but generally a pore size of 0.5 nm to 10 m is appropriate, and a pore size of 0.5 nm to 1 mm. But good Good.
  • the specific surface area of the porous body is preferably 0.5 to 1,000 m 2 ng.
  • a film having a thickness of 50 m to 5 mm can be used, but a film having a thickness of 100 m to 500 m is preferable in terms of mechanical strength and transmission resistance.
  • the above pore diameter and specific surface area can be controlled by the conditions at the time of production of the porous metal oxide or preparation of the catalyst, and are appropriately selected depending on the type of reaction.
  • the film has a tubular shape or a plate-like shape.
  • a porous body having such a shape can be obtained, for example, by using a method described in Japanese Patent Publication No. 5-63634 (Patent No. 18550556).
  • the type of the catalytically active component supported on the porous metal oxide membrane is selected depending on the type of the intended reaction. For example, when an aldehyde is produced by an oxidation reaction, a metal compound containing molybdenum, bismuth or the like is used. When a carboxylic acid is produced, a metal compound containing vanadium or the like is used. What is necessary is just to carry the metal compound containing silver etc.
  • a method used for preparing an ordinary oxidation reaction catalyst for example, an impregnation method, a precipitation method, an ion exchange method, a vapor deposition method, a hydrothermal synthesis method, or the like is used. Can be adopted. In addition, CVD (chemical vapor deposition), PVD (physical vapor deposition), dip coating, spray coating, spin coating, etc. can also be applied.
  • the content of the catalytically active component supported on the porous metal oxide membrane is appropriately set depending on the type of aromatic hydrocarbons and reaction conditions.
  • An embodiment of the method of the present invention is such that an activating substance, for example, oxygen or hydrogen involved in the reaction passes through a membrane catalyst selected from any of the above (A) to (D). Any form can be used as long as it is activated by reacting with a reactive compound, for example, a hydrocarbon or a mixture of hydrocarbon and oxygen. If necessary, nitrogen, steam, helium, carbon dioxide, methane or the like may be used as a diluent for the reaction.
  • a reactive compound for example, a hydrocarbon or a mixture of hydrocarbon and oxygen.
  • nitrogen, steam, helium, carbon dioxide, methane or the like may be used as a diluent for the reaction.
  • a reaction vessel equipped with a diaphragm catalyst hereinafter, may be abbreviated as a diaphragm reactor
  • a diaphragm reactor which is advantageously used in the practice of the method of the present invention
  • FIG. 1 is a drawing schematically showing a cross section of an embodiment of the diaphragm type catalytic reactor of the present invention.
  • 1 is a reaction compound accumulating section
  • 2 is an activating substance flowing section
  • 3 is a membrane catalyst
  • 4 is a reaction compound inlet
  • 5 is a reaction compound outlet
  • 6 is an activating substance inlet
  • 7 is an activating substance outlet
  • Reference numeral 8 denotes a reaction vessel.
  • the reaction apparatus shown in FIG. 1 has a structure in which a reaction vessel is divided into a reaction compound retaining section 1 and an activated substance flowing section 2 by a single planar catalyst 3.
  • the activator and the reactant enter the reactor from opposite directions and flow in opposite directions.
  • FIG. 1 is a reaction compound accumulating section
  • 2 is an activating substance flowing section
  • 3 is a membrane catalyst
  • 4 is a reaction compound inlet
  • 5 is a reaction compound outlet
  • 6 is an activating substance inlet
  • 7 is an activating substance outlet
  • the reaction apparatus of this embodiment has a structure in which a plurality of reaction compound accumulating sections 1 and an activating substance flowing section 2 are stacked, and is effective when the reaction via the membrane catalyst 3 is performed in a scale-up manner or the like. .
  • there are four partitioned chambers but this is not a limitation.For example, if an odd-numbered diaphragm catalyst 3 is used, the reaction vessel is partitioned into an even-numbered chamber one more than the odd-numbered chamber. can do.
  • FIG. 3 is a drawing showing another embodiment of the reactor of the present invention.
  • the reactor of this embodiment utilizes a cylindrical diaphragm catalyst 3, and is partially or wholly used.
  • the space inside the inner tube 9 formed by the diaphragm catalyst 3 becomes the reaction compound retaining portion 1, and the space between the outer tube formed by the reaction vessel 8 and the inner tube 9 becomes the active material flowing portion 2.
  • This embodiment has a structure in which the activating substance and the reaction compound flow in parallel with each other.
  • FIG. 4 is a drawing showing another embodiment of the reactor of the present invention, and has a structure in which a plurality of internal cylinders 9 of FIG. 3 are provided.
  • a plurality of cylindrical diaphragm catalysts 3 are used, whereby the area of the diaphragm catalyst 3 involved in the reaction can be increased.
  • FIG. 5 is a longitudinal sectional view of a double-tube reactor for a liquid phase reaction.
  • 10 is a gas volatilizer (bubbler 1)
  • 11 is a liquid level gauge.
  • an aromatic hydrocarbon as a reaction compound is introduced into the reaction compound retaining section 1 from the reaction compound inlet 4a.
  • oxygen is introduced into the reaction compound retaining section 1 via the reaction compound inlet 4b and the gas volatilization device 10.
  • activated hydrogen is introduced from the activated substance inlet 6 through the diaphragm catalyst 3 into the reaction compound retaining section 1.
  • the activated hydrogen reacts with oxygen and aromatic hydrocarbons to generate aromatic alcohols.
  • the generated aromatic alcohol is taken out from the reaction compound outlet 5.
  • the reaction apparatus used in the present invention has been exemplified.However, in these, a heating device and a cooling device that are generally provided in the reaction container and cover the reaction container, and an instrument for measuring the internal temperature and pressure are omitted. ing. However, it goes without saying that these can be added.
  • the reaction compound outlet 5 may be closed, and the whole amount of the supplied hydrocarbon gas may be permeated to the activating substance flowing section 2 side.
  • the gas flow can be improved by filling the reactant holding part 1 or the activating substance distribution part 2 with a filler or attaching a baffle plate or the like. The state can be changed.
  • reaction conditions for carrying out the oxidation reaction using the apparatus of the present invention vary depending on the type of reaction and the like, but the reaction temperature is generally in the range of ⁇ 200 to 900 ° C., preferably 0 to 600 ° C. ° C range, and the reaction pressure is 0. ⁇ 1 0 0 kg / cm 2 range, preferably in the range of 0.5 ⁇ 5 0 kg / cm 2.
  • preferred raw material hydrocarbons in the case of performing the oxidation reaction in the reaction of the first embodiment of the present invention include: paraffins having 1 to 8 carbon atoms, and 2 to 1 carbon atoms. And olefins having a carbon number of 2 and aromatic compounds having 6 to 20 carbon atoms.
  • reaction conditions for producing aromatic alcohols by hydrogen gas, aromatic hydrocarbons and oxygen by the reaction of the second embodiment of the method of the present invention are as follows.
  • the reaction temperature is in the range of ⁇ 200 to 900 ° C., preferably in the range of 110 to 600 ° C.
  • the reaction pressure is in the range of 0.1 to 150 kg / cm 2 , Preferably it is in the range of 0.5 to 50 kg / cm 2 .
  • the main raw material used in the reaction of the second embodiment of the present invention is an aromatic hydrocarbon, and is selected from a carbocyclic compound or a heterocyclic compound having at least one aromatic ring.
  • a carbocyclic compound having at least one aromatic ring a compound having a monocyclic, bicyclic or tricyclic aromatic ring, or a nucleus-substituted compound of each of these compounds is used.
  • monocyclic aromatic carbocyclic compounds are benzene or It is a benzene nucleus-substituted compound represented by the general formula.
  • Ar is a benzene ring
  • X is an aromatic group selected from an alkyl group having 1 to 24 carbon atoms, an amino group, a hydroxyl group, a propyloxyl group, an ester group, a cyano group, a nitro group, a halogen atom, and oxygen.
  • a group on the aromatic ring, and in the case of a plurality of groups, may be the same or different, and n represents an integer of up to 5)
  • the bicyclic aromatic carbocyclic compound may be substituted by, for example, naphthalene, tetrauran, biphenyl, cyclohexylbenzene or indane, or a substituent represented by X in the above general formula (I). Nucleus-substituted compound.
  • the tricyclic aromatic carbocyclic compound is, for example, anthracene, phenanthrene, fluorene or azulene, or a nuclear-substituted compound obtained by substituting these compounds with the substituent represented by X in the above general formula (I). It is.
  • heterocyclic compounds having at least one aromatic ring include, for example, pyran, furan, thiocyanphen, techifenfen, pyrrole, pyridine, thiopyridine, pyridine methoxide, pyrazine, indole, quinoline, It is purine, quinazoline, bibilibin or phenanthroline, or a nuclear-substituted compound obtained by substituting these compounds with the substituent represented by X in the above general formula (I).
  • the reaction gas concentration can be increased.
  • a reaction equivalent to or higher than the conventional catalytic reaction can be achieved.
  • the reaction can be performed at a high speed, and the gaseous materials involved in the oxidation reaction can be easily controlled so that only the necessary degree of contact for the desired reaction occurs by adjusting the amount of gas permeating the diaphragm. So there is no overreaction and there is a significant risk of explosion Decrease.
  • the oxygen-containing organic compound generated on one surface of the diaphragm is constantly swept away by a raw material hydrocarbon or a diluent, so that the sequential oxidation of the oxygen-containing organic compound is suppressed. Helps achieve selectivity, resulting in high yields.
  • a tube used as a porous membrane was manufactured according to the method described in Example 1 of Patent No. 18550556. That is, using ⁇ -alumina powder having a particle size of 0.3 m, a porous tube made of ⁇ -alumina having an outer diameter of about 2.0 mm, an inner diameter of about 1.6 mm, and a pore diameter of 0.2 was produced. Its specific surface area measured by the mercury intrusion method was 6 m 2 Zg, and the porosity was 43 V 0 I%.
  • Example 3 Except that propylene, oxygen and nitrogen were supplied at a rate of 0.04 mmol / min, 0.06 mmol I / min and 0.73 mmol / min, respectively, to the reaction compound retaining section 1 of the same reactor as in Example 1. The reaction was carried out under the same conditions as in Example 1. As a result of the analysis, the oxygen-containing organic compound was acetone, the conversion of propylene was 28 mO I%, and the selectivity for acetone was 76 m 0 I% based on the raw material propylene. Therefore, the yield in this case is 21 m 0 I%.
  • Example 3 Example 3
  • a benzene oxidation reaction was carried out using the reaction vessel of FIG. 3 incorporating the palladium-supported porous membrane produced in Reference Example 1 as a membrane catalyst. That is, 12.5% hydrogen gas diluted with helium was introduced into the activated substance flowing section 2 of FIG. 3 from the activated substance inlet 6. On the other hand, 5.2% concentration oxygen and 1.6% benzene were introduced into the reaction compound retaining section 1 at a flow rate of 25 ml, respectively. The reactor was heated and reacted continuously at a reaction temperature of 150 ° C. After reacting for 3 hours, a part of the mixed gas was sampled and analyzed. Phenol was obtained as the main product, with a benzene conversion of 13.25% and a phenol yield of 11.3%.
  • Example 4 The same reaction as in Example 4 was performed while changing the oxygen concentration and the benzene concentration. That is, 25.0% hydrogen gas diluted with 6 helium at the inlet of the activator was introduced into the activator flow section 2. On the other hand, the reaction compound In 1 were introduced 1.6% oxygen and 10% benzene at a flow rate of 35 ml / h, respectively. The reaction was carried out at a reaction temperature of 160 ° C, and the product was collected and analyzed in the same manner as in Example 4. The main product was phenol, with a benzene conversion rate of 1.6% and a phenol yield of 1. It was 54%.
  • Example 6 Example 6
  • Example 7 The same reaction as in Example 4 was performed while changing the benzene concentration and the oxygen concentration. Helium-diluted 30.0% concentration hydrogen gas was introduced into the activated substance flowing section 2 from the activated substance inlet 6. On the other hand, 25% oxygen and 1.8% benzene were introduced into the reaction compound retaining section 1 at a flow rate of 35 mI / h, respectively. The reaction was carried out at a reaction temperature of 250 ° C., and the product was analyzed. The main product was phenol, the conversion of benzene was 2.05%, and the yield of phenol was 1.9%.
  • Example 7 Example 7
  • Example 4 the test was conducted by reversing the introduction pipes of hydrogen, oxygen, and benzene. That is, helium-diluted 10.0% hydrogen gas was introduced into the reaction compound retaining section 1 in Fig. 3, and conversely, 5% oxygen and 0.8% Benzene was introduced at a flow rate of 25 mIh each.
  • the reaction was carried out at a reaction temperature of 150 ° C., the main product was phenol, and the conversion of benzene was 2.11% and the yield of phenol was 2.00%.
  • Example 9 The reaction and analysis were conducted in the same manner as in Example 4 except that the reaction temperature was set at 200 ° C.
  • the main product was phenol, and the conversion of benzene was 12.30%.
  • the yield of phenol was 11.0%.
  • Example 1 The reaction was carried out in the same manner as in Example 4 except that the reaction temperature was set at 200 ° C.
  • the main product was phenol, the conversion of benzene was 3.00%, and the yield of phenol was 2.8%. .
  • Example 1 0
  • Example 1 2 The reaction was carried out under the conditions of Example 8, and a mixed gas after 24 hours was collected and analyzed.
  • the main product was phenol, the conversion of benzene was 11.30%, and the phenol yield was 10.0%.
  • Example 1 2 The main product was phenol, the conversion of benzene was 11.30%, and the phenol yield was 10.0%.
  • the reaction was carried out under the conditions of Example 10, and after 24 hours, the mixed gas was sampled and analyzed.
  • a liquid phase reaction was carried out using the palladium-supported porous membrane produced in Reference Example 1 as a diaphragm catalyst. That is, the reaction compound retention section 1 Inside, 25 mI of benzene was charged from the reaction compound inlet 4a. Next, oxygen was introduced into the retention section 1 from the reaction compound inlet 4 b, and hydrogen was introduced from the activation substance distribution section 2. Oxygen was allowed to reach the diaphragm-type catalyst wall 3 as bubbles through the bubbler 10 as appropriate.
  • Example 13 After the reaction of Example 13, the aromatic phase was newly replaced and the experiment was repeated. That is, after the reaction for 24 hours, oxygen was again introduced from the reaction compound inlet 4b into the 25 mI benzene in the reaction compound retaining section, and hydrogen was introduced from the activating substance flowing section 2. The reaction was carried out under the same conditions as in Example 13, and after 24 hours, the main product was phenol, with a conversion of benzene of 9.5% and a phenol yield of 8.4%.
  • Example 1 5 Example 1 5
  • Example 1 6 The reaction was carried out in the same manner as in Example 4 except that benzene was changed to toluene.
  • the main product was an aromatic alcohol (cresols), with a conversion of toluene of 42% and an aromatic alcohol yield of 37%.
  • Example 1 6 An aromatic alcohol (cresols), with a conversion of toluene of 42% and an aromatic alcohol yield of 37%.
  • Example 1 9 The reaction was carried out in the same manner as in Example 4 except that a silver-palladium alloy-supported membrane (the weight ratio of silver and palladium was 20:80) was used instead of the palladium-supported porous membrane.
  • the main product was phenol, with a benzene conversion of 11% and a phenol yield of 9.9%.
  • the reaction was carried out in the same manner as in Example 4, except that a nickel-vanadium alloy-supported (nickel-vanadium weight ratio was 1:15) diaphragm was used instead of the palladium-supported porous membrane.
  • the main product was phenol, with a benzene conversion of 10.5% and a phenol yield of 9.6%.
  • one of the substances in the reaction is reactivated by passing through a membrane catalyst, and the reaction is carried out using the activated substance. Is what you can do.
  • aromatic alcohol can be obtained safely and advantageously.
  • the contact between the activated substance and the compound reacting with the activated substance can be freely controlled, so that the overreaction of the target product can be prevented and the target compound can be produced in high yield. be able to.
  • the process of the present invention is extremely economically advantageous as an industrial process for producing oxygen-containing organic compounds such as aromatic alcohols, ketones, aldehydes, carboxylic acids and epoxides.

Description

明 細 書 隔膜型触媒を利用する反応方法およびそのための装置 技 術 分 野
本発明は、 触媒の作用により活性化される物質による反応方法および この方法を利用する芳香族アルコール類の製造方法並びにこれら方法の ための反応装置に関する。 背 景 技 術
酸化触媒の存在下に酸素あるいは空気によって炭化水素類を酸化する 酸素酸化反応は、 有機化学工業では極めて重要な位置を占めている。 こ のような反応によって得られる含酸素有機化合物としては、 例えば、 ァ セ卜ン、 シクロへキサノン、 シクロペンタノン等のケ卜ン類; テレフタ ル酸、 無水フタル酸、 無水マレイン酸等のカルボン酸類;エチレン才キ サイド等のアルキレン才キサイド類等が挙げられる。
一方、 含酸素有機化合物には、 芳香族アルコール類が含まれるが、 こ れには、 有機化学工業における基礎化学品として重要なものが多く、 そ の中でも、 フエノールやクレゾ一ルは特に重要な化学品である。 これら は、 例えばホルムアルデヒドと重縮合反応させ、 いわゆるフエノール樹 脂ゃクレゾール樹脂の製造のために使用されている。 そして、 これらの 樹脂は塗料、 ラッカ一、 あるいは圧縮成形用や発泡成形用の樹脂原料と して幅広く利用されている。 また、 フエノールは、 エポキシ樹脂の原料 として重要なビスフエノール Aやビスフエノール Fの原料として用いら れており、 さらにフエノールを水素化したシクロへキサノールは、 ナイ ロン原料である ε —力プロラクタムの製造用に用いられている。 芳香族アルコール類の中でも重要なフエノールについては、 従来その 製造法は大きくわけて 2種類知られている。 その一つはベンゼンやアル キルベンゼンを化学的に酸化し合成する方法であり、 もう一つは石炭の 乾溜によって得られるタール分を分溜あるいは抽出によって製造する方 法である。 しかしながら、 後者は製造されるフエノールが多くの不純物 を含み、 生成物の純度が低いため、 現在アルキルベンゼンを酸化する間 接法が主流となっている。
上記の酸化法によるフエノールの工業的な製造法としては、 ベンゼン を直接、 部分的に酸化する 「直接酸化法」が最も理想的である。 しかし、 「直接酸化法」 は反応の制御が難しく、 ベンゼンの酸化によって生成し たフエノールがさらに酸化されるため、 現在のところ、 実用的な製造方 法の確立には至っていない。
これに対し、 間接法によるフエノールの製造法のうち、 現在最も盛ん に行われているのはクメン法と呼ばれる方法である。 クメン法は、 プロ ピレンとベンゼンを反応させクメンを合成し、 次いで例えばコバル卜塩 触媒で空気酸化しクメンハイドロパー才キサイ ドとし、 酸触媒にょリフ ェノールとアセトンに分解する方法である。 この方法は、 選択率も高く 非常に優れた方法であるが、 フエノールの生成に対し等モルの割合でァ セトンが併産されるため、 フエノールの価格がァセトンの需要量に左右 され、 変動する欠点がある。
ところで、 最近になって 「直接酸化法」 の試みも、 いくつか提案され ている。 例えば、 G . I . P a n o vの論文 (A p p I, C a t a I, A ., 9 8, 3 3 ( 1 9 9 3 ) では、 亜酸化窒素を酸化剤にしてベンゼンの直 接酸化によリフエノールを得ている。 この方法では、 亜酸化窒素の合成 が容易でない点に大きな問題がある。 また、 特開平 6— 1 7 3 8号公報 ゃ特開平 7— 6 9 9 5 0号公報では、 過酸化水素を酸素源にし、 担持型 鉄、 貴金属、 あるいはゼォライ 卜やへテロポリ酸等の各種触媒を用いて 酸化する方法が提案されている。 この方法は、 副生成物が水のみである 点では環境にやさしく、 優れているが、 高価な過酸化水素を大量に必要 とする点が問題である。 更に、 山中、 大塚らの論文 (A p p I, C a t a I , A ., 1 7 1 , 3 0 9 ( 1 9 9 8 ) では、 チタニアに担持したュ 一口ピウ厶触媒を用いて、 酸素ガスによるベンゼンの酸化を行っている が、 この取り扱いが煩雑なことと、 フエノールの収率が 2〜4 %と低い 問題がある。
このように、 ベンゼンの直接酸化によるフエノールの製造は、 経済的 に満足できるプロセスが開発されていないため、 通常、 間接酸化法によ つて製造されている。 この事情は、 プロピレンの酸化によるプロピレン ォキサイドの製造の場合もほぼ同様である。
しかし、 間接酸化法は、 一般に反応工程が多く、 複雑であり、 また不 要な副生物が生成するという欠点がある。 従って、 炭化水素類に直接酸 素を反応させる直接酸化法の開発が望まれていた。
従来、 直接酸化法による含酸素有機化合物の製造は、 原料の炭化水素 類を酸素を含むガスと混合し、 主に固定床流通式反応装置を用いて固体 触媒を充填した反応器に流通させる方法が一般的である。 しかし、 この 方法によると反応収率が非常に低いという問題点がある。
その理由として、 まず、 生成した含酸素化合物は分子のイオン化ポテ ンシャルが低下するため、 原料炭化水素に比べて酸化されやすく、 生成 物が次から次へと過反応、 即ち逐次酸化反応して、 目的生成物の選択率 が低下をきたすということが挙げられる。 また、 この過反応を抑制しよ うとすると、 生成物に比べ原料が常に大過剰である希薄な濃度条件で反 応を行わねばならないことも理由として挙げられる。 さらに、 この種の 反応は、 基本的に可燃物と燃焼を引き起こす酸素 (支燃物) の混合反応 であるため爆発の危険性があり、 これを避けるためにも低濃度、 低反応 率で操作せざるを得ない特性を持っている。 以上のことが、 いずれも低 収率の原因となる。
例えば、 特表平 1 1 — 5 1 0 8 1 7号公報には固体担体に担持された 銀触媒によるプロピレンのプロピレン才キサイドへの気相酸化反応が開 示されているが、 具体的に開示された実施例では反応器へ導入される混 合ガス中の原料プロピレン濃度は 1 0 %ないしそれ以下の低濃度であ リ、 またプロピレンの転化率は 3〜 5 %という低転化率の条件で反応が 行われている。
このように、 酸素と原料炭化水素および生成物が共存する系では、 爆 発の危険性を回避して、 逐次酸化反応を防ぎながら、 高収率で目的生成 物を製造することは本質的に困難といえる。
一方、 炭化水素類を原料とするある種の気相酸化反応では、 隔膜型の 反応器、 いわゆるメンブレンリアクタ一 (メンプレン反応器) を採用す る方法が報告されている。例えば、特開平 5— 2 3 8 9 6 1号公報には、 メタンの酸化力ップリング反応による C 2炭化水素の製造にメンプレン 反応器が利用できることが開示されている。
ここで用いられている隔膜型触媒は、 高酸素イオン移動度および混合 伝導性を有する複合酸化物であり、 これは即ちイオン伝導体であり、 隔 膜の一方から取り込まれた酸素が酸素イオン O 2·となってもう一方へ流 れ、 反応に関与する。 しかし、 イオン伝導体では酸素の移動速度すなわ ち供給速度が遅いため、 現行の有機化学工業における製造反応並の速度 を得ようとすることは一般に困難である。
また、 特開平 5— 1 9 4 2 8 1 号公報には、 飽和炭化水素類の接触脱 水素反応において、 水素透過膜を脱水素触媒と組み合わせて用いる方法 が開示されている。 この方法は、 脱水素反応により生成した水素を膜を 通して反応系外に透過させることで、 系内の化学平衡を脱水素反応側に 移行させ、 平衡転化率を上回る転化率を得ている。
しかし、 上記の隔膜型の反応器を利用する方法は、 いずれの場合も生 成物は炭化水素化合物であり、 含酸素有機化合物ではない。 即ち、 これ まで隔膜型反応器を利用して含酸素有機化合物を製造する方法は提案さ れていない。
従って、 本発明の目的は、 例えば酸素あるいは水素のような触媒の作 用により活性化される物質と、 例えば炭化水素類のようなこれと反応す る物質を反応させる方法において、 爆発の危険性を回避し、 安全に、 高 収率で目的物を得る方法を提供することにある。 発 明 の 開 示
本発明者らは、 上記課題を解決すべく鋭意研究した結果、 活性化され る物質を触媒自体の形態を膜状とした隔膜型触媒を用いて活性化し、 こ れを活性化物質と反応する物質と反応させることにより、 安全に、 かつ 収率良く目的物を得ることができることを見出し、 本発明を完成した。 即ち本発明は、 触媒の作用により活性化される物質と、 活性化された 当該物質と反応する物質を反応させる方法において、 活性化される物質 の活性化を隔膜型触媒を通過させることにより行い、 反応を一段の工程 で行うことを特徴とする反応方法である。
また本発明は、 通過する物質を活性化する隔膜型触媒で複数に区分さ れた反応容器内の複数の室の隣接する一方の室に、 上記隔膜型触媒によ リ活性化されるべき物質のガスを流通させ、 また、 区分されてできた隣 接する他方の室には、 上記活性化された物質と反応すべき化合物を流通 させ、 活性化されるべき物質を上記隔膜型触媒を通過する際に活性化さ せ、 反応すべき化合物と反応せしめる上記反応方法である。 更に本発明は、 酸素及び水素を芳香族炭化水素類と反応させ、 一段の 反応工程で芳香族アルコール類を製造する方法において、 通過する物質 を活性化する隔膜型触媒により活性化された水素を、 芳香族炭化水素お よび酸素とを反応せしめることを特徴とする芳香族アルコール類の製造 方法である。
更にまた本発明は、 反応容器中に、 当該容器を複数に区分する隔膜型 触媒が設けられており、 反応容器内の区分されてできた複数の室の隣接 する一方の室には、 水素が流通可能とされており、 区分されてできた隣 接する他方の室には、 芳香族炭化水素類および酸素が流通可能とされて おり、 隔膜型触媒を通過する際に活性化された水素が、 芳香族炭化水素 類および酸素と反応するよう構成された反応容器を用いて反応を行う上 記の芳香族アルコール類の製造方法である。
また更に本発明は、 反応容器中に、 当該容器を複数に区分するよう、 通過する物質を活性化する隔膜型触媒が設けられており、 反応容器内の 区分されてできた複数の室の隣接する一方の室には、 上記隔膜型触媒に よリ活性化されるべき物質のガスが流通可能とされておリ、 区分されて できた隣接する他方の室には、 上記活性化された物質と反応すべき化合 物が流通可能とされており、 活性化されるべき物質が隔膜型触媒を通過 する際に活性化され、 反応すべき化合物と反応するよう構成されたこと を特徴とする反応装置である。 図面の簡単な説明
図 1 は、 本発明の隔膜型触媒反応装置の一実施態様の断面を模式的に 示した図面である。
図 2は、 本発明の隔膜型触媒反応装置の別の実施態様の断面を模式的 に示した図面である。 図 3は、 本発明の隔膜型触媒反応装置の他の実施態様の断面を模式的 に示した図面である。
図 4は、 本発明の隔膜型触媒反応装置の他の別の実施態様の斜視図で 図 5は、 本発明の隔膜型触媒反応装置の更に他の実施態様の断面を模 式的に示した図面である。
1 反応化合物滞留部
2 活性化物質流通部
3 隔膜型触媒
4 反応化合物入口
5 反応生成物の出口
6 活性化物質入口
7 活性化物質出口
8 反応容器 (外側筒)
9 内部筒
1 0 酸素ガス揮散装置 (バブラ一)
1 1 液面計 発明を実施するための最良の形態
本明細書中において、 「隔膜型触媒 j とは、 反応容器の反応帯域を 2 つ以上に仕切ることのできる膜状の形状をした触媒を意味する。 本発明 は、 基本的には、 反応帯域を例えば 2つに区分し、 反応に関与する一方 の物質を隔膜型触媒を通過する際に活性化させ、 これを隔膜型触媒の他 方の側に存在する、 反応すべき化合物と反応させるものである。 しかし ながら、 隔膜型触媒を複数用いれば、 反応をより効率化でき、 スケール アップ等にも対応できることはいうまでもない。 本発明の対象となる、 隔膜型触媒を介した反応の例としては、 活性化 されるべき物質 (以下、 「活性化物質」 という) が酸素で、 活性化され た物質と反応すべき化合物 (以下、 「反応化合物」 という) が炭化水素 であり、 得られる化合物 (以下、 「生成物」 という) が含酸素有機化合 物である反応 (以下、 「第一態様反応」 という) や、 活性化物質が水素 で、 反応化合物が炭化水素および酸素であり、 生成物が含酸素有機化合 物である反応 (以下、 「第二態様反応」 という) が挙げられる。
このうち、 第一態様反応の具体的な例としては、 原料である炭化水素 類を活性化された酸素で酸化して含酸素有機化合物を製造する酸化反応 があり、 例えば、 才レフィン系炭化水素を原料とするアルキレン才キサ ィド類の製造; 才レフィン系炭化水素、 環状炭化水素を原料とするケ卜 ン類の製造;才レフィン系炭化水素を原料とするアルデヒド類の製造; パラフィン系炭化水素、 ォレフィン系炭化水素、 芳香族炭化水素を原料 とするカルボン酸の製造等が挙げられる。
また第二態様反応の具体的な例としては、 原料である炭化水素類と酸 素に活性化された水素を反応させて含酸素有機化合物を製造する反応が あり、 例えば、 プロピレンゃブテン等のォレフィンを原料とするアルデ ヒド類、 ケ卜ン類、 アルキレンオキサイド類あるいは芳香族アルコール の製造が挙げられる。
本発明において重要な構成要素は隔膜型触媒である。 この隔膜型触媒 は、 通過する物質を活性化する作用を有するものであり、 例えば、 触媒 活性成分である金属や合金自体を多孔質の膜状とするか、 膜状の多孔質 支持体の表面に触媒活性成分を担持したものであり、 具体的には、 下記 の隔膜型触媒が挙げられる。
( A ) 金属膜
( B ) 合金膜 ( C ) 金属酸化物多孔体膜に担持された貴金属
( D ) 金属酸化物多孔体膜に担持された遷移金属酸化物又はランタ二 ド系酸化物
ここで、 (A ) の金属、 (B ) の合金、 (C ) の貴金属あるいは (D ) の遷移金属酸化物又はランタ二ド系酸化物が、 それぞれ触媒の活性成分 となる。
このうち、 上記 (A ) の金属膜としては、 例えばパラジウム、 ニオブ、 タンタル及びバナジゥ厶よりなる群から選ばれた金属で構成された金属 膜が挙げられる。 さらに、 ニオブ、 タンタル及びバナジウムよりなる群 から選ばれた金属で構成された金属膜上にパラジウムをコーティングし た金属膜も使用できる。
また、 上記 (B ) の合金膜としては、 例えば第一遷移金属元素、 第二 遷移金属元素、 第三遷移金属元素、 ランタニド系元素及びァクチニド系 元素よりなる群から選ばれた元素の 1種以上の元素と、 パラジウム、 二 才ブ、 タンタル及びバナジウムよりなる群から選ばれた金属との合金で 構成された合金膜が挙げられる。 また、 イットリウム、 セリウム、 銀、 ニッケル及びチタンよりなる群から選ばれた元素の 1種以上と、 パラジ ゥ厶、 ニオブ、 タンタル及びバナジウムよりなる群から選ばれた金属と の合金で構成された合金膜も使用できる。
ここで、 第一遷移金属元素は、 周期律表第 4周期の第 4 A族から第 8 A族の元素を、 第二遷移金属元素は、 周期律表第 5周期の第 4 A族から 第 8 A族の元素を、 第三遷移金属元素は、 周期律表第 6周期の第 4 A族 から第 8 A族の元素をそれぞれ意味する。 また、 ランタニド系元素は、 周期律表ランタニド系列の元素を、 ァクチ二ド系元素は、 周期律表ァク チニド系列の元素をそれぞれ意味する。
上記 (A ) の金属又は (B ) の合金は、 それ自体で多孔質の膜状に成 形したものでも良いし、 後述の金属酸化物多孔体等の膜に担持されてい るものでも良い。
また、 (C ) の金属酸化物多孔体膜に担持された貴金属としては、 銀、 金、 白金及びパラジウムよリなる群から選ばれた貴金属が挙げられる。
さらに、 (D ) の金属酸化物多孔体膜に担持された遷移金属酸化物と しては、 クロム、 マンガン、 鉄、 コバルト、 ニッケル、 オスミウム、 ル テニゥ厶、 バナジウム、 モリブデン、 タングステン及びビスマスよりな る群から選ばれた遷移金属酸化物が挙げられ、 また (D ) の金属酸化物 多孔体膜に担持されたランタニド系酸化物としては、 セリウム、 ランタ ン及びサマリゥ厶よりなる群から選ばれた元素の酸化物が挙げられる。 上記 (C ) 及び (D ) で用いられる金属酸化物多孔体としては、 触媒 の活性成分を均一に分散 ·担持でき、 酸化反応触媒等の担体として有効 なものであれば、 特に制限はない。 具体的には、 シリカ、 アルミナ、 チ タニア及びジルコニァよりなる群から選ばれた金属で構成される酸化物 の多孔体、 これら 4種の金属酸化物の 2種以上の複合体から選ばれた多 孔体、 あるいはゼ才ライ卜の多孔体が挙げられる。
また、 ガス透過性を適度に抑制し、 小さくするため、 シリカ、 アルミ ナ、 チタニア、 ジルコニァ、 ゼ才ライ ト等をディップコーティング、 ス プレーコーティング、 スピンコーティング、 水熱合成等の方法にょリ多 孔質なセラミックス膜上に担持したものを多孔体として用いることもで きる。
また、 上記のの金属酸化物多孔体は、 基本的に膜状であるが、 原料と するガス状反応成分を一方から他方に透過できるものであれば特に制限 されるものではなく、 各種の多孔質な物質が使用できる。 多孔体の細孔 径は、 目的とする反応の種類や条件に応じて選択されるが、 一般に 0 . 5 n m ~ 1 0 mのものが'適当であり、 0 . 5 n m〜 1 ΓΤΊのものが、好 ましい。 多孔体の比表面積は、 一般に 0 . 5〜 1 , 0 0 0 m 2 ノ gのも のが適用可能である。 また、 膜の厚みは 5 0 m〜 5 m mのものが使用 可能であるが、 機械的強度及び透過抵抗の面から 1 0 0〜 5 0 0 mの ものが好ましい。
なお、 上記の細孔径及び比表面積は、 金属酸化物多孔体の製造、 ある いは触媒調製時の条件によって制御することが可能であリ、 反応の種類 によって適宜選択される。
更に、 金属酸化物多孔体膜の形状は、 一般に膜がチューブ状、 あるい はプレー卜状の形状をなすものが好適である。こうした形状の多孔体は、 例えば特公平 5— 6 6 3 4 3号 (特許 1 8 5 0 5 5 6号) に記載の方法 を用いることによリ得ることができる。
この金属酸化物多孔体膜に担持する触媒活性成分の種類は、 目的とす る反応の種類によって選択される。 例えば、 酸化反応によりアルデヒド 類を製造する場合はモリブデンやビスマス等を含む金属化合物を、 カル ボン酸を製造する場合にはバナジウム等を含む金属化合物を、 またアル キレン才キサイド類を製造する場合は銀等を含む金属化合物を担持すれ ばよい。
上記した触媒活性成分を金属酸化物多孔体に担持する方法としては、 通常の酸化反応触媒の調製に用いられる方法、 例えば含浸法、 沈殿法、 イオン交換法、 蒸着法、 水熱合成法等が採用できる。 また、 これらに加 えて C V D法 (化学蒸着法)、 P V D法 (物理蒸着法)、 ディップコー ティング、 スプレーコーティング、 スピンコーティングなども適用でき る。 この金属酸化物多孔体膜上に担持された触媒活性成分の含有量は、 芳香族炭化水素類の種類及び反応条件によって適宜設定される。
本発明方法の実施形式は、 上記 (A ) 〜 (D ) のいずれかから選ばれ る隔膜型触媒を活性化物質、 例えば反応に関与する酸素又は水素が通過 することによって活性化され、 それが反応化合物、 例えば炭化水素類又 は炭化水素類と酸素の混合物と反応する構造を取る限り、 いかなる形式 であっても良い。 なお、 必要に応じ、 反応の希釈剤として窒素、 水蒸気、 ヘリウム、 二酸化炭素、 メタン等を用いても良い。
以下、 本発明方法の実施において有利に利用される隔膜型触媒を備え た反応容器 (以下、 隔膜型反応器と略称する場合がある) の例をいくつ か挙げ、 これらを用いて本発明の実施方法を更に詳しく説明するが、 本 発明はこれらにより何ら制約されるものではないことはいうまでもな い。
図 1 は、 本発明の隔膜型触媒反応装置の一実施態様の断面を模式的に 示した図面である。 図中、 1 は反応化合物滞留部、 2は活性化物質流通 部、 3は隔膜型触媒、 4は反応化合物入口、 5は反応化合物出口、 6は 活性化物質入口、 7は活性化物質出口、 8は反応容器をそれぞれ示す。 図 1 に示す反応装置は、 反応容器を、 平面状の一枚の隔膜型触媒 3によ リ反応化合物滞留部 1 と活性化物質流通部 2に区分された構造をなして いる。 また、 図 1 に示す反応装置では、 活性化物質と反応化合物が互い に逆の方向から反応装置内に入り、 逆方向に流れる構造となっている。 また図 2は、 本発明反応装置の他の態様を示す図面である。 この態様 の反応装置では、 反応化合物滞留部 1 と活性化物質流通部 2を複数重ね た構造を有するものであり、 隔膜型触媒 3を介する反応をスケールアツ プして行う場合等に有効である。 本図では、 区分された室が 4つ存在す るが、 これに限られるものではなく、 例えば、 奇数の隔膜型触媒 3を利 用すれば反応容器を当該奇数より 1 多い偶数の室に区分することができ る。
図 3は、 本発明反応装置の別の態様を示す図面である。 この態様の反 応装置は円筒状の隔膜型触媒 3を利用するものであり、 一部または全部 が隔膜型触媒 3で形成される内部筒 9の内側の空間が反応化合物滞留部 1 となり、 反応容器 8で形成される外部筒と上記内部筒 9の間の空間が 活性化物質流通部 2となる構成を有する。 この実施態様では、 活性化物 質と反応化合物が互いに平行に流れる構造となっている。
更に図 4は、 本発明反応装置の他の別の態様を示す図面であり、 図 3 の内部筒 9を複数にした構造を有するものである。 この構造の反応装置 では、 複数の円筒状の隔膜型触媒 3を利用するものであり、 これにより 反応に関与する隔膜型触媒 3の面積を増やすことができる。
更にまた、 図 5は液相反応用の 2重管式反応器の縦断面図を示す図面 である。 図 5において、 1ないし 5、 6および 8は上記と同じであり、 1 0は気体揮散装置 (バブラ一)、 1 1 は液面計をそれぞれ意味する。 この装置では、 反応化合物入口 4 aから、 反応化合物として、 例えば 芳香族炭化水素を反応化合物滞留部 1 に導入する。 一方、 別の反応化合 物として、 例えば酸素を反応化合物入口 4 bおよびガス揮散装置 1 0を 介して反応化合物滞留部 1 に導入する。 更に、 活性化物質入口 6から、 隔膜型触媒 3を通して、 例えば、 活性化された水素を反応化合物滞留部 1 に導入する。 この反応化合物滞留部 1 において、活性化された水素は、 酸素および芳香族炭化水素と反応し、 芳香族アルコール類を生成する。 この生成した芳香族アルコール類は、 反応化合物出口 5から取り出され る。
なお、 図 5に示した装置において、 芳香族炭化水素を用いず、 水を溶 媒として用い、 反応化合物入口 4 bからの酸素と、 活性化物質入口 6か らの水素のみを反応させると、 過酸化水素を得ることができ、 これは過 酸化水素を含む水溶液として、 反応化合物出口 5等から取り出すことが できる。
このことは、 隔膜型触媒 3により活性化された水素が、 酸素と反応し て過酸化水素を生成し、 この過酸化水素が芳香族炭化水素と反応すると いう反応機構もぁリ得ることを示すものである。
以上、 本発明に用いる反応装置を例示したが、 これらでは、 反応容器 に一般に設けられる、 反応容器を覆う加熱装置や冷却装置、 あるいは内 部の温度や圧力を測定するための計器等は省略されている。 しかし、 こ れらを付加することができることはいうまでもないことである。
上記した各隔膜型触媒反応装置によって反応を実施し、 反応目的物を 得る場合、 反応に関与するガス成分、 特に酸素又は水素が、 隔膜型触媒 を介して一方の側から他方の側へ透過することによリ活性化されること が重要である。
即ち、 図 1 によりその態様を示すと、 例えば原料炭化水素を反応化合 物入口 4より、 酸素を活性化物質入口 6より導入した場合、 隔膜型触媒 3を透過した酸素が隔膜型触媒の表面およびその細孔表面の触媒活性成 分上で反応に活性な酸素種が生成し、 この酸素種が反応化合物滞留部 1 中の炭化水素と反応することにより酸化反応が進行する。
また、 原料炭化水素と酸素を反応化合物入口 4より、 水素を活性化物 質入口 6ょリ導入した場合は、 隔膜型触媒を透過した水素が隔膜型触媒 の表面およびその細孔表面の触媒活性成分上で活性化され、 この水素に よリ気相の酸素から活性な酸素種を生成することにより酸化反応が進行 する。 そして、 生成した生成物は、 反応化合物出口 5より回収される。 更に、 必要に応じて、 活性化物質出口 7に圧力調節器又は流量調節器 を取り付けることができ、 これにより、 活性化物質入口 6より供給した 酸素の反応化合物滞留部 1側への透過量を制御することができる。 更に また、 活性化物質出口 7を閉じることにより、 供給した酸素の全量を反 応化合物滞留部 1側へ透過させても良い。 逆に反応化合物出口 5に圧力 調節器又は流量調節器を取リ付けることにより、 反応化合物入口 4よリ 供給した炭化水素ガスの活性化物質流通部 2側への透過量を制御するこ とができる。 また更に、 反応化合物出口 5を閉じて、 供給した炭化水素 ガスを全量、 活性化物質流通部 2側へ透過させても良い。 さらに、 原料 ガスと隔膜型触媒 3との接触効果を向上させるため、 反応化合物滞留部 1 あるいは活性化物質流通部 2に充填材を充填したり邪魔板等を取り付 けることによって、 ガスの流動状態を変化させることもできる。
本発明の装置を用いて酸化反応を行う場合の反応条件は、 反応の種類 等によって変わるが、 一般に反応温度は— 2 00〜 9 0 0 °Cの範囲、 好 ましくは 0〜 6 0 0 °Cの範囲であリ、 反応圧力は 0. ·! 〜 1 0 0 k g/ c m 2の範囲、 好ましくは 0.5〜 5 0 k g/c m 2の範囲である。
本発明の隔膜型触媒反応装置によリ、 本発明の第一態様反応で酸化反 応を行う場合の好ましい原料炭化水素類としては、 炭素数 1 〜8のパラ フィン類、 炭素数 2〜 1 2の才レフイン類、 炭素数 6〜 2 0の芳香族化 合物類等が挙げられる。
一方、 本発明方法の第二態様反応により水素ガスと、 芳香族炭化水素 および酸素によリ、 芳香族アルコール類を製造する場合の反応条件は、 対象となる芳香族炭化水素類や触媒の種類によっても変わるが、 一般に 反応温度は— 2 00〜 9 00°Cの範囲、 好ましくは一 1 0〜 6 00 °Cの 範囲であり、 反応圧力は 0.1 〜 1 5 0 k g/c m 2の範囲、 好ましくは 0.5〜5 0 k g/c m 2の範囲である。
本発明の第二態様反応において使用される主原料は芳香族炭化水素類 であり、 少なくとも 1個の芳香族環を有する炭素環化合物または複素環 化合物から選ばれる。 これらの内、 少なくとも 1個の芳香族環を有する 炭素環化合物としては、 単環、 2環または 3環の芳香族環を有する化合 物、 あるいはこれら各化合物の核置換化合物が用いられる。
これらのうち、 単環の芳香族炭素環化合物は、 ベンゼンまたは下記一 般式で表されるベンゼンの核置換化合物である。
A r— X n ( I )
(式中、 A rはベンゼン環、 Xは炭素数〗〜 2 4のアルキル基、 ァミノ 基、 水酸基、 力ルポキシル基、 エステル基、 シァノ基、 ニトロ基、 ハロ ゲン原子および酸素から選ばれた芳香族環上の基でぁリ、 複数の場合は 同種でも異種でもよい。 nは 〜 5整数を示す)
また、 二環の芳香族炭素環化合物は、例えばナフタレン、テ卜ラリン、 ビフエニール、 シクロへキシルベンゼンまたはインダン、 あるいはこれ ら化合物の上記一般式 ( I ) において Xで示された置換基により置換さ れた核置換化合物である。
また、 三環の芳香族炭素環化合物は、 例えばアンスラセン、 フエナン 卜レン、 フルオレンまたはァズレン、 あるいはこれらの化合物の上記一 般式 ( I ) において Xで示された置換基により置換された核置換化合物 である。
一方、 少なくとも 1個の芳香族環を有する複素環化合物は、 例えばピ ラン、 フラン、 チ才フェン、 テ一チ才フェン、 ピロール、 ピリジン、 タ 一ピリジン、 ピリジン才キシド、 ピラジン、 インドール、 キノリン、 プ リン、 キナゾリン、 ビビリビンまたはフエナン卜口リン、 あるいはこれ ら化合物の上記一般式 ( I ) において Xで示された置換基により置換さ れた核置換化合物である。
以上説明した本発明の隔膜型触媒反応装置を用い、 前記第一態様反応 で酸化反応を行うことによリ、 反応ガス濃度を高くすることもできる結 果、 従来の触媒反応と同等以上の反応速度で反応させることができ、 し かも酸化反応に関与するガス原料同士は、 隔膜を透過するガス量を調節 することによって容易に目的とする反応に必要な程度の接触しか起こさ ないように制御できるので、 過反応が起こらず、 爆発の危険性が大幅に 減少する。
また、隔膜の一方の表面で生成した含酸素有機化合物は原料炭化水素、 あるいは希釈剤によって常に掃き追い出す条件をとることによリ、 含酸 素有機化合物の逐次酸化が抑制され、 このことが高い選択率の達成に寄 与し、 その結果、 高い収率が得られる。
一方、 前記第二態様反応にょリ、 上記の各芳香族炭化水素類および酸 素を原料とし、 これに活性化させた水素を反応させることにより、 対応 する芳香族アルコール類を簡単に、 かつ高収率で製造することが可能と なる。 実 施 例
以下に実施例および参考例を上げて本発明をさらに詳細に説明する が、 本発明はこれら実施例に何ら制約されるものではない。 参 考 例 1
隔膜型触媒の製造:
まず、 特許 1 8 5 0 5 5 6号の実施例 1 記載の方法に従い、 多孔体膜 として用いるチューブを製造した。 即ち、 粒径 0.3 mの α—アルミ ナ粉末を用いて、 外径約 2.0 mm、 内径約 1 .6 mm、 細孔径 0.2 の α—アルミナ製の多孔質のチューブを製造した。 水銀圧入法で測定し たその比表面積は 6 m 2Zgで、 気孔率は 4 3 V 0 I %であった。
次いで、 特開平 1 1 — 3 0 0 1 8 2号に記載の実施例に従い、 上記で 製造した多孔体膜に C V D法によりパラジウム金属を担持した。 得られ たパラジウムを担持した多孔体膜は、 そのパラジゥ金属層の膜厚が 1 mであり、 担持されたパラジウム金属含量は、 2.0 w t %であった。 実 施 例 1
参考例 1で製造したパラジウム担持の多孔体膜を隔膜型触媒として使 用し、 図 3と同様の反応装置を用いプロピレンの酸化反応を行った。 即 ち、 隔膜型触媒で形成された反応化合物滞留部 1 にプロピレン、 酸素及 び窒素をそれぞれ 0.0 4 mm o l /m i n、 0.2 1 m m o I /m i n 及び O ^ S mm o l Zm i nの速度で供給し、 活性化物質流通部 2に 水素及び窒素をそれぞれ 0.0 8 mm o l /m i n及び 1 .5 8 mm o I /m i nの速度で供給した。 温度が 2 0 0 °C、 圧力が常圧 (流通下) で 反応を行い、 生成物を図 1 の出口 5から回収した。
この反応生成物をガスクロマ卜グラフィ一により分析したところ、 含 酸素有機化合物はァクロレインであることが確認され、 プロピレン転化 率は 7 0 m 0 I %、 ァクロレインの選択率は原料プロピレン基準で 3 8 m o I %であった。 従って、 この場合の収率は 2 7 m 0 I %である。 実 施 例 2
実施例 1 と同じ反応装置の反応化合物滞留部 1 に、 プロピレン、 酸素 及び窒素をそれぞれ 0.0 4 mm o l /m i n、 0.0 6 m m o I /m i n及び0.7 3 mm o l /m i nの速度で供給した以外は、 実施例 1 と 同じ条件で反応を行った。 分析の結果、 含酸素有機化合物はアセトンで あり、 プロピレン転化率は 2 8 m o I %、 アセトンの選択率は原料プロ ピレン基準で 7 6 m 0 I %であった。 従って、 この場合の収率は 2 1 m 0 I %である。 実 施 例 3
実施例 1 と同じ反応装置の反応化合物滞留部 1 に、 シクロへキセン、 酸素及び窒素をそれぞれ 0.7 2 mm 0 l /m i n、 0.3 6 m m o I / m i n及び I .S mm o l Zm i nの速度で供給し、 活性化物質流通部 2に水素及び窒素をそれぞれ 0.3 6 mm o I /m i n及び 3.2 mm o I Zm i nで供給した。 温度が〗 00°C、 圧力が常圧で反応を行ったと ころ、 含酸素有機化合物としてシクロへキセンオキサイド、 シクロへキ サノール、 シクロへキサノン及びシクロへキサノンが、 それぞれ 0.0 3 m 0 I %, 0.0 1 m 0 I . 0.0 2 m o I %及び 0.0 9 m o I %の 収率で得られた。
本実施例のように、 シクロへキセンを原料に用いて、 シクロへキセン オキサイド、 シクロへキサノール、 シクロへキサノン、 あるいはシクロ セキセノン等が生成することが確認された。 実 施 例 4
参考例 1で製造したパラジウム担持多孔体膜を隔膜型触媒として組み 込んだ図 3の反応容器を用い、 ベンゼンの酸化反応を行った。 即ち、 図 3の活性化物質流通部 2に、 活性化物質入口 6よりヘリゥ厶で希釈した 1 2.5 %濃度の水素ガスを導入した。 一方、 反応化合物滞留部 1 には 5.2 %濃度の酸素および 1 .6 %のベンゼンを、 それぞれ流速 2 5 m l で導入した。 反応器を加熱し、 反応温度 1 50°Cで連続的に反応さ せ、 3時間反応後、 混合ガスの一部を採取し分析した。 主生成物として フエノールが得られ、 ベンゼンの転化率 1 3.2 5 %で、 フエノールの 収率 1 1.3 %の結果が得られた。 実 施 例 5
実施例 4と同様の反応を酸素濃度およびベンゼン濃度を変えて行つ た。 即ち、 活性化物質流通部 2に、 活性化物質入口 6ょリヘリウムで希 釈した 2 5.0 %濃度の水素ガスを導入した。 一方、 反応化合物滞留部 1 には 1 .6 %濃度の酸素と 1 0 %のベンゼンを、 それぞれ流速 3 5 m l / hで導入した。 反応温度 1 6 0°Cで反応し、 実施例 4と同様に生成 物を採取し分析したところ、 主生成物はフエノールであり、 ベンゼンの 転化率 1 .6 %で、 フエノールの収率 1 .5 4 %であった。 実 施 例 6
実施例 4と同様の反応をベンゼン濃度および酸素濃度を変えて行つ た。 活性化物質流通部 2に、 活性化物質入口 6よりヘリウムで希釈した 3 0.0 %濃度の水素ガスを導入した。 一方、 反応化合物滞留部 1 には 2 5 %濃度の酸素と 1 .8 %のベンゼンを、 それぞれ流速 3 5 m I / h で導入した。 反応温度 2 5 0°Cで反応し、 生成物を分析したところ、 主 生成物はフエノールであり、 ベンゼンの転化率 2.0 5 %で、 フエノー ルの収率 1 .9 %であった。 実 施 例 7
実施例 4において、 水素および酸素、 ベンゼンの導入通気管を逆にし て試験を行った。 すなわち、 図 3の反応化合物滞留部 1 にヘリウムで希 釈した 1 0.0 %濃度の水素ガスを導入し、 逆に図 3の活性化物質流通 部 2には 5 %濃度の酸素と 0.8 %濃度のベンゼンを、 それぞれ流速 2 5 m I hで導入した。 反応温度 1 5 0°Cで反応したところ、 主生成物 はフエノールであり、 ベンゼンの転化率 2.1 1 %で、 フエノールの収 率 2.0 0 %であった。 実 施 例 8
反応温度を 2 0 0 °Cとした以外は実施例 4と同様に反応させ分析した ところ、 主生成物はフエノールであり、 ベンゼンの転化率 1 2.3 0 % で、 フエノールの収率 1 1 .0 %であった。 実 施 例 9
反応温度を 2 0 0 °Cとした以外は実施例 4と同様に反応したところ、 主生成物はフエノールであり、 ベンゼンの転化率 3.0 0 %で、 フエノ ールの収率 2.8 %であった。 実 施 例 1 0
反応温度 2 5 0 °Cとした以外は実施例 4と同様に反応したところ、 主 生成物はフエノールであり、 ベンゼンの転化率 1 3.5 %で、 フエノー ルの収率 1 1 .5 %であった。 実 施 例 1 1
実施例 8の条件で反応させ、 2 4時間後の混合ガスを採取し分析した。 主生成物はフエノールでぁリ、 ベンゼンの転化率は 1 1 .3 0 %で、 フ ェノールの収率 1 0.0 %であった。 実 施 例 1 2
実施例 1 0の条件で反応させ、 2 4時間後の混合ガスを採取し分析し た。
主生成物はフエノールであり、 ベンゼンの転化率 1 4.0 %で、 フエノ ールの収率 1 2.5 %であった。 実 施 例 1 3
図 5に示した反応器を用い、 参考例 1 で製造したパラジウム担持多孔 体膜を隔膜型触媒として液相反応を行った。 即ち、 反応化合物滞留部 1 中に、 反応化合物入口 4 aから 2 5 m I のベンゼンを入れた。 次に、 反 応化合物入口 4 bより、 上記滞留部 1 中に酸素を導入するとともに、 活 性化物質流通部 2より水素を導入した。 酸素は適宜バブラ一 1 0を通じ て気泡として隔膜型触媒壁 3に到達せしめた。 酸素流速 5 L/h、 水素 圧 3 k g/c m 2 として 2 0°Cで反応させ、 24時間後に分析したとこ ろ、 主生成物はフエノールであり、 ベンゼンの転化率 1 0.0 %で、 フ ェノールの収率 8.8 %であった。 実 施 例 1 4
実施例 1 3の反応後、 芳香族相を新規に取り換え繰り返し実験を行つ た。 即ち、 2 4時間反応後、 再び反応化合物滞留部中の 2 5 m I のベン ゼン中に反応化合物入口 4 bより酸素を導入し、 活性化物質流通部 2よ リ水素を導入した。 実施例 1 3と同一条件で反応させ、 24時間後に分 祈したところ、 主生成物はフエノールであり、 ベンゼンの転化率 9.5 %で、 フエノールの収率 8.4 %であった。 実 施 例 1 5
ベンゼンをトルエンに変えた以外は実施例 4と同様に反応を行った。 分析の結果、 主生成物は芳香族アルコール (クレゾール類) であり、 卜 ルェンの転化率 4 2 %、 芳香族アルコールの収率 3 7 %であった。 実 施 例 1 6
ベンゼンをメチルナフタレンに変えた以外は実施例 4と同様に反応を 行った。 分析の結果、 主生成物は芳香族アルコール (メチルナフトール 類) であり、 メチルナフタレンの転化率 1 2 %で、 芳香族アルコールの 収率 1 1 %であった。 実 施 例 1 7
ベンゼンをピリジンに変えた以外は実施例 1 3と同様に反応を行つ た。 分析の結果、 主生成物はヒドロキシピリジンであり、 ピリジンの転 化率 1 1 .2 %で、 ヒドロキシピリジンの収率 9.8 %であった。 実 施 例 1 8
パラジウム担持多孔体膜に代えて、 銀—パラジウム合金担持 (銀およ びパラジウムの重量比は、 2 0 : 8 0 ) の隔膜を用いた以外は、 実施例 4と同様に反応を行った。 主生成物はフエノールであり、 ベンゼンの転 化率 1 1 %で、 フエノールの収率 9.9 %であった。 実 施 例 1 9
パラジウム担持多孔体膜に代えて、ニッケル一バナジウム合金担持(二 ッケルーバナジウムの重量比は、 1 : 1 5 ) の隔膜を用いた以外は、 実 施例 4と同様に反応を行った。 主生成物はフエノールであり、 ベンゼン の転化率 1 0.5 %で、 フエノールの収率 9.6 %であった。 産業上の利用可能性
本発明は、 反応の一方の物質を隔膜型触媒を通過させることによリ活 性化し、 この活性化された物質を使用して反応を行うものであり、 一段 の反応工程でしかも安全に行うことができるものである。
例えば、 本発明方法において、 隔膜型触媒を通過させることにより活 性化される物質として安価な酸素を用い、 他方の物質として炭化水素類 を用いれば、 この芳香族炭化水素類は直接酸化され、 ケ卜ン、 アルデヒ ド、 カルボン酸、 エポキシド等の含酸素有機化合物を安全かつ有利に得 ることができる。
また、 隔膜型触媒を通過させることにより活性化される物質として水 素を用い、 他方の物質として芳香族炭化水素と酸素を用いれば、 芳香族 アルコールを安全かつ有利に得ることができる。
しかも、 本発明方法によれば、 活性化された物質と、 これと反応する 化合物の接触を自由に制御し得るため、目的生成物の過反応が防止でき、 高収率で目的化合物を製造することができる。
従って本発明方法は、 例えば、 芳香族アルコール類を始め、 ケ卜ン、 アルデヒド、 カルボン酸、 エポキシド等の含酸素有機化合物の工業的製 造方法として、 経済的に極めて有利なものである。

Claims

請 求 の 範 囲
1 - 触媒の作用により活性化される物質と、 活性化された当該物質と 反応する物質を反応させる方法において、 活性化される物質の活性化を 隔膜型触媒を通過させることによリ行い、 反応を一段の工程で行うこと を特徴とする反応方法。
2 . 通過する物質を活性化する隔膜型触媒で複数に区分された反応容 器内の複数の室の隣接する一方の室に、 上記隔膜型触媒により活性化さ れるべき物質のガスを流通させ、 また、 区分されてできた隣接する他方 の室には、 上記活性化された物質と反応すべき化合物を流通させ、 活性 化されるべき物質を上記隔膜型触媒を通過する際に活性化させ、 反応す べき化合物と反応せしめることを特徴とする請求項 1記載の反応方法。
3 . 活性化されるべき物質が酸素であり、 活性化された物質と反応す べき化合物が炭化水素であリ、 反応が含酸素有機化合物生成反応である 請求項 2記載の反応方法。
4 . 生成する含酸素有機化合物がアルキレン才キサイド類、ケ卜ン類、 アルデヒド類またはカルボン酸である請求項第 3項記載の反応方法。
5 . 活性化されるべき物質が水素であり、 活性化された物質と反応す べき化合物が炭化水素および酸素であリ、 反応が含酸素有機化合物生成 反応である請求項 2記載の反応方法。
6 . 隔膜型触媒が、 下記 (A ) 〜 (D ) のいずれかの群に属する請求 項 1 〜 4のいずれかに記載の反応方法。
(A) 金属膜
(B) 合金膜
(C) 金属酸化物多孔体質膜に担持された貴金属
(D) 金属酸化物多孔体質膜に担持された遷移金属酸化物又はランタ 二ド系酸化物
7. (A) の金属膜が、 パラジウム、 ニオブ、 タンタル及びパナジゥ 厶ょりなる群から選ばれた金属で構成された金属膜であるか、 ニオブ、 タンタル及びバナジウムよりなる群から選ばれた金属で構成された金属 膜上にパラジウムをコーティングした金属膜である請求項 6記載の反応 方法。
8. (B) の合金膜が、 第一遷移金属元素、 第二遷移金属元素、 第三 遷移金属元素、 ランタ二ド系元素及びァクチ二ド系元素よりなる群から 選ばれた元素の 1種以上の元素と、 パラジウム、 ニオブ、 タンタル及び パナジゥ厶ょリなる群から選ばれた金属との合金で構成された合金膜で ある請求項 6記載の反応方法。
9. (B) の合金膜が、 イッ トリウム、 セリウム、 銀、 ニッケル及び チタンよりなる群から選ばれた元素の 1種以上と、パラジウム、ニオブ、 タンタル及びバナジウムよりなる群から選ばれた金属との合金で構成さ れた合金膜である請求項 6記載の反応方法。
1 0. (C) の金属酸化物多孔体膜に担持された貴金属が、 銀、 金、 白 金及びパラジウムよりなる群から選ばれた貴金属である請求項 6記載の 反応方法。
1 1 . ( D ) の金属酸化物多孔体膜に担持された遷移金属酸化物が、 ク ロム、 マンガン、 鉄、 コバルト、 ニッケル、 オスミウム、 ルテニウム、 バナジウム、 モリブデン、 タングステン及びビスマスよりなる群から選 ばれた遷移金属酸化物である請求項 6記載の反応方法。
1 2 . ( D ) の金属酸化物多孔体膜に担持されたランタニド系酸化物が、 セリウム、 ランタン及びサマリウ厶ょりなる群から選ばれた元素の酸化 物である請求項 6記載の反応方法。
1 3 . 金属酸化物多孔体膜が、 シリカ、 アルミナ、 チタニア及びジルコ 二ァょリなる群から選ばれた金属で構成される酸化物多孔体膜、 これら 4種の金属酸化物の 2種以上の複合体で構成される酸化物多孔体膜、 ま たはゼォライ 卜で構成される酸化物多孔体膜のいずれかである請求項 5、 9、 1 0又は 1 1 のいずれかに記載の反応方法。
1 4 . 酸素及び水素を芳香族炭化水素類と反応させ、 一段の反応工程 で芳香族アルコール類を製造する方法において、 通過する物質を活性化 する隔膜型触媒によリ活性化された水素と、 芳香族炭化水素および酸素 とを反応せしめることを特徴とする芳香族アルコール類の製造方法。
1 5 . 反応を、 反応容器中に、 当該容器を複数に区分する隔膜型触媒が 設けられておリ、 反応容器内の区分されてできた複数の室の隣接する一 方の室には、 水素が流通可能とされており、 区分されてできた隣接する 他方の室には、 芳香族炭化水素類および酸素が流通可能とされており、 隔膜型触媒を通過する際に活性化された水素が、 芳香族炭化水素類およ び酸素と反応するよう構成された反応容器を用いて行うことを特徴とす る請求項 1 4記載の芳香族アルコール類の製造方法。
1 6. 反応容器が一つの隔膜型触媒により、 二つの室に区分された反応 容器を用いるものである請求項第 1 5項記載の芳香族アルコール類の製 造方法。
1 7. 隔膜型触媒が、 下記 (A) 〜 (D) のいずれかの群に属する請求 項 1 4〜 1 6のいずれかに記載の製造方法。
(A) 金属膜
(B) 合金膜
(C) 金属酸化物多孔体質膜に担持された貴金属
(D) 金属酸化物多孔体質膜に担持された遷移金属酸化物又はランタ 二ド系酸化物
1 8. ( A) の金属膜が、 パラジウム、 ニオブ、 タンタル及びパナジゥ 厶よりなる群から選ばれた金属で構成された金属膜であるか、 ニオブ、 タンタル及びバナジウムよりなる群から選ばれた金属で構成された金属 膜上にパラジウムをコーティングした金属膜である請求項 1 7記載の製 造方法。
1 9. (B) の合金膜が、 第一遷移金属元素、 第二遷移金属元素、 第三 遷移金属元素、 ランタニド系元素及びァクチ二ド系元素よりなる群から 選ばれた元素の 1 種以上の元素と、 パラジウム、 ニオブ、 タンタル及び バナジウムよりなる群から選ばれた金属との合金で構成された合金膜で ある請求項 1 7記載の製造方法。
2 0. ( B) の合金膜が、 イッ トリウム、 セリウム、 銀、 ニッケル及び チタンよりなる群から選ばれた元素の 1種以上と、パラジウム、ニオブ、 タンタル及びバナジウムよりなる群から選ばれた金属との合金で構成さ れた合金膜である請求項 1 7記載の製造方法。
2 1 . (C) の金属酸化物多孔体膜に担持された貴金属が、 銀、 金、 白 金及びパラジウムよりなる群から選ばれた貴金属である請求項 1 7記載 の製造方法。
2 2. (D) の金属酸化物多孔体膜に担持された遷移金属酸化物が、 ク ロム、 マンガン、 鉄、 コバルト、 ニッケル、 オスミウム、 ルテニウム、 バナジウム、 モリブデン、 タングステン及びビスマスよりなる群から選 ばれた遷移金属酸化物である請求項 1 7記載の製造方法。
2 3. (D) の金属酸化物多孔体膜に担持されたランタ二ド系酸化物が、 セリウム、 ランタン及びサマリウムよりなる群から選ばれた元素の酸化 物である請求項 1 7記載の製造方法。
24. 金属酸化物多孔体膜が、 シリカ、 アルミナ、 チタニア及びジルコ ニァよりなる群から選ばれた金属で構成される酸化物多孔体膜、 これら 4種の金属酸化物の 2種以上の複合体で構成される酸化物多孔体膜、 ま たはゼォライ 卜で構成される酸化物多孔体膜のいずれかである請求 1 7、 2 1 、 2 2又は 2 3のいずれかに記載の製造方法。
2 5 . 酸素が純酸素ガス、 オゾンガスまたは両者の混合ガス、 あるいは これらガスを溶解した溶液である請求項 1 4記載の製造方法。
2 6 . 芳香族炭化水素類が、 少なくとも 1 個の芳香族環を有する炭素環 化合物または複素環化合物である請求項 1 4〜 2 5のいずれかに記載の 製造方法。
2 7 . 少なくとも 1個の芳香族環を有する炭素環化合物が、 単環、 二環 または三環の芳香族環を有する化合物、 あるいはこれら各化合物の核置 換化合物である請求項 2 6記載の製造方法。
2 8 . 単環の芳香族炭素環化合物が、 ベンゼンまたは下記一般式で表さ れるベンゼンの核置換化合物である請求項 2 6または 2 7記載の製造方 法。
A r - X n ( I )
(式中、 A rはベンゼン環、 Xは炭素数〗 〜 2 4のアルキル基、 ァミノ 基、 水酸基、 カルボキシル基、 エステル基、 シァノ基、 ニトロ基、 八 ロゲン原子および酸素から選ばれた基であり、 複数の場合は同種でも 異種でもよい。 nは 1 〜5の整数を示す)
2 9 . 二環の芳香族炭素環化合物が、 ナフタレン、 テ卜ラリン、 ビフエ ニール、 シクロへキシルベンゼンまたはインダン、 あるいはこれら化合 物の上記一般式 ( I ) において Xで示された置換基で置換された核置換 化合物である請求項 2 6または 2 7記載の製造方法。
3 0 . 三環の芳香族炭素環化合物が、 アンスラセン、 フエナン卜レン、 フルオレンまたはァズレン、 あるいはこれら化合物の上記一般式 ( I ) において Xで示された置換基で置換された核置換化合物である請求項 2 6または 2 7記載の製造方法。
3 1 . 少なくとも〗個の芳香族環を有する複素環化合物が、 ピラン、 フ ラン、 チォフェン、 テーチ才フェン、 ピロール、 ピリジン、 ターピリジ ン、 ピリジン才キシド、 ピラジン、 インドール、 キノリン、 プリン、 キ ナゾリン、 ビビリビンまたはフエナン卜口リン、 あるいはこれら化合物 の上記一般式 ( I ) において Xで示された置換基で置換された核置換化 合物である請求項 2 6記載の製造方法。
3 2 . 反応容器中に、 当該容器を複数に区分するよう、 通過する物質を 活性化する隔膜型触媒が設けられており、 反応容器内の区分されてでき た複数の室の隣接する一方の室には、 上記隔膜型触媒により活性化され るべき物質のガスが流通可能とされてぉリ、 区分されてできた隣接する 他方の室には、 上記活性化された物質と反応すべき化合物が流通可能と されており、 活性化されるべき物質が隔膜型触媒を通過する際に活性化 され、 反応すべき化合物と反応するよう構成されたことを特徴とする反 応装置。
3 3 . —の隔膜型触媒により、 二の室に区分されたものである請求項第 3 2項記載の反応装置。
3 4 . 複数の隔膜型触媒により、 当該隔膜型触媒の数よリー多い数の室 に区分され、 区分された室は、 交互に活性化されるべき物質のガスと、 活性化された物質と反応すべき化合物が流通可能とされた請求項第 3 2 項記載の反応装置。
3 5. 反応容器が、 一または複数の内部管と、 これを覆う外部筒よりな リ、 内部管の一部または全部が通過する物質を活性化する隔膜型触媒で 構成され、 外部筒には、 活性化されるべき物質のガスあるいは活性化さ れた物質と反応すべき化合物の一方が流通可能となるための入口および 出口が設けられ、 内部管には、 上記ガスの他方が流通可能となるよう入 口および出口が設けられていることを特徴とする反応装置。
3 6. 隔膜型触媒を通過することにより活性化されるべき物質が酸素で あり、 活性化された物質と反応すべき化合物が炭化水素であり、 反応が 含酸素有機化合物生成反応である請求項 3 2ないし 3 5の何れかの項記 載の反応装置。
3 7. 活性化されるべき物質が水素であり、 活性化された物質と反応す べき化合物が炭化水素および酸素であり、 反応が含酸素有機化合物生成 反応である請求項 3 2ないし 3 5の何れかの項記載の反応装置。
38. 隔膜型触媒が、 下記 (A) 〜 (D) のいずれかの群に属するもの である請求項 3 2ないし 3 7の何れかの項記載の反応装置。
(A) 金属膜
(B) 合金膜
(C) 金属酸化物多孔体膜に担持された貴金属
(D) 金属酸化物多孔体膜に担持された遷移金属酸化物又はランタ 二ド系酸化物
PCT/JP2001/011542 2001-01-05 2001-12-27 Methode et appareil de reaction chimique faisant appel a un catalyseur a membrane WO2002055465A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01273197A EP1357103B1 (en) 2001-01-05 2001-12-27 Reaction apparatus and method for producing an oxygen-containing organic compound
US10/451,624 US6911563B2 (en) 2001-01-05 2001-12-27 Reaction method utilizing diaphram type catalyst and apparatus therefor
CA002434162A CA2434162C (en) 2001-01-05 2001-12-27 Reaction method utilizing diaphram type catalyst and apparatus therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-403 2001-01-05
JP2001000403A JP2002205968A (ja) 2001-01-05 2001-01-05 隔膜型触媒を備えた反応装置
JP2001088282A JP2002284727A (ja) 2001-03-26 2001-03-26 芳香族アルコール類の製造方法
JP2001-88282 2001-03-26

Publications (1)

Publication Number Publication Date
WO2002055465A1 true WO2002055465A1 (fr) 2002-07-18

Family

ID=26607348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011542 WO2002055465A1 (fr) 2001-01-05 2001-12-27 Methode et appareil de reaction chimique faisant appel a un catalyseur a membrane

Country Status (4)

Country Link
US (1) US6911563B2 (ja)
EP (1) EP1357103B1 (ja)
CA (1) CA2434162C (ja)
WO (1) WO2002055465A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828185B2 (ja) * 2004-09-24 2011-11-30 昭和電工株式会社 フッ素ガスの製造方法
TWI278346B (en) * 2004-11-17 2007-04-11 Asahi Kasei Chemicals Corp Oxidation catalyst and oxidation method
EP2102179B1 (en) 2006-12-20 2014-08-27 Shell Internationale Research Maatschappij B.V. Process for removing poly(propylene oxide) from propylene oxide by membrane separation
CN101570509B (zh) * 2008-04-29 2012-02-22 中国石油化工股份有限公司 一种n-氧化吡啶的制备方法
DE102008044946B4 (de) * 2008-08-29 2022-06-15 Evonik Superabsorber Gmbh Einsatz von Schaumkörpern in Oxidations-Reaktoren zur Herstellung ungesättigter Carbonsäuren
CN105646153B (zh) * 2015-12-21 2018-04-10 安徽工业大学 一种负载型Au/C3N4@SBA‑15纳米催化剂催化氧化环己烷的方法
CN114874161B (zh) * 2022-04-22 2024-02-02 浙江恒逸石化研究院有限公司 一种借助中空纤维膜管连续合成与提纯5-羟甲基糠醛的方法
CN114907293B (zh) * 2022-04-29 2024-03-05 浙江恒逸石化研究院有限公司 一种耦合反应与萃取便捷生产5-羟甲基糠醛的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4411362B1 (ja) * 1964-06-30 1969-05-26
JPS5429423B2 (ja) * 1976-06-24 1979-09-22
JPS6051125A (ja) * 1983-08-31 1985-03-22 Japan Storage Battery Co Ltd 有機化合物の酸化還元方法
JPS6311685A (ja) * 1986-03-05 1988-01-19 Agency Of Ind Science & Technol 酸化反応方法
JPH03122296A (ja) * 1989-10-06 1991-05-24 Mitsui Toatsu Chem Inc 芳香族化合物の部分酸化物の製造方法
JPH04364144A (ja) * 1991-05-10 1992-12-16 Mitsui Toatsu Chem Inc 芳香族化合物の部分酸化物の製造方法
JPH05295578A (ja) * 1992-04-17 1993-11-09 Japan Energy Corp 芳香族化合物の部分酸化物の製造方法
JPH0657470A (ja) * 1992-08-05 1994-03-01 Kao Corp 酸化反応方法及びその装置
JPH0672919A (ja) * 1992-08-28 1994-03-15 Mitsui Toatsu Chem Inc トルエンの部分酸化物の製造方法
JPH11300182A (ja) * 1998-04-17 1999-11-02 Nok Corp 水素分離膜の製造方法及びその製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014657A (en) * 1972-05-25 1977-03-29 Vladimir Mikhailovich Gryaznov Catalytic-reactor for carrying out conjugate chemical reactions
JPH05238961A (ja) 1992-02-28 1993-09-17 Tokyo Gas Co Ltd C2 炭化水素の製造方法および該方法に用いられる装置
US5223102A (en) * 1992-03-03 1993-06-29 E. I. Du Pont De Nemours And Company Process for the electrooxidation of methanol to formaldehyde and methylal
JPH061738A (ja) 1992-06-17 1994-01-11 Mitsui Toatsu Chem Inc フェノールおよびグリコールモノエステル類の併産法
EP0893183A3 (en) * 1993-03-02 1999-02-24 SRI International Exothermic process with porous means to control reacton rate and exothermic heat
JPH0769950A (ja) 1993-07-09 1995-03-14 Mitsui Toatsu Chem Inc 芳香族ヒドロキシ化合物の製造方法
US6033632A (en) * 1993-12-08 2000-03-07 Eltron Research, Inc. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
US5625084A (en) 1996-01-31 1997-04-29 Arco Chemical Technology, L.P. Vapor phase oxidation of propylene to propylene oxide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4411362B1 (ja) * 1964-06-30 1969-05-26
JPS5429423B2 (ja) * 1976-06-24 1979-09-22
JPS6051125A (ja) * 1983-08-31 1985-03-22 Japan Storage Battery Co Ltd 有機化合物の酸化還元方法
JPS6311685A (ja) * 1986-03-05 1988-01-19 Agency Of Ind Science & Technol 酸化反応方法
JPH03122296A (ja) * 1989-10-06 1991-05-24 Mitsui Toatsu Chem Inc 芳香族化合物の部分酸化物の製造方法
JPH04364144A (ja) * 1991-05-10 1992-12-16 Mitsui Toatsu Chem Inc 芳香族化合物の部分酸化物の製造方法
JPH05295578A (ja) * 1992-04-17 1993-11-09 Japan Energy Corp 芳香族化合物の部分酸化物の製造方法
JPH0657470A (ja) * 1992-08-05 1994-03-01 Kao Corp 酸化反応方法及びその装置
JPH0672919A (ja) * 1992-08-28 1994-03-15 Mitsui Toatsu Chem Inc トルエンの部分酸化物の製造方法
JPH11300182A (ja) * 1998-04-17 1999-11-02 Nok Corp 水素分離膜の製造方法及びその製造装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NIWA S. ET AL.: "A one-step conversion of benzene to phenol with a palladium membrane", SCIENCE, vol. 295, 4 January 2002 (2002-01-04), pages 105 - 107, XP002950351 *
See also references of EP1357103A4 *

Also Published As

Publication number Publication date
CA2434162C (en) 2010-02-02
CA2434162A1 (en) 2002-07-18
US6911563B2 (en) 2005-06-28
US20040110995A1 (en) 2004-06-10
EP1357103A4 (en) 2006-04-26
EP1357103A1 (en) 2003-10-29
EP1357103B1 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
US6143928A (en) Catalysts for low temperature selective oxidation of propylene, methods of making and using the same
EP1342710B1 (en) Method for catalytic dehydrogenation of hydrocarbons using carbon dioxide as a soft oxidant
TWI268920B (en) Preparation of acrolein or acrylic acid or a mixture thereof from propane
TWI359131B (en) Integrated catalytic process for converting alkane
Ziaka et al. A high temperature catalytic membrane reactor for propane dehydrogenation
US6956134B2 (en) Oxidation of methanol and/or dimethyl ether using supported molybdenum-containing heteropolyacid catalysts
US5202517A (en) Process for production of ethylene from ethane
US20110196182A1 (en) Styrene production processes and catalysts for use therein
Dalmon et al. Oxidation in catalytic membrane reactors
WO2002055465A1 (fr) Methode et appareil de reaction chimique faisant appel a un catalyseur a membrane
Capannelli et al. Comparison of the catalytic performance of V2O5/γ-Al2O3 in the oxidehydrogenation of propane to propylene in different reactor configurations: i) packed-bed reactor, ii) monolith-like reactor and iii) Catalytic Membrane Reactor
US6458737B1 (en) Catalyst for oxidizing methylbenzenes and method for producing aromatic aldehyde
Kölsch et al. Development of a membrane reactor for the partial oxidation of hydrocarbons: direct oxidation of propane to acrolein
HU180654B (en) Process for producing nitrozo-benzene
JPH05194281A (ja) 炭化水素類の脱水素方法
JP2002205968A (ja) 隔膜型触媒を備えた反応装置
GB2201159A (en) Process and apparatus for the dehydrogenation of organic compounds
JP4193967B2 (ja) 隔膜型触媒を用いるプロピレンオキシドの製造方法
JP2002284727A (ja) 芳香族アルコール類の製造方法
JP5110561B2 (ja) 超臨界二酸化炭素反応方法及び装置
Capannelli et al. Enhancement of the catalytic performance of V 2 O 5/γ-Al 2 O 3 catalysts in the oxidehydrogenation of propane to propylene by the use of a monolith-type reactor
RU2137702C1 (ru) Способ каталитического частичного окисления углеводородов
JP4129830B2 (ja) 環状飽和アルコール類の製造法
Raabová New catalytic processes for the synthesis of adipic acid
WO2013053032A1 (pt) Processo de obtenção de ácido acético a partir de etanol

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001273197

Country of ref document: EP

Ref document number: 2434162

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2001273197

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10451624

Country of ref document: US