WO2002050428A1 - Brennstoffeinspritzventil - Google Patents
Brennstoffeinspritzventil Download PDFInfo
- Publication number
- WO2002050428A1 WO2002050428A1 PCT/DE2001/004748 DE0104748W WO0250428A1 WO 2002050428 A1 WO2002050428 A1 WO 2002050428A1 DE 0104748 W DE0104748 W DE 0104748W WO 0250428 A1 WO0250428 A1 WO 0250428A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel injection
- swirl
- injection valve
- fuel
- stamp element
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
- F02M51/0625—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
- F02M51/0664—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
- F02M51/0671—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/162—Means to impart a whirling motion to fuel upstream or near discharging orifices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1806—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
Definitions
- the invention relates to a fuel injector according to the preamble of the main claim.
- AI is a fuel injection valve for the direct injection of fuel into the combustion chamber of a mixture-compressing, spark-ignited
- Internal combustion engine which has a guide and seat area at the downstream end of the fuel injection valve, which is formed by three disc-shaped elements.
- a swirl element is embedded between a guide element and a valve seat element.
- the guide element serves to guide an axially movable valve needle projecting through it, while a valve closing section of the valve needle interacts with a valve seat surface of the valve seat element.
- the swirl element has an inner opening area with a plurality of swirl channels which are not connected to the outer circumference of the swirl element. The entire opening area extends completely over the axial thickness of the swirl element.
- a disadvantage of the fuel injector known from the abovementioned publication is in particular that Fixed swirl angle that cannot be adapted to the different operating conditions such as partial and full load operation of an internal combustion engine. As a result, the cone opening angle ⁇ of the injected mixture cloud cannot be adapted to the various operating states, which leads to inhomogeneities in combustion, increased fuel consumption and increased exhaust gas emissions.
- the fuel injector according to the invention with the characterizing features of the main claim has the advantage that the swirl is adjustable depending on the operating state of the internal combustion engine, whereby a spray pattern adapted to the operating state of the internal combustion engine can be generated. This enables the mixture formation and the combustion process to be optimized.
- the measures listed in the subclaims allow advantageous developments and improvements of the fuel injection valve specified in the main claim. Furthermore, the funnel-shaped recessed shape of the valve seat body, which enables an elastic deformation of the swirl disk and thus the adjustment of the swirl, is easy to produce.
- the outlet-side end of the stamp element advantageously has a radial bevel, the inclination of which corresponds to that of the funnel-shaped valve seat body, since the swirl disk deforms uniformly and inhomogeneities are avoided.
- Another advantage is the possibility of switching the plunger element into the position appropriate to the current operating state of the fuel injector, regardless of the stroke of the valve needle.
- FIG. 1 shows an axial section through a first embodiment of a fuel injector according to the invention
- 3A-3B is a schematic representation of the beam angle ⁇ of a mixture cloud injected into the combustion chamber for various operating states of a fuel injection valve
- Fig. 4 is a schematic view of an embodiment of the swirl plate of the fuel injector according to the invention
- 5A-5B is a schematic representation of the mode of operation of the fuel injector according to the invention in area V in FIG. 2.
- the fuel injection valve 1 is in the form of a fuel injection valve for fuel injection systems of mixture-compressing, spark-ignited
- the fuel injection valve 1 is particularly suitable for injecting fuel directly into a combustion chamber (not shown) of an internal combustion engine.
- the fuel injection valve 1 comprises a nozzle body 2, in which a valve needle 3 is arranged.
- the valve needle 3 is operatively connected to a valve closing body 4, which cooperates with a valve seat surface 6 arranged on a valve seat body 5 to form a sealing seat.
- fuel injector 1 is an inward opening fuel injector 1, which has at least one spray opening 7.
- the nozzle body 2 is sealed by a seal 8 against the outer pole 9 of a solenoid 10.
- the magnet coil 10 is encapsulated in a coil housing 11 and wound on a coil carrier 12, which bears against an inner pole 13 of the magnet coil 10.
- the inner pole 13 and the outer pole 9 are separated from one another by a gap 26 and are supported on a connecting component 29.
- the solenoid 10 is a Line 19 is excited by an electrical current that can be supplied via an electrical plug contact 17.
- the plug contact 17 is surrounded by a plastic sheath 18, which can be molded onto the inner pole 13.
- valve needle 3 is guided in a valve needle guide 14, which is _ disc-shaped.
- a paired adjusting disc 15 is used for stroke adjustment.
- An armature 20 is located on the other side of the adjusting disc 15.
- a restoring spring 23 is supported on the first flange 21, which in the present design of the fuel injector 1 is preloaded by a sleeve 24.
- a swirl disk 34 which has at least one swirl channel 35, is arranged on the inlet side of the sealing seat.
- the swirl disk 34 together with a stamp element 36, which is sleeve-shaped in the exemplary embodiment, ensures a swirl preparation of the fuel jet, which depends on the operating state of the fuel injection valve 1.
- the stamp element 36 is of hollow-cylindrical design and is attached to the valve needle 3.
- a control device not shown, and an actuator, also not shown, which, for. B.
- the swirl disk 34 can be elastically deformed during the operation of the fuel injector 1, so that a bypass channel 37 (bypass) is closed and thus the a swirl can be given to the fuel flowing through the swirl disk 34.
- the fuel flowing through the fuel injection valve 1 receives a smaller swirl in part-load operation, as a result of which a jet opening angle ⁇ of a mixture cloud injected into the combustion chamber of the internal combustion engine, not shown, is kept smaller, while in full-load operation, a larger jet opening angle ⁇ is also achieved by a larger swirl. Accordingly, the mixture can be kept richer or lean, which means that optimal combustion can be achieved.
- the swirl disk 34 and the stamp element are shown in more detail in FIGS. 2 and 4, while the functioning of the components is explained in FIGS. 5A and 5B.
- Fuel channels 30a to 30c run in the valve needle guide 14, in the armature 20 and in a guide disk 42.
- the fuel is supplied via a central fuel supply 16 and filtered by a filter element 25.
- the fuel injector 1 is sealed by a seal 28 against a fuel line, not shown.
- the armature 20 In the idle state of the fuel injection valve 1, the armature 20 is acted upon by the return spring 23 against its stroke direction in such a way that the valve closing body 4 is held in sealing contact with the valve seat 6.
- the magnetic coil 10 When the magnetic coil 10 is excited, it builds up a magnetic field which moves the armature 20 against the spring force of the return spring 23 in the stroke direction, the stroke being predetermined by a working gap 27 which is in the rest position between the inner pole 12 and the armature 20.
- the armature 20 also carries the flange 21, which is welded to the valve needle 3, in the lifting direction.
- the valve closing body 4, which is operatively connected to the valve needle 3, lifts off the valve seat surface 6 and the fuel is sprayed off.
- the stamp element 36 can be controlled independently of the stroke of the valve needle 3 and into the respective one Operating position appropriate axial position are shifted.
- the armature 20 drops from the inner pole 13 after the magnetic field has been sufficiently reduced by the pressure of the return spring 23, as a result of which the flange 21, which is operatively connected to the valve needle 3 m, moves against the stroke direction.
- the valve needle 3 is thereby moved m in the same direction, whereby the valve closing body 4 touches the valve seat surface 6 and the fuel injector 1 is closed.
- FIG. 2 shows a partial, schematic, axial sectional view of the fuel injector 1 designed according to the invention in area II in FIG. 1. Elements already described are provided with the same reference numerals in all figures.
- the fuel injector 1 designed according to the invention has, in addition to the plunger element 36, a funnel-shaped depression 43 on an inlet-side end face 39 of the valve seat body 5.
- the em countersink 43 extends from the radially outside to the radially inside, so that the valve seat surface 6 closes the em countersink 43 to the spraying opening 7.
- the stamp element 36 has a bevel 44 at an abstromseit gene end 40 e, the inclination of which corresponds to the inclination of the funnel-shaped depression 43.
- the stamp element is 36 m in a switching position, which has no effect on the swirl disk 34 takes place, so it is not elastically deformed.
- a bypass channel 37 is thereby opened, which enables the fuel to flow through the swirl disk 34 from the radially outside to the radially inside without swirl absorption.
- This is made possible by the funnel-shaped countersink 43 m of the inlet-side end face 39 of the valve seat body 5, since this creates a gap 45 between the swirl disk 34 and the valve seat body 5.
- the tangential component of the fuel flow is therefore very small, so that the beam expansion of the mixture cloud injected into the combustion chamber is small, the jet opening angle ⁇ remains small and the mixture cloud has a high penetration capacity.
- 3A and 3B illustrate the requirements for the mixture cloud injected into the combustion chamber for two different operating states, the partial and full-load range, of a fuel injector 1, the mixture cloud as desired.
- a mixture-compressing, externally ignited internal combustion engine places different demands on the shape, the stoichiometry and the penetration capacity of the mixture cloud injected into the combustion chamber than in the part-load operation.
- the mixture cloud in part-load operation, should have a relatively small opening angle ⁇ , a large penetration capacity, a narrow core area due to the small opening angle ⁇ with a richer mixture and a very lean envelope, while in the full-load area an in Fig. 3B shown large opening angle ⁇ and thus an almost homogeneous filling of the cylinder with an ignitable mixture is required.
- the modeling of the mixture cloud parameters can be made possible by influencing the swirl using the measures described herein. If the fuel emerges from the spray opening 7 with a small swirl, a mixture cloud with a small opening angle ⁇ is injected while a strong one Twist creates a large beam expansion and thus a mixture cloud with a large opening angle ⁇ . The strength of the swirl can be adjusted by the axial position of the stamp element 36.
- FIG 4 shows a schematic view of an embodiment of the swirl disk 34 of the fuel injector 1 according to the invention.
- the shape of the swirl disk 34 shown in FIG. 4 has six swirl channels 35 which are arranged in a star shape at equal intervals.
- the swirl channels 35 have widenings 47 at radially outer ends 46.
- the valve needle 3 passes through the swirl disk 34, whereby a swirl chamber 48 is formed between the valve needle 3 and the swirl disk 34, into which the swirl channels 35 open.
- the widenings 47 are designed and arranged such that the fuel flowing through the fuel channel 30c enters the gap 45 between the valve seat body 5 and the swirl disk 34 without swirl absorption and thus uses the bypass channel 37 instead of the swirl channels 35. As a result, the fuel can be sprayed off without a tangential component, as a result of which the jet has the required high penetration capacity.
- 5A and 5B show an excerpted sectional view in the area V in FIG. 2 schematically showing the functioning of the stamp element 36 for swirl processing.
- FIG. 5A shows the position of the stamp element 36 already explained in FIG. 2, in which there is no influence on the swirl disk 34 and therefore no swirling of the fuel. 5A, the correspondence of the inclination of the wedge-shaped bevel 44 of the downstream end 40 of the stamp element 36 with the funnel-shaped depression 43 of the inlet-side end face 39 of the valve seat body 5 can be seen. If the fuel injection valve 1 is opened by actuating the actuator 10 and lifting the valve needle 3 from the valve seat surface 6, fuel flows through the fuel channel 30c to the swirl disk 34.
- FIG. 5B shows the fuel injection valve 1 according to the invention also in the open state.
- the stamp element 36 is displaced in the downstream direction in comparison to FIG. 5A and prints on the swirl disk 34
- Swirl disk 34 is elastically deformed uniformly by the stamp element 36 and printed on the valve seat body 5, as a result of which the bypass channel 37 or the gap 45 is closed and the fuel flows through the swirl channels 35.
- 5B also represented by an arrow.
- the invention is not limited to the exemplary embodiment shown and can be used in particular with fuel injection valves 1 with piezoelectric or agnetostrictive actuators 27 and with any design variants of fuel injection valves 1.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/204,534 US6766968B2 (en) | 2000-12-19 | 2001-12-15 | Fuel injection valve |
EP01995613A EP1346149A1 (de) | 2000-12-19 | 2001-12-15 | Brennstoffeinspritzventil |
JP2002551289A JP2004516410A (ja) | 2000-12-19 | 2001-12-15 | 燃料噴射弁 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10063261.0 | 2000-12-19 | ||
DE10063261A DE10063261B4 (de) | 2000-12-19 | 2000-12-19 | Brennstoffeinspritzventil |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002050428A1 true WO2002050428A1 (de) | 2002-06-27 |
Family
ID=7667766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2001/004748 WO2002050428A1 (de) | 2000-12-19 | 2001-12-15 | Brennstoffeinspritzventil |
Country Status (5)
Country | Link |
---|---|
US (1) | US6766968B2 (de) |
EP (1) | EP1346149A1 (de) |
JP (1) | JP2004516410A (de) |
DE (1) | DE10063261B4 (de) |
WO (1) | WO2002050428A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1350947A2 (de) * | 2002-04-04 | 2003-10-08 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2650266B2 (ja) * | 1987-08-12 | 1997-09-03 | キヤノン株式会社 | スチル・ビデオ再生装置 |
US6899290B2 (en) * | 2002-06-24 | 2005-05-31 | Delphi Technologies, Inc. | Fuel swirler plate for a fuel injector |
DE102013204152A1 (de) * | 2013-03-11 | 2014-09-11 | Robert Bosch Gmbh | Ventil zum Steuern eines Fluids mit erhöhter Dichtheit |
JPWO2018135262A1 (ja) * | 2017-01-23 | 2019-11-07 | 日立オートモティブシステムズ株式会社 | 燃料噴射弁 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2941536A1 (de) * | 1979-10-13 | 1981-04-23 | Robert Bosch Gmbh, 7000 Stuttgart | Kraftstoffeinspritzduese fuer brennkraftmaschinen |
US4467965A (en) * | 1982-06-19 | 1984-08-28 | Lucas Industries Public Limited Company | Fuel injection nozzles |
US4653694A (en) * | 1984-05-14 | 1987-03-31 | K. K. Toyota Chuo Kenkyusho | Intermittent type swirl injection nozzle |
EP0363162A2 (de) * | 1988-10-05 | 1990-04-11 | Ford Motor Company Limited | Brennstoffeinspritzdüse mit veränderlicher Brennstoffsprühstrahlform |
EP0387085A1 (de) * | 1989-03-10 | 1990-09-12 | Hitachi, Ltd. | Kraftstoffeinspritzventil |
JPH09250428A (ja) * | 1996-03-19 | 1997-09-22 | Toyota Motor Corp | スワール流強度可変式燃料噴射弁 |
DE19736682A1 (de) | 1997-08-22 | 1999-02-25 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
EP1041274A1 (de) * | 1998-10-09 | 2000-10-04 | Jun Arimoto | Brennstoffeinspritzventil für dieselmotoren |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5836176B2 (ja) * | 1977-02-21 | 1983-08-08 | 株式会社クボタ | 内燃機関の停止時における徐冷運転装置 |
US5642862A (en) * | 1995-07-28 | 1997-07-01 | Siemens Automotive Corporation | Fuel injection valve having a guide diaphragm and method for assembling |
-
2000
- 2000-12-19 DE DE10063261A patent/DE10063261B4/de not_active Expired - Fee Related
-
2001
- 2001-12-15 US US10/204,534 patent/US6766968B2/en not_active Expired - Fee Related
- 2001-12-15 WO PCT/DE2001/004748 patent/WO2002050428A1/de not_active Application Discontinuation
- 2001-12-15 JP JP2002551289A patent/JP2004516410A/ja not_active Withdrawn
- 2001-12-15 EP EP01995613A patent/EP1346149A1/de not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2941536A1 (de) * | 1979-10-13 | 1981-04-23 | Robert Bosch Gmbh, 7000 Stuttgart | Kraftstoffeinspritzduese fuer brennkraftmaschinen |
US4467965A (en) * | 1982-06-19 | 1984-08-28 | Lucas Industries Public Limited Company | Fuel injection nozzles |
US4653694A (en) * | 1984-05-14 | 1987-03-31 | K. K. Toyota Chuo Kenkyusho | Intermittent type swirl injection nozzle |
EP0363162A2 (de) * | 1988-10-05 | 1990-04-11 | Ford Motor Company Limited | Brennstoffeinspritzdüse mit veränderlicher Brennstoffsprühstrahlform |
EP0387085A1 (de) * | 1989-03-10 | 1990-09-12 | Hitachi, Ltd. | Kraftstoffeinspritzventil |
JPH09250428A (ja) * | 1996-03-19 | 1997-09-22 | Toyota Motor Corp | スワール流強度可変式燃料噴射弁 |
DE19736682A1 (de) | 1997-08-22 | 1999-02-25 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
EP1041274A1 (de) * | 1998-10-09 | 2000-10-04 | Jun Arimoto | Brennstoffeinspritzventil für dieselmotoren |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 01 30 January 1998 (1998-01-30) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1350947A2 (de) * | 2002-04-04 | 2003-10-08 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
EP1350947A3 (de) * | 2002-04-04 | 2004-05-12 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
Also Published As
Publication number | Publication date |
---|---|
US6766968B2 (en) | 2004-07-27 |
EP1346149A1 (de) | 2003-09-24 |
DE10063261B4 (de) | 2005-09-01 |
US20040074998A1 (en) | 2004-04-22 |
JP2004516410A (ja) | 2004-06-03 |
DE10063261A1 (de) | 2002-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1440239B1 (de) | Brennstoffeinspritzventil | |
DE602005000060T2 (de) | Einspritzdüse | |
WO2002006665A1 (de) | Brennstoffeinspritzventil | |
EP1119703B1 (de) | Brennstoffeinspritzventil | |
DE69605155T2 (de) | Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen | |
WO2002029242A2 (de) | Brennstoffeinspritzventil | |
EP1303695A1 (de) | Brennstoffeinspritzventil | |
DE10063260B4 (de) | Brennstoffeinspritzventil mit einstellbarem Drall | |
EP1402175A1 (de) | Brennstoffeinspritzventil | |
DE10063261B4 (de) | Brennstoffeinspritzventil | |
WO2002053906A1 (de) | Verbindung zwischen einem anker und einer ventilnadel eines brennstoffeinspritzventils | |
WO2002048539A1 (de) | Brennstoffeinspritzventil | |
EP1195516B1 (de) | Brennstoffeinspritzventil | |
EP1328721B1 (de) | Brennstoffeinspritzventil | |
EP1209353B1 (de) | Brennstoffeinspritzventil | |
EP1481160B1 (de) | Brennstoffeinspritzsystem | |
WO2002045860A1 (de) | Brennstoffeinspritzventil | |
WO2002044550A1 (de) | Brennstoffeinspritzanlage | |
WO2003038271A1 (de) | Brennstoffeinspritzventil | |
WO2002050427A1 (de) | Brennstoffeinspritzventil | |
AT3983U2 (de) | Einspritzdüse für eine direkt einspritzende brennkraftmaschine | |
EP1346148A1 (de) | Brennstoffeinspritzventil | |
WO2002031351A2 (de) | Brennstoffeinspritzventil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001995613 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2002 551289 Kind code of ref document: A Format of ref document f/p: F |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10204534 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2001995613 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001995613 Country of ref document: EP |