WO2002050293A2 - Pflanzen mit verbesserter widerstandskraft - Google Patents

Pflanzen mit verbesserter widerstandskraft Download PDF

Info

Publication number
WO2002050293A2
WO2002050293A2 PCT/DE2001/004877 DE0104877W WO0250293A2 WO 2002050293 A2 WO2002050293 A2 WO 2002050293A2 DE 0104877 W DE0104877 W DE 0104877W WO 0250293 A2 WO0250293 A2 WO 0250293A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleic acid
acid sequence
wrky
plants
Prior art date
Application number
PCT/DE2001/004877
Other languages
English (en)
French (fr)
Other versions
WO2002050293A3 (de
Inventor
Bernadette Lippok
Imre Sommsich
Original Assignee
MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. filed Critical MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority to AU2002231574A priority Critical patent/AU2002231574A1/en
Publication of WO2002050293A2 publication Critical patent/WO2002050293A2/de
Publication of WO2002050293A3 publication Critical patent/WO2002050293A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • C12N15/8239Externally regulated expression systems pathogen inducible
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance

Definitions

  • the present invention relates to transgenic plants with improved resistance to pathogens, the improved resistance by increased expression of one or more nucleic acid sequences according to SEQ LD NO: 1 to 11, or their homologs or derivatives or fragments, or by changing the biological activity of one or more nucleic acid sequences according to SEQ LD NO: 1 to 11, or their homologs or derivatives or fragments encoded gene products.
  • the present invention further relates to transgenic plants with at least one regulatory nucleic acid sequence according to SEQ LD NO: 12 to 23 which is stably integrated into the genome, and a nucleic acid sequence which is functionally linked to a gene product and which is functionally linked to this nucleic acid sequence.
  • the present invention further relates to methods for producing the transgenic plants according to the invention and the nucleic acid sequences according to SEQ LD NO: 1 to 23.
  • WRKY genes is used to summarize a number of genes that code for structurally related putative transcription factors in plants.
  • the members of the WR Y family regulate a wide variety of plant physiological processes such as B. Pathogen defense, wound healing, trichoma development and senescence. So far, however, very few WRKY proteins have known the specific metabolic processes in which they are involved intervention.
  • the current state of WRKY research is at T. Eulgem, PJ. Rushton, S. Robatzek and IE Somssich (2000): The WRKY superfamily of plant transcription factors, Trends in Plant Sciences 5, 199-206.
  • the WRKY protein superfamily in the "thale cress" Arabidopsis thaliana currently comprises about 70 different transcription factors, which together have an approximately 60 amino acid DNA-binding WRKY domain (with the amino acid sequence WRKYG (QK)). The DNA binding will mediated by a zinc finger motif of this domain.
  • WRKY proteins Due to the number of WRKY domains and the structure of zinc cells, WRKY proteins are classified into three groups. Group I proteins contain two, group II proteins only one WRKY domain. Group III WRKYs also have only one WRKY domain, but differ from the members of Group II by a different zinc finger motif (type C 2 -HC). It is not possible to infer the physiological function of the WRKYs based on the group membership.
  • WRKY ESTs from various plant species in databases. Many are tissue specific and have been isolated from roots, leaves, flowers or seeds or are only used under certain conditions, e.g. B. salt or dry stress expressed. At the moment, only some of these WRKY genes have specific information about which metabolic pathway they are involved in. Few have been shown to be involved in defense against plant pathogens: WRKYl and WRKY 3 from Petroselinum crispum (Eulgem, T. et al: Early nuclear events in plant defense signaling: rapid gene activation by WRKY transcription factors. EMBO Journal 18, 4689-4699, 1999) and WRKY3 and WRKY4 from Nicotiana tabacum (Chen, C.
  • the promoters of these genes contain so-called W boxes (W1, W2 and W3) with the sequence (T) (T) TGAC (C / T), which act as binding sites for sequence-specific DNA-binding WRKY proteins.
  • the WRKY proteins thus represent transcription factors for genes, the promoters of which contain some copies of the W boxes.
  • Genes whose promoters have W-boxes can e.g. B. for pathogen-damaging proteins such as antimicrobial chitinases or glucanases.
  • the promoters of most WRKY genes also contain W boxes. These genes are consequently regulated by other WRKY genes.
  • the present invention is therefore based on the object of providing novel pathogen-resistant plants and processes for their production.
  • Figure 1 shows the genomic nucleic acid sequence of the WRKY30 gene from Arabidopsis thaliana. The start ATG and stop codon are highlighted in bold. Underlined regions represent introns.
  • FIG. 2 shows the genomic nucleic acid sequence of the WRKY33 gene from Arabidopsis thaliana. The start ATG and stop codon are highlighted in bold. Underlined regions represent introns.
  • FIG. 3 shows the genomic nucleic acid sequence of the WRKY41 gene from Arabidopsis thaliana. The start ATG and stop codon are highlighted in bold. Underlined regions represent introns.
  • FIG. 4 shows the genomic nucleic acid sequence of the WRKY46 gene from Arabidopsis thaliana. The start ATG and stop codon are highlighted in bold. Underlined regions represent introns.
  • FIG. 5 shows the genomic nucleic acid sequence of the WRKY54 gene from Arabidopsis thaliana. The start ATG and stop codon are highlighted in bold. Underlined regions represent introns.
  • FIG. 6 shows the genomic nucleic acid sequence of the WRKY55 gene from Arabidopsis thaliana. The start ATG and stop codon are highlighted in bold. Underlined regions represent introns.
  • FIG. 7 shows the genomic nucleic acid sequence of the WRKY62 gene from Arabidopsis thaliana. The start ATG and stop codon are highlighted in bold. Underlined regions represent introns.
  • FIG. 8 shows the genomic nucleic acid sequence of the WRKY63 gene from Arabidopsis thaliana. The start ATG and stop codon are highlighted in bold. Underlined regions represent introns.
  • FIG. 9 shows the genomic nucleic acid sequence of the WRKY64 gene from Arabidopsis thaliana. The start ATG and stop codon are highlighted in bold. Underlined regions represent introns.
  • FIG. 10 shows the genomic nucleic acid sequence of the WRKY67 gene from Arabidopsis thaliana. The start ATG and stop codon are highlighted in bold. Underlined regions represent introns.
  • FIG. 11 shows the genomic nucleic acid sequence of the WRKY70 gene from Arabidopsis thaliana. The start ATG and stop codon are highlighted in bold. Underlined regions represent introns.
  • Figure 12 shows the promoter region of the Arabidopsis thaliana WRKY33 gene.
  • the 1270 bp promoter fragment (SEQ ID NO: 12) according to FIG. 21 is highlighted in italics and the 361 bp promoter fragment (SEQ LD NO: 13) according to FIG. 21 is underlined twice.
  • the forward primers for the 1270 bp, 361 bp, 331 bp and 193 bp fragment according to FIG. 21 and the reverse primer of the four fragments are highlighted in bold.
  • the start ATG is in the reverse primer.
  • Lower case letters denote the coding region of the WRKY33 gene in the reverse primer.
  • FIG. 13 shows an RT-PCR analysis for detecting the induction of the WRKY genes 30, 41, 46, 62, 63, 64 and 67 after infection of Arabidopsis thaliana with the leaf pathogen Peronospora parasitica pv Cala2. Samples were taken at the time of infection (0) as well as 2, 4, 6, 12 and
  • FIG. 14 shows an RT-PCR analysis for the detection of the induction of the WRKY genes 54, 55 and
  • FIG. 16 shows the local induction of WRKY33 by means of GUS staining of Peronospora parasitica-m ⁇ zi & sXQXi (right) and uninfected Arabidopsis thaliana plants (left).
  • Part A shows GUS-colored primary leaves, part B corresponding cotyledons. Staining was carried out for 2 hours 2 days after infection.
  • FIG. 17 shows the local induction of WRKY33 by means of GUS staining of Arabidopsis thaliana plants infected with Alternaria ⁇ / ter ⁇ t ⁇ .
  • Part A shows an overall view of the mycelium infection on Arabidopsis leaves
  • part B shows a 2.5-fold enlargement of an infection site. Admission was made 9 days after infection.
  • FIG. 18 shows the local induction of WRKY33 by means of GUS staining of Sclerotina sclerotiorum-efficient Arabidopsis thaliana plants.
  • Part A shows an overall view of the mycelium infection on Arabidopsis leaves two or three days after the infection
  • part B shows the 5-fold enlargement of an infection site. Admission was made 9 days after infection.
  • FIG. 19 shows the induction of WRKY33 by means of GUS staining of Arabidopsis thaliana plants after contact with the root pathogen Pythium sylvaticum.
  • Part A shows an overall view of uninfected plants (control), Part B plants that were infected with Pythium sylvaticum.
  • the partial images C and D represent detailed images of the root area of infected plants. All images were taken two weeks after the infection.
  • FIG. 20 shows a tabular list of the transcription factor binding sites which occur in the promoters of the Arabidopsis thaliana WRKY genes 33, 41, 46, 54, 55, 62, 63, 64, 67 and 70.
  • FIG. 21 shows a schematic representation of the promoter analysis carried out according to Example 3. Constructs consisting of WRKY33 promoter portions of different lengths and the beta-glucoronidase reporter gene (uidA) were used for expression studies. A strong induction was found with a 1270 bp promoter portion, while 361 bp was sufficient for a basal induction. No induction was achieved with 331 and 193 long promoter parts.
  • homologs or “homologous sequences” used here denote non-Arabidopsis thaliana-derived nucleic acid or amino acid sequences with significant similarity to the comparison sequence or parts thereof and identical physiological function in other plants. Homologous sequences are therefore nucleic acid sequences with identical physiological function in other plants which hybridize with the comparison sequences or parts of these sequences under stringent conditions (for stringent conditions see Sambrook et al, Molecular Cloning, Cold Spring Harbor Laboratory (1989), ISBN 0-87969 -309-6).
  • hybridization in 4 x SSC at 65 ° C (alternatively in 50% formamide and 4 X SSC at 42 ° C), followed by several washing steps in 0.1 x SSC at 65 ° C for a total of about one Hour.
  • homologous sequences are to be considered nucleic acid or amino acid sequences or parts thereof with identical physiological function in other plants, which with the aid of the BLAST similarity algorithm (Basic Local Alignment Search Tool, Altschul et al, Journal of Molecular Biology 215, 403-410 (1990 ) have a significant similarity to comparison sequences.
  • Sequences are described as significantly similar, as used here, which are used, for example, using standard parameters in the BLAST service of the NCBI (http://www.ncbi.nlm.nih.gov/ BLAST /) have a level of significance (E-Value or Probability) of P ⁇ 10 * 5 when compared with the comparison sequences.
  • homologs or “homologous sequences” used here denotes the further nucleic acid or amino acid sequences or parts thereof, which are at least 70%, preferably 80%, particularly preferably 90% and particularly preferably 95%) identical to the comparison sequences.
  • the deviations from the comparison sequences may have resulted from deletion, substitution, lisertion, inversion or recombination.
  • derivatives used here denotes nucleic acids which also carry the genetic information for the protein encoded by the comparison sequence, although their base sequence differs from that of the comparison sequence. In this sense, the term “derivatives” denotes both genomic equivalents of RNA containing introns, EST or cDNA sequences as well as equivalents of the comparison sequence that have arisen due to the degeneration of the genetic code.
  • fragments used here denotes parts of nucleic acid or amino acid sequences, provided that they have at least one functionally important region (domain, sequence or structural motif) of the comparison sequence.
  • Corresponding functionally important regions are, in particular, elements of DNA binding, eg . (1) a WRKY- protein domain that includes the consensus sequence WRKYG, (2) zinc-finger motifs with the consensus sequences CX 4 CX 5.
  • Structural elements that contribute to binding to so-called W-boxes with the base sequence (T) (T) TGAC (C / T) Further functionally important areas are binding sites for transcription factors, catalytic centers, amino acid motifs interacting with proteins, eg receptor or ligand binding sites, as well as phosphorylation, acetylation or myristylation sites.
  • expression means the transcriptional transcription of genetic information in RNA and, in the case of protein-coding genes, the subsequent translation into polypeptides.
  • enhanced expression or “enhanced gene expression” used here means an increase in the amount of transcript formed to more than 100% in comparison with the corresponding amount of transcript in wild type plants.
  • endogenous used here denotes biological components such as.
  • B Gene sequences that come naturally from the very organism in which they are or should be integrated.
  • exogenous used here denotes biological components such as. B. gene sequences that naturally originate from a different organism in which they are integrated or are to be integrated.
  • a regulatory sequence such as a promoter controls the expression of a gene or another functional nucleic acid or that a nucleic acid sequence is expressed starting from the promoter.
  • nucleic acid or “functional nucleic acid sequence” used here means a nucleic acid sequence which does not code for a naturally occurring gene product, e.g. B. a ribozyme, an antisense DNA or RNA or a sequence composed of different exons.
  • vector denotes naturally occurring or artificially created constructs for the uptake, multiplication, expression or transfer of nucleic acids, e.g. B. plasmids, phagemids, cosmids, artificial chromosomes, bacteriophages, viruses, retroviruses.
  • transgenic plant used here relates to plants which were produced by means of recombinant genetic engineering and / or microbiological processes and not by means of conventional breeding processes.
  • expression system denotes any combination of vectors, restriction enzymes, transformation methods, cell extracts, living cells, for.
  • the present invention thus relates to transgenic plants with one or more nucleic acid sequence (s) stably integrated into the genome according to SEQ LD NO: 1, SEQ TD NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ TD NO: 5 , SEQ ID NO: 6, SEQ TD NO: 7, SEQ LD NO: 8, SEQ LD NO: 9, SEQ ID NO: 10 or SEQ ID NO: II, or their homologue or derivative or fragment, or a nucleic acid sequence with an identical one physiological function which hybridizes with one of these nucleic acid sequences, preferably hybridizes under stringent conditions, and leads to the development of an improved resistance to pathogens in the plants concerned, and methods for the production of the transgenic plants.
  • SEQ FD NO: 1 to 11 can be assigned to the WRKY genes described in this application according to the following list:
  • SEQ ID NO: 1 corresponds to the sequence of the gene coding for WRKY30.
  • SEQ ID NO: 2 corresponds to the sequence of the gene coding for WRKY33.
  • SEQ TD NO: 3 corresponds to the sequence of the gene coding for WRKY41.
  • SEQ TD NO: 4 corresponds to the sequence of the gene coding for WRKY46.
  • SEQ ID NO: 5 corresponds to the sequence of the gene coding for WRKY54.
  • SEQ TD NO: 6 corresponds to the sequence of the gene coding for WRKY55.
  • SEQ TD NO: 7 corresponds to the sequence of the gene coding for WRKY62.
  • SEQ TD NO: 8 corresponds to the sequence of the gene coding for WRKY63.
  • SEQ TD NO: 9 corresponds to the sequence of the gene coding for WRKY64.
  • SEQ ID NO: 10 corresponds to the sequence of the gene coding for WRKY67.
  • SEQ ID NO: 11 corresponds to the sequence of the gene coding for WRKY70.
  • An improvement in the resistance to pathogens is, for example, through a to achieve one or more of the following methods:
  • WRKY proteins are formed intracellularly as a result of the expression which is temporarily or constitutively increased in comparison to wild-type plants.
  • the WRKY transcription factors interact with promoter elements (so-called W-boxes), which are located in front of genes that are relevant to pathogen defense (so-called “defense related genes”) and increase their transcription by binding.
  • An increased expression can accordingly z. B. by combining the nucleic acid sequence according to SEQ LD NO: 1, SEQ TD NO: 2, SEQ TD NO: 3, SEQ ID NO: 4, SEQ LD NO: 5, SEQ LD NO: 6, SEQ ID NO: 7, SEQ LD NO: 8, SEQ ID NO: 9, SEQ TD NO: 10 or SEQ ID NO: 11 or their homologue or derivative or fragment can be achieved with a strong promoter.
  • suitable promoters which can lead to an increased constitutive expression of a WRKY gene or its homolog or fragment or derivative are the CaMV 35S promoter from the cauliflower mosaic virus and the ubiquitin promoter from maize.
  • either the endogenous promoter which expresses one of the nucleic acid sequences according to SEQ ID NO: 1, SEQ ID NO: 2, SEQ LD NO: 3, SEQ LD NO: 4, SEQ ID NO: 5, SEQ LD NO: 6, SEQ ID NO: 7, SEQ LD NO: 8, SEQ TD NO: 9, SEQ ID NO: 10 or SEQ LD NO: l 1 or their homolog or derivative or fragment controls can be replaced by the strong promoter, or at least an additional copy of one of the nucleic acid sequences according to SEQ TD NO: 1, SEQ ID NO: 2, SEQ LD NO: 3, SEQ LD NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ TD NO: 7, SEQ LD NO: 8, SEQ TD NO: 9, SEQ ID NO: 10 or SEQ ID NO: 11 or their homolog or derivative or fragment integrated into the genome with the additional ⁇ ) copy (s) being (are) functionally linked to the strong promoter.
  • SEQ LD NO: 1 Enhanced gene expression of the nucleic acid sequences according to SEQ LD NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ LD NO: 4, SEQ LD NO: 5, SEQ LD NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ LD NO: 9, SEQ LD NO: 10 or SEQ LD NO: l 1 or their fragment or homolog or derivative can also be achieved by changing or adding functional components of the promoter which naturally regulates the expression of the WRKY gene become.
  • Essential components of a typical eukaryotic promoter are state of the art and can be found in relevant textbooks. Examples of corresponding functional components are TATA box, CAAT box, GC box, enhancer or binding sites for other transcription factors.
  • Suitable methods for changing the nucleic acid sequence of the promoter which naturally regulates the expression of the WRKY gene are known to the person skilled in the art.
  • Known mutagenesis techniques are, for example, the generation of deletion mutants or the introduction of point mutations by "site directed mutagenesis”.
  • Preferred methods for mutagenesis or for changing the expression are furthermore chimeric RNA / DNA oligonucleotides, homologous recombination or RNA interference (RNAi).
  • Enhanced expression can also be achieved by more than one additional copy of the nucleic acid sequences according to SEQ LD NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ TD NO: 5, SEQ ID NO : 6, SEQ LD NO: 7, SEQ ID NO: 8, SEQ TD NO: 9, SEQ LD NO: 10 or SEQ ID NO: 11 or their homologue or derivative or fragment, in particular two, three, four, five or more Copies to be integrated into the genome. These copies can be integrated individually or contiguously. If more than one of the nucleic acid sequences listed is integrated, several identical copies or a mixture of the nucleic acid sequences mentioned can be used.
  • the copies are functionally linked to a promoter which is a strong promoter, an endogenous or an exogenous one, the expression of the nucleic acid sequences according to SEQ LD NO: 1, SEQ LD NO: 2, SEQ LD NO: 3, SEQ TD NO: 4, SEQ LD NO: 5, SEQ TD NO: 6, SEQ LD NO: 7, SEQ LD NO: 8, SEQ LD NO: 9, SEQ ID NO: 10 or SEQ ID NO: II or their homolog or derivative-controlling promoter, or can be a tissue-specific or inducible promoter.
  • a promoter which is a strong promoter, an endogenous or an exogenous one, the expression of the nucleic acid sequences according to SEQ LD NO: 1, SEQ LD NO: 2, SEQ LD NO: 3, SEQ TD NO: 4, SEQ LD NO: 5, SEQ TD NO: 6, SEQ LD NO: 7, SEQ LD NO: 8, SEQ LD NO: 9, SEQ ID NO: 10 or SEQ
  • Constructs comprising a corresponding promoter and a nucleic acid sequence functionally linked to it according to SEQ ID NO: 1, SEQ LD NO: 2, SEQ ID NO: 3, SEQ LD NO: 4, SEQ LD NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ LD NO: 8, SEQ ID NO: 9, SEQ LD NO: 10 or SEQ LD NO: II or their homologue or derivative or fragment can be converted by conventional methods for the transformation of plant cells and subsequently for the regeneration of complete plants be used.
  • the introduction of nucleic acid sequences into plant organisms and cells is state of the art and can be carried out easily, for example using T-DNA vectors.
  • SEQ LD NO: 1 Due to the increased expression of the nucleic acid sequences according to SEQ LD NO: 1, SEQ ID NO: 2, SEQ LD NO: 3, SEQ TD NO: 4, SEQ ID NO: 5, SEQ LD NO: 6, SEQ TD NO: 7, SEQ TD NO: 8, SEQ TD NO: 9, SEQ LD NO: 10 or SEQ LD NO.T 1 or their homologue or derivative or fragment are accordingly formed a multiple of proteins encoded by these nucleic acid sequences.
  • case group c) there is a change in the biological activity of the nucleic acid sequences according to SEQ TD NO: 1, SEQ LD NO: 2, SEQ LD NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ LD NO: 6 , SEQ ID NO: 7, SEQ LD NO: 8, SEQ LD NO: 9, SEQ LD NO: 10 or SEQ ID NO: 11 or their homolog or derivative or fragment-encoded gene product by changes in gene segments which are necessary for functional protein domains such as e.g. , B. encode receptor binding sites, phosphorylation domains or DNA binding sites. Modifications in the WRKY DNA binding domain in particular have a considerable influence on the properties of the protein.
  • proteins can be formed with one or more amino acids which have been changed compared to the wild type and which, for example, have a changed substrate specificity or a changed K m value or are no longer subject to the regulatory mechanisms normally present in the cell via allosteric regulation or covalent modification.
  • Correspondingly modified WRKY proteins could accordingly.
  • B. perform the functions of the WRKY wild type protein in an improved manner. In this sense, in particular modifications which result in the replacement of one or more of the following amino acids by others, the loss of one or more of the following amino acids or the integration of one or more amino acids in the following protein regions can lead to a correspondingly improved function of the protein :
  • Suitable methods for changing the sequence of the WRKY gene are known to the person skilled in the art.
  • Known mutagenesis techniques are, for example, the generation of deletion mutants or the introduction of point mutations by "site directed mutagenesis”.
  • Preferred methods for mutagenesis or for changing the expression are furthermore chimeric RNA / DNA oligonucleotides, homologous recombination or RNA interference (RNAi).
  • RNAi RNA interference
  • nucleic acid sequences used in the method according to the invention and in transgenic plants can be of natural origin or have been produced artificially.
  • SEQ ID NO: 6 SEQ TD NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ LD NO: 10 or SEQ ID NO: ll can be easily extracted from other organisms with the help of special, state of the art PCR, hybridization or screening procedures are isolated.
  • the nucleic acid sequences listed above can be used as a probe for homology screening in DNA libraries with the aid of hybridization to single-stranded nucleic acids of a similar base sequence.
  • primers can be constructed which can be used to amplify functionally identical PCR fragments from other organisms.
  • SEQ ID NO: 1 SEQ ID NO: 2
  • SEQ TD NO: 3 SEQ ID NO: 4
  • SEQ LD NO: 5 SEQ TD NO: 6
  • SEQ TD NO: 7 SEQ LD NO : 8
  • SEQ TD NO: 9 SEQ ID NO: 10 or SEQ TD NO: 11 or their homologue or derivative or fragment of functionally linked regulatory DNA sequence, e.g. B.
  • a promoter both the regulatory DNA sequence endogenously present with the nucleic acid sequence according to SEQ ID NO: 11, SEQ TD NO: 12, SEQ LD NO: 13, SEQ TD NO: 14, SEQ LD NO: 15, SEQ LD NO: 16, SEQ ID NO: 17, SEQ LD NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ HD NO: 21, SEQ LD NO: 22 or SEQ ID NO: 23 as well as their homologue or fragment as well as any other regulatory DNA sequence.
  • the regulatory DNA sequence can be either an endogenous promoter of the organism to be transformed or an exogenous promoter which is e.g. B. is on the vector used. In principle, any regulatory sequence which expresses the expression of foreign genes in organisms, e.g.
  • B. plants can control, e.g. B. the CaMV 35S promoter from the cauliflower mosaic virus; see. Franck et al., Cell 21: 285-294 (1980).
  • the expression of the nucleic acid sequences can also be achieved by a chemically inducible promoter.
  • Examples of chemically inducible promoters are the PRPI promoter (Ward et al., Plant Molecular Biology 22, 361-366 (1993)), a promoter induced by salicylic acid (WO 95/19443), a promoter inducible by benzenesulfonamide (EP-A 388186), a promoter inducible by tetracycline (Gatz et al, Plant Journal 2, 397-404 (1992)), a promoter inducible by abscisic acid (EP-A 335528) or a promoter inducible by ethanol or cyclohexanone (WO 93/21334) , Promoters can also be used, e.g. B. are active in certain plant tissues or parts of plants.
  • corresponding promoters are the phaseolin promoter (US 5504200), the isoflavone reductase promoter (US 5750399), a seed-specific promoter, e.g. B. from tobacco (US 5824863) or the ST-LSI promoter from potato (Stockhaus et al., (1989), EMBO J8, 2445-2452).
  • the method according to the invention is suitable for time-controlled defense against pathogens by exchanging the WRKY-specific promoter for an inducible promoter. Through a time-controlled induction of the pathogen defense z. B. react to the seasonal occurrence of pathogens.
  • Endogenous or exogenous nucleic acid sequences according to SEQ LD NO: 1, SEQ TD NO: 2, SEQ TD NO: 3, SEQ ID NO: 4, SEQ LD NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ TD NO: 10 or SEQ ID NO: II or their fragments or derivatives or homologs can be used.
  • Endogenous means that the nucleic acid sequence comes from the same organism in which it is integrated with the method according to the invention, e.g. B. a WRKY 33 gene from Arabidopsis thaliana is integrated into Arabidopsis thaliana using the method according to the invention.
  • nucleic acid sequence comes from another organism, e.g. B. a WRKY 33 gene from Arabidopsis thaliana is with the inventive method in z. B. Wheat integrated. After the stable integration of the transformed nucleic acid sequence, two or more WRKY 33 genes are then present in the genome, so that an increased amount of corresponding gene products can be expected.
  • the nucleic acid sequences have deletions, substitutions, additions, insertions and / or inversions compared to the naturally occurring nucleic acid sequences.
  • polynucleotides with the cDNA sequences of the WRKY genes according to SEQ ID NO: 1 to 11 or their fragments or derivatives or homologs can be used to produce the transgenic plants, but also polynucleotides which also contain the introns ,
  • the introns can have the naturally occurring or other sequences.
  • the present invention further relates to a transformed cell, in particular a transformed plant cell or a transformed plant tissue, in which the nucleic acid sequence according to the invention according to SEQ TD NO: 1, SEQ TD NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ TD NO: 6, SEQ TD NO: 7, SEQ TD NO: 8, SEQ TD NO: 9, SEQ LD NO: 10 or SEQ ID NO: II or their fragments or derivatives or homologs are stably integrated , Furthermore, the present invention relates to a nucleic acid sequence according to the invention according to SEQ TD NO: 1, SEQ LD NO: 2, SEQ LD NO: 3, SEQ LD NO: 4, SEQ LD NO: 5, SEQ ID NO: 6, SEQ LD NO: 7, SEQ TD NO: 8, SEQ ID NO: 9, SEQ TD NO: 10 or SEQ TD NO: 11 or their fragments or homologues or derivatives, transformed plant cell or a transformed plant tissue that can be
  • the present invention relates to a plant which can be obtained by the process according to the invention.
  • the present invention further relates to seed obtained from plants obtained by the process according to the invention.
  • the invention further relates to the fruits, seeds, leaves, shoots and storage organs produced by the plants, e.g. B. fruits, berries, grapes, cereals and potatoes.
  • a nucleic acid sequence is used which is composed of nucleic acid fragments from different WRKY genes.
  • This composite nucleic acid sequence can also contain modifications such as deletions, additions or substitutions.
  • the methods for producing such composed nucleic acid sequences are state of the art and can be carried out easily by the person skilled in the art.
  • the method according to the invention can be applied to all plant organisms.
  • the method according to the invention can be used for the production of pathogen-resistant mono- and dicotyledonous plants.
  • Particularly preferred plants are cultivated plants such. B. coffee bush, tea bush, soybean, cotton, flax, hemp, sunflower, potato, tobacco, tomato, paprika, zucchini, eggplant, cucumber, summer rape, winter rape, alfalfa, lettuce, chicory, asparagus, salsify, pea, bean, lentils, Carrot, onion, garlic, leek, olive, radish, radish, beetroot, turnip, kohlrabi, sugar beet, fodder beet, sugar cane, spinach, chard, the different tree, nut and wine species, the different types of cabbage such as Brussels sprouts, cauliflower, broccoli, White cabbage, red cabbage, savoy cabbage, Chinese cabbage, and also cereals, e.g.
  • the plants transformed with the nucleic acid sequence can be unmodified wild-type plants or plants obtained by breeding or plants which have already been modified in another way, e.g. B. be transgenic plants.
  • the inventive method can also in plant tissues and in plant cells, for. B. in a cell culture or in expression systems, to increase pathogen resistance.
  • the method according to the invention can be used to improve the general resistance to a large number of plant pathogens.
  • the method according to the invention can be used to protect against the following plant diseases, but is not limited to these: cabbage hernia, powdery scab of the potato, powdery mildew, downy mildew, late blight and late blight, powdery mildew, snow mold in the grain, ergot, root rot on rape, net stain disease , Septoria leaf drought, Septoria leaf spots and tan, brown rust, yellow rust, dwarf rust, wheat stone fire, dwarf stone fire, flying burn barley, corn bump fire, typhula rot on barley, root killers on potatoes, parasitic stalks, rhynchosporium leaf stains, leaf stains, cerciform spore, cerciform spore Alternaria leaf spot disease / rot, stem rot, core
  • Root nematodes from the genera Pratylenchus and Paratylenchus, cyst-forming
  • Root nematodes from the genera Heterodera and Globodera; Stick and
  • Stem nematodes e.g. B. from the genus Ditylenchus, further leaf nematodes, z. B. from the Genus Aphelenchoides and flower nematodes, e.g. B. from the genus Anguina, also virus-transmitting nematodes, for. B. from the genus Xiphinema and nematodes from the genus Trichodorus.
  • Phytopathogenic fungi e.g. B. from the genera Albugo, Alternaria, Aphanomyces, Ascochyta, Aureobasidium, Botrytis, Cephalosporium, Cercospora, Cladosporium, Claviceps, Colletotrichum, Cylindrosporium, Diachea, Diplocarpon, Eiysiphe, Fusarium, Gnomporiumium, Macrominium, Macrominium, Macromium, Micomiumium, Micomium, Macromium, Micomiumium, Helomium, Micomium, Micomium, Micomium, Micomium, Micomium, Helomium, Micomium, Micomium, Helomium, Micomium, Micomium, Helomium, Micomium, Micomium, Helomium , Mycosphaefella, Oidium, Ophiobolus, Peronospora, Plasmodiophora, Plasmopora, Pse
  • Phytopathogenic bacteria e.g. B. from the genera Agrobacterium, Erwinia, Pseudomonas, Ralstonia, Xanthomonas.
  • Phytopathogenic viruses including single-stranded RNA viruses, viruses with double-stranded RNA (wound tumor viruses), plant viruses with circular single-stranded DNA (Gemini viruses), plant viruses with double-stranded DNA and viroids.
  • phytopathogenic viruses z. B. are examples: abutilon mosaic virus, arabic mosaic virus, barley yellow dwarf virus (BYDV), barley yellow mosaic virus (BaYMV, BaYMV-2), bean golden mosaic virus, cassava latend virus, beet western yellows virus, cauliflower mosaic virus , grapevine fanleaf virus, maize streak virus, potato spindel tuber virus, raspberry ringspot virus, rice yellow mottle virus, strawberry crinkle virus, soil-borne wheat mosaic virus (SBWMV), strawberry yellow edge virus, strawberry mottle virus, tabac mosaic virus, tomato golden mosaic virus, turnip mosaic virus, wheat spindle streak mosaic virus (WSSMV), wheat yellow mosaic virus (WYMV).
  • abutilon mosaic virus arabic mosaic virus
  • barley yellow dwarf virus BYDV
  • barley yellow mosaic virus BaYMV, BaYMV-2
  • bean golden mosaic virus cassava latend virus
  • beet western yellows virus cauliflower mosaic virus
  • grapevine fanleaf virus maize streak virus
  • V Other animal pests in crops, z.
  • B Psylliodes chrysocephala, Ceutorhynchus pleurostigma, Ceutorhynchus napi, Ceutorhynchus quadridens, Ceutorhynchus picitaris, Ceutorhynchus assimilis, Melighetes aeneus, Delia brassicae, Dasineura brassicae and all types of insect pests in cereals.
  • the present invention further relates to the nucleic acid sequence according to SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ TD NO: 4, SEQ ID NO: 5, SEQ TD NO: 6, SEQ LD NO: 7, SEQ LD NO: 8, SEQ TD NO: 9, SEQ ID NO: 10 and SEQ TD NO: II or their homologue or derivative or fragment.
  • the present invention further relates to vectors comprising a nucleic acid sequence according to SEQ LD NO: 1, SEQ TD NO: 2, SEQ ID NO: 3, SEQ LD NO: 4, SEQ LD NO: 5, SEQ ID NO: 6, SEQ TD NO : 7, SEQ ID NO: 8, SEQ TD NO: 9, SEQ LD NO: 10 or SEQ ID NO: II or their homologue or derivative or fragment, and a regulatory DNA sequence.
  • Suitable vectors for the uptake and transfer of the nucleic acid sequences can multiply and / or express the uptake nucleic acids in single cells such as. B. Escherichia coli or Agrobacterium tumefaciens or in plant cells, plant tissues or plants. Corresponding vectors can of course occur or can be produced artificially.
  • the vectors can include selection markers, terminator sequences, polylinkers, promoter elements, enhancers, polyadenylation sites and other genetic elements.
  • Vectors suitable for cloning are e.g. B. plasmids of the pBluescript series, plasmids of the pUC series, plasmids of the pGEM series or vectors based on the bacteriophage ⁇ .
  • a plasmid vector used in Agrobacterium is e.g. B. pBinl9; see. Bevan et al., (1984), Nucleic Acids Research 12, 8711-8721.
  • vectors which can be used on the Ti plasmid of Agrobacterium species or constructs based on plant viruses are usable and are known to the person skilled in the art.
  • certain transformation methods such. B. microinjection, protoplast transformation and injection (microprojectile bombardment) instead of Ti plasmids also the above-mentioned cloning rank vectors or linearized DNA used.
  • Another aspect of the present invention relates to the regulatory nucleic acid sequences (also referred to below as promoters) which naturally control the expression of the WRKY genes in Arabidopsis thaliana.
  • These nucleic acid sequences according to the invention are under SEQ LD NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ LD NO: 15, SEQ LD NO: 16, SEQ LD NO: 17, SEQ LD NO: 18, SEQ LD NO : 19, SEQ TD NO: 20, SEQ LD NO: 21, SEQ LD NO: 22 and SEQ LD NO: 23.
  • SEQ ID No: 12 corresponds to a 1270 bp fragment of the WRKY33 promoter.
  • SEQ TD No: 13 corresponds to a 361 bp fragment of the WRKY33 promoter.
  • SEQ TD No: 14 corresponds to the overall sequence of the WRKY33 promoter.
  • SEQ LD No: 15 corresponds to the overall sequence of the WRKY41 promoter.
  • SEQ TD No: 16 corresponds to the overall sequence of the WRKY46 promoter.
  • SEQ LD No: 17 corresponds to the overall sequence of the WRKY54 promoter.
  • SEQ LD No: 18 corresponds to the overall sequence of the WRKY55 promoter.
  • SEQ LD No: 19 corresponds to the overall sequence of the WRKY62 promoter.
  • SEQ LD No: 20 corresponds to the overall sequence of the WRKY63 promoter.
  • SEQ LD No: 21 corresponds to the overall sequence of the WRKY64 promoter.
  • SEQ ID No: 22 corresponds to the overall sequence of the WRKY67 promoter.
  • SEQ TD No: 23 corresponds to the overall sequence of the WRKY70 promoter.
  • the invention further relates to fragments or homologs of the nucleic acid sequence according to SEQ LD NO: 12, SEQ LD NO: 13, SEQ LD NO: 14, SEQ TD NO: 15, SEQ TD NO: 16, SEQ ID NO: 17, SEQ TD NO: 18, SEQ LD NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ LD NO: 22 or SEQ ID NO: 23, which have the biological function of a promoter.
  • the invention further relates to nucleic acid sequences which are associated with one of the nucleic acid sequences according to SEQ TD NO: 12, SEQ TD NO: 13, SEQ ID NO: 14, SEQ LD NO: 15, SEQ ID NO: 16, SEQ TD NO: 17, SEQ TD NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ LD NO: 21, SEQ TD NO: 22 or SEQ ID NO: 23 hybridize and have the biological form of a promoter. Preference is given to nucleic acid sequences which hybridize to one of these nucleic acid sequences under stringent conditions.
  • the regulatory nucleic acid sequences according to the invention according to SEQ ID NO: 12, SEQ TD NO: 13, SEQ TD NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ LD NO: 18, SEQ LD NO: 19, SEQ LD NO: 20, SEQ LD NO: 21, SEQ LD NO: 22 or SEQ J »NO: 23 or their fragments or homologs are suitable for the specific control of the expression of genes or other functional nucleic acids in organisms or cells , preferably for the specific control of genes or genes involved in pathogen defense, coding for toxic components.
  • two or more such promoters are then present in the genome, so that the downstream nucleic acid sequences have an expression regulation corresponding to these promoters.
  • the regulatory nucleic acid sequence according to the invention according to SEQ ID NO: 12, SEQ TD NO: 13, SEQ LD NO: 14, SEQ LD NO: 15, SEQ LD NO: 16, SEQ LD NO: 17, SEQ LD NO: 18, SEQ TD NO: 19, SEQ LD NO: 20, SEQ LD NO: 21, SEQ LD NO: 22 or SEQ LD NO: 23 or their fragment or homologously linked functional nucleic acids encode particularly preferably for gene products from the following list:
  • Structural proteins with repetitive peptide motifs Ser-Hyp 4 , Gly-X or Val-Tyr-Lys-Pro-Pro Structural proteins that contain repetitive peptide motifs with larger proportions of hydroxyproline (Hyp), proline (Pro) or glycine (Gly) can strengthen, change or repair the plant cell wall in the course of an infection and thus represent a barrier to the further penetration of the pathogen.
  • Hyp hydroxyproline
  • Pro proline
  • Gly glycine
  • Hydrogen peroxide producing enzymes Various proline-rich cell wall proteins are oxidatively linked to other proteins by H 2 O 2 after pathogen attacks and in this way strengthen the cell walls. Furthermore, aggressive oxygen derivatives in the context of the plant's hypersensitive immune response contribute to the death of the infected plant cells and help in the direct killing of the pathogen.
  • Lignin and callose producing enzymes A frequently used defense strategy of the plant is the synthesis of polymeric cell wall components such as lignin or callose, which are built into the cell wall and serve as a mechanical barrier against the pathogen.
  • An example of this class of substances is the "catalytic UE of callose synthase” (NCBI Acc. NO. AF085717).
  • Chitinases split the carbohydrate polymer chitin with the absorption of water. Chitin is an essential scaffold z. B. many phytopathogenic fungi. An example of this class of substances is "Chitinase 2" (NCBI Acc. NO. AF241267).
  • beta-l, 3-glucanases ß-l, 3-glucanases cleave ß-l, 3-glucan with water absorption.
  • This polymer also occurs as a scaffold in phytopathogenic fungi.
  • Antipathogenically active enzyme inhibitors The cell wall-bound polygalacturonidase inhibiting protein (PGLP), for example from the kidney bean Phaseolus vulgaris, can be mentioned here as an example. This inhibits the action of the enzyme ⁇ -1, 4-D-polygalacturonidase produced by the harmful fungus Fusarium monoliform, which the fungus uses to dissolve the bean cell walls.
  • PGLP polygalacturonidase inhibiting protein
  • Thionins are small basic and cysteine-rich proteins that have so far been found mainly in cereals. An antifungal effect of thionines has been experimentally proven and is working on the ability of this class of proteins to destroy membranes.
  • Lectins with chitin-binding domains are proteins with the ability to bind to carbohydrates in a highly specific manner.
  • An antifungal lectin with a chitin-binding domain (NCBI Acc. NO. AAA34219) was isolated from nettle rhizomes.
  • Ribosome Inactivating Proteins (RIPs). Ribosome-inactivating proteins (see, for example, Leach et al., J. Biol. Chem. 266, 1564-1573, 1990) inhibit the protein synthesis of invading fungi and thus prevent their further growth. Plant-specific ribosomes are not damaged due to the different structure.
  • PR proteins (“Pathogenesis related”).
  • the class of PR proteins includes vegetable proteins found in the healthy plant not occur, but are synthesized after pathogen attack, examples include: PR-1 from Solanum tuberosum (NCBI Acc. NO. CAB58263), pathogenesis-related protein 4 from Hordeum vulgare (NCBI Acc. NO. T06171), transcription factor Pti6 from Solanum tuberosum (NCBI Acc. NO. T07728), thaumatin-like PR proteins, for example from Hordeum vulgare (NCBI Acc. NO. CAB99485).
  • Phytoalexins are herbal secondary metabolites with strong antimicrobial activity that are accumulated around the site of infection. These include, for example, phenol derivatives, isoflavonoids and sesquiterpenes, e.g. B. chlorogenic acid, caffeic acid, scopoletin, Medicarpin, Glyceollin I, Rishitin, Gossypol, Lubimin, Capsidiol, Orchinol, Pisatin, Momilacton, Resveratol, Safynol. Enzymes for the synthesis of saponins. Saponins are steroid glycosides that can destroy fungal membranes by binding to sterols.
  • R gene-gene products code for proteins that interact directly or indirectly via additional proteins with gene products from avr genes (aviralence genes) of the pathogen and lead to programmed cell death of infected plant cells at the infection site, e.g. B. NCBI Acc. NO. BE039015 (downy mildew resistance protein rpp5), NCBI Acc. NO. AF122994 (RPM1 variant gene, NCBI Acc. NO.AF098962 (disease resistance protein RPPl-WsA gene).
  • resistance genes code for proteins that interact directly or indirectly via additional proteins with gene products from avr genes (aviralence genes) of the pathogen and lead to programmed cell death of infected plant cells at the infection site, e.g. B. NCBI Acc. NO. BE039015 (downy mildew resistance protein rpp5), NCBI Acc. NO. AF122994 (RPM1 variant gene, NCBI Acc. NO.AF098962 (disease resistance protein RPPl-W
  • avr gene products are encoded by aviralence genes of the pathogen and activate the pathogen defense and the programmed cell death (apoptosis) of the plant cells at the site of infection in the course of an infection by contact with plant R-gene products.
  • SAR systemic acquired resistance
  • Jasmonic acid can be used to create resistance to Phytophtora infestans, for example, by applying the jasmonic acid externally.
  • jasmonic acid is injured when the plants, e.g. B. after pathogen contact, produces and activates various genes relevant for pathogen defense, z. B. proteinase inhibitors, thionins and plant defensin genes such.
  • B. PDF1 (described in WO98 / 00023).
  • Plant defensins are a family of cysteine-rich basic proteins with structural similarities to antimicrobial active defensins that have been detected in various insect species.
  • the metabolic pathway underlying the synthesis of jasmonic acid starts from linolenic acid and is known to the person skilled in the art.
  • a particularly preferred embodiment of the method according to the invention further increase the efficiency of the pathogen defense by using several, ie two, three or many different gene promoter combinations, each consisting of a regulatory nucleic acid sequence according to the invention in accordance with SEQ LD NO: 12, SEQ LD NO: 13, SEQ LD NO: 14, SEQ LD NO: 15, SEQ LD NO: 16, SEQ LD NO: 17, SEQ LD NO: 18, SEQ TD NO: 19, SEQ TD NO: 20, SEQ TD NO: 21, SEQ TD NO: 22 or SEQ ID NO: 23 or its fragment or homolog and in each case a gene which is involved in the defense against pathogens or a gene which codes for toxic components according to the list above, can be integrated into the plant genome.
  • a combination 1 consisting of a regulatory nucleic acid sequence according to the invention and an R gene, together with a combination 2 consisting of a regulatory nucleic acid sequence according to the invention and an avr gene, can be integrated into the plant genome, so that by integrating both Gene-promoter combinations result in an increased activity against a pathogen.
  • the regulatory nucleic acid sequence according to the invention according to SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ TD NO: 15, SEQ LD NO: 16, SEQ TD NO: 17, SEQ TD NO: 18, SEQ LD NO: 19, SEQ LD NO: 20, SEQ LD NO: 21, SEQ LD NO: 22 or SEQ LD NO: 23 or their fragment or homolog functionally linked genes or other functional nucleic acids can endogenous or exogenous genomic DNA sections or cDNAs or their fragments or derivatives or synthetic or semisynthetic nucleic acids. Endogenous means that the nucleic acid sequence comes from the same organism in which it is integrated with the method according to the invention, e.g. B.
  • nucleic acid sequence from Arabidopsis thaliana is integrated into Arabidopsis thaliana using the method according to the invention.
  • Exogenous means that the nucleic acid sequence comes from another organism, e.g. B. a nucleic acid sequence from Arabidopsis thaliana is with the inventive method in a crop, for. B. wheat, integrated.
  • the functionally linked genes or other functional nucleic acid sequences can have deletions, substitutions, additions, insertions and / or inversions compared to the naturally occurring nucleic acid sequences.
  • the regulatory nucleic acid sequence according to the invention is also suitable for regulating the expression of other gene sequences.
  • the promoter can be present in combination with any genes, both in a vector and in transgenic organisms.
  • Nucleic acid sequences with an identical physiological function to the nucleic acid sequences according to SEQ LD NO: 12, SEQ ED NO: 13, SEQ TD NO: 14, SEQ TD NO: 15, SEQ ID NO: 16, SEQ LD NO: 17, SEQ LD NO: 18 , SEQ LD NO: 19, SEQ LD NO: 20, SEQ LD NO: 21, SEQ TD NO: 22 or SEQ ED NO: 23 can easily be extracted from other organisms with the help of special PCR, hybridization or Screening procedures are isolated.
  • nucleic acid sequences listed above can be used as a probe for homology screening in DNA libraries with the aid of hybridization to single-stranded nucleic acids of a similar base sequence.
  • primers can also be constricted, with the aid of which the amplification of PCR fragments coding for homologous gene products from other organisms is possible.
  • the regulatory nucleic acid sequences according to the invention according to SEQ TD NO: 12, SEQ ID NO: 13, SEQ LD NO: 14, SEQ ID NO: 15, SEQ ED NO: 16, SEQ ID NO: 17, SEQ LD NO: 18, SEQ ID NO : 19, SEQ ID NO: 20, SEQ TD NO: 21, SEQ TD NO: 22 or SEQ ED NO: 23 or their fragments or homologues can be of natural origin or have been produced artificially.
  • the genes which are functionally connected thereto or the other functional nucleic acid sequences can be present both in the sense rank which gives the natural direction of transcription and in the reverse antisense orientation.
  • the regulatory nucleic acid sequence according to the invention according to SEQ TD NO: 12, SEQ TD NO: 13, SEQ TD NO: 14, SEQ ID NO: 15, SEQ ED NO: 16, SEQ TD NO: 17, SEQ ED NO: 18, SEQ ED NO: 19, SEQ ID NO: 20, SEQ ED NO: 21, SEQ ED NO: 22 or SEQ ED NO: 23 or their fragments or homologs can be modified in vectors, expression systems or plants, plant tissues or plant cells or animal cells or microorganisms the expression pattern of various gene products can be used. The expression of the gene products can be both increased and reduced compared to their natural expression.
  • the present invention accordingly further relates to vectors comprising a regulatory nucleic acid sequence according to SEQ LD NO: 12, SEQ TD NO: 13, SEQ TD NO: 14, SEQ LD NO: 15, SEQ LD NO: 16, SEQ LD NO: 17, SEQ TD NO: 18, SEQ ED NO: 19, SEQ LD NO: 20, SEQ LD NO: 21, SEQ ED NO: 22 or SEQ ED NO: 23 or their fragment or homolog.
  • Suitable vectors for recording and transferring the nucleic acid sequences and also some of the transformation methods used in commercial transformation and expression systems for the transfer of foreign genes (transformation) into the genome of plants have already been mentioned above.
  • the present invention further relates to a method for producing a plant with modified gene expression, comprising the stable integration of a regulatory sequence according to SEQ LD NO: 12, SEQ TD NO: 13, SEQ TD NO: 14, SEQ TD NO: 15, SEQ ED NO : 16, SEQ TD NO: 17, SEQ ED NO: 18, SEQ ED NO: 19, SEQ TD NO: 20, SEQ ED NO: 21, SEQ ED NO: 22 or SEQ ED NO: 23 or their fragment or homologue with the biological function of a promoter and a nucleic acid sequence which is functionally linked to a gene product and codes for a gene product in the genome of plant cells or plant tissues and regeneration of the plant cells or plant tissues obtained to give plants.
  • nucleic acid sequences according to SEQ TD NO: 12, SEQ TD NO: 13, SEQ TD NO: 14, SEQ TD NO: 15, SEQ TD NO: 16, SEQ HD NO: 17, SEQ ID NO: 18, SEQ TD NO: 19, SEQ ID NO: 20, SEQ ED NO: 21, SEQ ED NO: 22 or SEQ ED NO: 23 or their fragments or homologs can be used.
  • two or more WRKY 33 promoters are then present in the genome, so that several genes are regulated by these promoters.
  • the nucleic acid sequences have deletions, substitutions, additions, insertions and / or inversions compared to the naturally occurring nucleic acid sequences.
  • the method according to the invention can be applied to all plant organisms.
  • the method according to the invention can be used for the production of pathogen-resistant mono- and dicotyledonous plants.
  • Particularly preferred plants are the crop plants already listed above.
  • the invention further relates to transgenic plants with a regulatory nucleic acid sequence stably integrated into the genome according to SEQ LD NO: 12, SEQ TD NO: 13, SEQ ED NO: 14, SEQ ED NO: 15, SEQ ID NO: 16, SEQ TD NO: 17, SEQ TD NO: 18, SEQ ID NO: 19, SEQ TD NO: 20, SEQ ID NO: 21, SEQ LD NO: 22 or SEQ ID NO: 23 or its fragment or homolog with the biological function of a promoter and a nucleic acid sequence which is functionally linked to a nucleic acid sequence and which codes for a gene product, corresponding to the examples of such coding nucleic acid sequences listed and described above.
  • the present invention further relates to a transformed cell, in particular a transformed plant cell or a transformed plant tissue, in which the nucleic acid sequence according to the invention according to SEQ LD NO: 12, SEQ ED NO: 13, SEQ ID NO: 14, SEQ TD NO: 15, SEQ TD NO: 16, SEQ TD NO: 17, SEQ ED NO: 18, SEQ TD NO: 19, SEQ HD NO: 20, SEQ TD NO: 21, SEQ TD NO: 22 or SEQ ID NO: 23 or their fragments or homologs , are stably integrated.
  • the present invention further relates to a nucleic acid sequence according to the invention according to SEQ TD NO: 12, SEQ ED NO: 13, SEQ ID NO: 14, SEQ ED NO: 15, SEQ ED NO: 16, SEQ ED NO: 17, SEQ ED NO : 18, SEQ ED NO: 19, SEQ HD NO: 20, SEQ ED NO: 21, SEQ ED NO: 22 or SEQ ED NO: 23 or their fragments or homologues transformed plant cell or a transformed plant tissue, or a transformed plant tissue, which or a fertile Plant is regenerable.
  • the present invention relates to a plant which can be obtained by the process according to the invention.
  • the present invention further relates to seed obtained from plants obtained by the process according to the invention.
  • the invention further relates to the fruits, seeds, leaves, shoots and storage organs produced by the plants, e.g. B. fruits, berries, grapes, cereals and potatoes.
  • the plants transformed with the nucleic acid sequence can be unmodified wild type plants or plants obtained by breeding or modified plants e.g. B. be transgenic plants.
  • the inventive method can also in plant tissues and plant cells, for. B. in a cell culture or in expression systems, to increase pathogen resistance.
  • the method according to the invention can be used to improve the general resistance to a large number of plant pathogens.
  • this method according to the invention can also be used to protect against the plant diseases and pests already described above (nematodes, fungi, bacteria, viruses and other animal pathogens of the types already mentioned above), but is not limited to these.
  • Example 1 Quantitative RT-PCR To identify WRKY genes which are induced during the defense of the Arabidopsis plants against Peronospora parasitica, a quantitative RT-PCR approach was chosen and the expression of specific WRKY genes was checked.
  • RNA isolation was used for this RNA isolation system and was operated exactly according to the manufacturer's instructions.
  • RNA quantities between 10 pg and 2 ⁇ g were used. The concentration of the RNA was determined photometrically at 260 nm. In a first run, different amounts of RNA were used in the RT-PCR approaches in order to determine the optimal concentration to be used for a specific WRKY-RNA.
  • the RT-PCR batches were all carried out using the one-step RT-PCR kit (Qiagen). The manufacturer's instructions were followed closely.
  • the program in the thermal cycler (model PTC225 from MJResearch) was entered as follows: 30 min 50 ° C; 15 min 95 ° C; 35 cycles with 40 sec 94 ° C, 1 min 55 ° C or 65 ° C depending on the primer sequence (AfWK55-3 and AtWK55- 6: 65 ° C; all other primers: 55 ° C), 1 min 72 ° C; followed by 10 min 72 ° C and then 4 ° C until the batches are removed.
  • the following primers were used (sequence from 5 'to 3'):
  • AtWRKY30-3 TCGAAGAAGTCAATGCCAAGGTGGAG (SEQ ID NO: 35)
  • AtWRKY30-4 TTTGATGCTGAGTGAGAAGCCGAGCC (SEQ ID NO: 36)
  • AtWRKY54-2 GCTTCCACGATCCTTGTATGTGATCT (SEQ ID NO: 41)
  • AtWRKY54-3 ATGGATTCGAATAGTAACAACACGAAATCC (SEQ ID NO: 41)
  • RKY55 At RKY55-3: AAATCGCTCGAGTCCAGCTTACCGGA (SEQ ID NO: 43)
  • RKY55-6 CATGTTGGTTCCGACCCCGCCGCTAC (SEQ ID NO: 44)
  • RKY63 At RKY63-3: AACATCGATCACAAGGCTGTGGCAGC (SEQ ID NO: 47) At RKY63-4: CAAAACAACATCAGGTCTTCCGATGA (SEQ ID NO: 48)
  • AtWRKY64-3 CTCCAACATCGATCAAACAGCTGTGG (SEQ ID NO: 49)
  • RKY67 At RKY67-l: AAGATGAACTCTTGCCAACAAAAGGC (SEQ ID NO: 51)
  • RKY67-3 CATGATGATAAGTCGTGAGATGTCCAG (SEQ ID NO: 52)
  • RKY70-lb GCTTAAAGTTATGAACCAACTCGTTG (SEQ ID NO: 53)
  • RKY70-2 TCATGGTCTTAGTCCTATAGTAGTGG (SEQ ID NO: 54)
  • the cDNA obtained was separated on a 0.8% agarose gel in TAE and photographed. Analysis of some Arabidopsis WRKY genes showed that they are induced during the defense reaction of the Arabidopsis thaliana Col-0 plants against Peronospora parasitica pv. Cala2. Other WRKY genes were not induced.
  • the WRKY genes induced were the following: WRKY 30, WRKY33, WRKY 41, WRKY46, WRKY 54, WRKY 55, WRKY 62, WRKY 63, WRKY 64, WRKY 67, WRKY 70.
  • Example 2 Northern analysis 1
  • Northern analyzes were carried out to further demonstrate the induction of WRKY33 by the infestation of Peronospora parasitica.
  • RNA was isolated from Arabidopsis plants (ecotype Col-0) sprayed with Peronospora parasitica pv.Cala.
  • the Quiagen-RNA / DNA-Maxi-Kit was used for this RNA isolation and proceeded exactly according to the manufacturer's instructions.
  • 20 ⁇ g RNA per lane were applied to a formamide agarose gel and electrophoresed overnight using a voltage of 1 volt per cm electrode spacing.
  • the RNA was then blotted onto a PALL-B membrane (Pall Corp., New York, USA), whereby the manufacturer's instructions were also followed exactly.
  • 20xSSC (175.3 g / 1 NaCl, 88.2 g / 1 sodium citrate, pH 7.0) was selected as the transfer buffer and blotted capillary for 24 hours.
  • the RNA was then heat-fixed to the membrane by baking the membrane at 80 ° C for 3 hours.
  • the membrane was hybridized with a WRKY 33 specific probe.
  • a 350 bp long fragment was amplified by PCR and this was labeled with radioactive P32-dCTP after elution with the QuiaexII gel extraction kit manufactured by Quiagen (method according to the manufacturer).
  • the Ready-To-Go TM kit from Amersham Pharmacia Biotech Inc.
  • WRKY33 belongs to the "immediate early” genes.
  • an Arabidopsis cell culture was shaken for 30 minutes with cycloheximide (final concentration 25 ⁇ M).
  • RNA was then isolated from this cell culture.
  • the Quiagen RNA / DNA maxi kit used and proceeded exactly according to the manufacturer's instructions.
  • a Northern analysis was carried out as described in Example 2.1). Cycloheximide stops protein biosynthesis, so that only "immediate early” genes are expressed. Since a very clear signal was visible in the autoradiography in this Northern analysis, WRKY 33 can be classified as “immediate early” genes.
  • promoter-GUS constructs were produced and stably integrated into the genome of Arabidopsis plants. In this way it could be shown that very different pathogens, e.g. B. Peronospora, Pythium, Altemaria and Sclerotinia, which induce expression of WRKY33. In addition, it could be shown that the induction of this gene is locally limited and is located directly around the infection site. To determine which sequence is that of the promoter, the start of transcription was identified. S'Race experiments were carried out to determine the transcription start point of the WRKY33 gene. The Boehringer 5'-3'RACE kit was used and the manufacturer's instructions followed. After the transcription start point had been determined, promoter regions of different lengths were amplified using PCR and gene-specific primers as shown in Figure 21. The following were used as forward primers:
  • the program in the thermal cycler (model PTC225 from MJResearch) was entered as follows: 150 seconds at 94 ° C, 60 seconds at 80 ° C (addition of Tfu polymerase, HotStart method), 38 cycles with 60 seconds at 60 ° C, 100 7 sec PC, 45 sec 94 ° C, followed by 60 sec 60 ° C and 90 sec 71 ° C.
  • the amphfected promoter fragments were again cloned by means of PCR using the Tfu polymerase (Stratagene) in front of a GUS reporter gene, so that continuous translation was possible.
  • the constructs were placed in the pGPTV vector (Plant Mol Biol. 20 (6), 1195-1197 (1992)) and stably integrated into the genome of Arabidopsis plants ecotype Col-0 by means of Agrobacterium transformation.
  • the transformants were identified using selection plates.
  • the vector used contains kanamycin resistance and thus made it possible to select transformants on kanamycin-containing plates. After selection, these plants were transplanted to soil and grown. The seeds of these plants were used for the application of various pathogens.
  • the seeds were applied sterile on MS plates or grown directly on earth.
  • the pathogens were administered in accordance with the following specialist literature: (Pythium: Vijayan, P. et al.: A role for jasmonate in pathogen defense of Arabidopsis. Proc. Nat. Acad. Sci.USA 95, 7209-7214, 1998. Altemaria and Sclerotinia as described in the following publication for Rhizoctonia: Broekaert et al: An automated quantitative assay for fungal growth inhibition FEMS Microbiology Letters 69, 55-60, 1990). All the pathogens tested showed a clear and local induction of the WRKY33 gene. claims
  • Transgenic plant with improved resistance to pathogens the improved resistance by an increased expression of the nucleic acid sequence according to SEQ HD NO: 2, SEQ HD NO: 6, SEQ HD NO: 5, SEQ HD NO: II, SEQHD NO: 3, SEQ TD NO: 7, SEQ HD NO: 8, SEQ ID NO: 4, SEQ TD NO: 10, SEQ HD NO: 1 and / or SEQ HD NO: 9, or their homologue or derivative or fragment, or by the change the biological activity of the nucleic acid sequence according to SEQ HD NO: 2, SEQ HD NO: 6, SEQ HD NO: 5, SEQ HD NO: 11, SEQ ID NO: 3, SEQ ID NO: 7, SEQ ID NO: 8, SEQ TD
  • SEQ ID NO: 4 SEQ ID NO: 10, SEQ ED NO: 1 and / or SEQ HD NO: 9, or their homologue or derivative or fragment encoded gene product.
  • SEQ HD NO: 7 SEQ HD NO: 8, SEQ HD NO: 4, SEQ HD NO: 10, SEQ ED NO: 1 and or SEQ HD NO: 9, or their homologue or derivative or fragment, the nucleic acid sequence according to SEQ HD NO : 2, SEQ HD NO: 6, SEQ HD NO: 5, SEQ HD NO: ll, SEQ TD NO: 3, SEQ TD NO: 7, SEQ ID NO: 8, SEQ ED NO: 4, SEQ HD NO: 10 , SEQ TD NO: 1 and / or SEQ HD NO: 9, or their homologue or derivative or fragment and one with this (these)
  • Nucleic acid sequence (s) functionally linked regulatory nucleic acid sequence is (are) also stably integrated into the genome.
  • Transgenic plant according to spoke 2 comprising at least two copies of one of the nucleic acid sequences according to SEQ HD NO: 2, SEQ TD NO: 6, SEQ ID NO: 5, SEQ TD
  • SEQ TD NO: 3 SEQ ED NO: 7
  • SEQ ID NO: 8 SEQ HD NO: 4
  • SEQ HD NO: 10 SEQ HD NO: 1 and / or SEQ ED NO: 9, or their Homologue or derivative or fragment.
  • PRPI promoter phaseolin promoter, isoflavone reductase promoter, ST-LSI promoter, salicylic acid inducible promoter, benzenesulfonamide inducible promoter, tetracycline inducible promoter, abscisic acid inducible promoter, ethanol or cyclohexanone inducible promoter, promoter according to any one of claims 10 to 12, or its fragment or homologue with the biological function of a promoter, or a seed-specific tobacco promoter.
  • SEQ HD NO: 7 SEQ HD NO: 8, SEQ HD NO: 4, SEQ ED NO: 10, SEQ ED NO: 1 and / or SEQ ED NO: 9, or their homolog or derivative
  • the endogenous promoter of the nucleic acid sequence according to SEQ LD NO: 2, SEQ HD NO: 6, SEQ HD NO: 5, SEQ HD NO: 11, SEQ HD NO: 3, SEQ TD NO: 7, SEQ HD NO: 8, SEQ HD NO: 4, SEQ ED NO : 10, SEQ HD NO: 1 and / or SEQ ED NO: 9, or their homolog or derivative is replaced by a strong promoter, in particular by a CaMV 35S promoter from the cauliflower mosaic virus or the ubiquitin promoter Corn.
  • SEQ HD NO: II SEQ HD NO: 3, SEQ HD NO: 7, SEQ HD NO: 8, SEQ HD NO: 4, SEQ ED NO: 10, SEQ HD NO: 1 and / or SEQ HD NO: 9 or their homologue or derivative or fragment of encoded gene product by modifying functional protein domains, in particular receptor binding, phosphoryl and / or DNA binding domains, in particular the WRKY DNA binding domain.
  • nucleic acid sequence according to spoke 11 wherein the hybridizing nucleic acid sequence under stringent conditions with the nucleic acid sequence according to SEQ LD NO: 12, SEQ HD NO: 13, SEQ HD NO: 14, SEQ ED NO: 18, SEQ HD NO: 17, SEQ HD NO: 23, SEQ ED NO: 15, SEQ ED NO: 19, SEQ HD NO: 20, SEQ HD NO: 16, SEQ TD NO: 22 or SEQ ED NO: 21 hybridized.
  • Transgenic plant with at least one regulatory nucleic acid sequence stably integrated into the genome after its transformation and according to one of claims 10 to 12 and a nucleic acid sequence which is functionally linked to a nucleic acid sequence and codes for a gene product.
  • nucleic acid coding for a gene product is selected from the nucleic acids coding for starch proteins with repetitive peptide motifs Ser-Hyp 4 , Gly-X or Val-Tyr-Lys-Pro-Pro, H 2 ⁇ 2 -producing enzymes, lignin and callose producing enzymes, chitinases, ß-l, 3-glucanases, antipathogenically active enzyme inhibitors, thionines, lectins with chitin-binding domains, ribosome-inactivating proteins, PR proteins, enzymes for the synthesis of phytoalexins, enzymes for the synthesis of saponins, R gene gene products, avr- Gene products, enzymes for the synthesis of salicylic acid.
  • transgenic plant according to claim 13 or 14, wherein two or more different combinations of regulatory nucleic acid sequences and nucleic acid sequences coding for a gene product are stably integrated into the genome.
  • Nucleic acid sequence coding gene product in particular the nucleic acid sequence according to claim 9, into the genome of plant cells or plant tissues and regeneration of the plant cells or plant tissues obtained to plants.
  • Plant cell or plant tissue according to spoke 17 regenerable to a fertile plant.
  • Vector comprising a nucleic acid sequence according to one of claims 9 to 12.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Communicable Diseases (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft transgene Pflanzen mit verbesserter Widerstandskraft gegenüber Pathogenen, wobei die verbesserte Widerstandskraft durch eine verstärkte Expression einer oder mehrerer Nukleinsäuresequenzen gemäß SEQ ID NO:1 bis 11, oder deren Homologe oder Derivate oder Fragmente, oder durch die Veränderung der biologischen Aktivität der von einer oder mehreren Nukleinsäuresequenzen gemäß SEQ ID NO:1 bis 11, oder deren Homologe oder Derivate oder Fragmente kodierten Genprodukte hervorgerufen wird. Die vorliegende Erfindung betrifft ferner transgene Pflanzen mit mindestens einer stabil in das Genom integrierten regulatorischen Nukleinsäuresequenz gemäß SEQ ID NO:12 bis 23, und einer mit dieser Nukleinsäuresequenz funktionell verbundenen für ein Genprodukt codierenden Nukleinsäuresequenz. Ferner betrifft die vorliegende Erfindung Verfahren zur Herstellung der erfindungsgemäßen transgenen Pflanzen sowie die Nukleinsäuresequenzen gemäß SEQ ID NO:1 bis 23.

Description

Pflanzen mit verbesserter Widerstandskraft
Die vorliegende Erfindung betrifft transgene Pflanzen mit verbesserter Widerstandskraft gegenüber Pathogenen, wobei die verbesserte Widerstandskraft durch eine verstärkte Expression einer oder mehrerer Nukleinsauresequenzen gemäß SEQ LD NO:l bis 11, oder deren Homologe oder Derivate oder Fragmente, oder durch die Veränderung der biologischen Aktivität der von einer oder mehreren Nukleinsauresequenzen gemäß SEQ LD NO:l bis 11, oder deren Homologe oder Derivate oder Fragmente kodierten Genprodukte hervorgerufen wird. Die vorliegende Erfindung betrifft ferner transgene Pflanzen mit mindestens einer stabil in das Genom integrierten regulatorischen Nukleinsauresequenz gemäß SEQ LD NO: 12 bis 23, und einer mit dieser Nukleinsauresequenz funktionell verbundenen für ein Genprodukt codierenden Nukleinsauresequenz. Ferner betrifft die vorliegende Erfindung Verfahren zur Herstellung der erfmdungsgemäßen transgenen Pflanzen sowie die Nukleinsauresequenzen gemäß SEQ LD NO:l bis 23.
Der Angriff bestimmter Phytopathogene induziert in infizierten Wirtspflanzen ein breites Spektrum von Abwehrreaktionen. Übliche Verteidigungsstrategien umfassen beispielsweise das rasche Absterben von Pflanzenzellen an der Infektionsstelle (hypersensitive response), die strukturelle Zellwandverstärkung durch Einlagerung von polymeren Bestandteilen um den Ort des Eindringens herum, die Produktion von hydrolytischen antipathogenen Enzymen sowie die Synthese von Phytoalexinen mit antimikrobieller Wirksamkeit. Zu Beginn einer Infektion werden in der Regel spezifische molekulare Pathogenbestandteile, sogenannte Elicitoren, von Pflanzenrezeptoren gebunden, wodurch die Pflanze über die Infektion informiert wird und Abwehrmaßnahrnen einleitet, die zahlreiche enzymatische Prozesse einschließen.
Unter dem Überbegriff WRKY-Gene faßt man eine Reihe von Genen zusammen, die für strukturell verwandte putative Transkriptionsfaktoren in Pflanzen kodieren. Die Mitglieder der WR Y-Familie regulieren unterschiedlichste pflanzenphysiologische Prozesse wie z. B. Pathogenabwehr, Wundheilung, Trichomentwicklung und Seneszenz. Bislang ist jedoch nur von sehr wenigen WRKY-Proteinen bekannt, in welche konkreten Stoffwechselvorgänge sie eingreifen. Der aktuelle Stand der WRKY-Forschung ist bei T. Eulgem, PJ. Rushton, S. Robatzek und I.E. Somssich (2000): The WRKY superfamily of plant transcription factors, Trends in Plant Sciences 5, 199-206, nachzulesen. Zur Zeit umfaßt die WRKY- Proteinsuperfamilie in der „Ackerschmalwand" Arabidopsis thaliana etwa 70 verschiedene Transkriptionsfaktoren, die als Gemeinsamkeit eine ca. 60 Aminosäuren große DNA-bindende WRKY-Domäne (mit der Aminosäureabfolge WRKYG(QK)) aufweisen. Die DNA-Bindung wird durch ein Zinkfingermotiv dieser Domäne vermittelt.
Aufgrund der Zahl der WRKY-Domänen und der Struktur der Zinkfmger werden WRKY- Proteine in drei Gruppen eingeordnet. Proteine der Gruppe I enthalten zwei, Proteine der Gruppe II dagegen nur eine WRKY Domäne. WRKYs der Gruppe III besitzen ebenfalls nur eine WRKY-Domäne, unterscheiden sich aber durch ein abweichendes Zinkfingermotiv (Typ C2-HC) von den Mitgliedern der Gruppe II. Es ist nicht möglich, anhand der Gruppenzugehörigkeit auf die physiologische Funktion der WRKYs zu schließen.
In Datenbanken liegen bislang mehr als 500 WRKY ESTs aus verschiedensten Pflanzenarten vor. Viele sind gewebespezifisch und wurden aus Wurzeln, Blättern, Blüten oder Samen isoliert oder werden nur unter bestimmten Bedingungen, z. B. Salz- oder Trockenstreß exprimiert. Momentan liegt lediglich für einige dieser WRKY-Gene ein konkreter Hinweis darauf vor, an welchem Stoffwechselweg sie beteiligt sind. Von wenigen wurde nachgewiesen, daß sie bei der Verteidigung gegen Pflanzenpathogene involviert sind: WRKYl und WRKY 3 aus Petroselinum crispum (Eulgem, T. et al: Early nuclear events in plant defense signalling: rapid gene activation by WRKY transcription factors. EMBO Journal 18, 4689-4699, 1999) sowie WRKY3 und WRKY4 aus Nicotiana tabacum (Chen, C. und Chen, Z: Isolation and characterization of two pathogen- and salicylic acid induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Molecular Biology 42, 387-396, 2000). Eine Pathogenabwehrfunktion der in dieser Patentanmeldung genannten WRKY-Proteine 30, 33, 41, 46, 54, 55, 62, 63, 64, 67 und 70 war bislang nicht bekannt.
Die Aufgabe der WRKY-Proteine bei der Pathogenabwehr besteht vermutlich in der transkriptionellen Aktivierung spezieller Gene. So wird z. B. in Zellsuspensionskulturen die Induktion der PR1-1 und PR1-2 Gene von Petroselinum crispum durch vom Pilz abgesonderte Elicitoren, unter anderem durch ein definiertes fungales Oligopeptid (Pep25), hervorgerufen. Die Bindung von Pep25 an einen pflanzlichen Plasmamembranrezeptor führt zum Anstieg verschiedener Ionenkonzentrationen, zur Phosphorylierung/Dephosphorylierung zahlreicher Proteine und letztlich zur Aktivierung von an der Pathogenabwehr beteiligten Genen, zu denen auch PR1-1 und PR1-2 gehören. In den Promotoren dieser Gene befinden sich sogenannte W- Boxen (Wl, W2 und W3) mit der Sequenz (T)(T)TGAC(C/T), die als Bindestellen für sequenzspezifisch DNA-bindende WRKY-Proteine fungieren. Die WRKY-Proteine stellen damit Transkriptionsfaktoren für Gene dar, deren Promotoren einige Kopien der W-Boxen enthalten. Gene, deren Promotoren W-Boxen aufweisen, können z. B. für pathogenschädigende Proteine wie antimikrobielle Chitinasen oder Glucanasen kodieren. Auch die Promotoren der meisten WRKY-Gene enthalten W-Boxen. Diese Gene werden demzufolge wiedemm von anderen WRKY-Genen reguliert.
Nahezu alle modernen Nutzpflanzen werden durch pathogene Organismen befallen und teilweise stark geschädigt. Zu diesen Pathogenen zählen diverse Pilze, Bakterien, Nematoden und Viren. Zwar besitzen die Pflanzen verschiedene natürliche Abwehπnechanismen, die jedoch oftmals nur einen eingeschränkten Schutz vor den Erregern verleihen. Aus diesem Grunde verlangt die intensive Nutzung der Ackerfläche in der modernen Landwirtschaft und im Gartenbau den häufigen Einsatz von chemischen Pflanzenschutzmitteln, sofern diese verfügbar sind.. Ungeachtet aller bislang entwickelten Pflanzenschutzmittel und -methoden sowie der erfolgreichen klassischen Resistenzzüchtung in Kulturpflanzen ist der in heutiger Zeit durch Befall mit Pathogenen entstehende Ernteverlust immer noch erheblich und verursacht einen weltweiten ökonomischen Schaden von mehreren Milliarden Mark jährlich. Eine Entwicklung neuer Pflanzen mit verbesserter Resistenz oder erweitertem Resistenzspektrum könnte die genannten Probleme verringern helfen.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, neuartige pathogenresistente Pflanzen sowie Verfahren zu ihrer Herstellung bereitzustellen.
Die Aufgabe wird durch den in den Patentansprüchen definierten Gegenstand gelöst.
Die Erfindung wird durch die folgenden Figuren erläutert.
Figur 1 zeigt die genomische Nukleinsauresequenz des WRKY30-Gens von Arabidopsis thaliana. Start- ATG und Stop-Codon sind fett gedruckt hervorgehoben. Unterstrichene Regionen stellen Introns dar.
Figur 2 zeigt die genomische Nukleinsauresequenz des WRKY33-Gens von Arabidopsis thaliana. Start- ATG und Stop-Codon sind fett gedruckt hervorgehoben. Unterstrichene Regionen stellen Introns dar.
Figur 3 zeigt die genomische Nukleinsauresequenz des WRKY41-Gens von Arabidopsis thaliana. Start- ATG und Stop-Codon sind fett gedruckt hervorgehoben. Unterstrichene Regionen stellen Introns dar.
Figur 4 zeigt die genomische Nukleinsauresequenz des WRKY46-Gens von Arabidopsis thaliana. Start- ATG und Stop-Codon sind fett gedruckt hervorgehoben. Unterstrichene Regionen stellen Introns dar.
Figur 5 zeigt die genomische Nukleinsauresequenz des WRKY54-Gens von Arabidopsis thaliana. Start- ATG und Stop-Codon sind fett gedruckt hervorgehoben. Unterstrichene Regionen stellen Introns dar.
Figur 6 zeigt die genomische Nukleinsauresequenz des WRKY55-Gens von Arabidopsis thaliana. Start- ATG und Stop-Codon sind fett gedruckt hervorgehoben. Unterstrichene Regionen stellen Introns dar.
Figur 7 zeigt die genomische Nukleinsauresequenz des WRKY62-Gens von Arabidopsis thaliana. Start- ATG und Stop-Codon sind fett gedruckt hervorgehoben. Unterstrichene Regionen stellen Introns dar.
Figur 8 zeigt die genomische Nukleinsauresequenz des WRKY63-Gens von Arabidopsis thaliana. Start- ATG und Stop-Codon sind fett gedruckt hervorgehoben. Unterstrichene Regionen stellen Introns dar.
Figur 9 zeigt die genomische Nukleinsauresequenz des WRKY64-Gens von Arabidopsis thaliana. Start-ATG und Stop-Codon sind fett gedruckt hervorgehoben. Unterstrichene Regionen stellen Introns dar.
Figur 10 zeigt die genomische Nukleinsauresequenz des WRKY67-Gens von Arabidopsis thaliana. Start-ATG und Stop-Codon sind fett gedruckt hervorgehoben. Unterstrichene Regionen stellen Introns dar.
Figur 11 zeigt die genomische Nukleinsauresequenz des WRKY70-Gens von Arabidopsis thaliana. Start-ATG und Stop-Codon sind fett gedruckt hervorgehoben. Unterstrichene Regionen stellen Introns dar.
Figur 12 zeigt die Promotorregion des WRKY33-Gens von Arabidopsis thaliana. Das 1270 Bp lange Promotorfragment (SEQ ID NO: 12) gemäß Figur 21 ist kursiv hervorgehoben und das 361 Bp lange Promotorfragment (SEQ LD NO:13) gemäß Figur 21 ist doppelt unterstrichen. Fett gedruckt hervorgehoben sind die Forward-Primer für das 1270 Bp, 361 Bp, 331 Bp und 193 Bp Fragment gemäß Figur 21 sowie der Reverse-Primer der vier Fragmente. Das Start-ATG liegt im Reverse-Primer. Kleinbuchstaben kennzeichnen den codierenden Bereich des WRKY33-Gens im Reverse-Primer.
Figur 13 zeigt eine RT-PCR- Analyse zum Nachweis der Induktion der WRKY-Gene 30, 41, 46, 62, 63, 64 und 67 nach Infektion von Arabidopsis thaliana mit dem Blattpathogen Peronospora parasitica pv Cala2. Die Probennahme erfolgte zum Infektionszeitpunkt (0) sowie 2, 4, 6, 12 und
24 Stunden nach der Infektion (hpi = hours post induction). Um nachzuweisen, daß die
Induktionen ursächlich durch die Pathogemnfektionen ausgelöst wurden, wurden
Kontrollinfektionen mit reinem Wasser (H20) anstelle einer Pathogenapplikation durchgeführt.
Figur 14 zeigt eine RT-PCR-Analyse zum Nachweis der Induktion der WRKY-Gene 54, 55 und
70 nach Infektion von Arabidopsis thaliana mit dem Blattpathogen Peronospora parasitica pv
Cala2. Für die Analyse wurden genspezifische Primer eingesetzt. Die Probennahme erfolgte zum
Infektionszeitpunkt (0) sowie 2, 4, 6, 12 und 24 Stunden nach der Infektion (hpi = hours post induction). Um nachzuweisen, daß die Induktionen ursächlich durch die Pathogemnfektionen ausgelöst wurden, wurden Kontrollinfektionen mit reinem Wasser (H20) anstelle einer
Pathogenapplikation durchgeführt.
Figur 15 zeigt einen Northern Blot zum Nachweis der Induktion von WRKY 33 nach Infektion von Arabidopsis thaliana mit dem Blattpathogen Peronospora parasiticum parasitica pv Cala2. Die Probennahme erfolgte zum Infektionszeitpunkt (0) sowie 2, 4, 6 und 24 Stunden nach der Infektion (hpi = hours post induction). Um nachzuweisen, daß die Induktionen ursächlich durch die Pathogeninfektionen ausgelöst wurden, wurden Kontrollinfektionen mit reinem Wasser (H20) anstelle einer Pathogenapplikation durchgeführt.
Figur 16 zeigt die lokale Induktion von WRKY33 mittels GUS-Anfärbung von Peronospora parasitica-mΑzi&sXQXi (rechts) und nichtinfizierten Arabidopsis thaliana Pflanzen (links). Teilabbildung A zeigt GUS-gefärbte Primärblätter, Teilabbildung B entsprechende Kotyledonen. Die Anfärbung erfolgte 2 Tage nach der Infektion für 12 Stunden.
Figur 17 zeigt die lokale Induktion von WRKY33 mittels GUS-Anfärbung von Alternaria α/terπαtα-infizierten Arabidopsis thaliana Pflanzen. Teilabbildung A zeigt eine Gesamtansicht der Mycel-Infektion auf Arabidopsisblättern, Teilabbildung B eine 2,5fache Vergrößerung einer Infektionsstelle. Die Aufnahme erfolgte 9 Tage nach der Infektion.
Figur 18 zeigt die lokale Induktion von WRKY33 mittels GUS-Anfärbung von Sclerotina sclerotiorum-wfizievten Arabidopsis thaliana Pflanzen. Teilabbildung A zeigt eine Gesamtansicht der Mycel-Infektion auf Arabidopsisblättern zwei bzw. drei Tage nach der Infektion, Teilabbildung B die 5fache Vergrößerung einer Infektionsstelle. Die Aufnahme erfolgte 9 Tage nach der Infektion.
Figur 19 zeigt die Induktion von WRKY33 mittels GUS-Anfärbung von Arabidopsis thaliana Pflanzen nach Kontakt mit dem Wurzelpathogen Pythium sylvaticum. Teilabbildung A zeigt eine Gesamtansicht nichtinfizierter Pflanzen (Kontrolle), Teilabbildung B Pflanzen, die mit Pythium sylvaticum infiziert wurden. Die Teilabbildungen C und D stellen Detailaufnahmen des Wurzelbereichs infizierter Pflanzen dar. Sämtliche Aufnahmen wurden zwei Wochen nach der Infektion gemacht.
Figur 20 zeigt eine tabellarische Auflistung der in den Promotoren der Arabidopsis thaliana WRKY-Gene 33, 41, 46, 54, 55, 62, 63, 64, 67 und 70 vorkommenden Transkriptionsfaktorbindestellen. Für die Untersuchung wurden jeweils 1,5 Kilobasen lange Promotorabschnitte vor dem jeweiligen Transkriptionsstartpunkt berücksichtigt und diese computergestützt nach bekannten Transkriptionsfaktorbindestellen durchsucht. Figur 21 zeigt eine schematische Darstellung der gemäß Beispiel 3 durchgeführten Promotoranalyse. Für Expressionsstudien wurden Konstrukte, bestehend aus unterschiedlich langen WRKY33 -Promotoranteilen und dem beta-Glucoronidase-Reportergen (uidA) verwendet. Eine starke Induktion konnte mit einem 1270 Bp langen Promotoranteil festgestellt werden, während für eine basale Induktion bereits 361 Bp ausreichten. Keine Induktion wurde mit 331 und 193 langen Promotoranteilen erzielt.
Figur 22 zeigt einen Northern Blot zum Nachweis, daß WRKY33 in der RPP2-abhängigen Signalkette liegt und seine Expression von einem funktionalen PAD4-Protein abhängig ist. Die Probennahme erfolgte zum Infektionszeitpunkt (0) sowie 2, 4, 6, 24, 48 und 72 Stunden nach der Infektion (hpi = hours post induction).
Die hier verwendeten Ausdrücke „Homologe" oder „homologe Sequenzen" bezeichnen nicht aus Arabidopsis thaliana stammende Nukleinsäure- oder Aminosäuresequenzen mit signifikanter Ähnlichkeit zur Vergleichssequenz oder Teilen davon und identischer physiologischer Funktion in anderen Pflanzen. Als homologe Sequenzen gelten somit Nukleinsauresequenzen mit identischer physiologischer Funktion in anderen Pflanzen, die mit den Vergleichssequenzen oder Teilen dieser Sequenzen mter stringenten Bedingungen hybridisieren (zu stringenten Bedingungen siehe Sambrook et al, Molecular Cloning, Cold Spring Harbour Laboratory (1989), ISBN 0-87969-309-6). Ein Beispiel für stringente Hybridisiemngsbedingungen ist: Hybridisierung in 4 x SSC bei 65° C (alternativ in 50% Formamid und 4 X SSC bei 42° C), gefolgt von mehreren Waschschritten in 0,1 x SSC bei 65°C für insgesamt etwa eine Stunde. Als homologe Sequenzen sollen des weiteren Nukleinsäure- oder Aminosäuresequenzen oder Teile davon mit identischer physiologischer Funktion in anderen Pflanzen gelten, die unter Zuhilfenahme des Similaritätsalgorithmus BLAST (Basic Local Alignment Search Tool, Altschul et al, Journal of Molecular Biology 215, 403-410 (1990) eine signifikante Ähnlichkeit mit Vergleichssequenzen aufweisen. Als signifikant ähnlich werden, wie hier verwendet, Sequenzen bezeichnet, die z. B. unter Verwendung von Standardparametern im BLAST-Service des NCBI (http://www.ncbi.nlm.nih.gov/BLAST/) ein Signifikanzniveau (E-Value oder Probability) von P < 10*5 aufweisen, wenn Sie mit den Vergleichssequenzen verglichen werden.
Der hier verwendete Ausdruck „Homologe" oder „homologe Sequenzen" bezeichnet des weiteren Nuklein- oder Aminosäuresequenzen oder Teile davon, die mit den Vergleichssequenzen zu mindestens 70%, vorzugsweise zu 80%, besonders bevorzugt zu 90% und insbesondere bevorzugt zu 95%) identisch sind. Die Abweichungen zu den Vergleichssequenzen können dabei durch Deletion, Substitution, Lisertion, Inversion oder Rekombination entstanden sein.
Der hier verwendete Ausdruck „Derivate" bezeichnet Nukleinsäuren, die ebenfalls die Erbinformation für das von der Vergleichssequenz codierte Protein tragen, obwohl ihre Basensequenz sich von der der Vergleichssequenz unterscheidet. Ln diesem Sinne bezeichnet der Ausdruck „Derivate" sowohl Introns beinhaltende genomische Äquivalente von RNA, EST- oder cDNA-Sequenzen als auch Äquivalente der Vergleichssequenz, die aufgrund der Degeneration des genetischen Codes entstanden sind.
Der liier verwendete Ausdruck „Fragmente" bezeichnet Teile von Nuklein- oder Aminosäuresequenzen, sofern sie über zumindest einen funktioneil wichtigen Bereich (Domäne, Sequenz- oder Strukturmotiv) der Vergleichssequenz verfugen. Entsprechende funktionell wichtige Bereiche sind insbesondere Elemente der DNA-Bindung, z. B. (1) eine WRKY- Proteindomäne, die die Konsensussequenz WRKYG beinhaltet, (2) Zinkfingermotive mit den Konsensussequenzen C-X4.5-C-X22-23-H-X1-H oder C-X -C-X23-H-X1-C, (3) Strukturelemente, die zur Bindung an sogenannte W-Boxen mit der Basenabfolge (T)(T)TGAC(C/T) beitragen. Weitere funktionell wichtige Bereiche sind Bindestellen für Transkriptionsfaktoren, katalytische Zentren, mit Proteinen wechselwirkende Aminosäuremotive, z. B. Rezeptor oder Ligandenbindestellen, sowie Phosphorylierungs- Acetylierungs oder Myristylierungsstellen.
Der hier verwendete Ausdruck "Expression" bedeutet die transkriptioneile Umschrift einer genetischen Information in RNA sowie bei proteinkodierenden Genen die anschließende Translation in Polypeptide.
Der hier verwendete Ausdruck "verstärkte Expression" oder "verstärkte Genexpression" bedeutet einen Anstieg der gebildeten Transkriptmenge auf mehr als 100% im Vergleich zu der entsprechenden Transkriptmenge bei Wildtyppflanzen.
Der hier verwendete Ausdruck "endogen" bezeichnet biologische Komponenten wie z. B. Gensequenzen, die natürlicherweise aus dem genau dem Organismus stammen, im dem sie integriert sind oder integriert werden sollen.
Der hier verwendete Ausdruck "exogen" bezeichnet biologische Komponenten wie z. B. Gensequenzen, die natürlicherweise aus einem anderen als dem Organismus stammen, im dem sie integriert sind oder integriert werden sollen.
Der hier verwendete Ausdruck "funktionell verbunden" bedeutet, daß eine regulatorische Sequenz wie ein Promotor die Expression eines Gens oder einer anderen funktioneilen Nukleinsäure steuert oder daß eine Nukleinsauresequenz von dem Promotor ausgehend exprimiert wird.
Der hier verwendete Ausdruck "funktionelle Nukleinsäure" oder "fuhktionelle Nukleinsauresequenz" bedeutet eine Nukleinsauresequenz, die für kein natürlicherweise vorkommendes Genprodukt codiert, z. B. ein Ribozym, eine Antisense-DNA oder RNA oder eine aus verschiedenen Exons zusammengesetzte Sequenz.
Der hier verwendete Ausdruck "Vektor" bezeichnet natürlich vorkommende oder künstlich erschaffene Konstrukte zur Aufnahme, Vermehrung, Expression oder Übertragung von Nukleinsäuren, z. B. Plasmide, Phagemide, Cosmide, künstliche Chromosomen, Bakteriophagen, Viren, Retroviren.
Der hier verwendete Ausdruck „transgene Pflanze" betrifft Pflanzen, die mittels rekombinanter Gentechnik und/oder mikrobiologischen Verfahren und nicht mittels herkömmlicher Züchtungsverfahren hergestellt wurden.
Der hier verwendete Ausdruck "Expressionssystem" bezeichnet jedwede Kombination von Vektoren, Restriktionsenzymen, Transformationsmethoden, Zellextrakten, lebenden Zellen z. B. prokaryontischen oder eukaryontischen Zellen oder Organismen mit dem Zweck Expression von Genen.
Es wurde anhand von Infektionsexperimenten mit verschiedenen Phytopathogenen überraschenderweise gefunden, daß in der Ackerschmalwand Arabidopsis thaliana eine Reihe von WRKY-Genen mit bislang vollkommen ungeklärter physiologischer Funktion durch den Befall der Pflanze mit einem Pathogen induziert werden. Die Induktion beginnt bereits kurze Zeit nach dem Pathogenkontakt und ist im wesentlichen lokal auf den Ort der Infektion beschränkt. Im Einzelnen wurde eine entsprechende pathogeninduzierte Aktivierung der Gene kodierend für WRKY30, WRKY33, WRKY41, WRKY54, WRKY55, WRKY62, WRKY63, WRKY64, WRKY67 und WRKY70 nachgewiesen. Es konnte festgestellt werden, daß die Induktion nicht auf ein Pathogen beschränkt ist, sondern durch verschiedene Erreger ausgelöst werden kann.
Die vorliegende Erfindung betrifft somit transgene Pflanzen mit einer oder mehreren stabil in das Genom integrierten Nukleinsäuresequenz(en) gemäß SEQ LD NO:l, SEQ TD NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ TD NO:5, SEQ ID NO:6, SEQ TD NO:7, SEQ LD NO:8, SEQ LD NO:9, SEQ ID NO: 10 oder SEQ ID NO:l l, oder deren Homolog oder Derivat oder Fragment, oder einer Nukleinsauresequenz mit identischer physiologischer Funktion, die mit einer dieser Nukleinsauresequenzen hybridisiert, vorzugsweise unter stringenten Bedingungen hybridisiert, und zur Ausbildung einer verbesserten Widerstandsfähigkeit gegenüber Pathogenen in den betroffenen Pflanzen führt, sowie Verfahren zur Herstellung der transgenen Pflanzen.
Die obengenannten SEQ FD NO:l bis 11 können gemäß der folgenden Auflistung den in dieser Anmeldung beschriebenen WRKY-Genen zugeordnet werden:
SEQ ID NO:l entspricht der Sequenz des Gens, kodierend für WRKY30.
SEQ ID NO:2 entspricht der Sequenz des Gens, kodierend für WRKY33.
SEQ TD NO:3 entspricht der Sequenz des Gens, kodierend für WRKY41.
SEQ TD NO:4 entspricht der Sequenz des Gens, kodierend für WRKY46. SEQ ID NO:5 entspricht der Sequenz des Gens, kodierend für WRKY54.
SEQ TD NO:6 entspricht der Sequenz des Gens, kodierend für WRKY55.
SEQ TD NO:7 entspricht der Sequenz des Gens, kodierend für WRKY62.
SEQ TD NO:8 entspricht der Sequenz des Gens, kodierend für WRKY63.
SEQ TD NO: 9 entspricht der Sequenz des Gens, kodierend für WRKY64. SEQ ID NO: 10 entspricht der Sequenz des Gens, kodierend für WRKY67.
SEQ ID NO: 11 entspricht der Sequenz des Gens, kodierend für WRKY70.
Eine Verbesserung der Widerstandskraft gegenüber Pathogenen ist beispielsweise durch eine oder mehrere der folgenden Methoden zu erreichen:
(a) eine verstärkte Expression eines oder mehrerer endogen vorhandener WRKY-Gene,
(b) eine Einbringung und Expression zusätzlicher WRKY-Genkopien in das pflanzliche Genom, (c) eine Veränderung der biologischen Aktivität von WRKY-Genprodukten.
In den Fallgruppen a) und b) wird durch die solchermaßen im Vergleich zu Wildtyppflanzen temporär oder konstitutiv verstärkte Expression intrazellulär eine größere Menge an WRKY- Proteinen gebildet. Die WRKY-Transkriptionsfaktoren interagieren im weiteren Verlauf der Reaktionskette mit Promotorelementen (sogenannten W-Boxen), die sich vor pathogenabwehrrelevanten Genen (sogenannte „defense related genes") befinden und steigern durch die Bindung deren Transkription. Durch eine höhere zelluläre Konzentration an WRKY- Proteinen werden auch mehr Folgeprodukte dieses Stoffwechselweges gebildet und die Immunabwehr der Pflanze signifikant verbessert. Transgene Pflanzen, die aufgrund einer verstärkten Genexpression oder durch zusätzliche WRKY-Genkopien eine gegenüber dem Wildtyp gesteigerte Menge an WRKY-Transkripten oder deren Fragmenten oder Homologen oder Derivaten produzieren, zeigen eine wesentlich verbesserte Pathogenabwehr.
Eine verstärkte Expression kann demzufolge z. B. durch Kombination der Nukleinsauresequenz gemäß SEQ LD NO:l, SEQ TD NO:2, SEQ TD NO:3, SEQ ID NO:4, SEQ LD NO:5, SEQ LD NO:6, SEQ ID NO:7, SEQ LD NO:8, SEQ ID NO:9, SEQ TD NO: 10 oder SEQ ID NO: 11 oder deren Homolog oder Derivat oder Fragment mit einem starken Promotor erreicht werden. Beispiele für geeignete Promotoren, die zu einer verstärkten konstitutiven Expression eines WRKY-Gens oder dessen Homolog oder Fragment oder Derivat führen können, sind der CaMV 35S-Promotor aus dem Blumenkohl-Mosaik- Virus sowie der Ubiquitin-Promotor aus Mais. Dazu kann entweder der endogene Promotor, der die Expression einer der Nukleinsauresequenzen gemäß SEQ ID NO:l, SEQ ID NO:2, SEQ LD NO:3, SEQ LD NO:4, SEQ ID NO:5, SEQ LD NO:6, SEQ ID NO:7, SEQ LD NO:8, SEQ TD NO:9, SEQ ID NO: 10 oder SEQ LD NO:l 1 oder deren Homolog oder Derivat oder Fragment steuert, durch den starken Promotor ersetzt werden, oder es kann mindestens eine zusätzliche Kopie einer der Nukleinsauresequenzen gemäß SEQ TD NO:l, SEQ ID NO:2, SEQ LD NO:3, SEQ LD NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ TD NO:7, SEQ LD NO:8, SEQ TD NO:9, SEQ ID NO: 10 oder SEQ ID NO: 11 oder deren Homolog oder Derivat oder Fragment in das Genom integriert werden, wobei die zusätzliche^) Kopie(n) mit dem starken Promotor funktionell verbunden ist(sind).
Eine verstärkte Genexpression der Nukleinsauresequenzen gemäß SEQ LD NO:l, SEQ ID NO:2, SEQ ID NO:3, SEQ LD NO:4, SEQ LD NO:5, SEQ LD NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ LD NO:9, SEQ LD NO: 10 oder SEQ LD NO:l 1 oder deren Fragment oder Homolog oder Derivat kann ferner durch die Veränderung oder das Hinzufügen funktioneller Komponenten des natürlicherweise die Expression des WRKY-Gens regulierenden Promotors erreicht werden. Essentielle Komponenten eines typischen eukaryontischen Promotors sind Stand der Technik und in einschlägigen Lehrbüchern nachzulesen. Beispiele für entsprechende funktionelle Komponenten sind TATA-Box, CAAT-Box, GC-Box, Enhancer oder Bindestellen für weitere Transkriptionsfaktoren. Geeignete Verfahren zur Veränderimg der Nukleinsauresequenz des natürlicherweise die Expression des WRKY-Gens regulierenden Promotors sind dem Fachmann bekannt. Bekannte Mutagenesetechniken sind beispielsweise die Erzeugung von Deletionsmutanten oder die Einführung von Punktmutationen durch "Site Directed Mutagenesis". Bevorzugte Verfahren zur Mutagenese bzw. zur Veränderung der Expression sind weiterhin chimäre RNA/DNA-Oligonukleotide, homologe Rekombination oder RNA-Interferenz (RNAi).
Eine verstärkte Expression kann ferner erreicht werden, indem mehr als eine zusätzliche Kopie der Nukleinsauresequenzen gemäß SEQ LD NO:l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ TD NO:5, SEQ ID NO:6, SEQ LD NO:7, SEQ ID NO:8, SEQ TD NO:9, SEQ LD NO: 10 oder SEQ ID NO: 11 oder deren Homolog oder Derivat oder Fragment, insbesondere zwei, drei, vier, fünf oder mehr Kopien, in das Genom integriert werden. Diese Kopien können einzeln oder zusammenhängend integriert werden. Wird mehr als eine der aufgeführten Nukleinsauresequenzen integriert, so können mehrere gleiche Kopien oder eine Mischung aus den genannten Nukleinsauresequenzen verwendet werden. Ferner sind die Kopien mit einem Promotor funktionell verbunden, der ein starker Promotor, ein endogener oder ein exogener, die Expression der Nukleinsauresequenzen gemäß SEQ LD NO:l, SEQ LD NO:2, SEQ LD NO:3, SEQ TD NO:4, SEQ LD NO:5, SEQ TD NO:6, SEQ LD NO:7, SEQ LD NO:8, SEQ LD NO:9, SEQ ID NO:10 oder SEQ ID NO:ll oder deren Homolog oder Derivat steuernder Promotor, oder ein gewebespezifischer oder induzierbarer Promotor sein kann. Konstrukte umfassend einen entsprechenden Promotor und eine mit diesem funktionell verbundene Nukleinsauresequenz gemäß SEQ ID NO:l, SEQ LD NO:2, SEQ ID NO:3, SEQ LD NO:4, SEQ LD NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ LD NO:8, SEQ ID NO:9, SEQ LD NO:10 oder SEQ LD NO:l l oder deren Homolog oder Derivat oder Fragment können durch übliche Methoden zur Transformation von Pflanzenzellen und nachfolgend zur Regeneration von kompletten Pflanzen verwendet werden. Die Einbringung von Nukleinsauresequenzen in pflanzliche Organismen und Zellen ist Stand der Technik und, beispielsweise unter Verwendung von T-DNA- Vektoren, leicht durchzuführen. Durch die verstärkte Expression der Nukleinsauresequenzen gemäß SEQ LD NO:l, SEQ ID NO:2, SEQ LD NO:3, SEQ TD NO:4, SEQ ID NO:5, SEQ LD NO:6, SEQ TD NO:7, SEQ TD NO:8, SEQ TD NO:9, SEQ LD NO:10 oder SEQ LD NO.T 1 oder deren Homolog oder Derivat oder Fragment wird entsprechend ein Vielfaches an durch diese Nukleinsauresequenzen codierten Proteinen gebildet.
Gemäß Fallgruppe c) ist eine Veränderung der biologischen Aktivität des durch die Nukleinsauresequenzen gemäß SEQ TD NO:l, SEQ LD NO:2, SEQ LD NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ LD NO:6, SEQ ID NO:7, SEQ LD NO:8, SEQ LD NO:9, SEQ LD NO:10 oder SEQ ID NO: 11 oder deren Homolog oder Derivat oder Fragment kodierten Genprodukts durch Veränderungen in Genabschnitten, die für funktionelle Proteindomänen wie z. B. Rezeptorbindungsstellen, Phosphorylierungsdomänen oder DNA-Bindestellen kodieren, zu erreichen. Insbesondere Modifikationen in der WRKY-DNA-Bindedomäne haben einen erheblichen Einfluß auf die Eigenschaften des Proteins. Auf diese Weise können Proteine mit einer oder mehreren im Vergleich zum Wildtyp veränderten Aminosäuren gebildet werden, die z.B eine veränderte Substratspezifität oder einen veränderten Km-Wert besitzen oder nicht mehr den normalerweise in der Zelle vorliegenden Regulationsmechanismen über allosterische Regulation oder kovalente Modifizierung unterliegen. Entsprechend veränderte WRKY-Proteine könnten dementsprechend z. B. die Funktionen des WRKY-Wildtypproteins in verbesserter Weise ausüben. In diesem Sinne können insbesondere Modifikationen, die den Austausch einer oder mehrerer der folgenden Aminosäuren gegen andere, den Verlust einer oder mehrerer der folgenden Aminosäuren oder die Integration einer oder mehrerer Aminosäuren in den folgenden Proteinbereichen zur Folge haben, zu einer entsprechenden verbesserten Funktion des Proteins führen:
WRKY 30 GVDRT DDGFSWRKYGQKDI GAKFPRGYYRCTYRKSQGCEATKQVQRSDENQMLLEISYRGIHSCSQ ( SEQ ID NO : 24 ) WRKY 33 SDIDILDDGYRWRKYGQKWKGNPNPRSYYKCTTIGCP KHVERASHDMRAVITTYEGKHNHDVPAA
(SEQ ID NO: 25)
WRKY 41 GLEGPHDDIFSWRKYGQKDILGAKFPRSYYRCTFRNTQYCWATKQVQRSDGDPTIFEVTYRGTHTCSQ
(SEQ ID NO: 26) WRKY 46 QENGSIDDGHCWRKYGQKEIHGSKNPRAYYRCTHRFTQDCLAVKQVQKSDTDPSLFEVKYLGNHTCNN
(SEQ ID NO: 27)
WRKY 54 VEAKSSΞDRYAWRKYGQKEI NTTFPRSYFRCTHKPTQGCKATKQVQKQDQDSEMFQITYIGYHTCTA
(SEQ ID NO: 28)
WRKY 55 NTDLPPDDNHTWRKYGQKEILGSRFPRAYYRCTHQKLYNCPAKKQVQRLNDDPFTFRVTYRGSHTCYN (SEQ ID NO: 29)
WRKY 62 SRTMCPNDGFTWRKYGQKTIKASAHKRCYYRCTYAKDQNCNATKRVQKIKDNPPVYRTTYLGKHVCKA.
(SEQ ID NO: 30)
WRKY 63 SPNPRLDDGFTWRKYGQKTIKTS YQRCYYRCAYAKDQNCYATKRVQMIQDSPPVYRTTYLGQHTC A
(SEQ ID NO: 31) WRKY 64 SPTPRPDDGFTWRKYGQKTIKTSPYQRCYYRCTYAKDQNCNARKRVQMIQDNPPVYRTTYLGKHVCKA
(SEQ ID NO: 32)
WRKY 67 SSTPIYHDGFLWRKYGQKQIKESEYQRSYYKCAYTKDQNCEAKKQVQKIQHNPPLYSTTYFGQHICQL
(SEQ ID NO: 33)
WRKY 70 IESTILEDAFSWRKYGQKEILNAKFPRSYFRCTHKYTQGCKATKQVQKVE EPKMFSITYIGNHTCNT ( SEQ ID NO : 34 )
Geeignete Verfahren zur Veränderung der Sequenz des WRKY-Gens sind dem Fachmann bekannt. Bekannte Mutagenesetechniken sind beispielsweise die Erzeugung von Deletionsmutanten oder die Einführung von Punktmutationen durch "Site Directed Mutagenesis". Bevorzugte Verfahren zur Mutagenese bzw. zur Veränderung der Expression sind weiterhin chimäre RNA/DNA-Oligonukleotide, homologe Rekombination oder RNA- Interferenz (RNAi). Transgene Pflanzen mit derart modifizierten WRKY-Genen weisen ebenfalls eine verbesserte Widerstandskraft gegenüber Pathogen auf.
Die in dem erfindungsgemäßen Verfahren sowie in transgenen Pflanzen verwendeten Nukleinsauresequenzen können natürlichen Ursprungs sein oder künstlich hergestellt worden sein.
Nukleinsauresequenzen mit identischer physiologischer Funktion zu den Nukleinsauresequenzen gemäß SEQ ID NO:l, SEQ TD NO:2, SEQ ID NO:3, SEQ TD NO:4, SEQ TD NO:5, SEQ TD
NO:6, SEQ TD NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ LD NO:10 oder SEQ ID NO:ll können aus anderen Organismen leicht mit Hilfe spezieller, zum Stand der Technik gehörender PCR-, Hybridisierungs- oder Screening-V erfahren isoliert werden. Beispielsweise können die oben aufgelisteten Nukleinsauresequenzen als Sonde für das Homologiescreening in DNA- Bibliotheken, mit Hilfe der Hybridisierung an einzelsträngige Nukleinsäuren ähnlicher Basenabfolge, eingesetzt werden. Des weiteren können durch die Kenntnis der Basensequenz der oben aufgelisteten Nukleinsauresequenzen Primer konstruiert werden, mit deren Hilfe die Amplifikation von funktionsidentischen PCR-Fragmenten aus anderen Organismen möglich ist.
Die mit den Nukleinsauresequenzen gemäß SEQ ID NO:l, SEQ ID NO:2, SEQ TD NO:3, SEQ ID NO:4, SEQ LD NO:5, SEQ TD NO:6, SEQ TD NO:7, SEQ LD NO:8, SEQ TD NO:9, SEQ ID NO: 10 oder SEQ TD NO: 11 oder deren Homolog oder Derivat oder Fragment funktional verbundene regulatorische DNA-Sequenz, z. B. ein Promotor, kann sowohl die mit der Nukleinsauresequenz endogen vorliegende regulatorische DNA-Sequenz gemäß SEQ ID NO:l 1, SEQ TD NO:12, SEQ LD NO:13, SEQ TD NO:14, SEQ LD NO:15, SEQ LD NO:16, SEQ ID NO:17, SEQ LD NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ HD NO:21, SEQ LD NO:22 oder SEQ ID NO:23 als auch deren Homolog oder Fragment als auch jede andere regulatorische DNA-Sequenz sein. Die regulatorische DNA-Sequenz kann sowohl ein endogener Promotor des zu transformierenden Organismus oder ein exogener Promotor sein, der sich z. B. auf dem verwendeten Vektor befindet. Als Promotor ist dabei grundsätzlich jede regulatorische Sequenz geeignet, die die Expression von Fremdgenen in Organismen, z. B. Pflanzen, steuern kann, z. B. der CaMV 35S-Promotor aus dem Blumenkohl-Mosaik- Virus; vgl. Franck et al., Cell 21, 285- 294 (1980). Die Expression der Nukleinsauresequenzen kann auch durch einen chemisch induzierbaren Promotor erreicht werden. Beispiele für chemisch induzierbare Promotoren sind der PRPI-Promotor (Ward et al., Plant Molecular Biology 22, 361-366 (1993)), ein durch Salizylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid induzierbarer Promotor (EP-A 388186), ein durch Tetrazyklin induzierbarer Promotor (Gatz et al, Plant Journal 2, 397-404 (1992)), ein durch Abscisinsäure induzierbarer Promotor (EP-A 335528) oder ein durch Ethanol oder Cyclohexanon induzierbarer Promotor (WO 93/21334). Es können auch Promotoren verwendet werden, die z. B. in bestimmten Pflanzengeweben oder Pflanzenteilen aktiv sind. Beispiele für entsprechende Promotoren sind der Phaseolin-Promotor (US 5504200), der Isoflavon-Reduktase-Promotor (US 5750399), ein samenspezifischer Promotor, z. B. aus Tabak (US 5824863) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al., (1989), EMBO J8, 2445-2452). In diesem Sinne ist das erfindungsgemäße Verfahren zur zeitlich gesteuerten Pathogenabwehr geeignet, indem der WRKY-spezifische Promotor gegen einen induzierbaren Promotor ausgetauscht wird. Durch eine zeitlich gesteuerte Induktion der Pathogenabwehr kann z. B. auf das jahreszeitlich bedingte Auftreten von Pathogenen reagiert werden.
Für die erfindungsgemäßen Verfahren können endogene oder exogene Nukleinsauresequenzen gemäß SEQ LD NO:l, SEQ TD NO:2, SEQ TD NO:3, SEQ ID NO:4, SEQ LD NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ TD NO:10 oder SEQ ID NO:l l oder deren Fragmente oder Derivate oder Homologe verwendet werden. Endogen bedeutet, daß die Nukleinsauresequenz aus dem gleichen Organismus stammt, in den sie mit dem erfindungsgemäßen Verfahren integriert wird, z. B. ein WRKY 33-Gen aus Arabidopsis thaliana wird mit dem erfindungsgemäßen Verfahren in Arabidopsis thaliana integriert. Exogen bedeutet, daß die Nukleinsauresequenz aus einem anderen Organismus stammt, z. B. ein WRKY 33-Gen aus Arabidopsis thaliana wird mit dem erfindungsgemäßen Verfahren in z. B. Weizen integriert. Nach der stabilen Integration der transformierten Nukleinsauresequenz liegen dann zwei oder mehr WRKY 33-Gene im Genom vor, so daß eine gesteigerte Menge an entsprechenden Genprodukten zu erwarten ist. In einer bevorzugten Ausführungsform weisen die Nukleinsauresequenzen gegenüber den natürlich vorkommenden Nukleinsauresequenzen Deletionen, Substitutionen, Additionen, Insertionen und/oder Inversionen auf.
Im Sinne der Erfindung können zur Herstellung der transgenen Pflanzen nicht nur Polynucleotide mit den cDNA-Sequenzen der WRKY-Gene gemäß den SEQ ID NO:l bis 11 oder deren Fragmente oder Derivate oder Homologe verwendet werden, sondern auch Polynucleotide, die auch die Introns enthalten. Dabei können die Introns die natürlicherweise vorkommenden oder andere Sequenzen aufweisen.
Die vorliegende Erfindung betrifft ferner eine transformierte Zelle, insbesondere eine transformierte Pflanzenzelle oder ein transformiertes Pflanzengewebe, in der die erfindungsgemäße Nukleinsauresequenz gemäß SEQ TD NO:l, SEQ TD NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ TD NO:6, SEQ TD NO:7, SEQ TD NO:8, SEQ TD NO:9, SEQ LD NO:10 oder SEQ ID NO:ll oder deren Fragmente oder Derivate oder Homologe, stabil integriert sind. Ferner betrifft die vorliegende Erfindung eine mit der erfindungsgemäßen Nukleinsauresequenz gemäß SEQ TD NO:l, SEQ LD NO:2, SEQ LD NO:3, SEQ LD NO:4, SEQ LD NO:5, SEQ ID NO:6, SEQ LD NO:7, SEQ TD NO:8, SEQ ID NO:9, SEQ TD NO:10 oder SEQ TD NO: 11 oder deren Fragmenten oder Homologen oder Derivaten, transformierte Pflanzenzelle oder ein transformiertes Pflanzengewebe, die oder das zu einer fertilen Pflanze regenerierbar ist. Insbesondere betrifft die vorliegende Erfindung eine Pflanze, die nach dem erfindungsgemäßen Verfahren erhältlich ist. Ferner betrifft die vorliegende Erfindung Saatgut, das von Pflanzen erhalten wird, die nach dem erfindungsgemäßen Verfahren erhalten werden. Die Erfindung betrifft ferner die von den Pflanzen produzierten Früchte, Samen, Blätter, Sprosse und Speicherorgane, z. B. Obst, Beeren, Trauben, Getreide und Kartoffeln.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine Nukleinsauresequenz verwendet, die aus Nukleinsäurefragmenten verschiedener WRKY-Gene zusammengesetzt ist. Diese zusammengesetzte Nukleinsauresequenz kann ferner ebenfalls Modifikationen wie Deletionen, Additionen oder Substitutionen enthalten. Die Verfahren zur Herstellung solcher zusammengesetzter Nukleinsauresequenzen sind Stand der Technik und vom Fachmann leicht durchzuführen.
Das erfindungsgemäße Verfahren läßt sich auf alle pflanzlichen Organismen anwenden. Insbesondere ist das erfindungsgemäße Verfahren zur Herstellung von pathogenresistenten mono- und dikotylen Pflanzen einsetzbar. Besonders bevorzugte Pflanzen sind dabei Kulturpflanzen z. B. Kaffeestrauch, Teestrauch, Soja, Baumwolle, Flachs, Hanf, Sonnenblume, Kartoffel, Tabak, Tomate, Paprika, Zucchini, Aubergine, Gurke, Sommerraps, Winterraps, Alfalfa, Salat, Chicoree, Spargel, Schwarzwurzel, Erbse, Bohne, Linsen, Karotte, Zwiebel, Knoblauch, Lauch, Olive, Rettich, Radieschen, Rote Beete, Steckrübe, Kohlrabi, Zuckerrübe, Futterrübe, Zuckerrohr, Spinat, Mangold, die verschiedenen Baum, Nuß- und Weinspezies, die verschiedenen Kohlsorten wie Rosenkohl, Blumenkohl, Broccoli, Weißkohl, Rotkohl, Wirsing, Chinakohl, ferner Getreide z. B. Gerste, Hopfen, Weizen, Roggen, Hafer, Mais, Reis, Futtergräser, ferner Obstsorten z. B. Mango, Apfel, Birne, Pfirsich, Pflaume, Himbeere, Heidelbeere, Brombeere, Stachelbeere, Erdbeere, Kirsche, Johannisbeere, Guave, Banane, Melone, Kürbis und Zitrusfrüchte z. B. Zitrone, Apfelsine, Pampelmuse oder Mandarine sowie Zierpflanzen wie z. B. Alpenveilchen, Aster, Bougainvillea, Chrysantheme, Petunie, Margerite, Narzisse, Schneeglöckchen, Rittersporn, Sonnenblume, Geranie, Gänsekresse, Gerbera, Gladiole, Iris, Hyazinthe, Lilie, Magnolie, Orchidee, Rhododendron, Rose, Tränendes Herz, Tulpe, Weihnachtsstern, schließlich sämtliche Nutzhölzer, Nadel und Laubbaumarten wie z. B. Ahorn, Birke, Buche, Eibe, Eiche, Esche, Fichte, Kiefer, Linde, Mahagoni, Pappel, Tanne, Teak. Die mit der Nukleinsauresequenz transformierten Pflanzen können unmodifizierte Wildtyppflanzen oder durch Züchtung erhaltene Pflanzen oder bereits anderweitig modifizierte Pflanzen z. B. transgene Pflanzen sein. Das erfindungsgemäße Verfahren kann femer auch in Pflanzengeweben und in Pflanzenzellen, z. B. in einer Zellkultur oder in Expressionssystemen, zur Verstärkung der Pathogenresistenz angewendet werden.
Da die auf WRKY-Proteinen basierende Pathogenabwehr neben spezifischen auch unspezifische Abwehrreaktionen hervorruft, läßt sich das erfindungsgemäße Verfahren zur Verbesserung der allgemeinen Resistenz gegen eine Vielzahl von pflanzlichen Pathogenen anwenden. Insbesondere kann das erfindungsgemäße Verfahren zum Schutz gegen folgende Pflanzenkrankheiten eingesetzt werden, ist aber nicht auf diese beschränkt: Kohlhernie, Pulverschorf der Kartoffel, Echter Mehltau, Falscher Mehltau, Kraut- und Knollenfäule, Getreidemehltau, Schneeschimmel im Getreide, Mutterkorn, Wurzelfäule an Raps, Netzfleckenkrankheit, Septoria Blattdürre, Septoria Blattflecken und -Spelzenbräune, Braunrost, Gelbrost, Zwergrost, Weizensteinbrand, Zwergsteinbrand, Flugbrand Gerste, Mais-Beulenbrand, Typhula-Fäule an Gerste, Wurzeltöter an Kartoffeln, Parasitärer Halmbruch, Rhynchosporium Blattflecken, Cercospora Blattflecken, Schorf, Grauschimmel, Alternaria-Blattfleckenkranklieit/- Fäule, Stammfäule, Kernfäule, Blatt- und Stengelfäule, Kartoffelkrebs, Wurzelbrand, Botrytis- Fruchtfäule, Colletotrichum-Fruchtfäule, Erdbeermehltau, Gnomonia-Fruchtfäule, Phytophthora- Lederbeerenfäule, Pseudomonas bakterielle Blattflecken, Phytophthora-Rhizomfäule, Rhizoctonia-Fäule, Rote Wurzelfäule, Rotfleckenkrankheit, Schleimpilz, Verticillium-Welke, Weichfäule der Erdbeere, Weißfleckenkrankheit, Blumenkohlkrankheit, Eckige Blattfleckenkrankheit sowie alle Virosen.
Beispiele für entsprechende Schädlinge, die diese und ähnliche Krankheiten hervorrufen und durch das erfindungsgemäße Verfahren bekämpft werden können, sind
I. Phytopathogene Nematodenarten, insbesondere Wurzelnematoden, z. B. gallenbildende' Wurzelnematoden aus der Gattung Meloidogyne, frei wandernde
Wurzelnematoden aus den Gattungen Pratylenchus und Paratylenchus, zystenbildende
Wurzelnematoden aus den Gattungen Heterodera und Globodera; Stock- und
Stengelnematoden, z. B. aus der Gattung Ditylenchus, femer Blattnematoden, z. B. aus der Gattung Aphelenchoides sowie Blütennematoden, z. B. aus der Gattung Anguina, außerdem virusübertragende Nematoden, z. B. aus der Gattung Xiphinema sowie Nematoden aus der Gattung Trichodorus.
Relevante Vertreter dieser Gattungen, auf die das erfmdungsgemäße Verfahren angewendet werden kann, sind z. B. Aphelenchoides ritzemabosi, Aphelenchoides fragariae, Anguina gramines, Anguina tritici, Globodera rostochiensis, Globodera pallida, Heterodera avenae, Heterodera cruciferae, Heterodera glycines, Heterodera schachtii, Heterodera rostochiensis, Meloidogyne javanica, Meloidogyne incognita, Pratylenchus zeae, Pratylenchus hexincisus, Pratylenchus penetrans, Pratylenchus fallax, Pratylenchus pseudocoffae, Pratylenchus coffae, Pratylenchus gutierrezi, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus vulnus, Pratylenchus thornei, Pratylenchus scribneri, Trichodorus primitivus, Xiphinema index.
II. Phytopathogene Pilze, z. B. aus den Gattungen Albugo, Alternaria, Aphanomyces, Ascochyta, Aureobasidium, Botrytis, Cephalosporium, Cercospora, Cladosporium, Claviceps, Colletotrichum, Cylindrosporium, Diachea, Diplocarpon, Eiysiphe, Fusarium, Gnomonia, Helminthosporium, Leptosphaeria, Macrophomina, Microthecium, Microdochium, Mucor, Mycosphaefella, Oidium, Ophiobolus, Peronospora, Plasmodiophora, Plasmopora, Pseudocercosporella, Puccinia, Pyrenophora, Pythium, Phytophtora, Ramularia, Rhizoctonia, Rhynchosporium, Sclerophtora, Sclerotinia, Septoria, Sphaeropsis, Sphaerotheca, Spongospora, Thielaviopsis, Tilletia, Typhula, Urocystis, Ustilago, Venturia, Verticillium.
Relevante Vertreter dieser Gattungen, auf die das erfindungsgemäße Verfahren angewendet werden kann, sind z. B. Albugo candida, Alternaria alternata, Alternaria brassicae, Alternaria brassicicola, Alternaria solani, Aphanomyces cochlioides, Ascochyta hordei, Botrytis cinerea, Cephalosporium gramineum, Cercospora beticola, Claviceps purpurea, Colletotrichum trifolii, Cylindrosporium concentricum, Diachea leucopodia, Diplocarpon earliana, Erysiphe cruciferarum, Erysiphe graminis, Fusarium ambrosium, Fusarium culmorum, Fusarium graminearum, Fusarium moniliforme, Fusarium oxysporum, Fusarium solani, Gnomonia fruticola, Helminthosporium avenae, Helminthosporium gramineum, Helminthosporium sativum, Helminthosporium teres, Helminthosporium tritici-repens, Leptosphaeria maculans, Macrophomina phaseolina, Microdochium nivale, Mucor piriformis, Mycosphaerella brassicola, Mycospaerella fragariae, Myrothecium roridum, Oidium cyclaminis, Oidium hortensiae, Oidium lycopersici, Oidium tuckeri, Ophiobolus graminis, Peronospora parasitica, Plasmodiophora brassicae, Plasmopora viticola, Puccinia hordei, Puccinia recondita, Puccinia coronata, Puccinia graminis, Puccinia striifomis, Phytophtora cactorum, Phytophtora fragariae, Phytophtora infestans, Pseudocercosporella capsellae, Pseudocercosporella herpotrichoides, Pyrenophora teres, Ramularia armoraciae, Ramularia beticola, Rhynchosporium secalis, Rhizoctonia cerealis, Rhizoctonia solani, Sclerophtora macrospora, Sclerotinia sclerotiorum, Septoria avenae, Septoria tritici, Septoria nodorum, Sphaeropsis sapinea, Sphaerotheca humuli, Sphaerotheca pannosa, Spongospora subteranea, Thielaviopsis basicola, Tilletia caries, Tilletia contraversa, Typhula gyrans, Typhula incarnata, Urocystis occulta, Ustilago avenae, Ustilago hordei, Ustilago maydis, Ustilago nuda, Ustilago tritici, Venturia inaequalis, Verticillium dahliae.
III Phytopathogene Bakterien, z. B. aus den Gattungen Agrobacterium, Erwinia, Pseudomonas, Ralstonia, Xanthomonas.
Relevante Vertreter dieser Gattungen, auf die das erfindungsgemäße Verfahren angewendet werden kann, sind z. B. Agrobacterium tumefaciens, Agrobacterium rhizobacter, Erwinia chrysanthemi, Pseudomonas syringae, Ralstonia solanacearum, Xanthomonas campestris.
IV. Phytopathogene Viren, umfassend Einstrang-RNS-Viren, Viren mit doppelsträngiger RNS (Wundtumorviren), Pflanzenviren mit zirkulärer Einstrang-DNS (Gemini- Viren), Pflanzenviren mit doppelsträngiger DNS sowie Viroide.
Als typische Vertreter phytopathogener Viren können z. B. genannt werden: abutilon mosaik virus, arabic mosaic virus, barley yellow dwarf virus (BYDV), barley yellow mosaic virus (BaYMV, BaYMV-2), bean golden mosaik virus, cassava latend virus, beet western yellows virus, cauliflower mosaic virus, grapevine fanleaf virus, maize streak virus, potato spindel tuber virus, raspberry ringspot virus, rice yellow mottle virus, strawberry crinkle virus, soil-borne wheat mosaic virus (SBWMV), strawberry yellow edge virus, strawberry mottle virus, tabac mosaic virus, tomato golden mosaic virus, turnip mosaic virus, wheat spindle streak mosaic virus (WSSMV), wheat yellow mosaic virus (WYMV).
V. Weitere tierische Schaderreger bei Kulturpflanzen, z. B. Psylliodes chrysocephala, Ceutorhynchus pleurostigma, Ceutorhynchus napi, Ceutorhynchus quadridens, Ceutorhynchus picitaris, Ceutorhynchus assimilis, Melighetes aeneus, Delia brassicae, Dasineura brassicae sowie alle Arten von Schadinsekten bei Getreiden.
Die vorliegende Erfindung betrifft femer die Nukleinsauresequenz gemäß SEQ ID NO:l, SEQ ID NO:2, SEQ ID NO:3, SEQ TD NO:4, SEQ ID NO:5, SEQ TD NO:6, SEQ LD NO:7, SEQ LD NO:8, SEQ TD NO:9, SEQ ID NO:10 und SEQ TD NO:l l oder deren Homolog oder Derivat oder Fragment.
Die vorliegende Erfindung betrifft femer Vektoren, umfassend eine Nukleinsauresequenz gemäß SEQ LD NO: 1, SEQ TD NO:2, SEQ ID NO:3, SEQ LD NO:4, SEQ LD NO:5, SEQ ID NO:6, SEQ TD NO:7, SEQ ID NO:8, SEQ TD NO:9, SEQ LD NO:10 oder SEQ ID NO:l l oder deren Homolog oder Derivat oder Fragment, und eine regulatorische DNA-Sequenz.
Geeignete Vektoren zur Aufnahme und Überführung der Nukleinsauresequenzen können die Vermehrung und/oder die Expression der aufgenommenen Nukleinsäuren in Einzellern wie z. B. Escherichia coli oder Agrobacterium tumefaciens oder in Pflanzenzellen, Pflanzengeweben oder Pflanzen gewährleisten. Entsprechende Vektoren können natürlich vorkommen oder aber künstlich hergestellt sein. Die Vektoren können Selektionsmarker, Terminatorsequenzen, Polylinker, Promotorelemente, Enhancer, Polyadenyliemngsstellen und andere genetische Elemente umfassen. Zur Klonierung geeignete Vektoren sind z. B. Plasmide der pBluescript- Serie, Plasmide der pUC-Serie, Plasmide der pGEM-Reihe oder auf dem Bakteriophagen λ basierende Vektoren. Ein zur Verwendung in Agrobacterium benutzter Plasmidvektor ist z. B. pBinl9; vgl. Bevan et al., (1984), Nucleic Acids Research 12, 8711-8721. Zur Transformation und Expression in Pflanzen stellen auf dem Ti-Plasmid von Agrobacterium-Arten oder auf Pflanzenviren aufbauende Konstrukte verwendungsfähige Vektoren dar und sind dem Fachmann bekannt. Des weiteren werden bei bestimmten Transformationsmethoden wie z. B. Mikroinjektion, Protop lasten-Transformation und Einschießen (microprojectile bombardment) anstelle von Ti-Plasmiden auch obengenannte Klonierangsvektoren oder linearisierte DNA eingesetzt. Eine zusammenfassende Beschreibung bislang benutzter Vektoren findet sich in Guerineau und Mullineaux, Plant Transformation and Expression Vectors, in: Plant Molecular Biology Labfax, herausgegeben von Croy, Oxford, BIOS Scientific Publishers, 121-148 (1993). Einige der in handelsüblichen Transformations- und Expressionssystemen angewendeten Transformationsmethoden zur Übertragung von Fremdgenen (Transformation) in das Genom von Pflanzen werden im folgenden vorgestellt. Die Wahl der Methode zur Einbringung der erfindungsgemäßen Nukleinsauresequenz und der mit ihr funktional verbundenen für ein Genprodukt kodierenden Nukleinsauresequenzen in pflanzliche Zellen ist jedoch nicht auf diese Liste beschränkt. Bislang eingesetzte Transformationsverfahren bei Pflanzen sind z. B. der Gentransfer mittels Agrobacterium tumefaciens (z.B durch Baden von Samen, Infloreszenzen oder Blattstückchen in einer Agrobakterienlösung), mittels pflanzlicher Viren, durch Elektroporation, durch Einschießen (microprojectile bombardment) oder Einspritzen (Mikroinjektion) sowie die Inkubation von trockenen Embryonen in DNA-haltigen Flüssigkeiten und die Transformation von Protoplasten unter Zuhilfenahme von Polyethylenglykol. Genauere Beschreibungen der angesprochenen Verfahren finden sich z. B. in Jens et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von Kung und Wu, Academic Press 128-143 (1993).
Ein weiterer Aspekt der vorliegenden Erfindung betrifft die regulatorischen Nukleinsauresequenzen (im folgenden auch als Promotoren bezeichnet), die natürlicherweise in Arabidopsis thaliana die Expression der WRKY-Gene steuern. Diese erfmdungsgemäßen Nukleinsauresequenzen sind unter SEQ LD NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ LD NO:15, SEQ LD NO:16, SEQ LD NO:17, SEQ LD NO:18, SEQ LD NO:19, SEQ TD NO:20, SEQ LD NO:21, SEQ LD NO:22 und SEQ LD NO:23 aufgeführt.
Die obengenannten SEQ TD NO: 12 bis 23 können gemäß der folgenden Auflistung den in dieser
Anmeldung beschriebenen Sequenzen für WRKY-Promotoren zugeordnet werden:
SEQ ID No:12 entspricht einem 1270 bp großen Fragment des WRKY33 Promotors.
SEQ TD No:13 entspricht einem 361 bp großen Fragment des WRKY33 Promotors.
SEQ TD No:14 entspricht der Gesamtsequenz des WRKY33 Promotors.
SEQ LD No:15 entspricht der Gesamtsequenz des WRKY41 Promotors. SEQ TD No: 16 entspricht der Gesamtsequenz des WRKY46 Promotors.
SEQ LD No:17 entspricht der Gesamtsequenz des WRKY54 Promotors.
SEQ LD No:18 entspricht der Gesamtsequenz des WRKY55 Promotors.
SEQ LD No:19 entspricht der Gesamtsequenz des WRKY62 Promotors. SEQ LD No:20 entspricht der Gesamtsequenz des WRKY63 Promotors. SEQ LD No:21 entspricht der Gesamtsequenz des WRKY64 Promotors. SEQ ID No:22 entspricht der Gesamtsequenz des WRKY67 Promotors. SEQ TD No:23 entspricht der Gesamtsequenz des WRKY70 Promotors.
Femer betrifft die Erfindung Fragmente oder Homologe der Nukleinsauresequenz gemäß SEQ LD NO: 12, SEQ LD NO: 13, SEQ LD NO: 14, SEQ TD NO: 15, SEQ TD NO: 16, SEQ ID NO: 17, SEQ TD NO:18, SEQ LD NO: 19, SEQ ID NO:20, SEQ ID NO:21, SEQ LD NO:22 oder SEQ ID NO:23, die die biologische Funktion eines Promotors besitzen. Femer betrifft die Erfindung Nukleinsauresequenzen, die mit einer der Nukleinsauresequenzen gemäß SEQ TD NO: 12, SEQ TD NO:13, SEQ ID NO:14, SEQ LD NO:15, SEQ ID NO:l6, SEQ TD NO:17, SEQ TD NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ LD NO:21, SEQ TD NO:22 oder SEQ ID NO:23 hybridisieren und die biologische Form eines Promotors besitzen. Bevorzugt sind Nukleinsauresequenzen, die unter stringenten Bedingungen mit einer dieser Nukleinsauresequenzen hybridisieren.
Die erfindungs gemäßen regulatorischen Nukleinsauresequenzen gemäß SEQ ID NO: 12, SEQ TD NO:13, SEQ TD NO:14, SEQ ID NO: 15, SEQ ID NO:16, SEQ ID NO:17, SEQ LD NO:18, SEQ LD NO:19, SEQ LD NO:20, SEQ LD NO:21, SEQ LD NO:22 oder SEQ J » NO:23 oder deren Fragmente oder Homologe eignen sich zur spezifischen Steuemng der Expression von Genen oder anderen funktioneilen Nukleinsäuren in Organismen oder Zellen, bevorzugt zur spezifischen Steuemng von an der Pathogenabwehr beteiligten Genen oder Genen, kodierend für toxische Komponenten. Nach der stabilen Integration der transformierten Nukleinsauresequenz liegen dann zwei oder mehr derartiger Promotoren im Genom vor, so daß die nachgeschalteten Nukleinsauresequenzen eine diesen Promotoren entsprechende Expressionsregulation aufweisen.
Aufgrand der hier gezeigten sofortigen und lokalen Induktion der WRKY- Transkriptionsfaktoren können durch Kombination der erfindungsgemäßen regulatorischen Nukleinsauresequenzen gemäß SEQ ID NO:12, SEQ ID NO:13, SEQ TD NO:14, SEQ ID NO:15, SEQ TD NO:16, SEQ LD NO:17, SEQ TD NO:18, SEQ TD NO:19, SEQ TD NO:20, SEQ ID NO:21, SEQ ID NO:22 oder SEQ TD NO:23 oder deren Fragmenten oder Homologen mit einer toxischen Komponente oder anderen, für eine Pathogenabwehr in Frage kommenden Genen z.B. effiziente Breitbandresistenzen aufgebaut werden, deren Wirkung auf den Infektionsort beschränkt ist. Somit ist eine Bekämpfung des Pathogens ohne Schädigung der unbefallenen Pflanzenteile gewährleistet.
Die mit der erfindungs gemäßen regulatorischen Nukleinsauresequenz gemäß SEQ ID NO: 12, SEQ TD NO:13, SEQ LD NO:14, SEQ LD NO:15, SEQ LD NO: 16, SEQ LD NO:17, SEQ LD NO:18, SEQ TD NO:19, SEQ LD NO:20, SEQ LD NO:21, SEQ LD NO:22 oder SEQ LD NO:23 oder deren Fragment oder Homolog verbundenen funktionellen Nukleinsäuren codieren dabei besonders bevorzugt für Genprodukte aus der folgenden Auflistung:
Strakturproteine mit repetitiven Peptidmotiven Ser-Hyp4, Gly-X oder Val-Tyr-Lys-Pro-Pro. Strakturproteine, die repetitive Peptidmotive mit größeren Anteilen von Hydroxyprolin (Hyp), Prolin (Pro) oder Glycin (Gly) beinhalten, können die pflanzliche Zellwand im Verlauf einer Infektion verstärken, verändern oder reparieren und somit eine Barriere für das weitere Vordringen des Pathogens darstellen.
Wasserstoffperoxid-produzierende Enzyme. Verschiedene prolinreiche Zellwandproteine werden nach Pathogenattacken oxidativ durch H2O2 mit anderen Proteinen kovalent verknüpft und verstärken auf diese Weise die Zellwände. Des weiteren tragen aggressive Sauerstoffderivate im Rahmen der pflanzlichen hypersensitiven Immunantwort zum Absterben der befallenen Pflanzenzellen bei und helfen bei der direkten Abtötung des Pathogens.
Lignin und Callose produzierende Enzyme. Eine häufig angewandte Abwehrstrategie der Pflanze besteht in der Synthese von polymeren Zellwandbestandteilen wie Lignin oder Callose, die in die Zellwand eingebaut werden und als mechanische Barriere gegen das Pathogen dienen. Ein Beispiel für diese Substanzklasse ist die „katalytische UE der Kallose Synthase" (NCBI Acc. NO. AF085717).
Chitinasen. Chitinasen spalten das Kohlenhydratpolymer Chitin unter Wasseraufhahme. Chitin ist eine wesentliche Gerüstsubstanz z. B. vieler phytopathogener Pilze. Ein Beispiel für diese Substanzklasse ist die „Chitinase 2" (NCBI Acc. NO. AF241267).
ß-l,3-Glucanasen. ß-l,3-Glucanasen spalten ß-l,3-Glucan unter Wasseraufhahme. Auch dieses Polymer kommt als Gerüstsubstanz bei phytopathogenen Pilzen vor. Antipathogen wirksame Enzym-Inhibitoren. Als Beispiel kann hier das zellwandgebundene Polygalacturonidase-inhibierende Protein (PGLP), etwa aus der Gartenbohne Phaseolus vulgaris, genannt werden. Dieses hemmt die Wirkung des vom Schadpilz Fusarium monoliforme produzierten Enzyms α-l,4-D-Polygalacturonidase, das der Pilz zur Auflösung der Bohnenzellwände benutzt.
Thionine. Thionine sind kleine basische und cysteinreiche Proteine, die bisher überwiegend in Getreidearten nachgewiesen wurden. Eine antifungale Wirkung von Thioninen ist experimentell nachgewiesen und bemht auf der Fähigkeit dieser Proteinklasse, Membranen zu zerstören.
Lektine mit chitinbindenden Domänen. Lektine sind Proteine mit der Fähigkeit, hochspezifisch an Kohlenhydrate zu binden. Ein antifungal wirksames Lektin mit chitinbindender Domäne (NCBI Acc. NO. AAA34219) konnte aus Brennesselrhizomen isoliert werden.
Ribosomen inaktivierende Proteine (RIPs). Ribosomen inaktivierende Proteine (siehe z. B. Leach et al., J. Biol. Chem. 266, 1564-1573, 1990) hemmen die Proteinsynthese eindringender Pilze und verhindern so deren weiteres Wachstum. Pflanzeneigene Ribosomen werden aufgrund des unterschiedlichen Aufbaus nicht geschädigt.
PR-Proteine („Pathogenesis related"). Die Klasse der PR-Proteine (siehe z. B. Bol et al., Ann. Rev. Phytopathol. 28, 113-138, 1990) beinhaltet pflanzliche Proteine, die in der gesunden Pflanze nicht vorkommen, nach Pathogenbefall jedoch synthetisiert werden. Als Beispiele können hier genannt werden: PR-1 aus Solanum tuberosum (NCBI Acc. NO. CAB58263), pathogenesis-related protein 4 aus Hordeum vulgäre (NCBI Acc. NO. T06171), Transkriptionsfaktor Pti6 aus Solanum tuberosum (NCBI Acc. NO. T07728), Thaumatin- ähnliche PR-Proteine, z. B. aus Hordeum vulgäre (NCBI Acc. NO. CAB99485).
Enzyme für die Synthese von Phytoalexinen. Phytoalexine sind pflanzliche Sekundärmetaboliten mit starker antimikrobieller Wirksamkeit, die um die Infektionsstelle herum akkumuliert werden. Hierzu gehören beispielsweise Phenolderivate, Isoflavonoide und Sesquiterpene, z. B. Chlorogensäure, Kaffeesäure, Scopoletin, Medicarpin, Glyceollin I, Rishitin,Gossypol, Lubimin, Capsidiol, Orchinol, Pisatin, Momilacton, Resveratol, Safynol. Enzyme für die Synthese von Saponinen. Saponine sind Steroidglycoside, die Pilzmembranen durch Bindung an Sterole zerstören können.
R-Gen-Genprodukte. R-Gene (Resistenz-Gene) codieren für Proteine, die direkt oder indirekt über weitere Proteine mit Genprodukten von avr-Genen (Aviralenz-Genen) des Pathogens wechselwirken und zum programmierten Zelltod infizierter Pflanzenzellen an der Infektionsstelle führen, z. B. NCBI Acc. NO. BE039015 (downy mildew resistance protein rpp5), NCBI Acc. NO. AF122994 (RPM1 variant gene, NCBI Acc. NO. AF098962 (disease resistance protein RPPl-WsA gene).
avr-Genprodukte. avr-Genprodukte werden von Aviralenz-Genen des Pathogens codiert und aktivieren im Verlauf einer Infektion durch Kontakt mit pflanzlichen R-Gen-Produkten die Pathogenabwehr und den programmierten Zelltod (Apoptose) der pflanzlichen Zellen am Infektionsort.
Enzyme für die Synthese von Salizylsäure. Wenn eine Pflanze eine Infektion durch ein Pathogen überlebt, entwickelt sie oft eine Resistenz gegen eine breite Palette von Pathogenen. Diese sogenannte „systemic acquired resistance (SAR) wird vom Signalmolekül Salicylsäure vermittelt, das zunächst in der Infektionszone und später in verschiedenen Pflanzenteilen gebildet wird. Der der Sahcylsäuresynthese zugmndeliegende Stoffwechselweg geht von Phenylalanin aus und ist dem Fachmann bekannt.
Enzyme für die Synthese von Jasmonsäure. Jasmonsäure kann zur Erzeugung einer Resistenz beispielsweise gegen Phytophtora infestans verwendet werden, indem die Jasmonsäure äußerlich appliziert wird. Im Organismus wird Jasmonsäure bei Verletzung der Pflanzen, z. B. nach Pathogenkontakt, produziert und aktiviert verschiedene für die Pathogenabwehr relevante Gene, z. B. Proteinaseinhibitoren, Thionine und pflanzliche Defensin-Gene wie z. B. PDF1 (beschrieben in WO98/00023). Pflanzliche Defensine sind eine Familie von cysteinreichen basischen Proteinen mit struktureller Ähnlichkeit zu antimikrobiell aktiven Defensinen, die in verschiedenen Insektenspezies nachgewiesen wurden. Der der Jasmonsäuresynthese zugrundeliegende Stoffwechselweg geht von Linolensäure aus und ist dem Fachmann bekannt.
In einer besonders bevorzugten Ausfühmngsform des erfindungsgemäßen Verfahrens läßt sich die Effizienz der Pathogenabwehr noch weiter steigern, indem mehrere, d. h. zwei, drei oder viele verschiedene Gen-Promotor-Kombinationen, bestehend aus jeweils einer erfindungsgemäßen regulatorischer Nukleinsauresequenz gemäß SEQ LD NO: 12, SEQ LD NO:13, SEQ LD NO:14, SEQ LD NO:15, SEQ LD NO:16, SEQ LD NO:17, SEQ LD NO:18, SEQ TD NO:19, SEQ TD NO:20, SEQ TD NO:21, SEQ TD NO:22 oder SEQ ID NO:23 oder deren Fragment oder Homolog und jeweils einem an der Pathogenabwehr beteiligten Gen oder einem Gen, kodierend für toxische Komponenten gemäß obenstehender Aufzählung, in das pflanzliche Genom integriert werden. Beispielsweise kann eine Kombination 1, bestehend aus einer erfindungsgemäßen regulatorischen Nukleinsauresequenz und einem R-Gen, zusammen mit einer Kombination 2, bestehend aus einer erfindungsgemäßen regulatorischen Nukleinsauresequenz und einem avr-Gen, in das pflanzliche Genom integriert werden, so daß sich durch gemeinsame Integration beider Gen-Promotor-Kombinationen eine verstärkte Wirkung gegen ein Pathogen ergibt.
Die mit der erfindungsgemäßen regulatorischen Nukleinsauresequenz gemäß SEQ ID NO: 12, SEQ ID NO:13, SEQ ID NO:14, SEQ TD NO:15, SEQ LD NO:16, SEQ TD NO:17, SEQ TD NO:18, SEQ LD NO:19, SEQ LD NO:20, SEQ LD NO:21, SEQ LD NO:22 oder SEQ LD NO:23 oder deren Fragment oder Homolog funktionell verbundenen Gene oder andere fimktionellen Nukleinsäuren können dabei endogene oder exogene genomische DNA-Abschnitte oder cDNAs oder deren Fragmente oder Derivate oder synthetische oder semisynthetische Nukleinsäuren sein. Endogen bedeutet dabei, daß die Nukleinsauresequenz aus dem gleichen Organismus stammt, in den sie mit dem erfindungsgemäßen Verfahren integriert wird, z. B. eine Nukleinsauresequenz aus Arabidopsis thaliana wird mit dem erfindungsgemäßen Verfahren in Arabidopsis thaliana integriert. Exogen bedeutet, daß die Nukleinsauresequenz aus einem anderen Organismus stammt, z. B. eine Nukleinsauresequenz aus Arabidopsis thaliana wird mit dem erfindungsgemäßen Verfahren in eine Kulturpflanze, z. B. Weizen, integriert. Die funktionell verbundenen Gene oder andere funktionellen Nukleinsauresequenzen können gegenüber den natürlich vorkommenden Nukleinsauresequenzen Deletionen, Substitutionen, Additionen, Insertionen und/oder Inversionen aufweisen.
Femer eignet sich die erfindungsgemäße regulatorische Nukleinsauresequenz auch für die Regulation der Expression anderer Gensequenzen. Dabei kann der Promotor in Kombination mit beliebigen Genen vorliegen, sowohl in einem Vektor als auch in transgenen Organismen. Nukleinsauresequenzen mit identischer physiologischer Funktion zu den Nukleinsauresequenzen gemäß SEQ LD NO:12, SEQ ED NO:13, SEQ TD NO:14, SEQ TD NO: 15, SEQ ID NO:16, SEQ LD NO:17, SEQ LD NO:18, SEQ LD NO:19, SEQ LD NO:20, SEQ LD NO:21, SEQ TD NO:22 oder SEQ ED NO:23 können aus anderen Organismen leicht mit Hilfe spezieller, zum Stand der Technik gehörender PCR-, Hybridisierungs- oder Screening- Verfahren isoliert werden. Beispielsweise können die oben aufgelisteten Nukleinsauresequenzen als Sonde für das Homologiescreening in DNA-Bibliotheken, mit Hilfe der Hybridisierang an einzelsträngige Nukleinsäuren ähnlicher Basenabfolge, eingesetzt werden. Des weiteren können durch die Kenntnis der Basensequenz der oben aufgelisteten Nukleinsauresequenzen Primer konstraiert werden, mit deren Hilfe die Amplifikation von PCR-Fragmenten, kodierend für homologe Genprodukte aus anderen Organismen, möglich ist.
Die erfindungsgemäßen regulatorischen Nukleinsauresequenzen gemäß SEQ TD NO: 12, SEQ ID NO:13, SEQ LD NO:14, SEQ ID NO:15, SEQ ED NO:16, SEQ ID NO:17, SEQ LD NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ TD NO:21, SEQ TD NO:22 oder SEQ ED NO:23 oder deren Fragmente oder Homologe können natürlichen Ursprungs sein oder künstlich hergestellt worden sein. Die funktionell damit verbundenen Gene oder die anderen funktionellen Nukleinsauresequenzen können sowohl in der die natürliche Transkriptionsrichtung ergebenden Sense- als auch in umgekehrter Antisense-Orientierang vorliegen.
Die erfmdungs gemäße regulatorische Nukleinsauresequenz gemäß SEQ TD NO: 12, SEQ TD NO:13, SEQ TD NO:14, SEQ ID NO:15, SEQ ED NO:16, SEQ TD NO:17, SEQ ED NO:18, SEQ ED NO: 19, SEQ ID NO:20, SEQ ED NO:21, SEQ ED NO:22 oder SEQ ED NO:23 oder deren Fragmente oder Homologe können in Vektoren, Expressionssystemen oder Pflanzen, Pflanzengeweben oder Pflanzenzellen oder tierischen Zellen oder Mikroorganismen zur Veränderung der Expressionsmuster verschiedenster Genprodukte verwendet werden. Die Expression der Genprodukte kann dabei gegenüber Ihrer natürlichen Expression sowohl verstärkt als auch verringert sein.
Die vorliegende Erfindung betrifft demzufolge ferner Vektoren, umfassend eine regulatorische Nukleinsauresequenz gemäß SEQ LD NO:12, SEQ TD NO:13, SEQ TD NO: 14, SEQ LD NO:15, SEQ LD NO:16, SEQ LD NO:17, SEQ TD NO:18, SEQ ED NO:19, SEQ LD NO:20, SEQ LD NO:21, SEQ ED NO:22 oder SEQ ED NO:23 oder deren Fragment oder Homolog.
Geeignete Vektoren zur Aufnahme und Überführung der Nukleinsauresequenzen sowie einige der in handelsüblichen Transformations- und Expressionssystemen angewendeten Transformationsmethoden zur Übertragung von Fremdgenen (Transformation) in das Genom von Pflanzen wurden bereits vorstehend erwähnt.
Femer betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer Pflanze mit veränderter Genexpression, umfassend das stabile Integrieren einer regulatorischen Sequenz gemäß SEQ LD NO:12, SEQ TD NO:13, SEQ TD NO:14, SEQ TD NO:15, SEQ ED NO:16, SEQ TD NO:17, SEQ ED NO:18, SEQ ED NO:19, SEQ TD NO:20, SEQ ED NO:21, SEQ ED NO:22 oder SEQ ED NO:23 oder deren Fragment oder Homolog mit der biologischen Funktion eines Promotors und einer mit dieser Sequenz funktionell verbundenen für ein Genprodukt codierenden Nukleinsauresequenz in das Genom von Pflanzenzellen oder Pflanzengeweben sowie Regeneration der erhaltenen Pflanzenzellen oder Pflanzengeweben zu Pflanzen.
Für die erfindungsgemäßen Verfahren können endogene oder exogene Nukleinsauresequenzen gemäß SEQ TD NO:12, SEQ TD NO:13, SEQ TD NO:14, SEQ TD NO:15, SEQ TD NO:16, SEQ HD NO: 17, SEQ ID NO:18, SEQ TD NO:19, SEQ ID NO:20, SEQ ED NO:21, SEQ ED NO:22 oder SEQ ED NO:23 oder deren Fragmente oder Homologe verwendet werden. Nach der stabilen Integration der transformierten Nukleinsauresequenz liegen dann zwei oder mehr WRKY 33- Promotoren im Genom vor, so daß mehrere Gene von diesen Promotoren reguliert werden. In einer bevorzugten Ausführungsform weisen die Nukleinsauresequenzen gegenüber den natürlich vorkommenden Nukleinsauresequenzen Deletionen, Substitutionen, Additionen, Insertionen und/oder Inversionen auf.
Das erfindungsgemäße Verfahren läßt sich auf alle pflanzlichen Organismen anwenden. Insbesondere ist das erfindungsgemäße Verfahren zur Herstellung von pathogenresistenten mono- und dikotylen Pflanzen einsetzbar. Besonders bevorzugte Pflanzen sind dabei wiederum die bereits vorstehend aufgeführten Kulturpflanzen.
Die Erfindung betrifft femer transgene Pflanzen mit einer stabil in das Genom integrierten regulatorischen Nukleinsauresequenz gemäß SEQ LD NO:12, SEQ TD NO:13, SEQ ED NO:14, SEQ ED NO:15, SEQ ID NO:16, SEQ TD NO:17, SEQ TD NO:18, SEQ ID NO:19, SEQ TD NO:20, SEQ ID NO:21, SEQ LD NO:22 oder SEQ ID NO:23 oder deren Fragment oder Homolog mit der biologischen Funktion eines Promotors und einer mit dieser Nukleinsauresequenz funktionell verbundenen für ein Genprodukt codierenden Nukleinsauresequenz entsprechend den vorstehend aufgeführten und beschriebenen Beispielen für solche codierenden Nukleinsauresequenzen.
Die vorliegende Erfindung betrifft femer eine transformierte Zelle, insbesondere eine transformierte Pflanzenzelle oder ein transformiertes Pflanzengewebe, in der die erfindungsgemäße Nukleinsauresequenz gemäß SEQ LD NO: 12, SEQ ED NO: 13, SEQ ID NO:14, SEQ TD NO:15, SEQ TD NO:16, SEQ TD NO:17, SEQ ED NO:18, SEQ TD NO:19, SEQ HD NO:20, SEQ TD NO:21, SEQ TD NO:22 oder SEQ ID NO:23 oder deren Fragmente oder Homologe, stabil integriert sind. Femer betrifft die vorliegende Erfindung eine mit der erfindungsgemäßen Nukleinsauresequenz gemäß SEQ TD NO: 12, SEQ ED NO: 13, SEQ ID NO:14, SEQ ED NO:15, SEQ ED NO:16, SEQ ED NO:17, SEQ ED NO:18, SEQ ED NO:19, SEQ HD NO:20, SEQ ED NO:21, SEQ ED NO:22 oder SEQ ED NO:23 oder deren Fragmenten oder Homologen transformierte Pflanzenzelle oder ein transformiertes Pflanzengewebe, die oder das zu einer fertilen Pflanze regenerierbar ist. Insbesondere betrifft die vorliegende Erfindung eine Pflanze, die nach dem erfindungsgemäßen Verfahren erhältlich ist. Femer betrifft die vorliegende Erfindung Saatgut, das von Pflanzen erhalten wird, die nach dem erfindungsgemäßen Verfahren erhalten werden. Die Erfindung betrifft femer die von den Pflanzen produzierten Früchte, Samen, Blätter, Sprosse und Speicherorgane, z. B. Obst, Beeren, Trauben, Getreide und Kartoffeln.
Die mit der Nukleinsauresequenz transformierten Pflanzen können unmodifizierte Wildtyppflanzen oder durch Züchtung erhaltene Pflanzen oder modifizierte Pflanzen z. B. transgene Pflanzen sein. Das erfindungsgemäße Verfahren kann femer auch in Pflanzengeweben und in Pfianzenzellen, z. B. in einer Zellkultur oder in Expressionssystemen, zur Verstärkung der Pathogenresistenz angewendet werden.
Da die auf WRKY-Proteinen basierende Pathogenabwehr neben spezifischen auch unspezifische Abwehrreaktionen hervorruft, läßt sich das erfindungsgemäße Verfahren zur Verbesserung der allgemeinen Resistenz gegen eine Vielzahl von pflanzlichen Pathogenen anwenden. Insbesondere kann auch dieses erfindungsgemäße Verfahren zum Schutz gegen die bereits vorstehend beschriebenen Pflanzenkrankheiten und Schädlinge (Nematoden, Pilze, Bakterien, Viren und andere tierische Schaderreger der bereits vorstehend erwähnten Arten) eingesetzt werden, ist aber nicht auf diese beschränkt.
Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:
Beispiel 1: Quantitative RT-PCR Zur Identifizierung von WRKY-Genen, die während der Abwehr der Arabidopsispflanzen gegen Peronospora parasitica induziert werden, wurde ein quantitativer RT-PCR- Ansatz gewählt und so die Expression spezifischer WRKY-Gene überprüft.
Zuerst wurde der Pathogen Peronospora parasitica pv Cala auf Ler-1 (Arabidopsis thaliana var. Landsberg erecta) Pflanzen angezogen und die Sporangiophoren samt Sporen durch Abschneiden der Blätter und Kotyledonen der Ler-1 Pflanzen geemtet. Um die Sporen in Lösung zu bekommen, wurden die Blätter und Kotyledonen in sterilfiltriertem zweifach destilliertem Wasser geschüttelt. Durch eine fünfminütige Zentrifugation von 4000 x g bei 10°C wurden die Sporen pelletiert und in neuem zweifach destilliertem Wasser aufgenommen. Eine Sporenlösung von 2x105 Sporen/ml wurde mittels einer Zählkammer unter dem Mikroskop ausgezählt und eingestellt. Anschließend wurden die Sporen auf zwei Wochen alte, unter Kurztag angezogene Pflanzen gesprüht. In etwa 1 bis 2 Stunden Abständen wurden Pflanzen geemtet und in flüssigem Stickstoff eingefroren. Dieses Pflanzenmaterial wurde für die RNA-Isolierang benutzt. Für diese RNA-Isolierang wurde der Quiagen-RNA/DNA-Maxi-Kit benutzt und genau nach den Angaben des Herstellers verfahren. Für den RT-PCR- Ansatz wurden RNA-Mengen zwischen 10 pg und 2 μg eingesetzt. Die Konzentration der RNA wurde photometrisch bei 260 nm bestimmt. In einem ersten Durchlauf wurden verschiedene RNA-Mengen in den RT-PCR-Ansätzen eingesetzt, um die einzusetzende optimale Konzentration für eine bestimmtes WRKY-RNA zu ermitteln. Hierdurch wurde sichergestellt, daß die in der RT-PCR erhaltene cDNA-Menge noch im exponentiellen und nicht bereits im saturierten Bereich liegt. Die RT-PCR-Ansätze wurden alle mit dem One-Step-RT-PCR-Kit (Qiagen) durchgeführt. Dabei wurden die Angaben des Herstellers genauestens befolgt. Das Programm im Thermocycler (Modell PTC225 von MJResearch) wurde wie folgt eingegeben: 30 min 50°C; 15 min 95°C; 35 Zyklen mit 40 sec 94°C, 1 min 55°C oder 65°C in Abhängigkeit von der Primersequenz(AfWK55-3 und AtWK55- 6: 65°C; alle anderen Primer: 55°C), 1 min 72°C; gefolgt von 10 min 72°C und anschließend 4°C bis zum Herausnehmen der Ansätze. Folgende Primer wurden eingesetzt (Sequenz von 5' nach 3'):
Für RKY30 AtWRKY30-3 : TCGAAGAAGTCAATGCCAAGGTGGAG (SEQ ID NO : 35) AtWRKY30-4:TTTGATGCTGAGTGAGAAGCCGAGCC (SEQ ID NO: 36)
Für WRKY41 At RKY41-lb:ATGGAAATGATGAATTGGGAGCGGAGG (SEQ ID NO: 37) AtWRKY41-5:GCCTGTGTTAATCTCAGCCGTTGGATC (SEQ ID NO: 38)
Für RKY46 AtWRKY46-l:GGAAGGTATCGGAGAAGAACACACAGAG (SEQ ID NO : 39) At RKY4β-2: CACCGTTCTCAATCTCATGGTTAGAG (SEQ ID NO: 40)
Für RKY54 AtWRKY54-2: GCTTCCACGATCCTTGTATGTGATCT (SEQ ID NO: 41) AtWRKY54-3: ATGGATTCGAATAGTAACAACACGAAATCC (SEQ ID NO:
42)
Für RKY55 At RKY55-3: AAATCGCTCGAGTCCAGCTTACCGGA (SEQ ID NO: 43) At RKY55-6: CATGTTGGTTCCGACCCCGCCGCTAC (SEQ ID NO: 44)
Für WRKY62 At RKY62-3: GTTTCCAACATTGATCACAAGGCTATG (SEQ ID NO : 45) At RKY62-4: ACATTCTGTCACTCGATGGAAACGGG (SEQ ID NO : 46)
Für RKY63 At RKY63-3: AACATCGATCACAAGGCTGTGGCAGC (SEQ ID NO: 47) At RKY63-4: CAAAACAACATCAGGTCTTCCGATGA (SEQ ID NO: 48)
Für WRKY64 AtWRKY64-3: CTCCAACATCGATCAAACAGCTGTGG (SEQ ID NO: 49) AÜWRKY64-4: TGATATGGTCTATGGCTTCGTCCTCC (SEQ ID NO: 50)
Für RKY67 At RKY67-l: AAGATGAACTCTTGCCAACAAAAGGC (SEQ ID NO: 51) At RKY67-3: CATGATGATAAGTCGTGAGATGTCCAG (SEQ ID NO: 52)
Für WRKY70 At RKY70-lb: GCTTAAAGTTATGAACCAACTCGTTG (SEQ ID NO: 53) At RKY70-2: TCATGGTCTTAGTCCTATAGTAGTGG (SEQ ID NO: 54)
Die erhaltene cDNA wurde auf einem 0,8 - l%igen Agarosegel in TAE aufgetrennt und photographiert. Die Analyse von einigen Arabidopsis WRKY-Genen zeigte, daß sie während der Abwehrreaktion der Arabidopsis thaliana Col-0 Pflanzen gegenüber Peronospora parasitica pv. Cala2 induziert werden. Andere WRKY-Gene waren nicht induziert. Die induzierten WRKY Gene waren die folgenden: WRKY 30, WRKY33, WRKY 41, WRKY46, WRKY 54, WRKY 55, WRKY 62, WRKY 63, WRKY 64, WRKY 67, WRKY 70.
Beispiel 2: Northern- Analyse 1) Zum weiteren Nachweis der Induktion von WRKY33 durch den Befall von Peronospora parasitica wurden Northern-Analysen vorgenommen. Dazu wurde RNA aus zwei Wochen alten, mit Peronospora parasitica pv. Cala besprühten Arabidopsispflanzen (Ökotyp Col-0) isoliert. Für diese RNA-Isolierung wurde der Quiagen-RNA/DNA-Maxi-Kit benutzt und genau nach den Angaben des Herstellers verfahren. Es wurden 20 μg RNA pro Spur auf ein Formamid- Agarose-Gel aufgetragen und mit einer Spannung von 1 Volt pro cm Elektrodenabstand über Nacht elektrophoretisch aufgetrennt. Anschließend wurde die RNA auf eine PALL-B Membran (Firma Pall Corp., New York, USA) geblottet, wobei ebenfalls die Angaben des Herstellers exakt eingehalten wurden. Als Transferpuffer wurde 20xSSC (175,3 g/1 NaCl, 88,2 g/1 Natriumeitrat, pH 7,0) ausgewählt und für 24 Stunden kapillar geblottet. Die RNA wurde danach mittels Hitze auf die Membran fixiert, indem die Membran 3 Stunden bei 80°C gebacken wurde. Um die Expression des WRKY33-Gens zu zeigen, wurde die Membran mit einer WRKY 33 spezifischen Sonde hybridisiert. Dazu wurde mittels PCR ein 350 bp langes Fragment amplifiziert und dieses nach Elution mit dem von Quiagen hergestellten QuiaexII-Gel- Extraction-Kit (Verfahren nach Angaben des Herstellers) mit radioaktivem P32-dCTP markiert. Für die Markierungsreaktion wurde der Ready-To-Go™-Kit von Amersham Pharmacia Biotech Inc. benutzt. Die Hybridisierung erfolgte über Nacht in 12%o Dextran-Sulfat-Puffer (1 M NaCl; 1% SDS; 12% Dextransulfat) bei 65°C und wurde mit 2xSSC/0.5% SSC bei 62°C stringent gewaschen. Anschließend wurde mittels Autoradiographie festgestellt, ob eine Induktion der Expression von WRKY 33 in den mit dem avirulenten Peronospora-Stamm Cala2 besprühten Arabidopsispflanzen vorlag. Ein deutliches Signal im Falle der mit Peronospora parasitica pv Cala2 besprühten Pflanzen war bereits 2 Stunden nach Pathogenkontakt festellbar. Dagegen war in Arabidopsispflanzen, die nur mit Wasser besprüht wurden, kein Signal erkennbar. Daraus folgt, daß WRKY33 bei der Abwehrreaktion der Col-0 Pflanzen gegen Peronospora parasitica Cala2 induziert wird.
2) Weitere Northern Bio t- Analysen sollten abklären an welcher Stelle WRKY33 in der Signalkette liegt. Die Northern Blots wurden wie in Beispiel 2. 1) beschrieben durchgeführt. In transgenen Pflanzen, die ein bakterielles nahG-Konstrukt enthalten, welches zum Abbau von Salizylsäure (SA) führt, wird deshalb die Signalkette ab dieser Ebene gehemmt. Die Expression von WRKY33 ist hiervon nicht beeinträchtigt und daher liegt WRKY33 offensichtlich oberhalb der Salizylsäure in der Signalkette. Die Analyse von pad4-l Mutanten (im Col-0 Ökotyp) zeigt nach Perosnospora parasitica Infektionen einen starken Befall und eine deutliche Verzögerung der Expression von WRKY33 von 4 Stunden nach der Infektion (hpi = hours post induction) auf 72 hpi. Eine zeitlich gleich gestaltete Verzögerung wurde auch nach Infektion von Ler-1 (Arabidopsis thaliana var. Landsberg erecta) Pflanzen mit Perosnospora parasitica pv Cala2 für WRKY33 festgestellt. Diese Ergebnisse deuten darauf hin, daß WRKY33 zwar auch in der suszeptiblen Interaktion zwischen Ler-1 und Perosnospora parasitica pv Calal induziert wird, aber der Zeitpunkt der Induktion derartig spät ist, daß davon auszugehen ist, daß WRKY33 eine spezifische Rolle bei der Signaltransduktion in der resistenten Pathogenabwehr spielt. Auch in der RPP-4 abhängigen Signaltransduktion spielt WRKY33 eine Rolle, da es nach Emoy2 Infektion auf Col-0 ebenfalls sehr früh (2-4 hpi) exprimiert wird.
3) Northern Analyse zum Nachweis von „immediate early-Genen"
Zum Nachweis, daß WRKY33 zu den „immediate early"-Genen gehört, wurde eine Arabidopsis- Zellkultur 30 Minuten mit Cycloheximid (Endkonzentration 25 μM) geschüttelt. Anschließend wurde RNA aus dieser Zellkultur isoliert. Für diese RNA-Isolierang wurde der Quiagen- RNA/DNA-Maxi-Kit benutzt und genau nach den Angaben des Herstellers verfahren. Eine Northern Analyse wurde wie in Beispiel 2. 1) beschrieben durchgeführt. Cycloheximid stoppt die Proteinbiosynthese, es kommt somit nur noch zur Expression von „immediate early"-Genen. Da in dieser Northern Analyse ein sehr deutliches Signal in der Autoradiographie sichtbar war, kann man WRKY 33 zu den „immediate early"-Genen einordnen.
Beispiel 3: Promoter-GUS-Konstrakte
Um festzustellen, ob auch andere Pathogene die WRKY-Genexpression beeinflussen, wurden Promoter-GUS -Konstrukte hergestellt und stabil in das Genom von Arabidopsispflanzen integriert. Auf diese Weise konnte gezeigt werden, daß ganz unterschiedliche Pathogene, z. B. Peronospora, Pythium, Altemaria und Sclerotinia, die Expression von WRKY33 induzieren. Darüber hinaus konnte gezeigt werden, daß die Induktion dieses Gens lokal begrenzt ist und sich unmittelbar um die Infektionsstelle herum befindet. Um zu bestimmen, welche Sequenz die des Promoters ist, wurde der Transkriptionsstartpunkt identifiziert. Zur Ermittlung des Transkriptionsstartpunktes des WRKY33-Gens wurden S'Race-Experimente durchgeführt. Dazu wurde der Boehringer 5'-3'RACE Kit benutzt und entsprechend der Herstellerangaben verfahren. Nach der Bestimmung des Transkriptionsstartpunktes wurden mittels PCR und genspezifischer Primer unterschiedlich lange Promoterbereiche gemäß Abbildung 21 amplifiziert. Als Forward-Primer wurden verwendet:
Für das 1270 bp Fragment: 5'-atgctaagcttgccaaagggtgttgttatt-3' (SEQ TD NO: 55)
Für das 361 bp Fragment: 5 '-aattaagcttgagagtcaaggccacaaggt-3 ' (SEQ ED NO: 56)
Für das 331 bp Fragment: 5'-atgttaagcttctatctcttctccttcttc-3' (SEQ TD NO: 57) Für das 193 bp Fragment: 5'-atgttaagcttcagacgtgcaat-3' (SEQ HD NO: 58)
Die Erkennungssequenzen für ein Restriktionsenzym ist jeweils unterstrichen. Als Reverse- Primer für alle vier obengenannten Fragmente wurde verwendet: 5'-ccggggatccggttctgctattgtccattgtaag-3' (SEQ HD NO: 59)
Das Programm im Thermocycler (Modell PTC225 von MJResearch) wurde wie folgt eingegeben: 150 sec bei 94°C, 60 sec bei 80°C (Zugabe der Tfu-Polymerase, HotStart-Methode), 38 Zyklen mit 60 sec 60°C, 100 sec 7 PC, 45 sec 94°C, gefolgt von 60 sec 60°C und 90 sec 71°C.
Die amphfizierten Promotorfragmente wurden emeut mittels PCR mit Hilfe der Tfu-Polymerase (Stratagene) vor ein GUS-Reporter-Gen Moniert, so daß eine durchgehende Translation möglich war. Die Konstrukte wurden in den pGPTV Vektor (Plant Mol Biol. 20 (6), 1195-1197 (1992)) gebracht und mittels Agrobakterien-Transformation in das Genom von Arabidopsispflanzen Ökotyp Col-0 stabil integriert. Die Transformanten wurden mittels Selektionsplatten identifiziert. Der benutzte Vektor enthält eine Kanamycin-Resistenz und ermöglichte so die Selektion von Transformanten auf Kanamycin-haltigen Platten. Diese Pflanzen wurden nach der Selektion auf Erde transplantiert und aufgezogen. Die Samen dieser Pflanzen wurden für die Applikation von verschiedenen Pathogenen benutzt. Dazu wurden die Samen steril auf MS-Platten aufgebracht oder direkt auf Erde angezogen. Die Pathogene wurden gemäß folgenden Fachliteratur angaben appliziert: (Pythium: Vijayan, P. et al. :A role for jasmonate in pathogen defense of Arabidopsis. Proc. Nat. Acad. Sci.USA 95, 7209-7214, 1998. Altemaria und Sclerotinia wie in der folgenden Publikation für Rhizoctonia beschrieben: Broekaert et al: An automated quantitative assay for fungal growth inhibition FEMS Microbiology Letters 69, 55-60, 1990). Bei allen getesteten Pathogenen zeigte sich eine deutliche und lokale Induktion des WRKY33-Gens. Patentansprüche
1. Transgene Pflanze mit verbesserter Widerstandskraft gegenüber Pathogenen, wobei die verbesserte Widerstandskraft durch eine verstärkte Expression der Nukleinsauresequenz gemäß SEQ HD NO:2, SEQ HD NO:6, SEQ HD NO:5, SEQ HD NO:ll, SEQHD NO:3, SEQ TD NO:7, SEQ HD NO:8, SEQ ID NO:4, SEQ TD NO:10, SEQ HD NO:l und/oder SEQ HD NO:9, oder deren Homolog oder Derivat oder Fragment, oder durch die Veränderung der biologischen Aktivität des durch die Nukleinsauresequenz gemäß SEQ HD NO:2, SEQ HD NO:6, SEQ HD NO:5, SEQ HD NO: 11, SEQ ID NO:3, SEQ ID NO:7, SEQ ID NO:8, SEQ TD
NO:4, SEQ ID NO: 10, SEQ ED NO:l und/oder SEQ HD NO:9, oder deren Homolog oder Derivat oder Fragment kodierten Genprodukts hervorgerufen wird.
2. Transgene Pflanze nach Ansprach 1 mit verstärkter Expression der Nukleinsauresequenz gemäß SEQ HD NO:2, SEQ HD NO:6, SEQ HD NO:5, SEQ HD NO: 11, SEQ ED NO:3, SEQ HD
NO:7, SEQ HD NO:8, SEQ HD NO:4, SEQ HD NO: 10, SEQ ED NO:l und oder SEQ HD NO:9, oder deren Homolog oder Derivat oder Fragment, wobei die Nukleinsauresequenz gemäß SEQ HD NO:2, SEQ HD NO:6, SEQ HD NO:5, SEQ HD NO:ll, SEQ TD NO:3, SEQ TD NO:7, SEQ ID NO:8, SEQ ED NO:4, SEQ HD NO: 10, SEQ TD NO:l und/oder SEQ HD NO:9, oder deren Homolog oder Derivat oder Fragment und eine mit dieser (diesen)
Nukleinsäuresequenz(en) funktionell verbundenen regulatorischen Nukleinsauresequenz zusätzlich stabil in das Genom integriert ist (sind).
3. Transgene Pflanze nach Ansprach 2, umfassend mindestens zwei Kopien einer der Nukleinsauresequenzen gemäß SEQ HD NO:2, SEQ TD NO:6, SEQ ID NO:5, SEQ TD
NO:ll, SEQ TD NO:3, SEQ ED NO:7, SEQ ID NO:8, SEQ HD NO:4, SEQ HD NO:10, SEQ HD NO:l und/oder SEQ ED NO:9, oder deren Homolog oder Derivat oder Fragment.
4. Transgene Pflanze nach Ansprach 2 oder 3, wobei die regulatorische Nukleinsauresequenz ausgewählt ist aus der Gruppe der Promotoren CaMV 35S-Promotor, Ubiquitin-Promotor,
PRPI-Promotor, Phaseolin-Promotor, Isoflavon-Reduktase Promotor, ST-LSI Promotor, durch Salizylsäure induzierbarer Promotor, durch Benzolsulfonamid induzierbarer Promotor, durch Tetrazyklin induzierbarer Promotor, durch Abscisinsäure induzierbarer Promotor, durch Ethanol oder Cyclohexanon induzierbarer Promotor, Promotor nach einem der Ansprüche 10 bis 12, oder deren Fragment oder Homolog mit der biologischen Funktion eines Promotors, oder ein samenspezifischer Promotor aus Tabak.
5. Transgene Pflanze nach Anspruch 1 mit verstärkter Expression der Nukleinsauresequenz gemäß SEQ HD NO:2, SEQ LD NO:6, SEQ HD NO:5, SEQ HD NO: 11, SEQ ID NO:3, SEQ ID NO:7, SEQ HD NO:8, SEQ HD NO:4, SEQ HD NO:10, SEQ HD NO:l und oder SEQ HD NO:9, oder deren Homolog oder Derivat, wobei der endogene Promotor der Nukleinsauresequenz gemäß SEQ HD NO:2, SEQ HD NO:6, SEQ HD NO:5, SEQ TD NO: 11, SEQ HD NO:3, SEQ HD NO:7, SEQ HD NO:8, SEQ HD NO:4, SEQ TD NO: 10, SEQ TD NO:l und/oder SEQ ID NO:9, oder deren Homolog oder Derivat, durch Veränderung oder Hinzufügung funktioneller Komponenten modifiziert ist.
6. Transgene Pflanze nach Ansprach 1 mit verstärkter Expression der Nukleinsauresequenz gemäß SEQ HD NO:2, SEQ HD NO:6, SEQ TD NO:5, SEQ HD NO:l 1, SEQ HD NO:3, SEQ HD
NO:7, SEQ HD NO:8, SEQ HD NO:4, SEQ ED NO:10, SEQ ED NO:l und/oder SEQ ED NO:9, oder deren Homolog oder Derivat, wobei der endogene Promotor der Nukleinsauresequenz gemäß SEQ LD NO:2, SEQ HD NO:6, SEQ HD NO:5, SEQ HD NO: 11, SEQ HD NO:3, SEQ TD NO:7, SEQ HD NO:8, SEQ HD NO:4, SEQ ED NO:10, SEQ HD NO:l und/oder SEQ ED NO:9, oder deren Homolog oder Derivat, ausgetauscht ist durch einen starken Promotor, insbesondere durch einen CaMV 35S-Promotor aus dem Blumenkohl-Mosaik- Virus oder dem Ubiquitin-Promotor aus Mais.
7. Transgene Pflanze nach Ansprach 1, wobei die veränderte biologische Aktivität des durch die Nukleinsauresequenz gemäß SEQ ED NO:2, SEQ HD NO:6, SEQ ID NO:5, SEQ ID
NO:l l, SEQ HD NO:3, SEQ HD NO:7, SEQ HD NO:8, SEQ HD NO:4, SEQ ED NO:10, SEQ HD NO:l und/oder SEQ HD NO:9 oder deren Homolog oder Derivat oder Fragment kodierten Genprodukts durch Modifikation von funktionellen Proteindomänen insbesondere von Rezeptorbindungs-, Phosphorylierangs- und/oder DNA-Bindedomänen insbesondere der WRKY-DNA-Bindedomäne hervorgehoben wird.
8. Transgene Pflanze nach Anspruch 7, wobei die Modifikationen Deletionen, Additionen oder Substitutionen von Aminosäureresten umfassen. 9. Nukleinsauresequenz gemäß SEQ HD NO:2, SEQ HD NO:6, SEQ HD NO:5, SEQ HD NO: 11, SEQ HD NO:3, SEQ HD NO:7, SEQ HD NO:8, SEQ HD NO:4, SEQ HD NO:10, SEQ HD NO:l und/oder SEQ HD NO:9, oder deren Homolog oder Derivat oder Fragment.
10. Nukleinsauresequenz gemäß SEQ HD NO:12, SEQ TD NO:13, SEQ TD NO:14, SEQ TD NO:18, SEQ TD NO:17, SEQ TD NO:23, SEQ TD NO:15, SEQ HD NO:19, SEQ ID NO:20, SEQ TD NO: 16, SEQ TD NO:22 oder SEQ ID NO:21.
11. Fragment oder Derivat der Nukleinsauresequenz nach Ansprach 10 oder eine Nukleinsauresequenz, die mit der Nukleinsauresequenz gemäß SEQ HD NO: 12, SEQ ID NO:13, SEQ TD NO:14, SEQ TD NO:18, SEQ ID NO:17, SEQ HD NO:23, SEQ HD NO:15, SEQ HD NO:19, SEQ ID NO:20, SEQ HD NO:16, SEQ HD NO:22 oder SEQ ID NO:21 hybridisiert und die biologische Aktivität eines Promotors besitzt.
12. Nukleinsauresequenz nach Ansprach 11, wobei die hybridisierende Nukleinsauresequenz unter stringenten Bedingungen mit der Nukleinsauresequenz gemäß SEQ LD NO: 12, SEQ HD NO:13, SEQ HD NO:14, SEQ ED NO:18, SEQ HD NO:17, SEQ HD NO:23, SEQ ED NO:15, SEQ ED NO: 19, SEQ HD NO:20, SEQ HD NO: 16, SEQ TD NO:22 oder SEQ ED NO:21 hybridisiert.
13. Transgene Pflanze mit mindestens einer nach ihrer Transformation stabil in das Genom integrierten regulatorischen Nukleinsauresequenz nach einem der Ansprüche 10 bis 12 und einer mit dieser Nukleinsauresequenz funktionell verbundenen für ein Genprodukt codierenden Nukleinsauresequenz.
14. Transgene Pflanze nach Ansprach 13, wobei für die für ein Genprodukt codierende Nukleinsäure ausgewählt ist aus den Nukleinsäuren codierend für Stmkrurproteine mit repetitiven Peptidmotiven Ser-Hyp4, Gly-X oder Val-Tyr-Lys-Pro-Pro, H2θ2-produzierende Enzyme, Lignin und Callose produzierende Enzyme, Chitinasen, ß-l,3-Glucanasen, antipathogen wirksame Enzym-Inhibitoren, Thionine, Lektine mit chitinbindenden Domänen, Ribosomen inaktivierende Proteine, PR-Proteine, Enzyme für die Synthese von Phytoalexinen, Enzyme für die Synthese von Saponinen, R-Gen-Genprodukte, avr- Genprodukte, Enzyme für die Synthese von Salicylsäure.
15. Transgene Pflanze nach Anspruch 13 oder 14, wobei zwei oder mehr verschiedene Kombinationen von regulatorischen Nukleinsauresequenzen und für ein Genprodukt codierenden Nukleinsauresequenzen stabil in das Genom integriert sind.
16. Verfahren zur Herstellung einer transgenen Pflanze nach einem der Ansprüche 1 bis 6 oder 13 bis 15, umfassend das stabile Integrieren einer regulatorischen Nukleinsauresequenz, insbesondere einer Nukleinsauresequenz nach einem der Ansprüche 10 bis 12, und gegebenenfalls einer mit dieser Nukleinsauresequenz funktionell verbundenen für ein
Genprodukt codierenden Nukleinsauresequenz, insbesondere der Nukleinsauresequenz nach Anspruch 9, in das Genom von Pflanzenzellen oder Pflanzengeweben und Regeneration der erhaltenen Pflanzenzellen oder Pflanzengeweben zu Pflanzen.
17. Transformierte Pflanzenzelle oder transformiertes Pflanzengewebe mit mindestens einer nach ihrer Transformation stabil in das Genom integrierten regulatorischen Nukleinsauresequenz, insbesondere einer Nukleinsauresequenz nach einem der Ansprüche 10 bis 12 und gegebenenfalls eine mit dieser Nukleinsauresequenz funktionell verbundenen für ein Genprodukt codierenden Nukleinsauresequenz, insbesondere der Nukleinsauresequenz nach Ansprach 9.
18. Pflanzenzelle oder Pflanzengewebe nach Ansprach 17, regenerierbar zu einer fertilen Pflanze.
19. Saatgut, erhalten von Pflanzen nach einem der Ansprüche 1 bis 8 oder 13 bis 15.
20. Vektor, umfassend eine Nukleinsauresequenz nach einem der Ansprüche 9 bis 12.
21. Verfahren zur Herstellung transgener Pflanzen unter Verwendung des Vektors nach Anspruch 20.
PCT/DE2001/004877 2000-12-21 2001-12-21 Pflanzen mit verbesserter widerstandskraft WO2002050293A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002231574A AU2002231574A1 (en) 2000-12-21 2001-12-21 Plants with improved resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000163986 DE10063986A1 (de) 2000-12-21 2000-12-21 Pflanzen mit verbesserter Widerstandskraft
DE10063986.0 2000-12-21

Publications (2)

Publication Number Publication Date
WO2002050293A2 true WO2002050293A2 (de) 2002-06-27
WO2002050293A3 WO2002050293A3 (de) 2002-12-19

Family

ID=7668279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/004877 WO2002050293A2 (de) 2000-12-21 2001-12-21 Pflanzen mit verbesserter widerstandskraft

Country Status (3)

Country Link
AU (1) AU2002231574A1 (de)
DE (1) DE10063986A1 (de)
WO (1) WO2002050293A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1889909A1 (de) * 2005-05-26 2008-02-20 National Institute of Agrobiological Sciences Verbesserung der widerstandskraft einer pflanze gegenüber krankheiten durch einführung eines transkriptionsfaktor-gens
EP2013341A2 (de) * 2006-04-24 2009-01-14 Mendel Biotechnology, Inc. Krankheitsinduzierfähige promotoren
WO2013091612A2 (de) 2011-12-23 2013-06-27 Kws Saat Ag Neue aus pflanzen stammende cis-regulatorische elemente für die entwicklung pathogen-responsiver chimärer promotoren
KR101791567B1 (ko) * 2016-07-14 2017-11-02 대한민국 무름병 저항성을 가지는 AtWRKY55 유전자 과발현 형질전환 식물체 및 이의 제조방법
CN113105534A (zh) * 2020-12-22 2021-07-13 山东师范大学 Wrky55转录因子在植物抗盐性中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392225A2 (de) * 1989-03-24 1990-10-17 Ciba-Geigy Ag Krankheitsresistente transgene Pflanze
EP1033405A2 (de) * 1999-02-25 2000-09-06 Ceres Incorporated DNS-fragmente mit bestimmter Sequenz und die dadurch kodierte Polypeptide
WO2001025458A1 (fr) * 1999-10-01 2001-04-12 Institut National De La Recherche Agronomique (Inra) Nouvelle classe de proteines et leurs applications a la resistance de plantes a divers agents pathogenes
WO2002022675A2 (en) * 2000-09-15 2002-03-21 Syngenta Participations Ag Plant genes, the expression of which are altered by pathogen infection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19923571A1 (de) * 1999-05-21 2000-11-23 Kws Saat Ag Nukleotid-Sequenz zur Erhöhung der Abwehrreaktion einer Pflanze gegen Pathogenbefall
AU1569801A (en) * 1999-10-12 2001-04-23 Robert Creelman Flowering time modification
WO2001036444A1 (en) * 1999-11-17 2001-05-25 Mendel Biotechnology, Inc. Plant developmental genes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392225A2 (de) * 1989-03-24 1990-10-17 Ciba-Geigy Ag Krankheitsresistente transgene Pflanze
EP1033405A2 (de) * 1999-02-25 2000-09-06 Ceres Incorporated DNS-fragmente mit bestimmter Sequenz und die dadurch kodierte Polypeptide
WO2001025458A1 (fr) * 1999-10-01 2001-04-12 Institut National De La Recherche Agronomique (Inra) Nouvelle classe de proteines et leurs applications a la resistance de plantes a divers agents pathogenes
WO2002022675A2 (en) * 2000-09-15 2002-03-21 Syngenta Participations Ag Plant genes, the expression of which are altered by pathogen infection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN CHUNHONG ET AL: "Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco." PLANT MOLECULAR BIOLOGY, Bd. 42, Nr. 2, Januar 2000 (2000-01), Seiten 387-396, XP002198998 ISSN: 0167-4412 in der Anmeldung erw{hnt *
EULGEM THOMAS ET AL: "The WRKY superfamily of plant transcription factors." TRENDS IN PLANT SCIENCE, Bd. 5, Nr. 5, Mai 2000 (2000-05), Seiten 199-206, XP002198997 ISSN: 1360-1385 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1889909A1 (de) * 2005-05-26 2008-02-20 National Institute of Agrobiological Sciences Verbesserung der widerstandskraft einer pflanze gegenüber krankheiten durch einführung eines transkriptionsfaktor-gens
US8373021B2 (en) 2005-05-26 2013-02-12 National Institute Of Agrobiological Sciences Improving disease resistance in plants by introducing transcription factor gene
EP1889909A4 (de) * 2005-05-26 2009-04-22 Nat Inst Of Agrobio Sciences Verbesserung der widerstandskraft einer pflanze gegenüber krankheiten durch einführung eines transkriptionsfaktor-gens
EP2013341A4 (de) * 2006-04-24 2010-06-16 Mendel Biotechnology Inc Krankheitsinduzierfähige promotoren
US7994394B2 (en) 2006-04-24 2011-08-09 Mendel Biotechnology, Inc. Disease-inducible promoters
EP2465933A3 (de) * 2006-04-24 2012-10-17 Mendel Biotechnology, Inc. Krankheitsinduzierbare Promotoren
EP2013341A2 (de) * 2006-04-24 2009-01-14 Mendel Biotechnology, Inc. Krankheitsinduzierfähige promotoren
WO2013091612A2 (de) 2011-12-23 2013-06-27 Kws Saat Ag Neue aus pflanzen stammende cis-regulatorische elemente für die entwicklung pathogen-responsiver chimärer promotoren
DE102011122267A1 (de) 2011-12-23 2013-06-27 Kws Saat Ag Neue aus Pflanzen stammende cis-regulatorische Elemente für die Entwicklung Pathogen-responsiver chimärer Promotoren
EP3321365A1 (de) 2011-12-23 2018-05-16 Kws Saat Se Neue aus pflanzen stammende cis-regulatorische elemente für die entwicklung pathogen-responsiver chimärer promotoren
US10385358B2 (en) 2011-12-23 2019-08-20 Kws Saat Se Plant-derived cis-regulatory elements for the development of pathogen-responsive chimeric promotors
KR101791567B1 (ko) * 2016-07-14 2017-11-02 대한민국 무름병 저항성을 가지는 AtWRKY55 유전자 과발현 형질전환 식물체 및 이의 제조방법
CN113105534A (zh) * 2020-12-22 2021-07-13 山东师范大学 Wrky55转录因子在植物抗盐性中的应用

Also Published As

Publication number Publication date
AU2002231574A1 (en) 2002-07-01
WO2002050293A3 (de) 2002-12-19
DE10063986A1 (de) 2002-06-27

Similar Documents

Publication Publication Date Title
EP3011037B1 (de) Resistenzgen gegen rizomania
Seo et al. Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper
EP2794890B1 (de) Neue aus pflanzen stammende cis-regulatorische elemente für die entwicklung pathogen-responsiver chimärer promotoren
EP1888754B1 (de) Promotor zur epidermisspezifischen, pathogeninduzierbaren transgenexpression in pflanzen
Gowda et al. NRSA‐1: a resistance gene homolog expressed in roots of non‐host plants following parasitism by Striga asiatica (witchweed)
EP2820137A1 (de) Pathogenresistente transgene pflanze
Li et al. Glyoxalase I‐4 functions downstream of NAC72 to modulate downy mildew resistance in grapevine
EP2268819B1 (de) Verfahren zur erzeugung einer breitband-resistenz gegenüber pilzen in transgenen pflanzen
Gai et al. The latex protein MLX56 from mulberry (Morus multicaulis) protects plants against insect pests and pathogens
DE69731655T2 (de) Gegen pilze gerichtete proteine, dafuer kodierende dna und wirtsorganismen, die diese beinhalten
EP2081954B1 (de) Verfahren zur erhöhung der resistenz gegen biotrophe pilze in pflanzen
EP1759005B1 (de) Verfahren zur erhöhung der pathogenresistenz in transgenen pflanzen durch expression einer peroxidase
DE69930629T2 (de) Induzierbare promotoren
EP1337654A2 (de) Gewebespezifische promotoren
WO2002050293A2 (de) Pflanzen mit verbesserter widerstandskraft
KAWATA et al. Genetic engineering for disease resistance in rice (Oryza sativa L.) using antimicrobial peptides
EP1604029B1 (de) Verfahren zur erhöhung der resistenz gegen stressfaktoren in pflanzen
WO2018029300A1 (de) Resistenzgen gegen wurzelbärtigkeit
WO2000001830A1 (de) Promotoren und promotorelemente zur erhöhung der pathogen-induzierbarkeit von genen in pflanzen
DE102005011648A1 (de) Verfahren zur Erhöhung der Pilzresistenz in transgenen Pflanzen durch wirtsinduzierte Unterdrückung der Genexpression in Pilzpathogenen
WO2004005504A1 (de) Verfahren zum erreichen einer pathogenresistenz in pflanzen
CN102325442A (zh) 改造植物热稳定的疾病抗性
DE19958961B4 (de) Nukleinsäuren zur Herstellung von transgenen Pflanzen mit erhöhter Phytopathogen-Resistenz
WO2003014364A1 (de) Verfahren zur beeinflussung der mineralstoffaufnahme in transgenen pflanzen
WO2002027001A2 (de) Pflanzen mit maskierter fruchtbarkeit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase