WO2002048066A2 - Procede pour l'inertage d'une cendre, pouzzolane artificielle obtenue au moyen dudit procede - Google Patents

Procede pour l'inertage d'une cendre, pouzzolane artificielle obtenue au moyen dudit procede Download PDF

Info

Publication number
WO2002048066A2
WO2002048066A2 PCT/EP2001/014983 EP0114983W WO0248066A2 WO 2002048066 A2 WO2002048066 A2 WO 2002048066A2 EP 0114983 W EP0114983 W EP 0114983W WO 0248066 A2 WO0248066 A2 WO 0248066A2
Authority
WO
WIPO (PCT)
Prior art keywords
ash
water
washing
subjected
inerting
Prior art date
Application number
PCT/EP2001/014983
Other languages
English (en)
Other versions
WO2002048066A3 (fr
Inventor
Claude Criado
Fabrice Giraud
Jean-Emmanuel Aubert
Bernard Husson
Original Assignee
Solvay (Société Anonyme)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU3579002A priority Critical patent/AU3579002A/xx
Priority to EP01985901A priority patent/EP1343734A2/fr
Priority to CA 2431252 priority patent/CA2431252A1/fr
Priority to US10/450,043 priority patent/US6962119B2/en
Priority to BR0116128A priority patent/BR0116128A/pt
Priority to MXPA03005306A priority patent/MXPA03005306A/es
Application filed by Solvay (Société Anonyme) filed Critical Solvay (Société Anonyme)
Priority to AU2002235790A priority patent/AU2002235790B2/en
Priority to PL36180301A priority patent/PL361803A1/xx
Priority to JP2002549604A priority patent/JP4022469B2/ja
Publication of WO2002048066A2 publication Critical patent/WO2002048066A2/fr
Publication of WO2002048066A3 publication Critical patent/WO2002048066A3/fr
Priority to US11/117,297 priority patent/US7128006B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/02Phosphate cements
    • C04B12/025Phosphates of ammonium or of the alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/105Gaseous combustion products or dusts collected from waste incineration, e.g. sludge resulting from the purification of gaseous combustion products of waste incineration
    • C04B18/106Fly ash from waste incinerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to a method for inerting ash from the incineration of urban waste.
  • Incinerators used for the destruction of urban waste produce generally large volumes of ash, both in the form of bottom ash in incineration furnaces and of fly ash entrained in smoke.
  • the mineralogical composition of these ashes hardly varies, whatever their origin, and one generally finds there, although in proportions which can vary from simple to double, or even more, chlorides of alkali metals (NaCl and KC1), of calcium (usually in the form of calcium carbonate, sulphate, hydroxide or hydroxychloride, in particular lime and anhydrite), quartz, vitrified aluminosilicates, heavy metals in the metallic or combined state (in particular tin, zinc, lead, cadmium, mercury, copper and chromium), chlorinated organic derivatives and unburnt.
  • unburnt there is usually metallic aluminum.
  • the invention relates to a process for the inerting of an ash from the incineration of urban waste, according to which the ash is successively subjected to a treatment with a water-soluble phosphate in the presence of water and to a calcination; according to the invention, the treatment with phosphate is carried out under controlled conditions to crystallize hydroxylapatite and / or whitlockite.
  • the ash comprises a bottom ash from an urban waste incineration oven and / or a fly ash which has been separated from the smoke from such an incineration oven.
  • Heavy metals are understood to mean metals with a specific mass of at least 5 g / cm ⁇ , as well as beryllium, arsenic, selenium and antimony, in accordance with the generally accepted definition (Heavy Metals in Wastewater and Sludge Treatment Processes; Vol. I, CRC Press, Inc; 1987; page 2).
  • the quantity of heavy metals in the ash subjected to the process according to the invention depends on the origin of the urban waste. It is usually between 0.5 and 15 parts by weight per 100 parts by weight of dry matter of the ash, more generally between 3.0 and 10 parts by weight per 100 parts by weight of the ash.
  • Aluminum is generally present in the ash in an amount of 2.0 to 8.0 parts by weight per 100 parts by weight of the ash, plus - __)
  • the water-soluble phosphate reacts with the ash calcium to form calcium phosphate.
  • the water-soluble phosphate is generally phosphoric acid or an alkali metal phosphate, for example sodium phosphate. Orthophosphoric acid is preferred.
  • the treatment with phosphate is carried out under conditions regulated so that the calcium phosphate which forms is in the state of hydroxylapatite and / or whitlockite crystals.
  • Hydroxylapatite is a mineral with the general formula Ca 5 (PO 4 ) 3 (OH).
  • Whitlockite is a mineral with the general formula Ca 9 Fe x Mg ⁇ . x H (PO 4 ), where x is a whole or fractional number between 0 and 1.
  • the hydroxylapatite and whitlockite crystals have the property of allowing a substitution of part of their calcium atoms by heavy metal atoms, by isomorphism.
  • the amount of hydroxylapatite and / or whitlockite crystallized must therefore be sufficient for these minerals to absorb the heavy metals from the ash in their respective crystal lattices.
  • the optimum amount of hydroxylapatite and / or whitlockite to be crystallized will therefore depend on the amount of heavy metals present in the ash and it must therefore be determined in each particular case by routine laboratory work.
  • the amount of hydroxylapatite and / or whitlockite to be crystallized will itself condition the amount of water-soluble phosphate which must be added to the ash.
  • the weight quantity of water-soluble phosphate used (expressed in the H 3 PO state) may for example vary from 10 to 20% of the weight of dry matter of the ash.
  • the formation of hydroxylapatite and whitlockite requires the presence of calcium in the ash.
  • the weight amount of calcium (expressed as CaO) can for example vary from 10 to 35% of the weight of dry matter of the ash.
  • the water-soluble phosphate is added to the ash in the presence of water.
  • the water must be present in an amount at least sufficient to crystallize the hydroxylapatite and / or the whitlockite. In practice, it is present in an amount greater than 10% (preferably at least equal to 25%) of the weight of dry matter of the ash. In practice, it is not beneficial for the amount of water used to exceed 100% of the weight of dry matter in the ash. Values of 30 to 75% are generally suitable.
  • the calcination has a double function. On the one hand, it is used to destroy the organic compounds of the ash. On the other hand, it recrystallizes hydroxylapatite and / or whitlockite.
  • the calcination is normally carried out at a temperature above 400 ° C, preferably at least equal to 600 ° C. There is no point in exceeding a temperature of 1000 ° C. Temperatures from 600 to 950 ° C are especially advantageous.
  • the calcination can be carried out in an inert atmosphere (for example, under a nitrogen atmosphere). It is preferred to perform the calcination in the presence of air, so as to cause combustion of organic compounds, in particular organo-halogenated.
  • the ash collected from washing is in the optimum conditions to obtain the crystallization of hydroxylapatite and / or whitlockite during treatment with the water-soluble phosphate.
  • a reducing agent is added to the ash collected from the treatment with phosphate.
  • the reducing agent has the function of reducing the hexavalent chromium to bring it to a state of lower valence.
  • Iron metal e.g. iron filings
  • carbon e.g. activated carbon
  • the agent the reducing agent is advantageously used in an amount by weight substantially between 0.3 and 1% of the weight of the ash.
  • the ash collected from the process according to the invention is in the form of a pulverulent or granular mineral mass, which is inert vis-à-vis the environment and atmospheric agents and which respects the standards of toxicity by leaching, particularly the TLCP standard defined above.
  • This mineral mass has the remarkable and unexpected property of having pozzolanic power, which makes it suitable for the constitution of hydraulic binders.
  • the ash subjected to the process according to the invention contains calcium sulphate, it may prove desirable to decompose it. It has in fact been observed that if, at the end of the calcination, the ash contains calcium sulphate, this alters the hydraulic properties of the ash.
  • the ash is subjected, before or after calcination, to washing with a solution of sodium carbonate or sodium hydroxide (for example at pH 13 ), so as to dissolve the aluminum by oxidation thereof. Washing can be carried out at room temperature or at a higher temperature, for example from 40 to 75 ° C.
  • the ash is subjected to washing with an aqueous solution of alkali metal carbonate at a pH greater than 10, in order to decompose the calcium sulfate.
  • the washing is advantageously carried out at a pH of 12 to 13.
  • the pH is. measured on the aqueous solution collected from the wash.
  • the washing of the ash with the sodium carbonate solution can be carried out on the ash downstream from the calcination.
  • the washing with the aqueous sodium carbonate solution is superimposed on the washing of the ash, upstream of the treatment with the water-soluble phosphate.
  • the ash is subjected to oxidative heating to oxidize the metallic aluminum to alumina.
  • the oxidative heating is advantageously superimposed on calcination, the latter then being carried out in an oxidizing atmosphere (for example in air), at a temperature above 800 ° C., preferably from 900 to 1000 ° C.
  • the ash collected at the end of the process according to the invention can be stored in a public landfill, without risk for the environment (in particular for ground and surface water). It can also be used as it is in civil engineering works, for example in ballasts or as a filler in hydrocarbon road surfaces. Because of its pozzolanic properties, the ash collected at the end of the process according to the invention finds a particularly advantageous use for the manufacture of hydraulic cements.
  • the invention also relates to an artificial pozzolan, obtained by subjecting an ash from the incineration of urban waste to an inerting process according to the invention, as well as hydraulic binders comprising this artificial pozzolan.
  • the invention is illustrated by the following description of the single figure of the appended drawing, which represents the diagram of an installation implementing a particular embodiment of the method according to the invention.
  • the installation shown in the figure comprises an oven 1 in which the incineration of urban waste is carried out 2.
  • An oven 1 is collected on the one hand, a clinker 3 and, on the other hand, a smoke 4.
  • the smoke 4 is charged with fly ash and it is also contaminated by toxic gaseous compounds, particularly hydrogen chloride and volatile heavy metals. It is first treated in a dust collector 5 (for example an electrostatic filter), where the fly ash 6 is separated therefrom.
  • the dusted smoke 7 is then treated in a purification device 8, known per se, in order to extract the acid gas compounds, then it is discharged to the chimney 9.
  • the bottom ash 3 and the fly ash 6 are mainly composed of mineral compounds and chlorinated organic compounds, in particular dioxins and furans.
  • the slag is processed in a crusher 10 and crushed slag 11 is then introduced with the fly ash 6 in a chamber "23. mixture is collected from the chamber 23 ash 24 which is passed into a washing chamber 12.
  • the ash 24 is dispersed in a sufficient quantity of water 13 to dissolve substantially all of the water-soluble compounds which it contains, and sodium carbonate 14, intended to react, is also introduced into the chamber 12. with calcium sulphate from the ash to form insoluble calcium carbonate and passing sodium sulphate in solution.
  • the pH in the washing medium of chamber 12 is established at around 12.5.
  • aqueous suspension 15 is collected from the washing chamber, which is immediately treated on a filter 16. Separated from the filter 16 is an aqueous solution 17 on the one hand and an aqueous cake 18 on the other hand.
  • cake 18 contains most of the heavy metals as well as the dioxins and furans of the ash 24. It also contains calcium (mainly in the form of calcium hydroxide and carbonate) and is impregnated with water. According to the invention, it is introduced into a reaction chamber 19 where orthophosphoric acid 20, a make-up of water 25 and iron filings are added thereto. The phosphoric acid 20 reacts with the compounds calcium and with water to crystallize hydroxylapatite and / or whitlockite.
  • the function of the iron filings 26 is to reduce hexavalent chromium.
  • An ash 21 containing hydroxylapatite and / or whitlockite crystals is collected from the reaction chamber 19. It is transferred to a calcination chamber 22, where it is heated to a temperature of approximately 950 ° C., in the presence of air, for a time sufficient to decompose dioxins and furans, oxidize the metallic aluminum with alumina state and recrystallize hydroxylapatite and / or whitlockite.
  • Is collected from the calcination chamber 22 a dry, pulverulent mass 27 which is inert and which has the properties of an artificial pozzolan.
  • the artificial pozzolan 27 can advantageously be used for the manufacture of hydraulic binders.
  • ash 100 g of ash were removed and subjected to a washing operation. To this end, the ash was dispersed in an aqueous solution consisting of 1 l of demineralized water containing 50 g of sodium carbonate and the aqueous suspension thus obtained was subjected to moderate stirring for 2 hours. ambient temperature. The aqueous suspension was then filtered, the filter cake was dried and the dry cake was weighed: 78.2 g.
  • Example 1 The test of Example 1 was repeated, under the following conditions:
  • Washing solution 1 1 of demineralized water, as it is, without sodium carbonate, Phosphoric acid: 4.5 g (which corresponds to 0.1 kg / kg of dry cake), Calcination: 750 ° C for 1 hour .
  • Example 1 A comparison of the results of Example 1 with those of Example 2 further shows the advantage of incorporating sodium carbonate into the water used for washing fly ash, as regards the inerting of the toxic metals, in particular chromium (especially chromium VI), aluminum, molybdenum and strontium.
  • the toxic metals in particular chromium (especially chromium VI), aluminum, molybdenum and strontium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Procédé pour l'inertage d'une cendre provenant de l'incinération de déchets urbains, selon lequel on soumet la cendre successivement à un traitement (19) avec un phosphate hydrosoluble (20) en présence d'eau, dans des conditions réglées pour cristalliser de l'hydroxylapatite et/ou de la whitlockite et à une calcination (22). Pouzzolane artificielle, obtenue en soumettant une cendre provenant de l'incinération de déchets urbains à un tel procédé d'inertage.

Description

Procédé pour l'inertage d'une cendre, pouzzolane artificielle obtenue au moyen dudit procédé
L'invention concerne un procédé pour l'inertage de cendres provenant de l'incinération de déchets urbains. Les incinérateurs servant à la destruction de déchets urbains (déchets ménagers et déchets hospitaliers) produisent des volumes généralement importants de cendres, à la fois sous la forme de mâchefers dans les fours d'incinération et de cendres volantes entraînées dans les fumées. La composition minéralogique de ces cendres ne varie guère, quelle que soit leur origine, et on y retrouve généralement, quoique en proportions pouvant varier du simple au double, voire davantage, des chlorures de métaux alcalins (NaCl et KC1), du calcium (habituellement à l'état de carbonate, de sulfate, d'hydroxyde ou d'hydroxychlorure de calcium, notamment de la chaux et de l'anhydrite), du quartz, des aluminosilicates vitrifiés, des métaux lourds à l'état métallique ou combiné (notamment de l'étain, du zinc, du plomb, du cadmium, du mercure, du cuivre et du chrome), des dérivés organiques chlorés et des imbrûlés. Parmi les imbrûlés, on trouve habituellement de l'aluminium métallique.
La demande internationale WO 00/29095 décrit un procédé pour inerter des résidus provenant de famées d'incinérateurs, selon lequel ces résidus sont dispersés avec un liant hydraulique dans de l'eau puis filtrés.
Le procédé a été amélioré en utilisant, pour l'étape de filtration, un filtre à bande, ce qui permet de soumettre le gâteau de filtration à un lavage efficace. Ce lavage du gâteau améliore les propriétés mécaniques et la résistance à la lixiviation du déchet inerte issu du procédé. Le brevet européen EP-883 585 [SOLVAY (Société Anonyme)] propose un procédé pour l'inertage de cendres contenant des métaux lourds. Selon ce procédé connu, les cendres sont d'abord soumises à un lavage et une filtration pour éliminer les matières hydrosolubles qu'elles contiennent et le gâteau aqueux recueilli de la filtration est traité avec de l'acide phosphorique ou un phosphate de métal alcalin. Le résidu phosphaté ainsi obtenu est ensuite soumis à une calcination, puis additionné d'un liant hydraulique et d'eau pour former un mortier hydraulique. A l'issue de ce procédé connu, on obtient une masse solide minérale, qui est sensiblement inerte vis-à-vis des agents atmosphériques et qui respecte les normes de toxicité par lixiviation, en particulier la norme TCLP ("Toxicity Characteristic leaching Procédure", USA).
Ces procédés connus s'appliquent à tous types de cendres, notamment aux cendres volantes provenant de l'incinération de déchets ménagers ou hospitaliers. Ils impliquent un liant hydraulique.
Dans le cas de cendres provenant de l'incinération de déchets urbains, on a maintenant trouvé un perfectionnement à ces procédés connus, qui permet de s'affranchir du mortier hydraulique sans nuire au caractère inerte de la cendre traitée. En conséquence, l'invention concerne un procédé pour l'inertage d'une cendre provenant de l'incinération de déchets urbains, selon lequel on soumet la cendre successivement à un traitement avec un phosphate hydrosoluble en présence d'eau et à une calcination; selon l'invention, le traitement avec le phosphate est exécuté dans des conditions réglées pour cristalliser de l'hydroxylapatite et/ou de la whitlockite.
Dans le procédé selon l'invention, la cendre comprend un mâchefer d'un four d'incinération de déchets urbains et/ou une cendre volante que l'on a séparée de la fumée issue d'un tel four d'incinération.
On entend désigner par déchets urbains, des déchets ménagers et des déchets hospitaliers. Ces déchets contiennent normalement des métaux (parmi lesquels des métaux lourds et de l'aluminium), des composés calciques (généralement de l'hydroxyde de calcium et du sulfate de calcium), des composés sodiques (notamment du chlorure de sodium) et des composés organiques (notamment des composés organiques chlorés et des objets en plastique, spécialement en polychlorure de vinyle).
On entend désigner par métaux lourds, les métaux dont la masse spécifique est au moins égale à 5 g/cm^, ainsi que le béryllium, l'arsenic, le sélénium et l'antimoine, conformément à la définition généralement admise (Heavy Metals in Wastewater and Sludge Treatment Processes; Vol. I, CRC Press, Inc; 1987; page 2).
La quantité de métaux lourds dans la cendre soumise au procédé selon l'invention dépend de l'origine du déchet urbain. Elle se situe habituellement entre 0,5 et 15 parties en poids pour 100 parties en poids de matière sèche de la cendre, plus généralement entre 3,0 et 10 parties en poids pour 100 parties en poids de la cendre.
L'aluminium est généralement présent dans la cendre en une quantité de 2,0 à 8,0 parties en poids pour 100 parties en poids de la cendre, plus - __)
généralement en une quantité de 3,0 à 5,0 parties en poids pour 100 parties en poids de la cendre.
Dans le procédé selon l'invention, le phosphate hydrosoluble réagit avec le calcium de la cendre en formant du phosphate de calcium. Le phosphate hydrosoluble est généralement de l'acide phosphorique ou un phosphate de métal alcalin, par exemple du phosphate de sodium. L'acide orthophosphorique est préféré.
Conformément à l'invention, le traitement avec le phosphate est exécuté dans des conditions réglées pour que le phosphate de calcium qui se forme soit à l'état de cristaux d'hydroxylapatite et/ou de whitlockite.
L'hydroxylapatite est un minéral de formule générale Ca5(PO4)3(OH). La whitlockite est un minéral de formule générale Ca9FexMgι.xH(PO4) , où x est un nombre entier ou fractionnaire compris entre 0 et 1.
Les cristaux d'hydroxylapatite et de whitlockite ont la propriété de permettre une substitution d'une partie de leurs atomes de calcium par des atomes de métaux lourds, par isomorphisme. La quantité d'hydroxylapatite et/ou de whitlockite cristallisée doit dès lors être suffisante pour que ces minéraux absorbent les métaux lourds de la cendre dans leurs réseaux cristallins respectifs. La quantité optimum d'hydroxylapatite et/ou de whitlockite à cristalliser va dès lors dépendre de la quantité de métaux lourds présents dans la cendre et elle doit par conséquent être déterminée dans chaque cas particulier par un travail de routine au laboratoire. La quantité d'hydroxylapatite et/ou de whitlockite à cristalliser va elle-même conditionner la quantité de phosphate hydrosoluble qui doit être additionnée à la cendre. En fonction de l'origine de celle-ci, la quantité pondérale de phosphate hydrosoluble mise en œuvre (exprimée à l'état H3PO ) peut par exemple varier de 10 à 20 % du poids de matière sèche de la cendre. Par ailleurs, la formation d'hydroxylapatite et de whitlockite nécessite la présence de calcium dans la cendre. En fonction de la quantité d'hydroxylapatite et/ou de whitlockite à cristalliser, la quantité pondérale de calcium (exprimé à l'état CaO) peut par exemple varier de 10 à 35 % du poids de matière sèche de la cendre. En variante, en cas de besoin, un complément de calcium (a l'état métallique ou combiné) doit être ajouté à la cendre avant ou pendant l'addition du phosphate hydrosoluble, pour obtenir la quantité requise de cristaux d'hydroxylapatite et/ou de whitlockite. On utilise avantageusement du carbonate de calcium, en évitant de préférence les composés basiques du calcium, notamment- la chaux. Dans le procédé selon l'invention, le phosphate hydrosoluble est ajouté à la cendre en présence d'eau. L'eau doit être présente en une quantité au moins suffisante pour cristalliser l'hydroxylapatite et/ou la whitlockite. En pratique, elle est présente en une quantité supérieure à 10 % (de préférence au moins égale à 25 %) du poids de matière sèche de la cendre. En pratique, on n'a pas intérêt à ce que la quantité d'eau mise en œuvre excède 100 % du poids de matière sèche de la cendre. Les valeurs de 30 à 75 % conviennent généralement bien.
Dans le procédé selon l'invention, la calcination a une double fonction. D'une part, elle sert à détruire les composés organiques de la cendre. D'autre part, elle réalise une recristallisation de l'hydroxylapatite et/ou de la whitlockite. La calcination est normalement effectuée à une température supérieure à 400 °C, de préférence au moins égale à 600 °C. On n'a pas intérêt à excéder une température de 1000 °C. Les températures de 600 à 950 °C sont spécialement avantageuses. La calcination peut être effectuée en atmosphère inerte (par exemple, sous atmosphère d'azote). On préfère exécuter la calcination en présence d'air, de manière à provoquer la combustion des composés organiques, notamment ' organo-halogénés.
La recristallisation de l'hydroxylapatite èt/ou de la whitlockite a pour résultat avantageux de renforcer le caractère insoluble de ces composés dans l'eau.
Dans une forme de réalisation avantageuse du procédé selon l'invention, avant le traitement de la cendre avec le phosphate, on soumet celle-ci à un lavage aqueux alcalin, à pH supérieur à 8,5, par exemple de 9 à 14, de préférence de 9,5 à 13. Dans cette forme de réalisation, le pH est mesuré sur la solution aqueuse recueillie du lavage. Cette forme de réalisation du procédé vise à éliminer les composés hydrosolubles de la cendre. Elle présente l'avantage supplémentaire que la cendre recueillie du lavage se trouve dans les conditions optimum pour obtenir la cristallisation d'hydroxylapatite et/ou de whitlockite lors du traitement avec le phosphate hydrosoluble. Dans une autre forme de réalisation particulière du procédé selon l'invention, spécialement adaptée au cas d'une cendre contenant dû chrome à l'état hexavalent, on ajoute un agent réducteur à la cendre recueillie du traitement avec le phosphate. Dans cette forme de réalisation du procédé, l'agent réducteur a pour fonction de réduire le chrome hexavalent pour l'amener à un état de valence inférieure. Le fer métal (par exemple la limaille de fer) et le carbone (par exemple du charbon actif) constituent des agents réducteurs préférés. L'agent réducteur est avantageusement mis en œuvre en une quantité pondérale sensiblement comprise entre 0,3 et 1 % du poids de la cendre.
La cendre recueillie du procédé selon l'invention se présente à l'état d'une masse minérale pulvérulente ou granulaire, qui est inerte vis-à-vis de l'environnement et des agents atmosphériques et qui respecte les normes de toxicité par lixiviation, particulièrement la norme TLCP définie plus haut. Cette masse minérale présente la propriété remarquable et inattendue de posséder un pouvoir pouzzolanique, ce qui la destine pour la constitution de liants hydrauliques. Dans le cas où la cendre soumise au procédé selon l'invention contient du sulfate de calcium, il peut se révéler souhaitable de décomposer celui-ci. On a en effet observé que si, à l'issue de la calcination, la cendre contient du sulfate de calcium, celui-ci altère les propriétés hydrauliques de la cendre.
A cet effet, dans une forme de réalisation particulière du procédé selon l'invention, la cendre est soumise, avant ou après la calcination, à un lavage avec une solution de carbonate de sodium ou d'hydroxyde de sodium (par exemple à pH 13), de manière à solubiliser l'aluminium par oxydation de celui-ci. Le lavage peut être effectué à la température ambiante où à température supérieure, par exemple de 40 à 75 °C. Dans une forme de réalisation, spécialement avantageuse, du procédé selon l'invention, la cendre est soumise à un lavage avec une solution aqueuse de carbonate de métal alcalin à pH supérieur à 10, pour décomposer le sulfate de calcium. Le lavage est avantageusement exécuté à pH de 12 à 13. Dans cette forme de réalisation de l'invention, le pH est. mesuré sur la solution aqueuse recueillie du lavage. Dans la forme de réalisation qui vient d'être décrite, le lavage de la cendre avec la solution de carbonate de sodium peut être exécuté sur la cendre en aval de la calcination. On préfère toutefois, selon une variante avantageuse de l'invention, que le lavage avec la solution aqueuse de carbonate de sodium se superpose au lavage de la cendre, en amont du traitement avec le phosphate hydrosoluble.
On a observé que, dans le cas où la cendre recueillie de la calcination contient de l'aluminium métallique, celui-ci altère les propriétés pouzzolaniques de la cendre, en provoquant un gonflement incontrôlable des mortiers. A cet effet, dans une forme de réalisation préférée du procédé selon l'invention, on soumet la cendre à un chauffage oxydant pour oxyder l'aluminium métallique en alumine. Pour la mise en œuvre de cette forme de réalisation de l'invention, le chauffage oxydant est avantageusement superposé à la calcination, celle-ci étant alors réalisée en atmosphère oxydante (par exemple à l'air), à une température supérieure à 800 °C, de préférence de 900 à 1000 °C.
La cendre recueillie à l'issue du procédé selon l'invention peut être stockée dans une décharge publique, sans risque pour l'environnement (en particulier pour les eaux souterraines et de surface). Elle peut également être valorisée telle ' quelle dans des travaux de génie civil, par exemple dans des ballasts ou comme matière de charge dans des revêtements routiers hydrocarbonés. Du fait de ses propriétés pouzzolaniques, la cendre recueillie à l'issue du procédé selon l'invention trouve une utilisation spécialement avantageuse pour la fabrication de ciments hydrauliques.
En conséquence, l'invention concerne également une pouzzolane artificielle, obtenue en soumettant une cendre provenant de l'incinération de déchets urbains à un procédé d'inertage conforme à l'invention, ainsi que des liants hydrauliques comprenant cette pouzzolane artificielle. L'invention est illustrée par la description suivante de la figure unique du dessin annexé, qui représente le schéma d'une installation mettant en œuvre une forme de réalisation particulière du procédé selon l'invention.
L'installation représentée à la figure comprend un four 1 dans lequel on procède à l'incinération de déchets urbains 2. On recueille du four 1, d'une part, un mâchefer 3 et, d'autre part, une fumée 4. La fumée 4 est chargée des cendres volantes et elle est en outre contaminée par des composés gazeux toxiques, particulièrement du chlorure d'hydrogène et des métaux lourds volatils. Elle est d'abord traitée dans un dépoussiéreur 5 (par exemple un filtre électrostatique), où on en sépare les cendres volantes 6. La fumée dépoussiérée 7 est ensuite traitée dans un dispositif d'épuration 8, connu en soi, pour en extraire les composés gazeux acides, puis elle est rejetée à la cheminée 9.
Le mâchefer 3 et les cendres volantes 6 sont constitués, pour l'essentiel, de composés minéraux et de composés organiques chlorés, notamment des dioxines et des furannes. Le mâchefer est traité dans un broyeur 10 et le mâchefer broyé 11 est ensuite introduit avec les cendres volantes 6 dans une chambre de "mélange 23. On recueille de la chambre 23 une cendre 24 que l'on envoie dans une chambre de lavage 12. Dans la chambre de lavage 12, la cendre 24 est dispersée dans une quantité suffisante d'eau 13 pour dissoudre sensiblement la totalité des composés hydrosolubles qu'elle contient. On introduit en outre dans la chambre 12 du carbonate de sodium 14, destiné à réagir avec le sulfate de calcium de la cendre pour former du carbonate de calcium insoluble et du sulfate de sodium qui passe en solution. Le pH dans le milieu de lavage de la chambre 12 s'établit aux environs de 12,5. On recueille de la chambré de lavage une suspension aqueuse 15, que l'on traite immédiatement sur un filtre 16. On sépare du filtre 16, d'une part une solution aqueuse 17 et, d'autre part, un gâteau aqueux 18. Le gâteau 18 contient la majeure partie des métaux lourds ainsi que les dioxines et les furannes de la cendre 24. Il contient en outre du calcium (principalement à l'état d'hydroxyde et de carbonate de calcium) et se trouve imprégné d'eau. Conformément à l'invention, on l'introduit dans une chambre de réaction 19 où on y ajoute de l'acide orthophosphorique 20, un appoint d'eau 25 et de la limaille de fer 26. L'acide phosphorique 20 réagit avec les composés du calcium et avec l'eau pour cristalliser de l'hydroxylapatite et/ou de la whitlockite. La limaille de fer 26 a pour fonction de réduire le chrome hexavalent. On recueille de la chambre de réactionl9 une cendre 21 contenant des cristaux d'hydroxylapatite et/ou de whitlockite. On la transfère dans une chambre de calcination 22, où on la chauffe à une température d'environ 950 °C, en présence d'air, pendant un temps suffisant pour décomposer les dioxines et les furannes, oxyder l'aluminium métallique à l'état d'alumine et recristalliser l'hydroxylapatite et/ou la whitlockite. On recueille de la chambré de calcination 22 une masse pulvérulente, sèche 27 qui est inerte et qui présente les propriétés d'une pouzzolane artificielle. La pouzzolane artificielle 27 peut avantageusement être utilisée pour la fabrication de liants hydrauliques.
Les exemples dont la description suit vont faire apparaître l'intérêt de l'invention.
Dans ces exemples, on a traité une cendre volante de l'incinération de déchets ménagers, dont la composition figure au tableau 1 ci-dessous (analyse effectuée par fluorescence X).
Tableau 1
Figure imgf000010_0001
Exemple 1
On a prélevé 100 g de cendre que l'on a soumis à une opération de lavage. A cet effet, on a dispersé la cendre dans une solution aqueuse constituée de 1 1 d'eau déminéralisée contenant 50 g de carbonate de sodium et on a soumis la suspension aqueuse ainsi obtenue à une agitation modérée pendant 2 heures à température ambiante. On a ensuite filtré la suspension aqueuse, on a séché le gâteau de filtration et on a pesé le gâteau sec : 78,2 g.
On a prélevé 70 g du gâteau sec, que l'on a soumis au procédé d'inertage. A cet effet, on lui a ajouté successivement 70 g d'eau et 7 g d'acide phosphorique (ce qui correspond à 0,1 kg d'acide phosphorique par kg de gâteau sec) et le mélange résultant a été calciné à 750 °C pendant 1 heure. La poudre sèche recueillie à l'issue de la calcination a été soumise à un test normalisé de toxicité par lixiviation. Pour réaliser celui-ci, on a prélevé 30 g de la poudre et on l'a soumise à trois lixiviations successives avec 300 ml d'eau déminéralisée. On a recueilli les trois solutions de lixiviation, on les a mélangées et on a analysé la composition du mélange des solutions de lixiviation ainsi obtenu. Le résultat de l'analyse figure au tableau 2 ci-dessous.
Tableau 2
Figure imgf000012_0001
Exemple 2
On a répété l'essai de l'exemple 1, dans les conditions suivantes :
Solution de lavage : 1 1 d'eau déminéralisée, telle quelle, sans carbonate de sodium, Acide phosphorique : 4,5 g (ce qui correspond à 0,1 kg/kg de gâteau sec), Calcination : 750 °C pendant 1 heure.
Les résultats du test de toxicité par lixiviation sont consignés dans le tableau 3 ci-dessous. Tableau 3
Figure imgf000013_0001
Exemple 3
Afin de mettre en évidence le caractère pouzzolanique de la cendre traitée, l'essai comparatif suivant a été réalisé. On a mélangé 75 g de liant hydraulique routier « ARC 3 » (composé de 78 % de laitier, 11 % de chaux vive et 5 % de clinker) avec 25 g de cendres traitées selon l'invention. Le mélange résultant a été gâché avec de l'eau et soumis à une prise et un durcissement. Les propriétés mécaniques du mortier obtenu ont été mesurées selon la norme EN 196-1 et comparées aux propriétés d'un mortier obtenu au départ de 100 % de liant hydraulique routier « ARC 3 ».
Figure imgf000014_0001
La substitution de 25 % de liant par des cendres traitées ne réduit pas les propriétés mécaniques du mortier, ce qui montre le caractère pouzzolanique de la cendre traitée.
Les exemples précédents montrent la bonne aptitude du procédé selon l'invention à inerter les métaux lourds des cendres volantes.
Une comparaison des résultats de l'exemple 1 avec ceux de l'exemple 2 fait en outre apparaître l'intérêt d'incorporer du carbonate de sodium à l'eau utilisée pour le lavage des cendres volantes, pour ce qui concerne l'inertage des métaux toxiques, en particulier le chrome (spécialement le chrome VI), l'aluminium, le molybdène et le strontium.

Claims

- uR E V E N D I C A T I O N S
1. Procédé pour l'inertage d'une cendre provenant de l'incinération de déchets urbains, selon lequel on soumet la cendre successivement à un traitement avec un phosphate hydrosoluble en présence d'eau et à une calcination, caractérisé en ce qu'on exécute le traitement avec le phosphate dans des conditions réglées pour cristalliser de l'hydroxylapatite et/ou de la whitlockite.
2. Procédé selon la revendication 1, caractérisé en ce qu'avant le traitement avec le phosphate, on soumet la cendre à un lavage alcalin, à pH supérieur à 8,5
3. Procédé selon la revendication 2, caractérisé en ce qu'on exécute le lavage à pH de 9,5 à 13.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on ajoute un agent réducteur à la cendre.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, dans le cas où la cendre contient du sulfate de calcium, on la soumet à un lavage avec une solution aqueuse de carbonate de métal alcalin à pH supérieur à 10.
6. Procédé selon la revendication 5, caractérisé en ce qu'on exécute le lavage de la cendre avec la solution de carbonate de métal alcalin à pH de 12 à 13.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que dans le cas où la cendre contient de l'aluminium métallique, on la soumet à un traitement d'oxydation dudit aluminium métallique. ι I
8. Procédé selon la revendication 7, caractérisé en ce que le traitement d'oxydation de l'aluminium métallique comprend un chauffage oxydant de la cendre.
9. Procédé selon la revendication 8, caractérisé en ce que pour réaliser le chauffage oxydant de la cendre, on opère la calcination à une température de 900 à l000 °C.
10. Pouzzolane artificielle, obtenue en soumettant une cendre provenant de l'incinération de déchets urbains à un procédé d'inertage conforme à l'une quelconque des revendications 1 à 9.
PCT/EP2001/014983 2000-12-13 2001-12-12 Procede pour l'inertage d'une cendre, pouzzolane artificielle obtenue au moyen dudit procede WO2002048066A2 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP01985901A EP1343734A2 (fr) 2000-12-13 2001-12-12 Procede pour l'inertage d'une cendre, pouzzolane artificielle obtenue au moyen dudit procede
CA 2431252 CA2431252A1 (fr) 2000-12-13 2001-12-12 Procede pour l'inertage d'une cendre, pouzzolane artificielle obtenue au moyen dudit procede
US10/450,043 US6962119B2 (en) 2000-12-13 2001-12-12 Process for rendering an ash inert, artificial pozzolana obtained by means of the said process
BR0116128A BR0116128A (pt) 2000-12-13 2001-12-12 Processo para inertizar uma cinza proveniente da incineração de rejeitos urbanos e pozolana artificial
MXPA03005306A MXPA03005306A (es) 2000-12-13 2001-12-12 Procedimiento para la inerciacion de una ceniza, puzolana artificial obtenida por medio de dicho procedimiento.
AU3579002A AU3579002A (en) 2000-12-13 2001-12-12 Method for inerting ash, artificial pozzolan obtained by said method
AU2002235790A AU2002235790B2 (en) 2000-12-13 2001-12-12 Method for inerting ash, artificial pozzolan obtained by said method
PL36180301A PL361803A1 (en) 2000-12-13 2001-12-12 Method for inerting ash, artificial pozzolan obtained by said method
JP2002549604A JP4022469B2 (ja) 2000-12-13 2001-12-12 灰分を不活性にする方法、該方法によって得られた人工ポゾラン
US11/117,297 US7128006B2 (en) 2000-12-13 2005-04-29 Process for rendering an ash inert, artificial pozzolana obtained by means of the said process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0016453A FR2817858B1 (fr) 2000-12-13 2000-12-13 Procede pour l'inertage d'une cendre, pouzzolane artificielle obtenue au moyen dudit procede
FR00/16453 2000-12-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10450043 A-371-Of-International 2001-12-12
US11/117,297 Division US7128006B2 (en) 2000-12-13 2005-04-29 Process for rendering an ash inert, artificial pozzolana obtained by means of the said process

Publications (2)

Publication Number Publication Date
WO2002048066A2 true WO2002048066A2 (fr) 2002-06-20
WO2002048066A3 WO2002048066A3 (fr) 2002-09-19

Family

ID=8857764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/014983 WO2002048066A2 (fr) 2000-12-13 2001-12-12 Procede pour l'inertage d'une cendre, pouzzolane artificielle obtenue au moyen dudit procede

Country Status (11)

Country Link
US (2) US6962119B2 (fr)
EP (1) EP1343734A2 (fr)
JP (1) JP4022469B2 (fr)
CN (1) CN1258492C (fr)
AU (2) AU2002235790B2 (fr)
BR (1) BR0116128A (fr)
CA (1) CA2431252A1 (fr)
FR (1) FR2817858B1 (fr)
MX (1) MXPA03005306A (fr)
PL (1) PL361803A1 (fr)
WO (1) WO2002048066A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1020205C2 (nl) * 2002-03-19 2003-09-23 Cdem Holland Bv Werkwijze voor het opwerken van materiaal dat een pozzolane component bevat.
FR2869031B1 (fr) * 2004-04-14 2006-07-07 Solvay Sa Sa Belge Procede de traitement de boues, en particulier contaminees par des metaux lourds et de matieres organiques.
CN100363118C (zh) * 2005-09-28 2008-01-23 上海寰保渣业处置有限公司 一种生活垃圾焚烧飞灰稳定化处置工艺方法
BE1016941A3 (fr) * 2006-01-13 2007-10-02 Solvay Procede de traitement de dechet.
US20080125616A1 (en) * 2006-11-27 2008-05-29 Keith Edward Forrester Method for stabilization of Pb and Cd from incinerator ash
FR2912396B1 (fr) * 2007-02-09 2011-08-26 Solvay Procede de production d'un reactif phosphocalcique, reactif obtenu et son utilisation
CN101948283A (zh) * 2010-09-07 2011-01-19 济南大学 一种雕刻用硅钙复合建筑装饰板
CN105130226A (zh) * 2014-06-05 2015-12-09 镇江市船山第二水泥厂 一种硅酸盐水泥的混合掺合料
JPWO2019009303A1 (ja) * 2017-07-04 2020-07-02 宇部興産株式会社 固体廃棄物の処理方法
CN108609997B (zh) * 2018-04-02 2021-07-09 武汉轻工大学 纳米蒙特土改性底灰建筑用胶凝材料、砂浆、混凝土及制备方法
CN109198191B (zh) * 2018-10-30 2022-03-08 长沙兴嘉生物工程股份有限公司 一种羟基氯化钙的制备方法及其应用
WO2024153732A1 (fr) * 2023-01-18 2024-07-25 Rumett Aps Nouvelles plaques de plâtre durables

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335024A1 (fr) * 1988-03-31 1989-10-04 Wheelabrator Environmental Systems Inc. Immobilisation du plomb et du cadmium dans les résidus de la combustion des déchets en utilisant de la chaux et du phosphate
WO1997031874A1 (fr) * 1996-02-28 1997-09-04 Solvay (Societe Anonyme) Procede d'inertage de cendres
US5732367A (en) * 1990-03-16 1998-03-24 Sevenson Environmental Services, Inc. Reduction of leachability and solubility of radionuclides and radioactive substances in contaminated soils and materials
FR2772651A1 (fr) * 1997-12-23 1999-06-25 Commissariat Energie Atomique Procede de conditionnement de dechets industriels, notamment radioactifs, dans des ceramiques apatitiques
EP0937483A1 (fr) * 1998-02-10 1999-08-25 Miyoshi Yushi Kabushiki Kaisha Agent de traitement des déchets solides et procédé de traitement de tels déchets

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8501137A (nl) * 1985-04-18 1986-11-17 Aardelite Holding Bv Werkwijze voor het voorbehandelen van vliegas.
US5284636A (en) * 1992-03-25 1994-02-08 Air Products And Chemicals, Inc. Method of stabilizing heavy metals in ash residues from combustion devices by addition of elemental phosphorus
TW261602B (fr) * 1992-09-22 1995-11-01 Timothy John White
JP3228192B2 (ja) * 1996-08-19 2001-11-12 栗田工業株式会社 重金属含有灰の処理方法
US5877393A (en) * 1996-08-30 1999-03-02 Solucorp Industries, Ltd. Treatment process for contaminated waste
JPH1111992A (ja) * 1997-06-23 1999-01-19 Techno Japan:Kk 有害重金属を不溶化した焼却灰のセメント系固化材または水硬性材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335024A1 (fr) * 1988-03-31 1989-10-04 Wheelabrator Environmental Systems Inc. Immobilisation du plomb et du cadmium dans les résidus de la combustion des déchets en utilisant de la chaux et du phosphate
US5732367A (en) * 1990-03-16 1998-03-24 Sevenson Environmental Services, Inc. Reduction of leachability and solubility of radionuclides and radioactive substances in contaminated soils and materials
WO1997031874A1 (fr) * 1996-02-28 1997-09-04 Solvay (Societe Anonyme) Procede d'inertage de cendres
FR2772651A1 (fr) * 1997-12-23 1999-06-25 Commissariat Energie Atomique Procede de conditionnement de dechets industriels, notamment radioactifs, dans des ceramiques apatitiques
EP0937483A1 (fr) * 1998-02-10 1999-08-25 Miyoshi Yushi Kabushiki Kaisha Agent de traitement des déchets solides et procédé de traitement de tels déchets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAYLOR EIGHMY T ET AL: "HEAVY METAL STABILIZATION IN MUNICIPAL SOLID WASTE COMBUSTION DRY SCRUBBER RESIDUE USING SOLUBLE PHOSPHATE" ENVIRONMENTAL SCIENCE AND TECHNOLOGY, AMERICAN CHEMICAL SOCIETY. EASTON, PA, US, vol. 31, no. 11, 1 novembre 1997 (1997-11-01), pages 3330-3338, XP000742365 ISSN: 0013-936X *

Also Published As

Publication number Publication date
CA2431252A1 (fr) 2002-06-20
BR0116128A (pt) 2003-11-04
CN1258492C (zh) 2006-06-07
US7128006B2 (en) 2006-10-31
US20050188904A1 (en) 2005-09-01
FR2817858B1 (fr) 2003-02-07
WO2002048066A3 (fr) 2002-09-19
EP1343734A2 (fr) 2003-09-17
US6962119B2 (en) 2005-11-08
MXPA03005306A (es) 2004-03-26
AU2002235790B2 (en) 2006-07-06
JP2004526555A (ja) 2004-09-02
PL361803A1 (en) 2004-10-04
FR2817858A1 (fr) 2002-06-14
AU3579002A (en) 2002-06-24
US20040055519A1 (en) 2004-03-25
JP4022469B2 (ja) 2007-12-19
CN1518528A (zh) 2004-08-04

Similar Documents

Publication Publication Date Title
EP0883585B1 (fr) Procede d'inertage de cendres
US7128006B2 (en) Process for rendering an ash inert, artificial pozzolana obtained by means of the said process
JP2005255737A (ja) 廃棄物を用いた重金属吸着材の製造方法及び当該方法により得られた重金属吸着材
KR101789701B1 (ko) 시멘트 바이패스 더스트를 사용한 염화칼륨 제조 방법
JP2009209231A (ja) 重金属固定化用の多硫化物薬剤の製造方法
JP2011156473A (ja) ダストの処理方法
JP2008264627A (ja) 飛灰(ばいじん)および焼却灰などを無害化処理する廃棄物処理材および処理方法
EP3523059B1 (fr) Procédé de traitement de sol pollué par un liant hydraulique à phase mayenite
JP2000093927A (ja) 有害物質固定化材
JP3276074B2 (ja) 焼却炉からの飛灰の処理方法
BE1013015A3 (fr) Procede pour epurer une fumee contaminee par du chlorure d'hydrogene et des metaux lourds, inerter lesdits metaux lourds et valoriser ledit chlorure d'hydrogene.
JP4061253B2 (ja) 重金属処理剤の製造方法
JP2001054775A (ja) 鉛・塩素の低減方法およびその装置
JP2020104039A (ja) 塩素含有灰の脱塩素処理方法およびセメント原料の製造方法
JP6850500B1 (ja) 複合処理剤、及び、複合処理方法
BE1010038A3 (fr) Procede d'inertage de cendres.
JP2005034676A (ja) 焼却残渣に含まれる重金属類の安定化処理方法
JP2007161523A (ja) セメント製造方法
JP2005152898A (ja) セメント製造装置抽気ダストの処理方法
BE1010616A3 (fr) Procede d'inertage de cendres.
JP3624296B2 (ja) 重金属を含む産業廃棄物の処理方法
JP2002086100A (ja) 溶融飛灰及び/又は焼成飛灰の重金属溶出防止方法
JPH1071381A (ja) 廃棄物処理剤及び廃棄物の処理方法
JP2023068766A (ja) 消臭剤及びその製造方法
JP2007050356A (ja) 固体廃棄物の重金属捕捉剤および重金属捕捉方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2431252

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002549604

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001985901

Country of ref document: EP

Ref document number: PA/A/2003/005306

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2002235790

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 018226213

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001985901

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10450043

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002235790

Country of ref document: AU