WO2002045650A1 - Procede et dispositif pour produire des pastilles - Google Patents

Procede et dispositif pour produire des pastilles Download PDF

Info

Publication number
WO2002045650A1
WO2002045650A1 PCT/JP2001/010663 JP0110663W WO0245650A1 WO 2002045650 A1 WO2002045650 A1 WO 2002045650A1 JP 0110663 W JP0110663 W JP 0110663W WO 0245650 A1 WO0245650 A1 WO 0245650A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
lubricant
lubricant powder
powder
concentration
Prior art date
Application number
PCT/JP2001/010663
Other languages
English (en)
French (fr)
Other versions
WO2002045650A9 (fr
Inventor
Yasushi Watanabe
Kimiaki Hayakawa
Eiichiro Hirota
Kiyoshi Morimoto
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Priority to JP2002547436A priority Critical patent/JP3983669B2/ja
Priority to EP01999252A priority patent/EP1350504B1/en
Priority to DE60142853T priority patent/DE60142853D1/de
Priority to AT01999252T priority patent/ATE477784T1/de
Priority to US10/432,612 priority patent/US20040096495A1/en
Priority to KR10-2003-7007658A priority patent/KR20030068170A/ko
Priority to AU2002221065A priority patent/AU2002221065A1/en
Publication of WO2002045650A1 publication Critical patent/WO2002045650A1/ja
Publication of WO2002045650A9 publication Critical patent/WO2002045650A9/ja
Priority to US11/808,619 priority patent/US7766638B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/06Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of pills, lozenges or dragees
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/22Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by pressing in moulds or between rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/0005Details of, or accessories for, presses; Auxiliary measures in connection with pressing for briquetting presses
    • B30B15/0011Details of, or accessories for, presses; Auxiliary measures in connection with pressing for briquetting presses lubricating means
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/10Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of compressed tablets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications

Definitions

  • the present invention relates to a tablet manufacturing method and a tablet manufacturing apparatus, and more particularly, to a so-called external lubrication method that can be carried out on an industrially profitable basis, and in performing such a tablet manufacturing method.
  • the present invention relates to a method for producing a tablet which has been sufficiently protected against dust explosion, and an apparatus for producing a tablet suitable for implementing such a method for producing a tablet. Background art
  • the tablet disintegration time has been shortened by reducing the amount of lubricant powder contained in the tablet, or by eliminating any lubricant powder inside the tablet, resulting in contact with saliva.
  • fast-disintegrating tablets in the oral cavity that disintegrate in the oral cavity are attracting attention.
  • a die, an upper punch and a lower punch of a one-shot tableting machine are used as a method for producing such fast-disintegrating tablets in the oral cavity.
  • a tablet is manufactured by applying a lubricant powder to each material contact surface and compressing the molding material using a die, upper punch, and lower punch with the lubricant powder applied to the material contact surface.
  • the tablet manufacturing method described in Japanese Patent Publication No. 41-111273 discloses a process in which a predetermined amount of a material to be tabletted is filled into a die, and a pair of upper and lower punches of the material filled in the die.
  • the tablet manufacturing method which comprises a step of compressing into a tablet using a tablet and a step of discharging the tablet, a step preceding the step of filling the molding material into the die is performed at a predetermined position above the die.
  • An injection nozzle for injecting a lubricant is installed, and a lower end surface of an upper punch provided corresponding to a mill at a position where the injection nozzle is installed (hereinafter, in this specification, "a lower end surface of the upper punch” Is referred to as the “material contact surface of the upper punch.”) And the upper end surface of the lower punch (hereinafter, in this specification, “the lower end surface of the lower punch” is referred to as the “material contact surface of the lower punch”).
  • Lubricant is sprayed from the spray nozzle, lubricant is applied, and then the molding material is filled into the mortar Then, the molding material filled in the mortar is compressed using an upper punch with lubricant applied to the material contact surface and a lower punch with lubricant applied to the material contact surface to produce tablets I am trying to do it.
  • the method for producing a tablet described in Japanese Patent Application Laid-Open No. 56-14098 discloses a method for preparing a tablet, which comprises: A sprayer and a nozzle for spraying air are provided, and a lubricant is sprayed into the mortar at the position where the sprayer is installed, so that the lower part corresponding to the mortar is provided. After the lubricant is placed on the material contact surface of the punch, the compressed air is injected from the nozzle to the lower punch at the position where the nozzle is provided, and the lubricant is placed on the material contact surface of the lower punch.
  • the lubricant is blown upward to be dispersed, and the separated lubricant is dispersed in the inner peripheral surface of the mortar (hereinafter, in this specification, the “inner peripheral surface of the mortar” is referred to as a “material contact surface of the mortar.”
  • the “material contact surface of the mortar” is the inner peripheral surface of the mortar and is inserted into the mortar to a predetermined position.
  • the part above the material contact surface of the lower punch is attached to the material contact surface of the upper punch and the material contact surface of the die, the material contact surface of the upper punch, and the material contact surface of the lower punch.
  • the molding material is compressed into tablets.
  • an air pulsation wave generator is connected above the mortar in a step preceding the step of filling the molding material into the mortar. And a spray chamber in which a spray nozzle for spraying a lubricant is installed, and an air pulsating wave generator is driven to a mill at a position where the spray chamber is installed, so that air is sprayed into the spray chamber.
  • the molding material After generating a pulsating wave and applying the lubricant from the injection nozzle to the material contact surface of the die, the material contact surface of the upper punch, and the material contact surface of the lower punch, the molding material is filled into the die, Thereafter, a tablet is manufactured by compressing the molding material by an upper punch having a lubricant applied to the material contact surface and a lower punch having a lubricant applied to the material contact surface.
  • the present invention has been made to solve the above problems, and not only provides a method for producing tablets for a long time and stably, as in an industrial production base. Even when manufacturing a large-sized tablet manufacturing apparatus based on an industrial production base, there is no danger of dust explosion, and it is suitable for carrying out a tablet manufacturing method and such a tablet manufacturing method.
  • An object of the present invention is to provide a tablet manufacturing apparatus.
  • the present inventors have proposed a rapidly disintegrating tablet that disintegrates immediately at a target site such as an intraorally fast disintegrating tablet in which the tablet immediately disintegrates in the oral cavity when it comes into contact with saliva, or such a fast disintegrating tablet. He has been involved in the development of tablet manufacturing equipment for manufacturing for many years, but has now completed a tablet manufacturing equipment that can be implemented on an industrially profitable basis.
  • the present inventors when mass-producing a so-called external lubricating tablet using a tablet manufacturing apparatus, uses a powder material when manufacturing such a tablet. And, in the vicinity of the tablet manufacturing equipment (eg, in a factory where the tablet manufacturing equipment is installed), they came to think that a dust explosion might occur. Therefore, the present inventors analyzed the factors that cause dust explosion in order to examine measures for dust explosion in a tablet manufacturing apparatus that can be implemented on an industrially profitable basis.
  • Figure 36 is a factor characteristic diagram explaining the factors that cause a dust explosion.
  • the present inventors applied lubricant powder to the material contact surfaces of the mortar, upper punch and lower punch, which were completed by the present inventors, and the lubricant powder was applied to the material contact surface.
  • a new industrial profitable machine that uses a die, upper punch and lower punch to compress the molding material.
  • the present invention has been completed by taking measures to eliminate the three conditions under which dust explosion occurs in a tablet manufacturing method that can be carried out with a tablet and a tablet manufacturing apparatus that performs the novel tablet manufacturing method.
  • the lubricant powder mixed with the gas and dispersed in the lubricant dispersing step is sprayed onto the material contact surfaces of the mortar, upper punch and lower punch, and the lubricant is applied to the lubricant applying device.
  • Lubricant powder transporting step and a lubricant application device are examples of Lubricant powder transporting step and a lubricant application device.
  • a lubricant powder mixed with and dispersed in a gas is sprayed onto the material contact surfaces of the mortar, upper punch and lower punch from the lubricant applying device to apply the lubricant powder.
  • Lubricant powder application step and lubricant powder contact A tableting step of compressing and molding the molding material using a die, an upper punch and a lower punch applied to the surface, and / or a lubricant applying device from the gas generating means to the lubricant applying device.
  • lubricant includes, for example, stearic acid, stearyl stearic acid aluminum, calcium stearate, When compressing (compacting) molding materials such as magnesium stearate, sucrose fatty acid ester, sodium stearyl phthalate, and talc, the friction between the mortar and punch is reduced, and sticking and It means a stearic acid-based additive that is added to prevent tableting troubles such as capping and laminating.
  • explosion limit oxygen concentration used in this specification means that when an ignition energy is applied in an environment where a combustible substance (in this specification, lubricant powder) having a sufficient concentration for explosion exists. Means the upper limit of oxygen concentration at which no dust explosion occurs.
  • the “lubricant powder discharge device that discharges lubricant powder into gas depending on gas and mixes and disperses it into gas” relies on gas for the mechanism of discharging lubricant powder. Further, it refers to a lubricant powder discharging device in which the lubricant powder is mixed and dispersed in a gas used for discharging the lubricant powder.
  • a lubricant powder discharger that discharges powder powder into a gas generated from a gas generator, mixes and disperses the powder, for example, includes an elastic film having a through hole at the bottom of a lubricant powder container.
  • the lubricant powder placed on the elastic film having the through-hole is provided with a gas flow for pneumatic transportation below the elastic film having the through-hole (this gas flow is a steady pressure flow.
  • the pulsating vibration wave flow may also be applied.
  • the lubricant powder placed on the elastic membrane having the through-hole is discharged from the through-hole provided in the elastic membrane, and is flowed below the elastic membrane having the through-hole.
  • Gas flow for force transport This gas flow may be a pulsating oscillatory By vibrating the elastic film having the through holes, the lubricant powder discharged from the through holes provided in the elastic film is mixed and dispersed.
  • Devices can be cited as specific examples.
  • the amplitude and frequency of the vibration of the elastic membrane having the through-holes are determined by the gas flow for pneumatic transportation flowing below the elastic membrane having the through-holes (this gas flow is a steady pressure flow.
  • the lubricant powder may be a pulsating vibration wave flow.) It is uniquely determined depending on the properties (pressure, flow rate, etc.) of the lubricant powder, and is discharged from the through-hole provided in the elastic membrane. When the size and shape of the through-hole are fixed, the amount is uniquely determined by the amplitude and frequency of the vibration of the elastic film.
  • the gas flow may be a steady pressure flow or a pulsating vibration wave flow
  • Gas flow This gas flow is a pulsating oscillating wave flow even if it is a steady pressure flow.
  • Lubricant powder is always at a constant concentration, mixing, and dispersed to, it will be pneumatic transport.
  • the term “device from gas generating means to lubricant applying device” used in this specification means gas generating means, lubricant powder discharging device, lubricant applying device, and these devices in this order.
  • the “concentration of oxygen contained in the gas near the lubricant application device” refers to the environment where the gas discharged from the lubricant powder non-application device mixes with air (normal air containing oxygen).
  • the concentration of oxygen in the gas in a certain space more specifically, the lubricant application device Insert into the space between the lubricant spray port for applying the upper punch and the material contact surface of the upper punch, and the lubricant spray port for applying the lower punch in the lubricant application device, the mortar and the mortar to the specified position. Means the concentration of oxygen in the gas in the space formed by the lower punch.
  • the lubricant powder is discharged into the gas depending on the gas, and is mixed and dispersed in the gas, so that the gas in which the lubricant powder is not mixed and dispersed is kept constant. As long as there is a certain amount of gas, a certain amount of lubricant powder can be mixed and dispersed.
  • a certain amount of the lubricant powder is always supplied to the lubricant application device, so that the material contact of each of the mortar, the upper punch and the lower punch is performed.
  • a constant amount of lubricant powder can always be applied to the surface.
  • a certain amount of lubricant powder can always be applied to the material contact surfaces of the mortar, the upper punch and the lower punch.
  • Material Determine the amount of gas (flow, pressure, etc.) that mixes and disperses the lubricant powder so that the amount of lubricant powder applied to the contact surface is optimized, and then the gas is generated It is always possible to maintain the optimum amount of lubricant powder applied to the material contact surfaces of the mortar, upper punch and lower punch only by keeping the flow rate (flow rate, pressure, etc.) constant. it can.
  • the amount of the lubricant powder to be applied to the material contact surface of each of the mortar, the upper punch and the lower punch will be changed to the state of the tablet to be manufactured, the feeding, the cabbing, and the like.
  • the amount of gas generated by mixing and dispersing lubricant powder (flow rate, pressure, etc.) so that tableting troubles such as laminating do not occur and dies, upper punches and lower punches do not cause stiffness.
  • simply maintaining the gas (flow rate, pressure, etc.) that mixes and disperses the lubricant powder at a constant level will produce sticky, capping, and laminating tablets. Tablets can be produced stably for a long time without causing tableting troubles such as that described above, and without causing a die, an upper punch, and a lower punch to be stiff.
  • this method for producing tablets is suitable as a method for producing tablets (external lubricating tablets) on an industrial production profitable basis.
  • the concentration of oxygen in the device from the gas generating means to the lubricant application device is set to be equal to or lower than the lower explosive limit oxygen concentration. There is no dust explosion in the equipment from the step to the lubricant application equipment. And / or in the method for producing a tablet, when the concentration of oxygen contained in the gas near the lubricant application device is set to be equal to or lower than the lower explosive limit oxygen concentration, the vicinity of the lubricant application device Does not cause dust explosion.
  • the method for manufacturing a tablet according to claim 2 is the same as the method for manufacturing a tablet according to claim 1, except that the gas in the device from the gas generating means to the lubricant application device and / or near the lubricant application device is used. It is characterized in that the concentration of oxygen contained therein is 14% or less.
  • the method for producing tablets specifically defines the lower oxygen concentration limit limit of explosion of the lubricant powder.
  • the method for producing oxygen in the device from the gas generating means to the lubricant applying device is used. Since the concentration is 14% or less, no dust explosion occurs in the equipment from the gas generation means to the lubricant application equipment.
  • the gas generating means In the lubricant powder application step, in order to prevent dust explosion from occurring in the device from the gas generating means to the lubricant applying device and / or in the vicinity of the lubricant applying device, the gas generating means must be used.
  • the concentration of oxygen in the device and / or in the vicinity of the lubricant application device from the lubricant application device to the lubricant application device is more preferably 13% or less, even more preferably 12% or less. Even more preferably, it is 2% or less.
  • the explosion limit oxygen concentration to prevent dust explosion is ideally 0%, so the lower limit of explosion limit oxygen concentration to prevent dust explosion is 0% or more. Needless to say,
  • the method for producing a tablet according to claim 3 is the same as the method for producing a tablet according to claim 1, except that the gas in the device from the gas generation means to the lubricant application device and / or in the vicinity of the lubricant application device is used.
  • the concentration of oxygen contained therein was set to 8% or less.
  • the oxygen concentration should be 8 ° to prevent dust explosion. It is recommended to keep it below / 0 .
  • the lower explosive limit oxygen concentration is in the range of 14% or less.
  • the lower explosive limit oxygen concentration is in the range of 11% to 12%, in order to prevent dust explosion, the oxygen concentration should be reduced. We recommend keeping it below 5%.
  • the inside of the device from the gas generating means to the lubricant application device and / or the vicinity of the lubricant application device is more preferably 5% or less.
  • the lower limit of the concentration of oxygen contained in the gas is 0% or more.
  • the method for producing a tablet according to claim 4 includes a gas generating step of generating gas from the gas generating means, and converting the gas generated from the gas generating means into lubricant gas depending on the gas.
  • the lubricant powder is discharged and supplied to a lubricant powder discharge device that mixes and disperses with the gas, and the lubricant powder is discharged from the lubricant powder non-discharge device into the gas generated from the gas generating means, mixed,
  • the lubricant powder mixed and dispersed in the gas is sprayed onto the material contact surfaces of the mortar, the upper punch and the lower punch, and the lubricant is applied to the lubricant applying apparatus.
  • Lubricant powder to be pneumatically transported, and a lubricant application device sprays and applies lubricant powder mixed and dispersed with gas to the material contact surfaces of the mortar, upper punch and lower punch.
  • Lubricant powder application step and lubricant powder contact In the tableting step of compressing and molding the molding material using the mortar, upper punch and lower punch applied to the surface, and in the lubricant powder application step, the lubricant was mixed and dispersed with gas from the lubricant application device.
  • lower explosive limit concentration used in the present specification means that a combustible substance (in this specification, lubricant powder) is propagated by fire when sufficient ignition energy is given to the atmosphere. Means the lowest concentration that produces
  • the "concentration of the lubricant powder in the suction means” is more specifically described as follows.
  • the lubricant powder is mixed with a gas in which air and gas are mixed, It means the concentration of the lubricant powder in the dispersed parts, for example the concentration of the lubricant powder in the suction duct.
  • each of the gas generating step, the lubricant dispersing step, and the tableting step includes the gas generating step, the lubricant dispersing step, and the tableting step of the tablet manufacturing method according to claim 1. And similar steps.
  • this method for producing tablets is suitable as a method for producing tablets (external lubricating tablets), which is on an industrially profitable basis, similarly to the method for producing tablets described in claim 1.
  • the concentration of the lubricant powder in the suction means is lower than the lower explosive limit concentration, so that no dust explosion occurs in the suction means.
  • a tablet manufacturing method according to the fourth aspect, wherein the concentration of the lubricant powder is set to 70 g / m 3 or less.
  • the method for producing tablets specifically defines the lower explosive limit concentration of the lubricant powder in the suction means.
  • the concentration of the lubricant powder is less than the lower explosive limit concentration, that is, 70 g / m 3 or less, and preferably ⁇ 50 g / m 3 or less. No explosion.
  • the method for producing a tablet according to claim 6 is the method for producing a tablet according to any one of claims 1 to 5, wherein in the lubricant dispersing step, the gas supplied to the lubricant powder discharging device is used. A non-flammable gas was used.
  • nonflammable gas refers to a gas mainly composed of nitrogen (N 2 ) gas obtained by removing a certain amount of oxygen (O 2 ) gas from air, or nitrogen (N 2) Gas or inert gas such as helium (He) gas or argon (Ar) gas
  • a lubricant powder discharging device is used in the tablet manufacturing method. Since non-combustible gas is used as gas to be supplied to the system, no dust explosion will occur in places where the gas mixed and dispersed with the lubricant powder does not mix with air (in the equipment).
  • a lubricant powder discharging device that discharges the lubricant powder into the gas depending on the gas, mixes with the gas, and disperses the lubricant powder is used as the lubricant powder discharging device.
  • the discharge amount of the lubricant powder discharged from the lubricant powder discharging device depends on the frequency, the amplitude and the frequency of the pulsating vibration gas. It depends on the waveform and the like.
  • the amount of the gas can be kept constant. Since a certain amount of lubricant powder can always be mixed and dispersed, a certain amount of lubricant powder can always be supplied to the lubricant application device.
  • a certain amount of the lubricant powder is always supplied to the lubricant application device, so that the material contact of each of the mortar, the upper punch and the lower punch is performed.
  • a constant amount of lubricant powder can always be applied to the surface.
  • a fixed amount of lubricant powder can always be applied to the material contact surface of each of the mortar, the upper punch, and the lower punch under the same conditions. If the frequency, amplitude, waveform, etc. of the pulsating oscillating gas are determined so that the amount of lubricant powder applied to each material contact surface of the punch is optimal, then the frequency, amplitude and By simply keeping the waveform etc. constant, it is possible to always maintain the amount of the lubricant powder applied to the material contact surfaces of the mortar, the upper punch and the lower punch so as to be optimal.
  • the amount of the lubricant powder to be applied to the material contact surface of each of the mortar, the upper punch and the lower punch will be changed to the state of the tablet to be manufactured, the feeding, the cabbing, and the like.
  • the frequency, amplitude and frequency of the pulsating oscillating gas should be set so as not to cause tableting troubles such as laminating, and to prevent the mortar, upper punch and lower punch from being jagged. After adjusting the waveform, etc., the frequency, amplitude and waveform of the pulsating vibration gas are kept constant, and the amount of lubricant powder applied to the material contact surface of the mortar, upper punch and lower punch is always optimal.
  • the tablet is manufactured for a long time without causing tableting troubles such as stateing, casting, laminating, or mortality in the mortar, upper punch and lower punch. A stable tablet can be manufactured.
  • tablets external lubricating tablets
  • an antistatic means is provided in an apparatus for performing the tablet manufacturing method according to any one of the first to seventh aspects.
  • an antistatic means is provided in an apparatus for performing the tablet manufacturing method according to any one of claims 1 to 7, in order to prevent sparks due to static electricity. There is no spark.
  • the device for performing the lubricating powder pneumatic transport step may be grounded (grounded) as soon as possible.
  • an antistatic agent solution such as a lacquer activator or a paint containing an antistatic agent may be applied to at least an apparatus for performing a lubricant powder pneumatic transport step. Good.
  • the tablet manufacturing apparatus wherein the lubricant powder is discharged into the gas generated from the gas generator and mixed with the gas depending on the gas generated from the gas generator.
  • a lubricant application device that sprays on the material contact surface, and an oxygen concentration measurement that measures the oxygen concentration in the gas from the gas generation means to the lubricant application device and / or in the vicinity of the lubricant application device Device, and adjusts the concentration of oxygen contained in the gas from the gas generating means to the lubricant application device or in the gas in the vicinity of the lubricant application device based on the oxygen concentration measured by the oxygen concentration measurement device.
  • the term used in the present specification “a lubricant that discharges, mixes and disperses a lubricant powder into a gas generated from a gas generator depending on the gas generated from the gas generator.
  • the “powder ejection device” relies on gas for the mechanism for ejecting the lubricant powder, and mixes and disperses the lubricant powder in the gas used for ejecting the lubricant powder. Means a lubricant powder discharging device.
  • a lubricant powder discharge device that discharges lubricant powder into the gas generated from the gas generator depending on the gas generated from the gas generator, and mixes and disperses the lubricant powder.
  • an elastic film having a through-hole is provided at the bottom of the lubricant powder accommodating portion, and the lubricant powder placed on the elastic film having the through-hole is converted into an elastic film having the through-hole.
  • this gas flow may be a steady pressure flow or a pulsating vibration wave flow
  • the elastic body membrane having the through-holes is By vibrating up and down with the center as the antinode of the vibration and the periphery as the node of the vibration, the slide placed on the elastic film having this through hole from the through hole provided in the elastic film
  • the powder powder is discharged and flows under the elastic membrane having through holes.
  • the amplitude and frequency of the vibration of the elastic membrane having the through-holes are determined by the gas flow for pneumatic transportation flowing below the elastic membrane having the through-holes (this gas flow is a steady pressure flow.
  • the lubricant powder may be a pulsating vibration wave flow.) It is uniquely determined depending on the properties (pressure, flow rate, etc.) of the lubricant powder, and is discharged from the through-hole provided in the elastic membrane. When the size and shape of the through-hole are fixed, the amount is uniquely determined by the amplitude and frequency of the vibration of the elastic film.
  • the gas flow (the gas flow may be a steady pressure flow or a pulsating vibration wave flow) is kept constant, it flows below the elastic membrane having the through-holes, Gas flow (This gas flow is a pulsating oscillating wave flow even if it is a steady pressure flow.
  • Lubricant powder is always at a constant concentration, mixing, and dispersed to, it will be pneumatic transport.
  • the term “device from gas generating means to lubricant applying device” used in this specification means gas generating means, lubricant powder discharging device, lubricant applying device, and these devices in this order.
  • the “concentration of oxygen contained in the gas near the lubricant application device” refers to the space where the gas discharged from the lubricant application device is mixed with air (normal air containing oxygen). More specifically, the concentration of oxygen in the gas in the space between the lubricant spray port for applying the upper punch and the material contact surface of the upper punch, It means the concentration of oxygen in the gas in the space formed by the lubricant spray port for applying the lower punch, the mortar and the lower punch inserted into the mortar to a predetermined position.
  • a non-combustible gas is generated from the gas generator.
  • a lubricant powder discharge device that discharges lubricant powder into the gas depending on the gas generated from the gas generator, and mixes and disperses the lubricant powder with the gas generated from the gas generator.
  • a certain amount of lubricant powder should be mixed with a certain amount of lubricant powder and dispersed. Can be.
  • a constant concentration of the lubricant powder is always supplied to the lubricant applying apparatus, so that the material contact surface of each of the mortar, the upper punch and the lower punch is provided.
  • a constant amount of lubricant powder can always be applied.
  • this tablet manufacturing device As a result, by using this tablet manufacturing device, a fixed amount of lubricant powder can always be applied to the material contact surfaces of the mortar, the upper punch, and the lower punch. If the amount of gas (flow rate, pressure, etc.) to be generated from the gas generator is determined so that the amount of lubricant powder applied to each material contact surface is optimal, then the gas generation By keeping the volume (flow rate, pressure, etc.) constant, it is possible to always maintain the optimal amount of lubricant powder applied to the material contact surfaces of the mortar, upper punch and lower punch.
  • this tablet manufacturing apparatus can be suitably used as a tablet (external lubricating tablet) manufacturing apparatus on an industrial production profitable basis.
  • the amount of gas generated from the gas generator is adjusted based on the oxygen concentration measured by the oxygen concentration measuring apparatus. Therefore, when a non-combustible gas is used as the gas generated from the gas generator, the air existing in the space from the gas generating means to the lubricant applying device or the air near the lubricant applying device may be used. Air (normal air containing oxygen) can be replaced by nonflammable gas.
  • All or part of the air existing in the space from the gas generating means to the lubricant application device, and / or all or the air (normal air containing oxygen) near the lubricant application device A part is replaced by nonflammable gas, and the amount of oxygen contained in the gas existing in the space from the gas generation means to the lubricant application device and the space near the lubricant application device
  • the space in the lubricant application device and the space between the lubricant spray port for applying the upper punch and the material contact surface of the upper punch in the lubricant application device can be reduced.
  • the mortar, and the lower punch inserted into the mortar to a predetermined position. Can be.
  • the amount of gas generated from the gas generator is adjusted based on the oxygen concentration measured by the oxygen concentration measuring apparatus, so that the inside of the apparatus from the gas generating means to the lubricant applying apparatus is adjusted.
  • Gas generation because it is configured to reduce the amount of oxygen contained in the gas existing in the space and the amount of oxygen contained in the gas existing in the space near the lubricant application device It is possible to prevent a dust explosion from occurring in the space in the device from the means to the lubricant application device or in the vicinity of the lubricant application device.
  • the tablet manufacturing apparatus according to claim 10 is a tablet manufacturing apparatus according to claim 9,
  • the concentration of oxygen contained in the gas from the gas generation means to the lubricant application device and / or in the vicinity of the lubricant application device was set to the explosion limit oxygen concentration or less.
  • the concentration of oxygen contained in the gas from the gas generation means to the lubricant application device and in the gas near Z or in the vicinity of the lubricant application device is determined by the amount of gas generated from the gas generation device.
  • the tablet manufacturing apparatus according to claim 11 is the tablet manufacturing apparatus according to claim 9, wherein the gas in the device from the gas generating means to the lubricant application device and / or in the vicinity of the lubricant application device.
  • the concentration of oxygen contained therein was set to 14% or less.
  • This tablet manufacturing device specifies the concentration of oxygen contained in the gas in the vicinity of the lubricant application device, and specifically defines the lower limit oxygen concentration under the explosion.
  • the concentration of oxygen contained in the gas from the means to the lubricant application device and / or in the vicinity of the lubricant application device should be less than the explosion limit oxygen concentration, that is, the oxygen concentration should be 14% or less. Therefore, no dust explosion occurs in the device from the gas generating means to the lubricant application device and / or in the vicinity of the lubricant application device.
  • the concentration of oxygen contained in the gas from the gas generation means to the lubricant application device and / or in the gas near the lubricant application device should be 1
  • the content is more preferably at most 3%, even more preferably at most 12%, even more preferably at most 12%.
  • the explosion limit oxygen concentration to prevent dust explosion is ideally 0%, so the lower limit of explosion limit oxygen concentration to prevent dust explosion is 0% or more.
  • the tablet manufacturing device according to claim 12 is the tablet manufacturing device according to claim 9, wherein the gas in the device from the gas generating means to the lubricant application device and / or in the vicinity of the lubricant application device.
  • the concentration of oxygen contained therein was set to 8% or less.
  • the concentration of oxygen should be 8% to prevent dust explosion. It is recommended to keep: In this tablet manufacturing equipment, assuming that the lower explosive limit oxygen concentration is within the range of 14 ° / 0 or less, lubrication from the gas generating means is required to meet the electrostatic safety guidelines of the Industrial Safety Research Institute of the Ministry of Labor.
  • the concentration of oxygen contained in the gas up to the lubricant application device and / or in the gas near the lubricant application device is set to 8% or less, the inside of the device from the gas generation means to the lubricant application device and / or Or, dust explosion does not occur near the lubricant application device.
  • the explosive limit oxygen concentration is in the range of 11% or more and 12% or less, the oxygen concentration should be 5% to prevent dust explosion. It is recommended to keep it below%.
  • the manufacturing equipment for this tablet should be located in the equipment from the gas generation means to the lubricant application device and / or in the vicinity of the lubricant application device. More preferably, the concentration of oxygen contained in the gas is 5% or less.
  • the concentration of oxygen contained in the gas in the tablet manufacturing device from the gas generation means to the lubricant application device and / or in the vicinity of the lubricant application device should be Since it is ideally 0%, it is contained in the gas in the vicinity of the lubricant coating device in the lubricant powder coating step of the tablet manufacturing method to prevent dust explosion.
  • the lower limit of oxygen concentration is 0% or more o
  • the tablet manufacturing apparatus wherein a gas generator and a lubricant powder are discharged into the gas generated from the gas generator depending on the gas generated from the gas generator, A lubricant powder discharge device for mixing and dispersing, and a lubricant powder discharged from the lubricant powder discharge device and mixed and dispersed in a gas generated from a gas generator, into a mortar, an upper punch and a lower punch, respectively.
  • a lubricant application device for spraying the material contacting surface of the lubricant, a suction means for sucking the lubricant powder sprayed from the lubricant application device, and a lubricant provided on the suction means and sucked by the suction means
  • a lubricant powder concentration measuring device for measuring the powder concentration is provided, and based on the lubricant powder concentration measured by the lubricant powder concentration measuring device, the concentration of the lubricant powder fed into the suction means. was adjusted.
  • the lubricant powder sprayed from the lubricant application device is suctioned Since the suction is performed immediately using a step, for example, the lubricant powder sprayed from the lubricant spray port for the upper punch to the material contact surface of the upper punch with the lubricant application device is used as a lubricant. No dust explosion occurs around the lubricant application device because it does not scatter around the application device.
  • the inside of the suction means (more specifically, the inside of the suction duct of the suction means)
  • the concentration of the lubricant powder fed into the suction means can be adjusted, so the concentration of the lubricant powder fed into the suction means (more specifically, into the suction duct of the suction means) is adjusted to the lower explosive limit concentration. In the following case, no dust explosion occurs in the suction means (more specifically, in the suction duct of the suction means).
  • the tablet manufacturing apparatus according to claim 14 is a lubricant which is fed into the suction means (more specifically, the suction duct of the suction means) of the tablet manufacturing apparatus according to claim 13.
  • the concentration of the powder was set below the lower explosive limit concentration.
  • the concentration of the lubricant powder fed into the suction means (more specifically, the suction duct of the suction means) is set to be lower than the lower explosive limit concentration. Specifically, no dust explosion occurs in the suction duct of the suction means).
  • a lubricant fed into the suction means (more specifically, into the suction duct of the suction means) of the tablet manufacturing apparatus according to claim 15 and the tablet manufacturing apparatus according to claim 13 The powder has a lower explosive limit concentration of 70 g / m 3 or less.
  • the tablet manufacturing apparatus specifically defines the lower explosive limit concentration of the lubricant powder fed into the suction means of the tablet manufacturing apparatus according to claim 14, Then, the concentration of the lubricant powder fed into the suction means should be less than the lower explosive limit concentration of the lubricant powder, that is, 70 g / m 3 or less, preferably 50 g / m 3 or less. Therefore, if tablets are manufactured using this tablet manufacturing apparatus, no dust explosion will occur in the tablet manufacturing apparatus (more specifically, in the suction duct of the suction means).
  • the tablet manufacturing apparatus is configured to generate a non-combustible gas from the gas generator of the tablet manufacturing apparatus according to any one of claims 9 to 15.
  • a non-combustible gas is used as a gas for mixing and dispersing the lubricant powder, so that a dust explosion occurs in the apparatus from the gas generating means to the lubricant applying apparatus. Does not occur.
  • the pulsating vibration gas is generated from the gas generator of the tablet manufacturing apparatus according to any one of claims 9 to 16.
  • pulsating vibration gas is used as a gas for mixing and dispersing the lubricant powder, and the amount of the lubricant powder mixed and dispersed in the gas is converted into the frequency, amplitude, waveform, etc. of the pulsating vibration gas.
  • Dependent the amount of the lubricant powder mixed and dispersed in the gas is converted into the frequency, amplitude, waveform, etc.
  • this tablet manufacturing apparatus if the frequency, amplitude, waveform, etc. of the pulsating oscillating gas used for mixing and dispersing the lubricant powder are constant, a fixed amount is always obtained for a fixed amount of gas. Lubricant powder can be mixed and dispersed, so that a certain amount of lubricant powder can always be supplied to the lubricant application device.
  • a certain amount of lubricant powder is always supplied to the lubricant applicator, so that the material contact of each of the mortar, upper punch and lower punch is performed.
  • a constant amount of lubricant powder can always be applied to the surface under the same conditions.
  • a fixed amount of lubricant powder can always be applied to the material contact surface of each of the mortar, the upper punch and the lower punch. If the frequency, amplitude, waveform, etc. of the pulsating vibration gas are determined so that the amount of lubricant powder applied to the material contacting surface is optimal, then the frequency, amplitude, waveform, etc. of the pulsating vibration gas will be constant By doing so, it is always possible to maintain an optimal amount of lubricant powder applied to the material contact surfaces of the mortar, upper punch and lower punch.
  • the amount of the lubricant powder to be applied to the material contact surfaces of the mortar, upper punch and lower punch once is reduced to the tablet to be manufactured.
  • the frequency, amplitude, waveform, etc. of the pulsating vibration gas so that tableting troubles such as stateing, cabbing and laminating, and the mortar, upper punch and lower punch do not cause jaggedness.
  • tablets external lubricating tablets
  • the tablet manufacturing apparatus discharges the lubricant powder into the gas generated from the gas generator and mixes the lubricant powder depending on the gas generated from the gas generator.
  • a lubricant application device for spraying on the material contact surface of the material, and a suction means for sucking the lubricant powder sprayed from the lubricant application device, from a lubricant powder discharge device to a lubricant application device.
  • a spray amount measuring device for measuring the concentration of the lubricant powder at an arbitrary position, and determining the concentration of the lubricant powder from the amount of the lubricant powder measured by the spray amount measuring device and the amount of air sucked by the suction means. Calculate and adjust the amount of air to be sucked, and the concentration of lubricant powder When the lower limit concentration was reached, the amount of lubricant powder mixed and dispersed in the gas generated from the gas generator was adjusted so as to be lower than the lower limit concentration.
  • the lubricant powder concentration is monitored by the spray amount measuring device, and when the lubricant powder concentration reaches the lower explosive limit concentration, it is mixed with the gas generated from the gas generator. Since the amount of the dispersed lubricant powder is adjusted to be below the lower explosive limit concentration, no dust explosion occurs.
  • the concentration of the lubricant powder fed into the suction means in the tablet manufacturing apparatus according to claim 18 is set to be lower than the lower explosive limit concentration.
  • This tablet manufacturing device specifically defines the lower explosive limit concentration of the lubricant powder fed into the suction means of the tablet manufacturing device according to claim 19,
  • the concentration of the lubricant powder fed in the suction means the lower explosive limit concentration or less of the concentration of the lubricant powder powder, i.e., 7 0 g / m 3 or less, preferably, 5 0 g since / m 3 are below, it is manufactured to tablets, resulting in powder dust explosion in the production apparatus of tablets agent (more suction duct in Bok of specifically described and suction means) using the tablet production apparatus None.
  • the gas generating device of the tablet manufacturing apparatus according to claim 18 or 19 generates non-combustible gas.
  • a non-flammable gas is generated from the gas generator, so that the gas in which the lubricant powder is mixed and dispersed does not mix with air (in the device). No dust explosion.
  • the pulsating vibration gas is generated from the gas generator of the tablet manufacturing apparatus according to any one of claims 18 to 21.
  • the frequency, amplitude, waveform, etc. of the pulsating vibration gas supplied to the lubricant powder discharging device are fixed.
  • a certain amount of lubricant powder can always be mixed and dispersed with respect to a certain amount of gas, so that the same effect as that of the tablet manufacturing apparatus according to claim 7 can be obtained.
  • the tablet manufacturing apparatus according to claim 23 is the tablet manufacturing apparatus according to any one of claims 9 to 22, further comprising an antistatic means.
  • antistatic means is provided in order to prevent sparks due to static electricity, so that sparks due to static electricity do not occur.
  • FIG. 1 is a configuration diagram schematically showing an example of the tablet manufacturing apparatus according to the present invention.
  • FIG. 2 is a flowchart schematically illustrating a first program stored in a control device of the tablet manufacturing apparatus shown in FIG.
  • Fig. 3 shows the second program stored in the control device of the tablet manufacturing device shown in Fig. 1.
  • 3 is a flowchart schematically illustrating a ram.
  • Figure 4 shows the test method performed by the Institute of Environmental Health, Inc. to determine the specific value of the lower explosive limit concentration of lubricant powder and the specific value of the explosive limit oxygen concentration. This is an excerpt from the test results.
  • Figure 5 shows the test method conducted by the Institute of Environmental Health, Ltd. to determine the specific value of the lower explosive limit concentration of lubricant powder and the specific value of the explosive limit oxygen concentration. This is an excerpt from the test results.
  • FIG. 6 is a graph exemplifying a preferable oxygen removing ability of the oxygen removing apparatus used in the tablet manufacturing apparatus shown in FIG.
  • FIG. 7 is a configuration diagram schematically showing another example of the tablet manufacturing apparatus according to the present invention.
  • FIG. 8 is a configuration diagram schematically showing another example of the tablet manufacturing apparatus according to the present invention.
  • FIG. 9 is a configuration diagram schematically showing another example of the tablet manufacturing apparatus according to the present invention.
  • FIG. 10 is an overall configuration diagram schematically showing the tablet manufacturing apparatus shown in FIG.
  • FIG. 11 is an explanatory diagram exemplifying a positive pressure pulsating gas vibration wave.
  • FIG. 12 is an explanatory view schematically showing a lubricant powder discharging device.
  • FIG. 13 is an explanatory view for explaining the lubricant storage hopper in more detail.
  • FIG. 13 (a) is a perspective view schematically showing the lubricant storage hopper
  • FIG. (b) is a plan view schematically showing a main part of the lubricant storage hopper shown in FIG. 13 (a).
  • FIG. 14 is a plan view schematically showing an elastic film.
  • FIG. 15 is a perspective view schematically showing a state in which the elastic film is attached to the elastic film attachment used in the lubricant powder discharging device.
  • FIG. 16 is an exploded perspective view schematically showing the configuration of the elastic membrane mounting device shown in FIG.
  • FIG. 17 is a cross-sectional view schematically showing the configuration of the elastic membrane attachment shown in FIG.
  • Fig. 18 is a plan view schematically showing the position of the pulsating gas vibration wave supply port provided in the dispersion chamber when the dispersion chamber is viewed in a plan view.
  • Fig. 18 (a) shows the pulsation gas with respect to the dispersion chamber.
  • FIG. 18 (b) is an explanatory view illustrating a preferable mounting position of the pulsating gas vibration wave supply port with respect to the dispersion chamber.
  • FIG. 19 is a diagram schematically illustrating the positions of the pulsating gas vibration wave supply port and the discharge port provided in the dispersion chamber when the dispersion chamber is viewed in a plan view
  • FIG. Fig. 19 (b) is an explanatory view for explaining a preferable mounting position of the pulsating gas vibration wave supply port and the discharge port with respect to the pulsating gas vibration wave supply port and the discharge port.
  • FIG. 9 is an explanatory diagram for explaining a substantial attachable position.
  • FIG. 20 is an explanatory view schematically showing the operation of the gas injection means and the material cutout valve provided in the lubricant storage hopper of the lubricant powder discharge device.
  • FIG. 21 is a flowchart schematically showing an operation program of the gas injection means and the material cutout valve, which is stored in advance in the storage unit of the control device.
  • FIG. 22 is an explanatory diagram schematically explaining the operation of the elastic film and the bypass tube when a pulsating gas vibration wave of positive pressure is supplied to the dispersion chamber.
  • FIG. 23 is a plan view schematically showing a rotary tableting machine used in the external lubricating tableting machine used in the present invention.
  • FIG. 24 is a plan view schematically showing the lubricant application device shown in FIG. 24 in a further enlarged manner.
  • FIG. 25 is a cross-sectional view schematically showing the configuration of the lubricant applying device according to line XXIV-XXIV in FIG.
  • FIG. 26 is a configuration diagram schematically showing an enlarged view of the suction means (lubricant suction device) shown in FIG. 10.
  • FIG. 27 is a cross-sectional view schematically showing the configuration of the pulsating gas vibration wave generator.
  • FIG. 28 is an explanatory view schematically showing another example of the pulsating gas vibration wave generator.
  • FIG. 29 is an exploded perspective view schematically illustrating another example of the pulsating gas vibration wave generator.
  • FIG. 30 is a plan view schematically showing another example of the elastic body film used in the lubricant powder discharging device of the external lubricating tableting machine used in the present invention.
  • FIG. 31 is an overall configuration diagram schematically showing the tablet manufacturing apparatus shown in FIG.
  • FIG. 32 is an overall configuration diagram schematically showing the tablet manufacturing apparatus shown in FIG.
  • FIG. 33 is an overall configuration diagram schematically showing the tablet manufacturing apparatus shown in FIG.
  • FIG. 34 is an overall configuration diagram schematically showing another example of the tablet manufacturing apparatus according to the present invention.
  • FIG. 35 is a schematic diagram schematically showing the spray amount measuring device shown in FIG. Figure 36 is a factor characteristic diagram explaining the factors that cause a dust explosion.
  • FIG. 1 is a configuration diagram schematically showing an example of the tablet manufacturing apparatus according to the present invention.
  • the tablet manufacturing device (external lubricating tableting machine) Sa generates gas from the gas generator G and the lubricant powder from the gas generator G depending on the gas generated from the gas generator G.
  • the lubricant powder discharger 51 which discharges and mixes and disperses into the gas
  • the lubricant powder discharger 51 which discharges and mixes and disperses with the gas generated from the gas generator G
  • Lubricant application device 91 for spraying the lubricant powder onto the material contact surfaces of the mortar, upper punch and lower punch, and measure the oxygen concentration in the gas near the lubricant application device 91 Equipped with an oxygen concentration measuring device 13 1 a and an oxygen concentration measuring device 13 1 b and 13 1 c for measuring the concentration of oxygen in the device from the gas generator G to the lubricant applying device 91 .
  • the oxygen concentration measuring devices 13 1b and 13 1c need not be provided if the airtightness of the devices from the gas generator G to the lubricant application device 91 is sufficiently ensured. No.
  • the device indicated by 81 in FIG. 1 is a one-shot tablet press.
  • a device indicated by 121 indicates a control device that controls and controls the whole of the tablet manufacturing device (external lubricating tablet press) Sa.
  • the gas generator G is an oxygen removal device that removes oxygen in the air sent out from the blower 111 into the conduit Tm by driving the blower 111 and the blower 111. Is provided.
  • a signal line is connected between the blower 1 1 1 and the control device 1 2 1 so that the drive amount of the blower 1 1 1 can be controlled from the control device 1 2.
  • Oxygen removing device 1 1 2 The material contact surface of each of the dies (see FIG. 23, see 3 2 ⁇ ⁇ ⁇ ⁇ ), the material contact surface of the upper punch 3 1 ⁇ ⁇ ⁇ and the material contact surface of the lower punch 33 ⁇ ⁇ ⁇ ⁇ ⁇
  • the compressed air with the sum of the maximum value of the spray flow rate and the maximum value of the control flow rate when applying powder powder was generated from the probe 111, it was generated from the blower 111.
  • Various devices can be used as long as the concentration of oxygen contained in the compressed air can be sufficiently reduced as compared to the explosive limit oxygen concentration.
  • one end of a conduit TO is airtightly connected to the blower of the blower 1-11, and the air supply port of the oxygen removing device 112 is airtightly connected to the other end of the conduit TO.
  • One end of a conduit Tm is airtightly connected to the exhaust port of the oxygen removal device 112, and the gas supply port of the lubricant powder discharge device 51 is connected to the other end of the conduit Tm (Fig. 12).
  • the gas supply port 55a) shown in Fig. 5 is connected airtightly, and one end of the conduit T2 is connected airtightly to the discharge port of the lubricant powder discharge device (discharge outlet 55b shown in Fig. 12).
  • the lubricant inlet of the lubricant spray device 91 is airtightly connected, and it is used for applying the upper punch of the lubricant spray device 91 from the intake port of the blower 111.
  • the gas path to the lubricant spray port (the lubricant spray port 94 for applying the upper punch shown in FIGS. 23, 24 and 25) is airtight.
  • the oxygen removing device 112 includes, for example, a column filled with a deoxidizing agent such as iron powder, and allows oxygen in the air to be removed by passing air through the column. I have.
  • each of the oxygen concentration measuring devices 13 1 a, 13 1 b, and 13 1 c for example, an oxygen analyzer (product name: model 1100, product name: cer am atec, advanced diginik)
  • a well-known oxygen concentration measuring device such as Technoguchijizu Co., Ltd., imported and sold by Aichi Sangyo Co., Ltd.) is used.
  • the device As the oxygen concentration measuring devices 13 1 a, 13 1 b and 13 1 c, if an alarm issuing oxygen concentration is input to the device as in the oxygen analyzer as exemplified above, the device is The device may itself issue an alarm when an oxygen concentration equal to or higher than the alarm issuing oxygen concentration is detected. Also, the detection values detected by the oxygen concentration measuring devices 13 1 a, 13 1 b, and 13 1 c are sent to the controller 12 1, and the alarm issuing oxygen concentration is sent to the controller 12 1 side. An alarm may be issued when an input is made or when each of the oxygen concentration measuring devices 13 1 a, 13 1 b, and 13 1 c detects an oxygen concentration equal to or higher than the alarm issuing oxygen concentration.
  • the air sent out from the blower 1 1 1 1 into the conduit T 0 passes through the conduit T m after the oxygen is removed by the oxygen remover 1 1 2, It is sent to the lubricant powder discharging device 51.
  • the lubricant powder discharging device 51 discharges the lubricant powder into the gas depending on the gas from which oxygen has been removed by the oxygen removing device 112 supplied through the conduit Tm, and mixes the lubricant powder. And disperse.
  • the lubricant powder discharged by the lubricant powder discharging device 51 is discharged into the gas from which oxygen has been removed by the oxygen removing device 112, and the mixed and dispersed lubricant powder is not lubricated. 9 Sent to 1.
  • the lubricant application device 91 is provided at a predetermined position (a lubricant spraying point R 1 shown in FIG. 23) on the rotary table 34 of the rotary tableting machine 81.
  • the lubricant powder that has been mixed and dispersed in the gas from which oxygen has been removed and sent to the lubricant application device 91 via the conduit T2 is sent to the lubricant application device 91.
  • the material contact surfaces of a plurality of dies (a plurality of dies 32 shown in FIG. 23) provided on a rotary table 34 of a rotary tableting machine 81 shown in FIG.
  • the lower punch 33 provided corresponding to each of) is sequentially applied to each of the material contact surfaces.
  • the tablet manufacturing apparatus (external lubricating tablet press) Sa includes a suction means 101 and a lubricant powder concentration measuring apparatus 103a.
  • the suction means 101 includes a dust collector 102 and a suction duct (conduit) T3. Then, when the suction means 101 (more specifically, the dust collector 102) is driven, the lubricant powder sucked into the suction duct (conduit) T3 is discharged into the dust collector 102. The dust is collected by a dust collection filter (not shown) provided in the apparatus. Signals can be exchanged between the dust collector 102 and the control device 122 via a signal line (not shown), and the dust collector 102 is sent from the control device 121 to the dust collector 102. It can drive, stop, and control the drive amount to the desired drive amount.
  • this tablet manufacturing device external lubricating tableting machine
  • the lubricant application device 91 outputs the material contact surfaces of a plurality of dies, The material contact surface of the upper punch provided corresponding to each of them, and the lubricant powder sprayed on each of the material contact surfaces of the upper punch provided corresponding to each of the plurality of dies, The excess lubricant powder is suctioned and removed by suction means (lubricant suction device) 101.
  • the lubricant powder concentration measuring device 103a (scattering powder concentration measuring device 103a shown in Fig. 26) is a suction device (lubricant suction device) 101 suction duct (conduit T 3 (more specifically, the branch pipe T3a) shown in Fig. 26), which is provided in the middle of the lubricant powder concentration measuring device 103a.
  • the suction means (lubricant suction device) 101 suction duct (conduit T3 (more specifically, the branch pipe T3a shown in FIG. 26) The concentration of the powder (lubricant powder) in)) can be measured.
  • the detection value detected by the lubricant powder concentration measuring device 103a is sent to the control device 122.
  • the tablet manufacturing device (external lubricating tableting machine) Sa has a blower 1 1 1, an oxygen removing device 1 1 2, a control device 1 2 1, and a lubricant powder.
  • the discharger 51, the rotary tableting machine 81, and the suction means (lubricant suction device) 101 are grounded (earthed) to control the blower 1 1 1, the oxygen remover 1 1 2, and the control
  • the example shown in Fig. 1 is grounded (earthed).
  • Tablet manufacturing equipment external lubricating tableting machine
  • blower 1 1 1 Remover 1 1 2, controller 1 2 1, lubricant powder discharger 5 1, rotary tableting machine 8 1, and all suction means (lubricant suction device) 101 must be grounded (earthed) There is no need to ground at least one of these devices.
  • the conduits Tm, T2, T3, etc. should be grounded (earthed) as necessary.
  • the control device 122 is provided with a first safety device.
  • the first safety device includes a first alarm device provided in the control device 122.
  • a first program for operating the first alarm device is stored in the storage unit of the arithmetic processing unit of the control device 121.
  • FIG. 2 is a flowchart schematically illustrating the first program.
  • This first program has at least two thresholds, Vth3a and Vth2a, and two thresholds Vth3a,
  • the other threshold V th 3 a which is larger than V th 2 a, is used to determine whether or not to automatically stop the operating tablet manufacturing equipment (external lubricating tablet press) Sa.
  • the alerting operation is started when Vth1a or less (Step 3a in Fig. 2). , Step 6a, Step 10a and Step 12a).
  • the first program is used to produce tablets using the tablet manufacturing apparatus (external lubricating tablet press) Sa.
  • the oxygen concentration (detected value) detected by the oxygen concentration measurement device 1 31a is temporarily set to a value equal to or lower than the threshold value (alarm alarm oxygen concentration threshold value) Vth2a.
  • one of the threshold values (threshold value of the oxygen concentration threshold for alarm issuance) Vth2 In the case of a (see step 6a), an alarm is output from an alarm device (not shown) provided in the control device 121, and there is a possibility of dust explosion for the operator, etc. Warn
  • an alarm buzzer is provided in the control device 121, and the oxygen concentration (detected value) detected by the oxygen concentration measuring device 131a is determined by one of the threshold values.
  • the threshold values Alarm Trigger Oxygen Concentration Threshold
  • an alarm lamp is provided in the control device 121 and the oxygen concentration measurement device 1 3 1 If the oxygen concentration (detected value) detected by a becomes one of the threshold values (alarm-generated oxygen concentration threshold value) Vth2a, even if the alarm lamp lights or blinks, Alternatively, both an alarm buzzer and an alarm lamp are provided in the control device 12 1, and the oxygen concentration (detected value) detected by the oxygen concentration measuring device 1 31 a is set to one threshold value.
  • a threshold value (alarm alarm oxygen concentration threshold value) V th 2a is input in advance to the oxygen concentration measuring device 13 1 a. If the concentration (detected value) of oxygen detected by the oxygen concentration measuring device 13 1 a reaches one of the threshold values (alarm alarm oxygen concentration threshold value) V th 2a, oxygen The concentration measuring device 13 1 a may itself be such that an alarm buzzer sounds and / or an alarm lamp flashes.
  • the first alarm device (not shown) is further provided with a safety confirmation lamp (not shown).
  • a safety confirmation lamp (illustrated) ) Lights up (see step 3a and step 5a), and the oxygen concentration (detected value) detected by the oxygen concentration measuring device 13 1a is reduced to one of the threshold values (alarm concentration oxygen concentration).
  • the safety confirmation lamp (not shown) turns off when Vth2a is reached (see step 6a and step 8a).
  • the tablet manufacturing device (external lubricating tablet press) Sa uses the first program to produce tablets using this tablet manufacturing device (external lubricating press) Sa.
  • the oxygen concentration (detected value) detected by the oxygen concentration measuring device 13 1a is temporarily set to a value equal to or lower than one threshold value V th2a, and the normally operable oxygen concentration threshold value is set.
  • the operation of the gas generator G (more specifically, the blower 1 1 1 1 constituting the gas generator G) is started until the timer 1 elapses a predetermined time.
  • One threshold value (alarm alarm oxygen concentration threshold value) Vth 2 a provided in the first program for operating the first alarm device (not shown) provided in the control device 121 is
  • the other threshold (automatic shutdown oxygen concentration threshold) is not particularly limited as long as it is smaller than V th3a, but the Ministry of Labor's Industrial Safety Study corresponding to the explosive limit oxygen concentration of the lubricant powder used There is no particular limitation as long as the value is selected from below the oxygen concentration recommended by the local electrostatic safety guidelines. However, usually, in consideration of safety, a value of about 1/2 of the explosive limit oxygen concentration of the lubricant powder to be used may be selected.
  • the control device 121 is provided with a second safety device.
  • FIG. 3 is a flowchart schematically illustrating the second program.
  • the second safety device includes a second alarm device provided in the control device 121.
  • a second program for operating the second alarm device is stored in the storage unit of the arithmetic processing unit of the control device 121.
  • Vth 3 b and Vth 2 b the smaller of the two thresholds (lower alarm threshold explosion lower limit concentration threshold) V th 2 b is lower than the explosion of lubricant powder
  • the value of the concentration of the lubricant powder that is sufficiently lower than the limit concentration for example, one threshold value (threshold value for the lower limit of the explosion of an alarm)
  • V th 2 b the lower explosion limit of the lubricant powder (1/2 of the concentration) (V th 1 ⁇ V th 2 b ⁇ V th 3 b).
  • V th3 b and V th 2 b lower alarm threshold explosion lower limit concentration threshold
  • the warning action is started when the detection value detected by a becomes lower than the normal operation possible lower explosion limit concentration threshold (for example, the normal operation lower explosion lower limit concentration threshold) V th 1 b or less. (See Step 3b, Step 6b and Step 12b).
  • the normal operation possible lower explosion limit concentration threshold for example, the normal operation lower explosion lower limit concentration threshold
  • the tablet manufacturing apparatus (external lubricating tablet press) Sa the tablet is manufactured using the tablet manufacturing apparatus (external lubricating tablet press) Sa by the second program.
  • the lubricant powder concentration measuring device 103a detects the concentration (detected value) of the lubricant powder once, the threshold value once lowers (threshold value of the lower concentration limit for explosion of an alarm).
  • an alarm buzzer is provided in the control device 121, and the concentration of the lubricant powder not detected by the lubricant powder concentration measuring device 103a (detected value) If one of the thresholds (lower alarm explosion lower limit concentration threshold) V th 2 b is reached, even if the alarm buzzer sounds, an alarm lamp should be installed in the control device 121.
  • the concentration (detected value) of the lubricant powder detected by the lubricant powder concentration measuring device 103a becomes one of the threshold values (threshold value of the lower limit concentration for explosion of alarm explosion) V th 2b
  • the lubricant detected by the lubricant powder concentration measuring device 103a If the powder concentration (detected value) reaches one of the threshold values (threshold value for the lower limit of explosion at alarm explosion) V th 2 b
  • the device may be such that an alarm buzzer sounds and an alarm lamp lights or flashes.
  • a second alarm device (not shown) is further provided with a safety confirmation device in consideration of the convenience of an operator or the like using the tablet manufacturing device Sa.
  • the lubricant powder concentration measuring device 103a detects the concentration (detected value) of the lubricant powder, and the lower limit explosive concentration threshold V th 1 b for normal operation
  • the safety confirmation lamp (not shown) lights up (see step 4b), and the lubricant detected by the lubricant powder concentration measuring device 103a is turned on.
  • the powder concentration (detected value) reaches one threshold value (threshold value for the lower limit of explosion for alarm explosion) Vth2b (see step 6b)
  • the safety confirmation lamp is turned off. (See step 8b).
  • the tablet manufacturing device (external lubricating tablet press) Sa uses the second program to produce tablets using this tablet manufacturing device (external lubricating press) Sa.
  • the concentration of oxygen (detected value) detected by the lubricant powder concentration measuring device 103a once falls below one threshold (threshold of explosive lower explosion limit concentration) Vth2b.
  • the gas generator G more specifically, the blower that constitutes the gas generator G 1 1
  • the suction means 101 and the rotary tablet press 81 are automatically stopped (Steps 12b and 14b) Reference).
  • the operation of the suction means 101 (more specifically, the dust collector 102 constituting the suction means 101) is started until the timer 13 elapses the predetermined time.
  • the lubricant powder is discharged into the gas depending on the gas generated from the gas generator G, and the lubricant is mixed and dispersed in the gas generated from the gas generator G. Since a non-powder discharge device is used, as long as the amount of generated gas (flow rate, pressure, etc.) generated from the gas generator G is constant, a certain amount of lubricant powder for a certain amount of gas Can be mixed and dispersed. Thus, in the tablet manufacturing apparatus Sa, a constant concentration of lubricant powder is always supplied to the lubricant applying apparatus 91, so that the mortar 3 2 A constant amount of lubricant powder can always be applied to each material contact surface of 1 ⁇ - ⁇ and lower punch 3 3 ⁇ ⁇ o
  • this tablet manufacturing apparatus Sa if this tablet manufacturing apparatus Sa is used, a constant amount of lubricant is always applied to the material contact surfaces of the mortar 32, the upper punch 31 and the lower punch 33, respectively. Since powder can be applied, the amount of lubricant powder to be applied to the contact surface is optimized once for each of the mortar 3 2 ⁇ ⁇ ⁇ , upper punch 3 1 ⁇ 1 ⁇ and lower punch 3 3 1 ⁇ ⁇ Once the amount of gas generated from the gas generator (flow rate, pressure, etc.) is determined, the remaining amount of gas generated (flow rate, pressure, etc.) can be kept constant only by keeping the amount of gas generated. The amount of lubricant powder applied to the material contact surface of each of the upper punch 3 1 1 2 and the lower punch 3 3 1 2 can be maintained to be optimal.
  • the lubricant powder once applied to the material contact surfaces of the mortar 32, the upper punch 31 and the lower punch 33
  • the unprepared amount of the tablets produced may include tableting disorders such as stateing, cabbing and laminating, mortars 3 2 ⁇ ⁇ , upper punches 3 1 ⁇ ⁇ ⁇ and lower punches 3 3 ⁇
  • the amount of gas generated from the gas generator G so that the amount does not cause
  • the gas generated by the gas generator can be maintained at a constant level (flow rate, pressure, etc.). Tablets can be produced stably for a long time without causing tableting troubles such as laminating, and without squeezing in the mortar 3 2 ⁇ -, upper punch 3 1 ⁇ ⁇ and lower punch 3 3 ⁇ can do.
  • the tablet manufacturing apparatus Sa can be suitably used as a tablet (external lubricating tablet) manufacturing apparatus on an industrial production profitable basis.
  • an oxygen concentration measuring apparatus 13 1 a for measuring the oxygen concentration contained in the gas near the lubricant applying apparatus 91 is provided. 31 The amount of gas generated from the gas generator G is adjusted based on the oxygen concentration measured by 1a.
  • non-combustible gas when used as the gas generated from gas generator G
  • the lubricant applying device 91 that is, in this example, the conduit T0, the oxygen removing device 112, the conduit Tm, the lubricant powder discharging device 51,
  • the non-flammable gas can replace the space inside the conduit T 2 and the lubricant application device 91 and the air near the lubricant application device 91 (normal air containing oxygen).
  • All or part of the space in the device from the gas generator G to the lubricant application device 91 and the air (normal air containing oxygen) near the lubricant application device 91 is converted to nonflammable gas. If the amount of oxygen contained in the gas existing in the space in the device from the gas generator G to the lubricant application device 91 or in the space near the lubricant application device 91 is reduced, the amount of oxygen contained in the gas can be reduced. , The space in the device from the gas generator G to the lubricant application device 91, and the lubricant spray port for applying the upper punch to the lubricant application device 91 (the lubricant for applying the upper punch shown in Fig.
  • the tablet manufacturing apparatus Sa by adjusting the amount of gas generated from the gas generator G based on the oxygen concentration measured by the oxygen concentration measuring apparatus 13a, It is configured so that the amount of oxygen contained in the gas existing in the space in the device up to the lubricant application device 91 and in the space near the lubricant application device 91 can be reduced. Dust explosion can be prevented in the space in the device from the gas generator G to the lubricant application device 91 and around the lubricant application device 91.
  • the suction means 101 (more specifically, the suction means) is used. Since the concentration of the lubricant powder fed into T3 can be adjusted, the suction means 101 (more specifically, the suction duct (conduit)) T3 Assuming that the concentration of the lubricant powder to be sent is not more than the lower explosive limit concentration, the suction means 101 (more specifically, the suction duct (conduit)) of the tablet manufacturing apparatus has dust in T3. No explosion occurs.
  • an antistatic means is provided in the tablet manufacturing apparatus Sa. Since it is provided, no static electricity is charged to the tablet manufacturing device Sa.
  • the tablet manufacturing apparatus Sa does not carry static electricity, so that sparks due to static electricity do not occur and dust explosion does not occur.
  • the powder material which is a raw material of the tablet, is stored in a powder material storage hopper (not shown) of the rotary tableting machine 81.
  • lubricant powder is stored in the lubricant powder discharging device 51.
  • the power supply of the control device 121 is turned on, and each of the oxygen concentration measurement device 131a and the lubricant powder concentration measurement device 103a is operated.
  • the palletizing tableting machine 81 is driven, and the rotary table 34, a plurality of upper punches 31 ', and a plurality of lower punches 34 are rotated.
  • blower 111 the oxygen removing device 112, and the suction means (lubricant suction device) 101 are driven.
  • the detection value (oxygen concentration) detected by the oxygen concentration measuring device 1311a is sufficiently lower than the lower explosive limit concentration by adjusting the driving amount of the blower 1 11 from the controller 12 1 Check that the concentration has been reached.
  • the tablet manufacturing device (external lubricating tableting machine) Sa is provided with whether the safety confirmation lamp of the first safety device provided in the control device 121 is turned on or not. Check.
  • the gas supplied to the lubricant powder discharging device 5 1 According to the supply amount, supply pressure and / or flow rate of the lubricant, the lubricant powder is discharged into the gas, mixed and dispersed, and sent to the lubricant application device 91.
  • the lubricant powder that was mixed with the gas from which oxygen was removed and sent to the lubricant application device 91 in a dispersed state was sent to the rotary table 34 of the mouth-press type tableting machine 81, on the rotary table 34.
  • Punch 3 1- ⁇ ⁇ and lower punch 3 3 ⁇ ⁇ ⁇ are fed into lubricant applicator 9 1 by rotation
  • the material contact surface of each of the mortars (a plurality of mortars 3 2 ⁇ ; shown in FIG. 23), the material contact surface of each of the upper punches 31 1 ⁇ ⁇ ⁇ and the lower punch 33 ⁇ ⁇ ⁇
  • Each material contact surface is sprayed sequentially.
  • the lubricant applicator 91 feeds the rotary table 34 of the flat-type tableting machine 81, the upper punch 31 and the lower punch 33.
  • the material contact surface of each of the dies (a plurality of dies 32... Shown in FIG. 23) fed into the lubricant application device 91 by the rotation of the lubricant application device 91, and each material of the upper punch 3 1
  • the contact surface and each material contact surface of the lower punch 33 are sequentially sprayed with the lubricant powder, the mortar (the plurality of mortars 32 shown in Figure 23). Excess lubricant powder that has not adhered to each material contact surface, each material contact surface of the upper punch 3 1 and the lower punch 3 3. By 101, it is sucked with air.
  • Suction means (lubricant suction device) This is provided in the middle of 101 suction duct (conduit T 3 (more specifically, branch pipe T 3 a) shown in FIG. 26).
  • suction means (lubricant suction device) 101 is driven by the lubricant powder concentration measuring device 103a, the concentration of the powder (lubricant powder) in the suction duct is measured.
  • the lubricant powder concentration measuring device 103 is adjusted.
  • the detection value (concentration of lubricant powder) detected by a is sufficiently smaller than the lower explosion limit concentration of lubricant powder. (Threshold value) Adjust so as to be not more than the concentration of V th 2 b.
  • the powder material stored in the powder material storage hopper (not shown) of the mouth-tipping type tableting machine 81 is transferred to each of the dies 32,. Is supplied to each of the spaces formed by each of the lower punches 3 3.
  • each of the dies 32 having a material contact surface to which the lubricant powder is applied, and the lower punch 33 having a material contact surface to which the lubricant powder is applied is applied.
  • compression molding (tableting) is performed to produce tablets.
  • the tablet manufacturing apparatus Sa manufactures tablets in earnest on an industrial production basis under the conditions determined above.
  • the configuration of the mouth-to-face type tableting machine 81, the driving amount, and the like are changed. If not, by storing the conditions determined above in the storage unit of the control device 121, the second and subsequent tablets can be easily manufactured.
  • the oxygen concentration (detected value) detected by the oxygen concentration measuring device 13 1 a is changed to one threshold value (alarm (Oxygen concentration threshold)
  • the safety confirmation lamp goes off and an alarm is output from the first alarm device (not shown).
  • the operator or the like when the first alarm device (not shown) outputs an alarm, inspects and repairs the tablet manufacturing device Sa, and is in the process of manufacturing the tablet. In this way, it is possible to prevent a dust explosion from occurring in and around the tablet manufacturing apparatus Sa.
  • the oxygen concentration (detected value) detected by the oxygen concentration measuring apparatus 13 1 a during the manufacture of the tablet using the tablet manufacturing apparatus Sa is calculated.
  • the concentration (detected value) of the lubricant powder detected by the lubricant powder concentration measuring device 103 a is Threshold (threshold for explosion, lower limit concentration of alarm) If Vth 2 b or more, the safety confirmation lamp turns off and an alarm is output from the second alarm device (not shown). In order to warn the operator etc. of the possibility of a dust explosion.
  • the operator, etc. inspects and repairs the tablet manufacturing device Sa when the alarm is output from the second alarm device (not shown), and is in the process of manufacturing the tablet. In this way, it is possible to prevent a dust explosion from occurring in and around the tablet manufacturing apparatus Sa.
  • the lubricant powder concentration measurement device 103a detected by the lubricant powder concentration measuring apparatus 103a during the manufacture of the tablet using the tablet manufacturing apparatus Sa. If (detected value) becomes the other threshold value (threshold value for the lower limit of the automatic operation detonation explosion lower limit concentration) V th 3 b, the gas generator G (more specifically, the gas generator G is configured) Since the blower 1 1 1), the suction means 101 and the rotary tableting machine 81 are automatically stopped, no dust explosion occurs in or around the tablet manufacturing device Sa. .
  • the lubricant powder is discharged into the gas depending on the gas, and is mixed and dispersed in the gas, so that the gas in which the lubricant powder is mixed and dispersed is constant. As long as a certain amount of gas can be mixed with a certain amount of lubricant powder and dispersed.
  • a certain amount of the lubricant powder is always supplied to the lubricant application device, so that the mortar 3 2 ⁇ ⁇ and the upper punch 3 1 ⁇
  • a constant amount of lubricant powder can always be applied to each material contact surface of the lower punch and the lower punch.
  • a certain amount of lubricant powder can always be applied to the material contact surfaces of the mortar 3 2 ⁇ , the upper punch 3 1 ⁇ , and the lower punch 3 3 ⁇ . So once the mortar 3 Mix and disperse the lubricant powder so that the amount of lubricant powder applied to each material contact surface of the upper punch 3 1 ⁇ ⁇ and the lower punch 3 3 ⁇ ⁇ ⁇ is optimized.
  • the remaining amount of gas can be kept constant. It is possible to maintain the optimal amount of lubricant powder applied to each material contacting surface of 3 and 3.
  • the amount of tablets produced may be affected by tableting problems such as stateing, cabbing, laminating, mortar 3 2 ⁇ ⁇ , upper punch 3 1 ⁇ 1 ⁇ and lower punch 3 3 ⁇ 3 ⁇
  • the amount of gas that mixes and disperses the lubricant powder can be adjusted.
  • the tablet to be manufactured will have tableting troubles such as stateing, capping, laminating, mortar 3 2 ⁇ ⁇ , upper punch 3 1- ⁇ 'And the lower punch 3 3 ⁇ ⁇ ' do not cause stiffness ⁇ Tablets can be manufactured.
  • this method for producing tablets is suitable as a method for producing tablets (external lubricating tablets) on an industrial production profitable basis.
  • the concentration of oxygen contained in the gas in the device from the gas generating means G to the lubricant application device 91 is set to be equal to or lower than the lower explosive limit oxygen concentration. There is no dust explosion in the equipment from G to the lubricant application equipment 91.
  • the concentration of oxygen contained in the gas in the vicinity of the lubricant application device 91 is set to be equal to or lower than the lower explosion limit oxygen concentration, no dust explosion occurs even in the vicinity of the lubricant application device 91. .
  • the suction means 101 in the step of sucking the excess lubricant powder, the suction means 101 (more specifically, the suction duct (conduit) T 3 constituting the suction means 101) is used. Since the concentration of the lubricant powder in the tank is below the lower explosive limit concentration, the suction means 101 (more specifically, the suction duct constituting the suction means 101) There is no dust explosion in the vessel (conduit) T 3).
  • the tablet manufacturing apparatus Sa is provided with antistatic means, sparks due to static electricity do not occur. Thus, if this tablet manufacturing apparatus is used, dust explosion does not occur in the tablet manufacturing process.
  • a first alarm device (not shown) is provided in the tablet manufacturing apparatus Sa.
  • an oxygen concentration measuring apparatus 1 is used. 3 If the detection value detected by 1a becomes equal to or higher than the other threshold value (automatic stop oxygen concentration threshold value) Vth3a, the tablet manufacturing apparatus Sa is immediately and automatically stopped. Therefore, if this tablet manufacturing apparatus is used, a dust explosion does not occur in the tablet manufacturing process.
  • a second alarm device (not shown) is provided in the tablet manufacturing apparatus Sa, and when the tablet is manufactured using the tablet manufacturing apparatus Sa, the lubricant powder concentration is reduced.
  • the detection value detected by the measuring device 103 a becomes equal to or higher than the other threshold value (automatic shutdown lower explosive lower limit concentration threshold value) V th 3 b, the tablet manufacturing device Sa is immediately Since the machine is automatically stopped, dust explosion does not occur in the tablet manufacturing process if this tablet manufacturing device is used.
  • Figures 4 and 5 show the values of the lower explosive limit concentration of lubricant powder and the specific value of the explosive limit oxygen concentration. This is an excerpt of the test method and test results performed in Hamamatsu-Shintoda 1-6-2).
  • a lubricant powder commonly used in the production of pharmaceutical tablets that is, magnesium stearate (Japanese Pharmacopoeia: manufactured by Junsei Chemical Co., particle size: 10 ⁇ ) was used. .
  • This test consists of three types of tests: explosion test, ignition energy test, and explosive limit oxygen concentration test.
  • the explosion test was performed using a spherical explosion test device having a capacity of 30 liters, and using explosives (10 kJ) as the ignition source.
  • This explosion test is based on a test of dust in a spherical explosion test device with a capacity of 30 liters. Each of the four concentrations was performed at four concentrations: 125 g / m 3 , 250 g / m ⁇ 500 g / m 3 and 750 g / m 3 .
  • the environment for the explosion test was at a temperature of 21 ° C and a humidity of 21%.
  • the maximum pressure rise rates (ba ⁇ / sec) at dust concentrations of 125 g / m 3 , 250 g / m ⁇ 500 g / m 3 and 750 g / m 3 are 967.3, 109. 5, 1028.2 and 822.5.
  • K st (bar-m / sec) It 300.6, 34 1 at dust concentrations of 125 g / m 3 , 250 g / m 3 , 500 g / m 3 and 750 g / m 3 respectively -6, 319.4 and 255.6.
  • Russ was rated "3".
  • concentration of dust 25 g / m 3, 250
  • concentration of dust 1 25 g / m 3, 250
  • maximum explosion pressures (bar) at 500 g / m 3 and 750 g / m 3 respectively were 7.71, 8.68, 8.12 and 7.41.
  • the ignition energy test was performed using a blow-up ignition energy measurement device.
  • the ignition energy test, the concentration of dust blown igniter energy in the measuring apparatus, in the three concentrations of 250 g / m 3, 5009 / m 3 and 750 g 3, carried out for each of the three concentrations was.
  • the sample used was left in a desiccator for 24 hours and dried sufficiently. Ignition energy density of dust blown igniter energy in the measuring device is definitive under the conditions of 250 g / m 3 was 0. 3 m J rather ignition energy ⁇ 1 m J.
  • the sample is dust with particularly large explosion intensity and the ignition energy is as low as 1 mJ (below), so ignition by static electricity and danger of explosion was evaluated.
  • test equipment used for the explosion limit oxygen concentration test.
  • the test equipment is shown in Fig. 4 in the section of “3.
  • the test equipment used for the explosion limit oxygen concentration test is a compressor, a 40 liter (Liter) tank, a nitrogen cylinder, a 1.3 liter (Liter) tank, and a Hartmann explosion test.
  • the 40 liter (Liter) sunset and the compressor are connected by a conduit, and the air generated by driving the compressor is supplied to the 40 liter (Liter) tank.
  • the 40 liter (Liter) tank and the nitrogen cylinder are connected by a conduit, and the nitrogen gas generated from the nitrogen cylinder is supplied to the 40 liter (Liter) tank.
  • the concentration of oxygen contained in the gas in the 40 liter (L "iter) tank can be varied by appropriately adjusting the amount of drive of the compressor and the amount of nitrogen gas released from the nitrogen cylinder. You can do it.
  • a conduit is connected to the 40 liter (Liter) tank. This conduit branches on the way into two conduits, one branch is connected to a 1.3 liter (Liter) tank and the other branch is installed above the Hartmann explosion test apparatus. Connected to the purge nozzle.
  • a valve (purge valve) is provided in the middle of the other branch pipe. One end of the conduit is connected to a 1.3 liter (Liter) tank.
  • the other end of the conduit one end of which is connected to a 1.3 liter (Liter) tank, is located below the sample dish of the Hartmann explosion test apparatus.
  • a 1.3 liter (Liter) tank is connected to a no-Rutmann explosion test device.
  • a solenoid valve is provided in the middle of the conduit.
  • the Hartmann-type explosion test device is equipped with a glass cylindrical case (hereinafter referred to as an “explosion cylinder”), and a sample dish and a discharge electrode are placed inside the explosion cylinder in order from bottom to top. And an ignition mark line.
  • the ignition mark line is provided above the discharge electrode and at a distance of 100 mm from the discharge electrode.
  • a high-voltage current is supplied to the discharge electrode.
  • a high-voltage current is applied to the discharge electrode, a discharge is generated from the discharge electrode.
  • a filter can be inserted.
  • the purging nozzle can be inserted from the top to the bottom of the cylinder.
  • test conditions for the explosion limit oxygen concentration test are shown in the column of 1. Test conditions in Fig. 4.
  • Nitrogen (N 2) was used as the diluent gas.
  • the maximum oxygen concentration is 21%. Perform the test at 18%, 15%, and 12%. If the sample explodes at 12%, further reduce the oxygen concentration by 1% for the experiment. When the sample reached an oxygen concentration that did not cause explosion, it was observed whether or not the sample exploded at an oxygen concentration 1% higher than that.
  • a sample (magnesium stearate) should be prepared so that the dust in the tester has a predetermined concentration.
  • a shim Japanese Pharmacopoeia: Junsei Chemical Co., particle size: 1 Om
  • this sample (magnesium stearate (Japanese Pharmacopoeia Co .: Junsei Chemical Co., particle size: 1 ⁇ m. ⁇ ). )) was placed evenly on the sample dish.
  • This explosion limit oxygen concentration test was performed by appropriately changing the concentration of dust in the test equipment.
  • Japanese Pharmacopoeia manufactured by Nippon Yushi Co., Ltd., particle size: 1 m
  • Japanese Pharmacopoeia manufactured by Nippon Yushi Co., Ltd., particle size: 1 m
  • the oxygen concentration should be 8% or less. It is desirable to control the oxygen concentration if the explosion limit oxygen concentration is 11% or more and 12% or less, and it is desirable to control the oxygen concentration at 5% or less to prevent dust explosion. It turned out that.
  • the lower explosive limit concentration (g / m 3 ) of magnesium stearate Japanese Pharmacopoeia: manufactured by Junsei Chemical Co., Ltd., particle size: 1 ⁇
  • magnesium stearate Japanese Pharmacopoeia: Junsei Chemical
  • the lower explosive limit concentration (g / m 3 ) should be 30 g / m 3 or more and 50 g / m 3 or less. I understood.
  • Oxygen removing equipment 1 1 2 has a capacity to remove oxygen from a lubricant applicator 9 1, which is usually used when manufacturing tablets on an industrially profitable basis.
  • a lubricant applicator 9 1 which is usually used when manufacturing tablets on an industrially profitable basis.
  • the upper punch 3 1 ⁇ ⁇ and the material contact surface of the lower punch 3 3 ⁇ ⁇ ⁇ ⁇ ⁇ It is necessary to have an oxygen removal capability that enables the oxygen concentration in the gas used for applying the lubricant powder to be sufficiently lower than the explosive limit oxygen concentration.
  • the lubricant application device 91 is used to rotate the rotary tableting machine 81 to the mill (see the mill 32 shown in Figure 23).
  • the mill 32 shown in Figure 23.
  • a lubricant coating device 91 is used to make the tablets Material contact surface of each of the dies of the tableting machine 81 (see dies 32, 2 'in Figure 23) 3 1 - -. Material contacting surface, and, as a safety factor in the spray flow rate and control the flow rate of the lower punch 3 3 ⁇ the ⁇ ⁇ material contacting surface,
  • the tablet manufacturing device Sa is actually assembled, and the tablet is actually manufactured using the tablet manufacturing device Sa.
  • the oxygen concentration and lubrication in and around the tablet manufacturing device Sa are obtained.
  • the agent powder concentration was measured.
  • the oxygen concentration measuring device 13 1 d is provided for measuring the oxygen concentration in the suction duct (conduit) T 3 constituting the suction means 101 of the tablet manufacturing device Sa. It is a thing.
  • the oxygen concentration in the device near the oxygen removing device 112 of the tablet manufacturing device Sa can be measured by the oxygen concentration measuring device 131c.
  • the oxygen concentration in the device near the lubricant powder discharging device 51 of the tablet manufacturing device Sa can be measured by the oxygen concentration measuring device 131b.
  • the oxygen concentration in the vicinity of the lubricant applying device 91 of the tablet manufacturing device Sa can be measured by the oxygen concentration measuring device 131a.
  • the oxygen concentration in the device near the dust collection path of the tablet manufacturing device Sa can be measured by the oxygen concentration measuring device 131d.
  • the lubricant powder concentration measuring devices 103b, 103c and 103d are provided to measure the concentration of the lubricant powder in the tablet manufacturing device Sa. It is a thing.
  • the concentration of the lubricant powder in the device near the oxygen removing device 112 of the tablet manufacturing device Sa can be measured by the lubricant powder concentration measuring device 103d.
  • the concentration of the lubricant powder in the device 51 near the lubricant powder discharge device 51 of the tablet manufacturing device Sa can be measured by the lubricant powder concentration measuring device 103c.
  • the concentration of the lubricant powder in the vicinity of the lubricant applying device 91 of the tablet manufacturing device Sa can be measured by the lubricant powder concentration measuring device 103b.
  • the oxygen concentration in the device near the dust collection path of the tablet manufacturing device Sa can be measured by the lubricant powder concentration measuring device 103a. .
  • tablets having no tableting trouble in the manufactured tablets were manufactured on an industrial production profitable basis according to the above-described manufacturing method.
  • the oxygen concentration in the device near the oxygen removing device 1 12 was 0.5% or less. Further, the concentration of the powder in the device near the oxygen removing device 112 was 0 g / m 3 . In addition, no electrostatic charge was observed on the devices near the oxygen removing device 1 12. From the above results, the oxygen concentration near the oxygen remover 1 1 2 was significantly lower than the explosive limit oxygen concentration, and no powder (combustible material) was present. Since no electrostatic charge was observed on the device, it became clear that no powder explosion occurred.
  • the oxygen concentration in the device near the lubricant powder discharge device 51 is 0.5% or less.
  • the concentration of the unpowder near the lubricant powder discharging device 51 was 33.5 g / m 3 .
  • the powder concentration is higher than the lower explosive limit concentration, but the oxygen concentration is significantly lower than the explosive limit oxygen concentration, and furthermore, Since no electrostatic charge was observed on the device near the powder discharge device 51, it was clarified that no powder explosion occurred.
  • the oxygen concentration in the vicinity of the lubricant applying device 91 was 0.5% or less.
  • the concentration of the powder near the lubricant applying device 91 was 33.3 g / m 3 .
  • no electrostatic charge was observed on devices in the vicinity of the lubricant powder discharging device 51.
  • the powder concentration was higher than the lower explosive limit concentration, but the oxygen concentration was significantly lower than the explosive limit oxygen concentration. Since no electrostatic charge was observed on the device near the lubricant application device 91, it was clarified that no powder explosion occurred.
  • the oxygen concentration in the device near the dust collection path was 21%.
  • the concentration of the powder in the device near the dust collection path was 0.91 g / m 3 . No electrostatic charge was observed on the devices near the dust collection path.
  • FIG. 7 is a configuration diagram schematically showing another example of the tablet manufacturing apparatus according to the present invention.
  • the tablet manufacturing device (external lubricating tableting machine) Sb is a device that connects a pulsating gas vibration wave generator 41 to the gas generator G shown in Fig. 1 as a gas generator Ga. Is used.
  • the gas generator G a removes oxygen in the compressed air sent from the blower 1 1 1 into the conduit T m by driving the blower 1 1 1 and the blower 1 1 1 Oxygen removing device 1 1 2 and pulsating gas vibration wave generator 4 1
  • the pulsating gas vibration wave generator 41 is generated by driving the blower 1 1 1, and the gas from which oxygen has been removed by the oxygen remover 1 1 2 is pulsating gas vibration wave (Fig. 11 (a) And a gas that pulsates at a constant cycle as illustrated in each of FIGS. 11 (b) and 11 (b).
  • the pulsating gas vibration wave generating device 41 and the control device 122 can exchange signals via a signal line (not shown).
  • the pulsating gas vibration wave having a desired frequency and a desired waveform can be generated by driving, stopping, and controlling the driving amount of the wave generator 41.
  • the configuration of the pulsating gas vibration wave generator 41 and the pulsating gas vibration wave will be described in detail later, so that the detailed description is omitted here.
  • the tablet manufacturing equipment (external lubricating tableting machine) Sb includes a blower 1 1 1, a pipe T 0, an oxygen removal apparatus 1 1 2, a pipe T m, Airtight up to conduit T 1, lubricant powder discharge device 51, conduit T 2 and lubricant application device 91 Has been in the system.
  • one end of a conduit TO is airtightly connected to the blower of the blower 1-11, and the air supply port of the oxygen removing device 112 is airtightly connected to the other end of the conduit TO.
  • One end of a conduit Tm is airtightly connected to the exhaust port of the oxygen removal device 112, and the other end of the conduit Tm is connected to the gas supply port of the pulsating gas vibration wave generator 41 (Fig.
  • the gas supply port 4 2a shown in 32) is airtightly connected to the gas discharge port of the pulsating gas vibration wave generator 41 (gas discharge port 4 2b shown in Fig. 32).
  • conduit T1 Is tightly connected to one end of the conduit T1, and the other end of the conduit T1 is airtightly connected to the air supply port of the lubricant powder discharger 51 (gas supply port 55a shown in Fig. 12).
  • One end of the conduit T 2 is airtightly connected to the discharge outlet (the discharge port 55 b shown in FIG. 12) of the lubricant powder discharge device, and the lubricant is connected to the other end of the conduit T 2.
  • Spray device 9 1 lubrication
  • the lubricant inlet is airtightly connected, and the lubricant sprayer for spraying the upper punch from the air inlet of the blower 1 11 1
  • the gas flow path to the spray outlet 94) is airtight.
  • the pulsating gas oscillating wave generator (see pulsating gas oscillating wave generator 41 shown in Fig. 32) is driven to operate the blower.
  • the gas sent out of the blower into the conduit Tm, from which oxygen has been removed by the oxygen remover, is converted into a pulsating vibration gas.
  • the converted pulsating vibration gas is supplied to the lubricant powder discharge device 51 1 ⁇
  • the pulsating gas vibration wave generator 41 when the pulsating gas vibration wave generator 41 is provided, the pulsating gas vibration wave generator (see the pulsating gas vibration wave generator 41 shown in FIG. 7) is used.
  • the cycle and the amplitude of can be controlled by the controller 122. That is, the amount of the lubricant powder discharged from the lubricant powder discharging device 51 is determined when the pulsating vibration gas is supplied to the lubricant powder discharging device 51, and the driving amount of the blower 1 1 1
  • the constant is set to be constant, it depends on the frequency of the pulsating vibration gas supplied to the lubricant powder discharging device 51.
  • the discharge amount of the lubricant powder discharged from the lubricant powder discharging device 51 can be increased. Therefore, a high-concentration lubricant powder can be supplied to the lubricant spray device 91.
  • the frequency of the pulsating vibration gas supplied to the lubricant powder discharging device 51 is reduced, the discharge amount of the lubricant powder discharged from the lubricant powder discharging device 51 can be reduced.
  • the lubricant spray device 91 can be supplied with a low-concentration lubricant powder.
  • the other configuration of the tablet manufacturing apparatus (external lubricating tableting machine) Sb is the same as that of the tablet manufacturing apparatus (external lubricating tableting machine) Sa shown in FIG. The description here is omitted.
  • the powder material which is a raw material of the tablet, is stored in a powder material storage hopper (not shown) of the rotary tableting machine 81.
  • the lubricant powder is stored in the lubricant powder discharging device 51.
  • the power supply of the control device 121 is turned on, and each of the oxygen concentration measuring device 131a and the lubricant powder non-concentration measuring device 103a is put into an operating state.
  • the rotary-type tableting machine 81 is driven, and the rotary table 34, the plurality of upper punches 31, and the plurality of lower punches 34 are rotated.
  • each of the blower 111, the pulsating gas vibration wave generator 41, and the suction means (lubricant suction device) 101 is driven by a desired drive amount.
  • the operation of the tablet manufacturing apparatus Sb is as follows.
  • the tablet manufacturing apparatus (external lubricating tableting machine) Sb is moved, the blower 1 11 and the suction means (lubricant suction apparatus) 10
  • the pulsating gas vibration wave generator 41 is driven at a desired drive amount and the supply amount of the lubricant powder to the lubricant application device 91 is small, in addition to driving each of the devices 1 at a desired drive amount. Even if the driving amount of the probe 111 is not changed, the driving amount of the pulsating gas vibration wave generator 41 can be increased by increasing the driving amount of the pulsating gas vibration wave generator 41.
  • the supply amount can be increased, and when the tablet manufacturing equipment (external lubricating tableting machine) Sb is stopped (including when the automatic operation is stopped), the blower 1 1 1 and suction means (lubricant suction device) In addition to stopping each of 101, the pulsating gas vibration wave generator 41 was also stopped. Except that the so that the operation of the manufacturing apparatus S a tablet The description is omitted here.
  • FIG. 8 is a configuration diagram schematically showing another example of the tablet manufacturing apparatus according to the present invention.
  • Tablet manufacturing equipment (external lubricating tableting machine) S c is a gas generator G a, a non-combustible gas generator 1 1 a is used, and tablet manufacturing equipment (external lubricating tableting machine) Tablet manufacturing equipment (external lubricating tableting machine) has the same configuration as Sa, except that it does not have the oxygen removal device 1 1 or 2 that was an essential component in Sa.
  • the corresponding members are denoted by the corresponding reference numerals, and description thereof will be omitted.
  • non-flammable gas generator 111a for example, a gas cylinder filled with non-flammable gas such as nitrogen (N 2) gas, helium (He) gas, or inert gas such as argon (Ar) gas is used. Used.
  • non-flammable gas such as nitrogen (N 2) gas, helium (He) gas, or inert gas such as argon (Ar) gas is used.
  • V111a is a pulse for adjusting the flow rate and pressure of the nonflammable gas supplied from the nonflammable gas generator 111a to the lubricant powder discharger 51. It is.
  • valve V111a an electromagnetic valve using a solenoid or the like is used as the valve V111a.
  • the valve V 1 11 a and the control device 12 1 can exchange signals via a signal line (not shown). By sending a signal from the control device 12 1 By controlling the opening / closing amount of the valve V111a, the flow rate and pressure of the nonflammable gas generated from the nonflammable gas generator 111a can be adjusted.
  • the powder material which is a raw material of the tablet, is accommodated in a powder material storage tub (not shown) of the rotary tableting machine 81.
  • the lubricant powder is stored in the lubricant powder discharging device 51.
  • the power supply of the control device 121 is turned on, and each of the oxygen concentration measurement device 131a and the lubricant powder concentration measurement device 103a is operated.
  • the rotary tableting machine 81 is driven, and the rotary table 34, a plurality of rotary tables are used. 3 1 ⁇ ⁇ ⁇ and a plurality of lower punches 3 4 ⁇ ⁇ ⁇ are driven to rotate.
  • valve V111a provided in the noncombustible gas generator 111a is set to a desired opening amount, and each of the suction means (lubricant suction device) 101 is driven at a desired driving amount. Drive.
  • the operation of the tablet manufacturing apparatus Sc is as follows.
  • the valve V provided on the noncombustible gas generator 111a is operated.
  • 1 1 a is set to the desired opening amount, and when the tablet manufacturing device (external lubricating tablet press) Sc is stopped (including when the automatic operation is stopped), the valve V 1 1 1 Except for closing a, the operation is the same as the operation of the tablet manufacturing device S a, so the description here is omitted.
  • FIG. 9 is a configuration diagram schematically showing another example of the tablet manufacturing apparatus according to the present invention.
  • This tablet manufacturing device (external lubricating tableting machine) S d is a gas generating device Gb, and a tablet manufacturing device using an incombustible gas generating device 1 1 a (external lubricating tableting machine) Tablet manufacturing equipment (external lubricating tableting machine) shown in Fig. 8 except that a pulsating gas vibration wave generator 41 is used in addition to the gas generator Ga of Sb. Therefore, the corresponding member devices are denoted by the corresponding reference numerals, and the description thereof is omitted.
  • the powder material which is a raw material of the tablet, is accommodated in a powder material storage tub (not shown) of the rotary tableting machine 81.
  • the lubricant powder is stored in the lubricant powder discharging device 51.
  • the power supply of the control device 121 is turned on, and each of the oxygen concentration measurement device 131a and the lubricant powder concentration measurement device 103a is operated.
  • the rotary tableting machine 81 is driven, and the rotary table 34, the plurality of upper punches 31, and the plurality of lower punches 34 are rotated.
  • valve V11a provided on the noncombustible gas generator 111a was desired.
  • Each of the pulsating gas vibration wave generator 41 and the suction means (lubricant suction device) 101 is driven at a desired drive amount.
  • the operation of the tablet manufacturing apparatus Sc is performed by operating the tablet manufacturing apparatus (external lubricating tableting machine) Sc when the non-combustible gas generator 1 1 a is provided with a valve V 1 11a is set to a desired opening amount, and in addition to driving each of the suction means (lubricant suction device) 101 with a desired driving amount, the pulsating gas vibration wave generator 41 is driven with a desired driving amount.
  • the pulsating gas vibration wave generator 41 is used even if the opening amount of the valve V111a is not changed.
  • the driving amount of the lubricant is increased, the supply amount of the lubricant powder to the lubricant applying device 91 can be increased, and the tablet manufacturing device (external lubricating tableting machine) When stopping Sb (including the case where automatic operation is stopped), close the valve V111a and set the suction means (lubricant).
  • the operation is the same as that of the tablet manufacturing device Sc except that the pulsating gas vibration wave generator 41 is stopped in addition to stopping each of the 101). Is omitted.
  • FIG. 10 is an overall configuration diagram schematically showing a tablet manufacturing apparatus (hereinafter, simply referred to as “external lubricating tableting machine”) S.
  • the external lubricating tableting machine Sb includes a pulsating gas vibration wave generator 41, a lubricant powder discharging device 51, a rotary tableting machine 81, and a mouth-tipping tableting machine 8
  • a lubricant application device 9 1 provided at a predetermined position of 1 and a lubricant suction device 1 for removing excess lubricant from the lubricant sprayed from the lubricant application device 9 1 0 1, a blower 1 1 1 1, an oxygen removing device 1 1 2, and a control device 1 2 1 that controls and controls the whole of the external lubricating tableting machine S.
  • the blower 111 and the pulsating gas vibration wave generator 41 are connected by a conduit Tm, and the blower 111 is driven.
  • the generated compressed air is supplied to a pulsating gas vibration wave generator 41 after oxygen contained in the compressed air is removed by an oxygen remover 112.
  • the pulsating gas vibration wave generator 41 and the lubricant powder discharger 51 are connected by a conduit T1.
  • the pulsating gas vibration wave generator 41 converts the compressed gas, which has been sent through the conduit Tm, from which oxygen has been removed into a pulsating gas vibration wave of positive pressure, and supplies the pulsating gas to the conduit T1 It has become.
  • FIG. 11 is an explanatory diagram exemplifying a positive pressure pulsating gas vibration wave.
  • pulsesating gas vibration wave means a wave of air that fluctuates in pressure.
  • Pressure means that the pressure is higher than the pressure (atmospheric pressure) outside the external lubricating tablet press S.
  • the pulsating gas oscillating wave supplied to the conduit T1 has the peak of the pulsating gas oscillating wave of positive pressure, the valley of The pulsating gas vibration wave may be a pulsating gas vibration wave, and as shown in FIG. 11 (b), both the peak and the valley of the amplitude of the pulsating gas vibration wave may be a positive pressure pulsating gas vibration wave.
  • the lubricant powder ejection device 51 and the lubricant application device 91 are connected by a conduit T2.
  • the lubricant powder discharge device 51 quantitatively mixes the lubricant powder with the positive pressure pulsating gas vibration wave.
  • a positively pulsating gas oscillating wave of dispersed, positively dispersed and lubricating powder is quantitatively mixed and supplied to the conduit T 2.
  • the lubricant powder supplied to the conduit T2 together with the pulsating gas vibration wave of the positive pressure is pneumatically transported in the conduit T2 by the pulsating gas vibration wave of the positive pressure, and the lubricant is applied in the lubricant application device 91.
  • the upper surface of the upper punch 31 (the lower surface) S 31, the surface of the mortar 32 (the inner peripheral surface) S 32 and the lower punch 33 which are supplied to the lubricant application device 91 and are contained in the lubricant application device 91
  • the surface (upper surface) of S33 can be sprayed sequentially.
  • the lubricant application device 91 and the suction means (lubricant suction device) 101 are connected by a conduit T3.
  • FIG. 12 is an explanatory view schematically showing a lubricant powder discharging device.
  • the lubricant powder discharging device 51 includes a lubricant storage hopper 52, a cylindrical body 53 that is air-tightly connected to a material discharge port 52a of the lubricant storage hopper 52, and a lubricant.
  • a material discharge valve 54 provided at the material discharge port 52a of the hopper 52 for storing the lubricant and an openable and closable valve, and an elastic film Et provided so as to form a bottom surface of the cylindrical body 53.
  • a dispersing chamber 55 is hermetically connected below the cylindrical body 53 with an elastic film Et interposed therebetween.
  • gas injection means 56, 56 are provided near the material discharge port 52a.
  • FIG. 13 is an explanatory view for explaining the lubricant storage hopper 52 in more detail
  • FIG. 13 (a) is a perspective view schematically showing the lubricant storage hopper 52
  • FIG. 13 (b) is a plan view schematically showing a main part of the lubricant storage hopper 52 shown in FIG. 13 (a).
  • Each of the gas injection means 56 and 56 is provided on the inner peripheral surface of the lubricant storage hopper 52 in a substantially tangential direction.
  • each of the gas injection means 56 and 56 is located on the outer peripheral side above the material discharge port 52 a in the cone section 52 d of the lubricant storage hob 52. At the position of, it is provided substantially tangentially to the material discharge port 52a.
  • FIGS. 12 and 13 show an example in which two gas injection means 56 are provided, the number of gas injection means 56 is not limited to two, and may be one. Well, three or more may be provided. In the case where two or more gas injection means 56 are provided, each gas outlet 56 a of the gas injection means 56 is connected to the gas outlet 56 a. The gas injected from each is provided so as to face the same rotational direction.
  • a member denoted by 52 c indicates a lid that is detachably provided to the material inlet 52 b of the lubricant hopper 52. In this example, the lid 52 c is hermetically attached to the material inlet 52 b of the lubricant storage hopper 52.
  • the lubricant storage hopper 52 is connected to a conduit T4 provided to communicate with the atmosphere.
  • lubricant storage hopper 52 and the conduit Tm are connected by a conduit T5.
  • An on-off valve V2 and a pressure control valve Vp2 are provided in the middle of the conduit T5.
  • the member device indicated by F1 provided in the middle of the conduit T5 indicates a filter for removing dust in the air supplied into the conduit T5.
  • the filter F1 is a member provided as needed.
  • FIG. 12 shows only the connection state of the conduit T6 to one of the gas injection means 56, 56 of the gas injection means 56, and the connection state of the conduit T6 to the other gas injection means 56. Illustration of the state is omitted.
  • a pressure regulating valve Vp3 is provided in the middle of the conduit T6, a pressure regulating valve Vp3 is provided.
  • the member device indicated by F2 provided in the middle of the conduit T6 indicates a filter for removing dust in the air supplied into the conduit T6.
  • the filter F2 is a member provided as needed.
  • the material extracting valve 54 includes a valve element 54b and an opening / closing drive unit (actuary) 54a for moving the valve element 54b up and down.
  • the opening / closing drive of the material extraction valve 54 is performed by air. That is, the material discharge valve 54 and the conduit Tm are connected by the conduit T7.
  • This conduit T7 branches on the way into two branch pipes T7a and T7b, which are connected to the opening / closing drive means (actuate-evening) 54a of the material extraction valve 54.
  • a switching valve V3 is provided in the middle of the conduit T7.
  • the switching valve V3 is set so that the branch pipe T7a is open and the branch pipe T7b is closed, The valve 54 of the material discharge valve 54 moves downward to open the material outlet 52 of the lubricant storage hopper 52, and the switching valve V3 is connected to the branch pipe T. If the 7b side is opened and the branch pipe T7a is closed, the valve 54 of the material discharge valve 54 will be By moving upward, the material discharge port 52 a of the lubricant storage hopper 52 is closed.
  • a member indicated by F3 provided in the middle of each of the branch pipes T7a and T7b indicates a filter for removing dust in the air supplied into the conduit T7. .
  • the filters F3 and F3 are members provided as needed.
  • FIG. 14 is a plan view schematically showing the elastic film Et.
  • the elastic film Et is made of an elastic material such as a synthetic rubber such as silicone rubber, and has a through hole Eta at the center thereof.
  • the through-hole Eta of the elastic film Et is formed in a slit shape.
  • the elastic membrane Et is attached between the tubular body 53 and the dispersion chamber 55 using an elastic membrane attachment 51.
  • FIG. 15 is a perspective view schematically showing a state in which the elastic film is attached to the elastic film attachment used in the lubricant powder discharging device 51.
  • FIG. 16 is a perspective view of FIG.
  • FIG. 17 is an exploded perspective view schematically showing the configuration of the elastic membrane attachment shown in FIG. 17.
  • FIG. 17 is a cross-sectional view schematically showing the configuration of the elastic membrane attachment shown in FIG.
  • the elastic membrane attachment 61 includes one pedestal 62, a push-up member 63, and a pressing member 64.
  • the pedestal 62 is provided with a hollow h1, and a ring-shaped mounting surface S1 for mounting the push-up member 63 is provided on the outer periphery of the hollow h1. Further, the pedestal 62 is provided with a V groove Dv so as to surround the hollow h1 in a ring shape.
  • the push-up member 63 has a hollow h2. In this example, as shown in FIG. 17, the push-up member 63 has a stepped portion Q1 on its lower surface, and when the push-up member 3 is placed on the pedestal 62, the stepped portion Q1 Is located on the mounting surface S1 of the pedestal 62.
  • the downward extension Q2 provided to extend below the stepped portion Q1 of the push-up member 63 is provided.
  • the pedestal 6 2 is adapted to fit in the hollow h 1. That is, the outer diameter D 2 of the downwardly extending portion Q 2 of the push-up member 6 3 is equal to g D 1 of the hollow h 1 of the pedestal 6 2. Or it is precision machined to slightly smaller dimensions.
  • the push-up member 63 has an inclined surface extending from the upper side to the lower side when viewed in cross section, on the outer periphery of the upper part Q3.
  • the pressing member 64 has a hollow h3.
  • a ring-shaped, V-shaped projection CV is provided on the surface S 4 of the holding member 64 facing the pedestal 62 so as to fit into the V groove DV provided on the surface of the pedestal 62. Have been.
  • the members indicated by 65 in FIGS. 15 and 16 indicate fastening means such as bolts.
  • a hole indicated by h 4 is a fixing hole of the fastening means 65 formed in the pedestal 62, and a hole indicated by h 6 is formed in the pressing member 64.
  • the fixing holes of the fastening means 65 are shown, respectively.
  • the hole indicated by h5 is formed in the pedestal 62, and the elastic membrane attachment device 61 is attached to a target device by a fixing means (not shown) such as a bolt.
  • a fixing hole for fixing the elastic membrane attachment 61 to a target device is formed by a fixing means such as a bolt (not shown).
  • Each of the fixing holes for mounting is shown.
  • the inner diameter D4 of the hollow h3 of the holding member 64 is precisely machined to a size equal to or slightly larger than the outer diameter D3 of the push-up member 63.
  • the push-up member 63 is placed on the surface of the pedestal 62.
  • the pressing member 64 is placed on the push-up member 63 so as to cover both the push-up member 63 and the elastic film Et. At this time, each of the fixing holes h 4- ⁇ formed in the pedestal 62 and each of the fixing holes h 6 ′ ′′ formed in the pressing member 64 are aligned.
  • the holding member 4 is tightened.
  • the elastic membrane attachment 6 1 the elastic membrane Et is placed on the push-up member 6 3 placed on the pedestal 6 2, and the holding member 6 4 is tightened against the pedestal 6 2.
  • the elastic film Et is pushed up in the pressing member 64 direction by the pushing up member 63.
  • the elastic film Et is pushed up in the pressing member 64 direction, and is thereby stretched from the inside of the elastic film Et to the outer peripheral side.
  • the elastic film Et stretched by the push-up member 63 changes the outer peripheral surface Q 3 of the push-up member 63 and the surface forming the hollow h 3 of the pressing member 64 (the inner peripheral surface). ), And a V-groove D v provided on the surface of the pedestal 62, and a V-shaped protrusion C provided on the surface of the pressing member 64 facing the pedestal 62. It is inserted between v and.
  • the elastic film Et is pressed by the pushing-up member 63 so that the pressing member 63 is pressed. While being pushed up in four directions, it is sandwiched between the outer peripheral surface Q3 of the push-up member 63 and the inner peripheral surface of the hollow h3 of the pressing member 64.
  • a portion extended from the inside of the elastic film E t to the outer peripheral side is formed in the V groove D v provided on the surface of the pedestal 62.
  • a V-shaped projection Cv provided on the surface of the holding member 64 facing the pedestal 62.
  • the elastic film attaching device 61 the elastic film Et is placed on the push-up member 63 placed on the pedestal 62, and the pressing member 64 is fastened to the pedestal 62. Then, the elastic film Et is pushed up in the direction of the holding member 64 by the push-up member 63, whereby the elastic film Et is stretched from the inner side to the outer side. Further, in this way, the outer peripheral portion of the elastic body film Et stretched by the push-up member 63 becomes the V-groove DV provided on the surface of the pedestal 62 and the pedestal 6 of the holding member 64. As a result, the elastic membrane attachment 6 1 is held on the push-up member 6 3 placed on the pedestal 6 2 by the elastic membrane E t.
  • the elastic membrane E t is placed on the elastic membrane E t by a simple operation of placing the holding member 6 4 on the base 6 2. It can be in an evenly stretched state. Further, in the elastic membrane attachment 61, a cross-sectional view of the outer periphery of the push-up member 63 is provided. In this case, an inclined surface Q3 extending from the upper side to the lower side is provided.
  • the elastic film Et is a pressing member.
  • the portion extended from the inside of the elastic film Et to the outer peripheral side becomes the V-shaped groove DV provided in a ring shape on the surface of the pedestal 62 and the holding member 64. It is easy to move between the surface facing the pedestal 62 and the V-shaped projection Cv provided in a ring shape.
  • the elastic film Et becomes Since there is a sufficient gap (spacing) between the inclined surface Q3 of the push-up member 63 and the surface forming the hollow h3 of the holding member 64, the elastic film is formed by the push-up member 63.
  • the portion extended from the inside to the outside of Et passes through this gap (interval) and is easily guided in the direction of the DV groove provided in a ring on the surface of the pedestal 62.
  • the inclined surface Q 3 provided on the outer periphery of the push-up member 63 is configured such that, when viewed in cross section, the lower side expands from the upper side, so that the elastic body film E t is formed by the push-up member 63.
  • the portion extended from the inside to the outside is guided along the surface of the inclined surface Q3 in the direction of the V-shaped groove DV provided in a ring shape on the surface of the pedestal 62.
  • the outer surface of the inclined surface Q 3 of the pushing member 6 3 gradually approaches the inner diameter D 4 of the hollow h 3 of the holding member 6 4, and the pushing member 6 3
  • the gap (interval) between the inclined surface Q3 of the inclined surface Q3 and the surface forming the hollow h3 of the holding member 64 is approximately the thickness (thickness) of the elastic film Et.
  • the elastic film Et is sandwiched between the inclined surface Q3 of the push-up member 63 and the surface forming the hollow h3 of the pressing member 64.
  • the elastic membrane attachment 6 1 was placed on the pedestal 62.
  • the elastic film Et is placed on the push-up member 63, and then the holding member 64 is tightened to the pedestal 62 by using each of bolting means 65 and the like.
  • the elastic film Et can be uniformly stretched.
  • the holding member 64 is tightened to the pedestal 62 using each of the bolts or other tightening means 65, the inclined surface Q3 of the outer periphery of the push-up member 63 and the pressing member ⁇ The distance between the hollow inner peripheral surface of the member 64 and the inner peripheral surface of the push-up member 63 is gradually narrowed. Therefore, after the pressing member 64 is fastened to the pedestal 62, the elastic film Et does not loosen.
  • the elastic film Et when the elastic film Et is attached, the elastic film Et forms the inclined surface Q3 of the push-up member 63 and the hollow h3 of the pressing member 64.
  • V-shaped protrusion Cv provided in a ring shape on the surface facing the pedestal 62 of the holding member 64 between the surface and the holding member 64, and provided in a ring shape on the pedestal 62. Since it is in a double locked state with the V-shaped groove Dv, the elastic film Et does not loosen after the holding member 64 is tightened to the pedestal 62.
  • the holding member 6 4 of the elastic film attachment 6 1 to which the elastic film Et is attached is airtightly attached to the lower portion of the cylindrical body 53, and the pedestal 6 2 is attached to the dispersion chamber. 5 Airtightly attached to the top of 5.
  • the lubricant powder discharging device 51 includes a bypass pipe TV between the dispersion chamber 55 and the cylindrical body 53.
  • the bypass pipe TV is provided to quickly balance the pressure in the dispersion chamber 55 with the pressure in the cylindrical body 53.
  • the lower cylinder 53b has a level sensor for detecting the amount of lubricant powder deposited and stored on the elastic film Et of the lower cylinder 53b. 7 1 is attached.
  • the level sensor 71 includes a light emitting element 71a that emits light such as infrared light and visible light, and a light receiving element 71b that receives light emitted from the light emitting element 71a.
  • the light emitting element 71a and the light receiving element 71b are arranged to face each other so as to sandwich the lower cylindrical body 53b.
  • the position where the level sensor 7 1 is provided (from the elastic film E to the level sensor The height of the position where 71 is provided) By Hth, the amount of lubricant powder deposited and stored on the elastic film Et in the lower cylindrical portion 53b can be detected.
  • the amount of the lubricant powder deposited and stored on the elastic film Et in the lower cylindrical portion 53b is determined by the position at which the level sensor 71 is provided (from the elastic film Et to the position of the level sensor 71). If the height exceeds H th, the light emitted from the light emitting element 71 a is blocked by the lubricant powder and cannot be received by the light receiving element 71 b (turned off). At this time, the height H of the lubricant powder deposited and stored on the elastic film E t in the lower cylindrical body 53 b exceeds the height H th above the elastic film E t. Can be detected
  • the amount of the lubricant powder deposited and stored on the elastic film Et in the lower cylindrical body 53b is determined by the position where the level sensor 71 is provided (from the elastic film E to the level sensor 71).
  • the height is less than Hth, the light emitted from the light emitting element 71a can be received by the light receiving element 71b (turned on). It can be detected that the height H of the lubricant powder deposited and stored on the elastic film E t of the elastic film E t is less than the height H th (H ⁇ H th).
  • the material discharge valve 54 moves up and down according to the detection value of the level sensor 71 to close or open the discharge port 52 a of the lubricant storage hopper 52. I'm ready to go. More specifically, in the lubricant powder discharging device 51, while the lubricant powder discharging device 51 is being driven, the light emitting element 71a of the level sensor 71 is kept lit, and the light emitting element When the light emitted from 71a cannot be received by the light receiving element 71b (turns off), the material discharge valve 54 is moved upward to discharge the lubricant storage hopper 52.
  • the material cutoff valve 54 is moved downward to lubricate.
  • the lubricant powder discharge device 51 is opened by opening the outlet 52 a of the hopper 52 for storing the agent until the light receiving element 71 b cannot receive the light until the light is turned off.
  • an approximately constant amount of lubricant powder is always accumulated and deposited on the elastic film Et in the lower cylindrical body 53b. I have.
  • the interior of the dispersion chamber 55 has a substantially cylindrical shape so that the pulsating gas vibration wave of positive pressure easily becomes a swirling flow therein.
  • the dispersion room An example in which the internal shape of 55 is a substantially cylindrical shape is shown, but the internal shape of the dispersing chamber 55 is such that the pulsating gas vibration wave of positive pressure easily becomes a swirling flow inside it.
  • the internal shape is not necessarily limited to a generally cylindrical shape.
  • the lower cylindrical portion 53b of the cylindrical body 53 is made of a transparent resin. More specifically, the lower cylindrical body 53b is made of a light-transmitting material such as, for example, glass, acrylic resin, or polycarbonate resin.
  • the lower cylindrical portion 53b is preferably made of a polycarbonate resin, and more preferably, its inner peripheral surface is mirror-finished.
  • the lower cylindrical portion 53b is made of polycarbonate resin and its inner peripheral surface is mirror-finished, compared to the case where other materials are used, the lower cylindrical portion 53b is formed. This is because the powder material does not easily adhere to the periphery, and the detection accuracy of the level sensor 71 is high.
  • the pulsating gas vibration wave supply port 55a is provided in the dispersion chamber 55 at a position below and in a direction substantially tangent to the inner peripheral surface of the dispersion chamber 55, and the pulsating gas A discharge port 55b is provided substantially in the tangential direction of the inner peripheral surface of the chamber 55.
  • a conduit T5 is connected to the pulsating gas vibration wave supply port 55a, and a conduit (see, for example, the conduit T6 shown in Fig. 12) is connected to the discharge port 55b. It is to be connected.
  • the dispersion chamber 55 has a pulsating gas vibration wave supply port 55 a at a position below the dispersion chamber 55 and substantially in a tangential direction of the inner peripheral surface of the dispersion chamber 55.
  • a discharge port 55 b is provided at a position above the discharge chamber 55 in a direction substantially tangential to the inner peripheral surface of the dispersion chamber 55.
  • the pulsating gas vibration wave generator 41 is connected between the pulsating gas vibration wave supply port 55a of the dispersion chamber 55 and the pulsating gas vibration wave generator 41 by driving the pulsating gas vibration wave generator 41.
  • the positive pressure pulsating gas vibration wave generated from the pulsating gas vibration wave generator 41 is supplied into the dispersion chamber 55 via the conduit T1.
  • outlet 55 and the lubricant application device are connected by a conduit (the conduit T2 shown in FIG. 10).
  • FIG. 18 is a plan view schematically showing the position of the pulsating gas vibration wave supply port 55 a provided in the dispersion chamber 55 when the dispersion chamber 55 is viewed in a plan view, and FIG. FIG. 18 is an explanatory view for explaining a preferable mounting position of the pulsating gas vibration wave supply port 55a with respect to 55, and FIG. It is explanatory drawing explaining a possible position.
  • the curved arrows indicate the direction of the swirling flow of the positive pressure pulsating gas vibration wave generated in the dispersion chamber 55. ing.
  • the pulsating gas vibration wave supply port 55 a is connected to the dispersion chamber 55 with respect to the inner peripheral surface of the dispersion chamber 55.
  • it is preferable to be provided in the tangential direction (the direction indicated by the broken line Lt in FIG. 18 (a)).
  • the pulsating gas vibration wave supply port 55a does not need to be provided substantially tangentially to the inner peripheral surface of the dispersion chamber 55 as shown in FIG. 18 (a).
  • the vibration wave supply port 55a In general, the direction equivalent to the tangential direction (for example, the direction indicated by the broken line Lt in FIG. 18 (b)) (that is, the tangential direction of the inner peripheral surface of the dispersion chamber 55 (for example, FIG. 18 (b) ), A broken line and a direction parallel to t)).
  • the pulsating gas vibration wave supply port 55a is provided in the direction of the center line of the dispersion chamber 55 as shown by the imaginary line Lc in FIG. 18 (b), the shape inside the dispersion chamber 55
  • the pulsating gas vibration wave of positive pressure is provided in the dispersion chamber 55. Considering the generation of swirling flow, it is not very favorable.
  • FIG. 19 is a diagram schematically illustrating the positions of the pulsating gas vibration wave supply port 55a and the discharge port 55b provided in the dispersion chamber 55 when the dispersion chamber 55 is viewed in a plan view.
  • a) is the pulsating gas vibration wave supply port 55a and the discharge port 55 for the dispersion chamber 55.
  • FIG. 19 (b) illustrates a practical mounting position of the pulsating gas vibration wave supply port 55a and the discharge port 55b with respect to the dispersion chamber 55.
  • FIG. 19 is a diagram schematically illustrating the positions of the pulsating gas vibration wave supply port 55a and the discharge port 55b provided in the dispersion chamber 55 when the dispersion chamber 55 is viewed in a plan view.
  • a) is the pulsating gas vibration wave supply port 55a and the discharge port 55 for the dispersion chamber 55.
  • FIG. 19 (b) illustrates a practical mounting position of the pulsating gas vibration wave supply port 55a and the discharge port 55b
  • the curved arrows indicate the direction of the swirling flow of the positive pressure pulsating gas vibration wave generated in the dispersion chamber 55. ing.
  • the discharge port 55b is provided in the dispersion chamber 55 at the position shown in Fig. 19 (a)
  • the direction of the swirling flow of the pulsating gas vibration wave generated in the dispersion chamber 55 progress of air Direction
  • the discharge port 55b is provided in the opposite direction. In this case, the discharge efficiency of the lubricant powder dispersed and dispersed in air and fluidized at the discharge port 55b can be set low. .
  • the discharge port 5b is exemplarily shown in FIG. 19 (b). It is preferable to provide the discharge port 55b in the forward direction of the swirling flow of the pulsating gas vibration wave of positive pressure generated in the dispersion chamber 55 as in 5b1 or the discharge port 55b2.
  • the interior of the dispersion chamber 55 has a substantially cylindrical shape so that the pulsating gas vibration wave of positive pressure easily becomes a swirling flow inside.
  • the inside of the dispersion chamber 55 has a substantially cylindrical shape, but the inside of the dispersion chamber 55 has a pulsating gas vibration wave of a positive pressure inside. Any shape may be used as long as it is easily swirled, and the shape of the inside is not necessarily limited to a substantially cylindrical shape.
  • a member device indicated by 72 is a pressure sensor that measures the pressure in the lubricant storage hopper 52
  • a member device indicated by 73 is a device that measures the pressure in the cylindrical body 53. 1 shows a pressure sensor.
  • a control device 121 and each member device v1, v2, v3, v5, v6, v7, vp1, vp 2, vp 3, 41, 71, 72, 73, 102, 111 are connected by signal lines, and each member device V is controlled by a command signal from the control device 121.
  • FIG. 20 is an illustration schematically showing the operation of the gas injection means 56, 56 and the material cutout valve 54 provided in the lubricant storage hopper 52 of the lubricant powder discharging device 51.
  • FIG. 21 is a flow chart schematically showing an operation program of the gas injection means 56 and 56 and the material cutout valve 54 stored in advance in the storage unit of the control device 121.
  • the opening and closing of the material extracting valve 54 is performed by the following operation procedure.
  • the material discharge valve 54 of the lubricant powder discharging device 51 has the material discharge port 52 a of the lubricant storage hopper 52 closed.
  • the worker first stores the lubricant powder in the lubricant storage hopper 52, and attaches the lid 52c to the material inlet 52b (see Fig. 20 (a)). .
  • the blower 1 is driven.
  • the rotating cam 45 of the pulsating gas vibration wave generator 41 at a specified rotational speed, the pulsating gas vibration of a predetermined flow rate, pressure, frequency, and positive pressure having a desired waveform is formed in the conduit T1. Supply waves.
  • each of the pressure control valves Vp1, vp2, vp3, and vp4 is appropriately adjusted.
  • Each of the on-off valves v1, v2, and v3 is in a closed state in an initial state.
  • step 1 turn on the level sensor 71 (see step 1) and turn on the pressure sensors 72 and 73, respectively (see steps 2 and 3).
  • the light emitted from the light emitting element 71a of the level sensor 71 is received by the light receiving element 71b.
  • a signal that the light receiving element 71 has received the light emitted from the light emitting element 71 a is sent to the control device 122.
  • the control device 122 Upon receiving a signal from the light receiving element 71 that the light emitted from the light emitting element 71 a was received, the control device 122 receives the lubricant powder on the elastic film Et in the cylindrical body 54. Is determined to be less than the threshold value Hth (see step 4). In this case, in step 6, the control device 122 opens the on-off valve V1, and keeps the pressure regulating valve Vp3 open for a predetermined time. With this, the gas injection means Gas is ejected from 56 and 56 for a predetermined time, and even if a solidified portion is formed in the lubricant powder stored in the lubricant storing hopper 52, the solidified portion is broken (see FIG. 20 (b)).
  • the pressure in the lubricant storage hopper 52 (Pr52) measured by the pressure sensor 72 and the pressure in the cylindrical body 53 (Pr53) measured by the pressure sensor 73 are determined by the controller 1 21 Sent to.
  • the control device 121 When the control device 121 receives from the gas injection means 56, 56 a signal indicating that gas has been injected for a predetermined time (the signal that the pressure control valve Vp3 has been opened for a predetermined time and then closed again), the gas injection is performed.
  • the pressure in the lubricant storage hopper 52 (Pr52) and the pressure in the cylindrical body 53 (Pr53) after the gas is injected from the means 56, 56 for a predetermined time are compared. (See step 7.)
  • the material discharge valve 54 is opened, and the lubricant powder stored in the lubricant storage hopper 52 is discharged to the cylindrical body 53 (see FIG. 20 (c)). See).
  • the control device 122 After receiving a signal indicating that the light receiving element 71b has stopped receiving the light emitted from the light emitting element 71a of the level sensor 71, the control device 122 closes the material cutout valve 54. State. That is, in this example, the control device 121 sets the switching valve V3 to a state in which the branch pipe T7a side is closed and a state in which the branch pipe T7b side is open (see step 10).
  • step 7 the control device 122 determines that the pressure (Pr52) in the lubricant storage hopper 52 is higher than the pressure (Pr53) in the cylindrical body 53.
  • the open / close valve v is kept until the pressure (Pr52) in the lubricant storage hopper 52 becomes equal to the pressure (Pr53) in the cylindrical body 53. 1
  • the on-off valve v1 is closed again.
  • the control device 121 receives the signal emitted from the light emitting element 71a of the level sensor 71 and receives a signal indicating that the light receiving element 71b has stopped receiving light. Close valve 54. That is, in this example, the control device 121 sets the switching pulp V3 to a state in which the branch pipe T7a side is closed and a state in which the branch pipe T7b side is open (see Step 5).
  • control device 121 determines in step 7 that the pressure (Pr52) in the lubricant storage hopper 52 is lower than the pressure (Pr53) in the cylindrical body 53.
  • (Pr52 ⁇ Pr53) includes an open / close valve v2 until the pressure (Pr52) in the lubricant storage hopper 52 becomes equal to the pressure (Pr53) in the cylindrical body 53.
  • the on-off valve v2 is closed again.
  • the control device 122 When the control device 121 receives a signal indicating that the light emitted from the light emitting element 71a of the level sensor 71 and the light receiving element 71b no longer receives the signal, the control device 122 detects the material. Close 54. That is, in this example, the control device 122 sets the switching valve V3 to a state where the branch pipe T7a side is closed and a state where the branch pipe T7b side is open. Yes (see step 5).
  • FIG. 22 is an explanatory diagram schematically illustrating operations of the elastic film Et and the bypass pipe TV when a pulsating vibration gas of positive pressure is supplied to the dispersion chamber 55.
  • a positive pressure pulsating gas vibration wave having a desired flow rate, pressure, wavelength, and waveform is supplied into the conduit T1.
  • the positive pressure pulsating gas vibration wave supplied into the conduit T1 is supplied into the dispersion chamber 55 from the pulsating gas vibration wave supply port 55a.
  • the positive pressure pulsating gas oscillating wave supplied into the dispersing chamber 55 flows in the dispersing chamber 55 from the lower side to the upper side like a tornado-like vortex flow. Oscillating waves are emitted from the outlet 55b.
  • the elastic film Et is subjected to the pulsating gas oscillating Vibrates according to the frequency, amplitude and waveform of the wave.
  • the positive pressure pulsating gas vibration wave sent into the dispersion chamber 55 becomes a mountain, and the pressure P r 55 in the dispersion chamber 55 becomes the pressure P r 5 in the cylindrical body 53.
  • pressure P “55> pressure Pr 53” the pressure is higher than that of pressure 3 (pressure P “55> pressure Pr 53”), the elastic film Et has its center curved upward as shown in Fig. 22 (a). It elastically deforms into a shape.
  • the through-hole Eta has a substantially V-shape in which the upper side of the through-hole Eta is open when viewed in cross section, and the cylindrical body 5 is inserted into the V-shaped through-hole Eta. Part of the lubricant powder stored on the elastic film Et in 3 falls.
  • an air flow passage between the cylindrical body 53 and the dispersion chamber 55 is formed by a through hole Eta provided in the elastic membrane Et, and a bypass pipe Tv. Therefore, the air flows between the cylindrical body 53 and the dispersion chamber 55 through the one that is easy to circulate.
  • the shape of the through hole Eta also returns to the original shape from the V-shape with the upper side opened, but when the through-hole Eta becomes open and the V-shape becomes almost V-shaped.
  • the lubricant powder that has fallen into the hole Eta is trapped in the through hole Eta (see FIG. 22 (b)).
  • the pulsating gas vibration wave of positive pressure supplied into the dispersion chamber 55 becomes a valley of the amplitude, and when the pressure of the dispersion chamber 55 becomes low, the elastic film Et has Elastically deforms into a downwardly curved shape.
  • the through hole Eta has a generally inverted V-shape with its lower side opened when viewed in cross section.
  • the through-hole E ta has a substantially inverted V-shape
  • the powder material sandwiched in the through-hole E ta falls into the dispersion chamber 55 (FIG. 22 (c)). See).
  • the air flow passage between the cylindrical body 53 and the dispersion chamber 55 is made up of two systems: a through-hole Eta provided in the elastic membrane Et, and a bypass pipe TV.
  • the air flows between the cylindrical body 53 and the dispersion chamber 55 through the one that is easier to circulate.
  • this device 51 employs a configuration in which the bypass pipe TV is provided between the dispersion chamber 55 and the cylindrical body 53, and as a result, the pulsating gas vibration of positive pressure is provided in the dispersion chamber 55.
  • the time required for equilibrium between the pressure in the cylindrical body 53 and the pressure in the dispersion chamber 55 when supplying the pulsating wave becomes faster and less than the vibration of the pulsating gas vibration wave of positive pressure.
  • the elastic membrane E1 has excellent responsiveness to vertical vibration. As a result, the discharge of the powder through the through hole Eta is performed well.
  • the elastic film Et has a central portion as an antinode of vibration and an outer peripheral portion as a node of vibration.
  • the pulsating gas vibration wave of the positive pressure supplied is oscillated uniquely according to the frequency, amplitude and waveform of the pulsating gas vibration wave. Therefore, as long as the pulsating gas vibration wave of the positive pressure supplied to the dispersion chamber 55 is kept constant, Since a certain amount of lubricant powder is always accurately discharged into the dispersion chamber 55 through the through-hole Eta of the elastic membrane Et, if this lubricant powder discharge device 51 is used, The lubricant powder can be supplied to the lubricant applying device 91 stably at a constant concentration.
  • the lubricant powder discharging device 51 can be supplied to a target place (device, etc.). It also has the advantage that the amount of powder material to be supplied can be easily changed.
  • the pulsating gas vibration wave of positive pressure is formed into a swirling flow from the lower side to the upper side in the dispersion chamber 55, so that it is discharged into the dispersion chamber 55. Even if the lubricant powder contains particles having a large particle size due to agglomeration, many of them are entrained in the pulsating gas vibration wave of positive pressure circling in the dispersion chamber 55. As a result, they are crushed and dispersed to a small particle size.
  • the pulsating gas vibration wave of positive pressure is formed into a swirling flow from below to above in the dispersion chamber 55, so that the dispersion chamber 55 It has a similar sizing function.
  • the lubricant powder having a substantially predetermined particle size is discharged from the outlet 55b into the conduit T2.
  • the large particles of the agglomerated particles continue to swirl in the lower position in the dispersion chamber 55, and are entrained in the pulsating gas vibration wave of positive pressure, which is swirling in the dispersion chamber 55.
  • the pipes pass through outlet 55b. Since the lubricant powder is discharged into the lubricant spray device 2, large lubricant powder is not sprayed into the lubricant application device 91.
  • the lubricant powder supplied into the conduit T2 connected to the outlet 55b is pneumatically transported to the other end e2 of the conduit T2 by the pulsating gas vibration wave of positive pressure.
  • the powder material in the conduit as seen in a device that pneumatically transports the powder material in the conduit by a constant flow of steady-pressure air, is used.
  • the sedimentation of the material and the blow-through of the powder material in the conduit are unlikely to occur.
  • the lubricant powder discharge device 51 the lubricant is maintained in a state where the initial concentration of the lubricant powder discharged from the discharge port 55 of the dispersion chamber 55 into the conduit T2 is maintained. Since the agent powder is discharged from the other end e2 of the conduit T2, the quantitativeness of the lubricant powder sprayed from the other end e2 of the conduit T2 can be precisely controlled.
  • the lubricant powder non-discharging device 51 while the lubricant powder discharging device 51 is being moved, a certain amount (position at which the level sensor 71 is provided) is always provided on the elastic film Et. Since the lubricant powder of (the height H th) of the position where the level sensor 62 is provided from the elastic membrane Et is present, the lubricant powder is discharged from the through hole E ta of the elastic membrane Et. The phenomenon that the amount of the lubricant discharged fluctuates due to the change in the amount of the lubricant powder present on the elastic film Et does not occur. According to this, the lubricant powder non-ejection device 51 can stably supply a certain amount of lubricant powder to the lubricant application device 91.
  • the lubricant powder discharging device 51 even if a large amount of powder material that has aggregated is discharged into the dispersion chamber 55, most of the powder material is discharged into the dispersion chamber 55.
  • the agglomerates are adjusted to a predetermined particle size while being dispersed and discharged from the outlet 55b into the conduit T2. In the dispersing chamber 55, it is difficult to accumulate large-sized powder material in the dispersion chamber.
  • the lubricant powder discharging device 51 even if the lubricant powder discharging device 51 is driven for a long time, the lubricant powder hardly accumulates in the dispersion chamber 55. Therefore, the number of operations for cleaning the inside of the dispersion chamber 55 can be reduced. Therefore, the external lubricating tableting machine S equipped with the lubricant powder discharging device 51 can be used as the dispersing chamber 5 during continuous tableting using the external lubricating tableting machine S. 5 Since the work of cleaning the inside is almost unnecessary, if the external lubricating tableting machine S is used, an external lubricating tablet (a tablet containing no lubricant inside the tablet) can be efficiently and It can be manufactured.
  • the elastic film Et is stretched by using the elastic film attachment 61 shown in FIGS. 15, 16 and 17. In this state, the quantitative property of the lubricant powder discharging device 51 is not impaired due to the looseness of the elastic film Et.
  • the discharge of the lubricant powder into the dispersion chamber 55 through the through-hole Eta of the elastic membrane Et as described above is performed in the dispersion chamber 55 of the lubricant powder discharge device 51. This is repeated while the pulsating gas oscillating wave of positive pressure is supplied.
  • FIG. 23 is a plan view schematically showing the Rohri type tableting machine 81.
  • the rotary tableting machine 81 includes a rotary table 34 provided rotatably with respect to a rotary shaft, and a plurality of upper punches (see upper punches 31 1 ⁇ ′ ′ in FIG. 10). , And a plurality of lower punches (see lower punch 33 ⁇ 1 '′ shown in FIG. 10).
  • a plurality of dies 3 2 ⁇ are formed on the rotary table 34.
  • a pair of upper punches 3 1 ⁇ 'and a lower punch are formed so as to correspond to each of the plurality of dies 32 ⁇ ⁇ ⁇ .
  • 3 3 ⁇ ⁇ ⁇ are provided, and a plurality of upper punches 3 1 ⁇ ⁇ ⁇ , a plurality of lower punches 3 3 ⁇ ⁇ ⁇ and a plurality of dies 3 2 ⁇ ⁇ ⁇ rotate synchronously. It has become.
  • a plurality of upper punches 31 can be moved up and down at predetermined positions in the axial direction of the rotary shaft by a cam mechanism (not shown). 33--can also be moved up and down in the axial direction of the rotating shaft at a predetermined position by a cam mechanism (see a cam mechanism 35 shown in Fig. 10).
  • the member device indicated by 36 is a feeder for filling the molding material into each of the dies 32
  • the member device indicated by 37 is a dies 32 ⁇
  • a sliding plate for reducing the amount of molding material filled in each of the Each of the material devices indicates a tablet discharging scraper provided for discharging the manufactured tablet t to the discharging container 39.
  • the position indicated by R1 is a lubricant spraying point.
  • the lubricant spraying point R1 is provided with a lubricant applying device 91.
  • the lubricant application device 91 is fixedly provided on the rotary table 34, and includes a rotary table 34, a plurality of upper punches 31, a plurality of lower punches, and a plurality of lower punches.
  • the surfaces of the mortar 3 2---, the upper punch 3 1 ⁇ 3, and the lower punch 3 3 ⁇ ⁇ ⁇ ⁇ ⁇ are sequentially stored in the lubricant application device 9 1 by rotating 3 3 Then, lubricants are applied.
  • the application of the lubricant to the surfaces of the mortar 3 2 ⁇ -, the upper punch 31 1--and the lower punch 3 3 ⁇ ⁇ 'in the lubricant application device 91 will be described later in detail. explain.
  • the position indicated by R 2 is a molding material filling point, and at the molding material filling point R 2, a predetermined position is provided in the mortar 32 and the mortar 32 by the feeder 36.
  • the molding material m is filled in the space formed by the lower punch 33 inserted.
  • the position indicated by R3 is a preliminary tableting point, and the preliminary tableting point R3 is filled into the space formed by the mortar 32 and the lower punch 33, By being rubbed off by the slicing plate 37, a predetermined amount of the molding material is preliminarily tableted by a pair of the upper punch 31 and the lower punch 33.
  • the position indicated by R 4 is the final tableting point.
  • the pre-compacted molding material is paired with the upper punch 31 and the lower punch 3. According to 3, it is compressed in full scale and compressed into tablets t.
  • the position indicated by R5 is a tablet discharge point.
  • the upper surface of the lower punch 33 is inserted up to the upper end of the die 32, so that the die is removed.
  • the tablets t discharged outside are discharged to a discharge chute 39 by a tablet discharge scraper 38.
  • FIG. 24 is a plan view schematically showing the lubricant application device 91 shown in FIG. 23 in a further enlarged manner, and FIG. 25 shows a line XXIV-XXIV in FIG. , Lubricant FIG. 2 is a cross-sectional view schematically showing a configuration of a coating device 91.
  • the lubricant application device 91 is fixedly provided at a predetermined position on the rotary table 34 of the rotary tableting machine 81.
  • the surface (bottom surface) S91a of the lubricant application device 91 facing the rotary table 34 is in contact with the surface S34 of the rotary table 34 or at a small distance.
  • the rotary table 34 slides on the bottom surface S91a or rotates with almost no gap.
  • the lubricant application device 91 has a lubricant introduction port 91a for connecting the conduit T2 to the outer surface S91b.
  • the lubricant powder supplied from the lubricant introduction port 91a and dispersed in the positive pressure air pulsating wave air flow passes through a through hole 91h passing through the lubricant application device 91, and It is sent to the surface (bottom surface) of the lubricant application device 91 on the side opposite to the turntable 34, and is prescribed into the die 34 of the turntable 34 from the outlet 91b of the through hole 91h
  • the surface (upper surface) of the lower punch 33 inserted up to the position of, can be sprayed on S33.
  • the lubricant powder dispersed in the air is sprayed on the surface (upper surface) S33 of the lower punch 33 in a substantially vertical direction from the outlet 91b of the through hole 91h. lion Ru to.
  • the surface (bottom surface) of the lubricant application device 91 facing the turntable 34 on the side (bottom surface) S91a has a through hole 91h of the outlet 91b of the rotary table 34, A groove 92 is formed in the opposite direction.
  • the lubricant powder together with the air sent together with the lubricant powder, includes a groove 92 formed on the surface (bottom surface) of the lubricant applying device 91 opposite to the rotary table 34, Through the tube formed by the surface of the turntable 34, it is fed in a direction opposite to the rotation direction of the turntable 34.
  • the end of the groove 92 provided on the surface (bottom surface) of the lubricant applying device 91 facing the rotary table 34 faces the rotary table 34 of the lubricant applying device 91. It is connected to the hollow chamber 93 provided on the side (bottom) side. A slit portion 94 is formed above the hollow space 93 so as to penetrate the lubricant application device 91.
  • the upper punch 31 On the outer surface side of the lubricant application device 91, along with the slit portion 94, the upper punch 31 that sequentially rotates in synchronization with the rotation of the turntable 34 is stored.
  • the part 95 is formed along the rotation orbit of the upper punch 3 1.
  • the width W 95 of the upper punch receiving section 95 is equal to or slightly larger than the direct punch of the upper punch 31.
  • a suction head 96 is provided above the slit part 94.
  • reference numeral 91a denotes a connection port to which the conduit T2 is connected.
  • the size of the suction port H of the suction head 96 is set so as to cover the entire slit portion 94, and has a shape substantially similar to the shape of the slit portion 94.
  • the upper punch 31 is placed on the upper punch 31 in the surface (lower surface) S 31 of the upper punch 31. While moving from one end es of the slit portion 94 to the other end ee, the lubricant powder is attached over time.
  • the lubricant powder overflowing on the turntable 34 is located downstream of the lubricant spraying point (upstream of the molding material filling point) of the lubricant application device 91.
  • the surface (top surface) of the lower punch 33 and the peripheral side surface S43 of the die 32 are provided with a lubricant suction portion 97 for removing the lubricant powder L that is excessively attached to the surface 33. I have.
  • a suction means (not shown), such as a blower, is connected to the lubricant suction section 97.
  • the suction means (not shown) is driven, the rotary table is rotated from the suction port 97a. Excess lubricant powder adhering to the periphery of the mortar 3 4 and the surface of the mortar 32 (inner peripheral surface) S32 and the surface of the lower punch 33 (upper surface) S33 Extra lubricant adheres to the surface. The accumulated lubricant powder can be removed by suction.
  • the suction port 97 a is slit on the surface (bottom surface) on the side facing the turntable 34. It is provided in a shape (long shape), the length direction of which is substantially directed from the outer periphery of the turntable 34 to the center, and the suction port 97 a is provided so as to straddle the mortar 32. Have been killed.
  • the distance between the suction port 97a and the discharge port 91b is provided to be slightly larger than the diameter D32 of the mortar 32.
  • FIG. 26 is a configuration diagram schematically showing an enlarged view of the suction means (lubricant suction device) 101 shown in FIG. 10.
  • the suction means (lubricant suction device) 101 includes a dust collector 102 and a conduit T3 connected to the dust collector 102.
  • the conduit T3 is connected to the suction head 96 of the lubricant application device 91.
  • the conduit T 3 is divided into two branch pipes T 3a and T 3b on the way, and further, is combined into one conduit T 3c on the way, and then connected to the dust collector 102.
  • the branch pipe T3a is provided with an opening / closing valve V5 and a light scattering powder concentration measuring means 103a in the direction of the dust collector 102 from the side closer to the lubricant application device 91. .
  • a light transmission type measuring device 105 may be used instead of the light scattering type powder concentration measuring means 103 a.
  • the measuring cell 104 is made of quartz or the like, and is connected in the middle of the branch pipe T7a.
  • the light scattering type measuring device 105 is a laser beam irradiation system device 105a for irradiating a laser beam, and a scattering device for receiving light radiated from the laser beam irradiation system device 105a and scattered by the object to be detected.
  • a light receiving system device 105b is provided to measure the flow rate, the particle size, the particle size distribution, the concentration, and the like of the object to be detected based on the Mie theory. this In the example, the laser beam irradiation system device 105a and the scattered light receiving system device 105b are substantially opposed to each other with the measurement cell 104 interposed therebetween. It is possible to measure the flow rate, particle size, particle size distribution, concentration, etc. of the powder flowing in the branch pipe T3a (in this example, lubricant powder).
  • openable pulp V6 is provided in the branch pipe T3b.
  • the conduit T7c is provided with an on-off valve V7.
  • the open / close valve V5 and the open / close valve V7 are connected.
  • the dust collector 102 is driven in an open state, the guide valve V6 is closed, and the dust collector 102 is driven.
  • the pulsating gas vibration wave generating device 41 and the lubricant powder discharging device 51 were mixed with the positive pressure pulsating gas vibration wave and dispersed.
  • the lubricant powder is supplied into the lubricant application device 91 together with the positive pressure pulsating gas vibration wave.
  • the dust collector 102 when measuring the influence (noise) of the lubricant powder attached to the inner peripheral surface of the measuring cell 104, the dust collector 102 is maintained in a driven state. Closed on-off valve V5 and opened on-off valve V6 State. Then, the lubricant powder sucked into the conduit T3 from the suction head H is sucked into the dust collector 102 through the branch pipe T3b and the pipe T3c, and is branched into the branch pipe T. The lubricant powder does not pass through 3a.
  • the influence (noise) of the lubricant powder adhering to the measuring cell 104 can be measured.
  • the measured value of the influence (noise) of the lubricant powder adhering to the measurement cell 104 is temporarily stored in, for example, the storage means of the control device 121.
  • the powder concentration measuring device 103a is driven to measure the flow rate of lubricant powder passing through the branch pipe T3a, etc., and stored in advance in the storage means of the control device 1221, correction Based on the program and the measured value of the influence (noise) of the lubricant powder adhering to the powder concentration measuring device 103a, measured from the measured value of the light transmission measuring device 105. A correction value is calculated by removing the influence (noise) of the lubricant powder adhering to the cell 104.
  • the driving amount of the dust collector 102 and the pulsating gas vibration wave generator are calculated. 2
  • the amount of lubricant powder in the lubricant application device 9 1 is adjusted.
  • the driving amount of the dust collector 102 and the driving amount of the pulsating gas vibration wave generator 71 are appropriately adjusted based on the measured values using the light transmission type measuring device 13 1.
  • the concentration of the lubricant powder in the lubricant application device 91 may be adjusted.
  • predetermined operation conditions are input to the control device 122.
  • the lubricant powder is stored in the lubricant storage hopper 52.
  • the molding material is stored in the feeder 36 of the lip-type tableting machine 81.
  • the rotary type tableting machine 81 is driven and the dust collector 102 is driven.
  • a suction unit (not shown) connected to the lubricant suction unit 97 is driven.
  • the blower 1 1 1 1 is driven under the operating conditions input to the controller 1 2 1.
  • the pulsating gas vibration wave generator 41 by driving the rotating cam 45 of the pulsating gas vibration wave generator 41 at a predetermined rotation speed, the pulsating gas vibration wave of a predetermined flow rate, pressure, frequency, and positive pressure having a predetermined waveform is introduced into the conduit T1. Supply.
  • the level sensor 71 is activated.
  • the gas injection means 56, 56 and the material cut-out valve 54 operate by the operation shown in FIGS. In addition, a certain amount of lubricant powder is stored.
  • the pulsating gas vibration wave of positive pressure generated by the pulsating air generator 41 is supplied to the dispersion chamber 55, so that the elastic film Et vibrates up and down, and the elastic film Et The lubricant powder is discharged into the dispersion chamber 55 through the provided through hole Eta.
  • the lubricant powder discharged into the dispersion chamber 55 is mixed with the positive pressure pulsating gas oscillating wave circulating in the dispersion chamber 55, dispersed and dispersed, and is discharged from the discharge port 55b into the conduit T2. It is discharged to.
  • the lubricant powder mixed with and dispersed in the positive pressure pulsating gas vibration wave discharged into the conduit T 2 is pneumatically transported in the conduit T 2 by the positive pressure pulsating gas vibration wave, and the lubricant is sprayed. Sent to room 91.
  • the lubricant powder sent to the lubricant application device 91 is passed from the lubricant inlet 91 a through the through hole 91 h and from the outlet 91 along with the pulsating gas vibration wave of positive pressure.
  • the surface (top surface) of the lower punch 33 inserted up to a predetermined position into the die 32 at the position of the lubricant spraying point R1 S3 3 Sprayed on.
  • the surface of the lower punch 33 (upper surface)
  • the excess lubricant powder deposited on the S 33 is blown off by the air sent together with the lubricant powder L, and a part of the powder is Peripheral) Attaches to S32.
  • the lubricant powder is mixed with the air sent with the lubricant powder,
  • the rotation of the rotary table 34 through the pipe formed by the groove 92 formed on the surface (bottom surface) of the coating device 91 opposite to the rotary table 34 and the surface of the rotary table 34 It is sent in the opposite direction and is supplied into the hollow space 93.
  • the lubricant powder supplied into the hollow chamber 93 is driven by the dust collector 102 to form a uniform ⁇ generating air stream above the slit section 94, that is, an upwardly flowing air stream from below. Ride and move into the suction port H of the suction head 96.
  • the lubricant is transferred to the lower surface S31 of the upper punch 31 from the one end es of the slit portion 94 to the other end ee while passing through the upper punch storage portion 95. Powder adheres ( extra lubricant powder is removed through suction head 96).
  • the rotation of the rotary table 34 is synchronized with the rotation of the mill 32 and the rotary table 34 sent downstream of the lubricant spray point R 1, and the lubricant spray point is
  • the lower punch 33 sent downstream passes the lubricant powder adhering around the mortar 32 of the turntable 34 when passing under the suction port 97 a of the lubricant suction section 97.
  • the excess lubricant powder adhering to the surface (inner peripheral surface) S32 of the mortar 32 and the surface (upper surface) S33 of the lower punch 33 is removed.
  • the lower punch 33 onto which the lubricant powder is uniformly applied is inserted to a predetermined position on the surface S 33, and the lower punch 33 is uniformly applied to the surface (inner peripheral surface) S 32.
  • the mixture (molding material) is filled into the mortar 32 coated with the lubricant powder.
  • the excess mixture was removed with a slicing plate 37, and the upper punch 31 with the lubricant powder uniformly applied to the surface (lower surface) S31 with the preliminary tableting point R3.
  • the mixture (molding material) is pre-compressed, it is further compression-molded at the final tableting point R4 to form a foaming agent t.
  • the tablet t manufactured as described above is produced. Are sequentially discharged to the discharge shot 39.
  • the driving amount of the blower 1 1 1 and the dust collector 10 1 The drive amount and the like of 2 are appropriately adjusted, and the drive amount of the pulsating gas vibration wave generator 41 is appropriately adjusted (normally, the pulsating gas vibration wave frequency is increased by increasing the driving amount).
  • the concentration of the lubricant powder in the lubricant application device 91 is adjusted to be high by sticking, and sticking, capping, and laminating are performed on the tablets to be manufactured. To reduce the frequency of tableting failures. Further, the elastic film Et may be replaced with a larger one of the through hole Eta.
  • this external lubricating tableting machine Sb Since this external lubricating tableting machine Sb has the above-mentioned excellent effects, it is conventionally impossible to manufacture on an industrial production base by using this external lubricating tableting machine Sb. Tablets (more specifically, external lubricating tablets), which were difficult, can be stably mass-produced on an industrial production profitable basis.
  • the composition of tablets t If the amount of the lubricant is larger than the expected amount in the composition of the composition, for example, the driving amount of the blower 111 and the driving amount of the dust collector 102 may be appropriately adjusted. If the driving amount of the pulsating gas vibration wave generator 41 is appropriately adjusted (usually, the driving amount of the pulsating gas vibration wave generator 41 is reduced, and the frequency of the pulsating gas vibration wave is lowered).
  • the concentration of the lubricant powder in the lubricant applicator 91 is adjusted to be constant, and the surface of each of the upper punches 3 1 And the amount of the lubricant powder applied to each surface of the mortar 3 2 From each surface of the upper punch 3 1 ⁇ ⁇ ⁇ , each surface of the lower punch 3 3 ⁇ ⁇ ⁇ and each surface of the mortar 3 2 ⁇ ⁇ ⁇ , each of the tablets t ⁇ ⁇ ⁇ ⁇ Try to reduce the amount of lubricant powder transferred to the surface. Further, the elastic film Et may be replaced with a smaller-sized through hole Eta.
  • FIG. 27 is a cross-sectional view schematically showing the configuration of the pulsating gas vibration wave generator 41.
  • the pulsating gas vibration wave generator 41 includes a hollow chamber 42 having an air supply port 42 a and an air discharge port 42 b, a valve seat 43 provided in the hollow chamber 42, and a valve.
  • a valve body 44 for opening and closing the seat 43 and a rotation cam 45 for opening and closing the valve body 44 with respect to the valve seat 43 are provided.
  • a conduit Tm is connected to the air supply port 42a, and a conduit T1 is connected to the air discharge port 42b.
  • the portion indicated by 42 c indicates a pressure adjusting port provided in the hollow chamber 42 as necessary.
  • the pressure adjusting port 42 c has a pressure adjusting valve V 8. It is provided to conduct and cut off from the atmosphere.
  • the valve body 44 includes a shaft body 44a, and a rotating roller 46 is rotatably provided at a lower end of the shaft body 44a.
  • the device body 4a of the pulsating gas vibration wave generator 41 also has a shaft housing hole h4 for housing the shaft body 44a of the valve body 44 in an airtight and vertically movable manner. 1 is formed.
  • the rotating cam 45 includes an inner rotating cam 45a and an outer rotating cam 45b.
  • a predetermined concavo-convex pattern is formed on each of the inner rotary cam 45 a and the outer rotary cam 45 b so as to be separated from each other by a distance substantially corresponding to the diameter of the rotary roller 46.
  • the rotating cam 45 one having a concavo-convex pattern in which the lubricant powder is easily mixed and dispersed according to the physical properties of the lubricant powder is used.
  • a rotating roller 46 is rotatably fitted between the inner rotating cam 45 a of the rotating cam 45 and the outer rotating cam 45 b.
  • the member indicated by ax indicates the rotation axis of the rotation drive means (rotation drive means 41M shown in FIG. 10) such as a motor, and the rotation axis ax includes the rotation axis.
  • the cams 45 are adapted to be interchangeably mounted.
  • the lubricant powder is mixed with the rotation axis ax of the rotation drive means 47 according to the physical properties of the lubricant powder.
  • a rotating cam 45 having a concavo-convex pattern that is easily dispersed is attached.
  • compressed air is supplied into the conduit T0 by driving the blower 1 1 1.
  • the non-flammable gas of a steady pressure flow supplied into the conduit T m is adjusted to a predetermined flow rate by the flow control valve V p 4 if the flow control valve V p 4 is provided.
  • the air is supplied from the air supply port 42 a into the hollow chamber 42.
  • the rotation cam 45 attached to the rotation axis ax of the rotation driving means 47 is rotated at a predetermined rotation speed.
  • the rotating roller 46 rotates between the inner rotating cam 45 a and the outer rotating cam 45 b of the rotating cam 45 rotating at a predetermined rotation speed, and the rotating cam 45 is rotated.
  • the valve body 44 moves up and down with good reproducibility in accordance with the concave / convex pattern provided on the rotary cam 45 so that the valve seat 43 opens and closes according to the concave / convex pattern provided on the rotary cam 45.
  • the pressure adjustment valve v8 provided in the pressure adjustment port 42c is provided.
  • the pressure of the positive pressure pulsating gas oscillating wave supplied to the conduit T 1 is adjusted by appropriate adjustment.
  • the wavelength of the positive pressure pulsating gas vibration wave supplied into the conduit T1 is appropriately adjusted according to the concave / convex pattern provided on the rotating cam 45 and / or the rotation speed of the rotating cam 45.
  • the waveform of the positive pressure pulsating gas vibration wave can be adjusted by the concavo-convex pattern provided on the rotary cam 45, and the amplitude of the positive pressure pulsating gas vibration wave can be adjusted by driving the blower 1 1 1
  • the pressure control valve Vp4 is adjusted, and the pressure control port 42c or the pressure control valve valve is used. If V8 is provided, adjust the pressure adjustment valve V8 provided in the pressure adjustment port 42c appropriately, or combine them. It can be adjusted by adjusting it.
  • the pulsating gas vibration wave generator used in the external lubricating tableting machine S is not limited to the pulsating gas vibration wave generator 41, and other pulsating gas vibration wave generators can be used.
  • FIG. 28 is an explanatory view schematically showing another example of such a pulsating gas vibration wave generator.
  • the pulsating gas vibration wave generator 41 A has the same configuration as the pulsating gas vibration wave generator 41 except for the following configuration, and the corresponding reference numerals are used for the corresponding members. The description is omitted.
  • the pulsating gas oscillatory wave generator 41 A is formed of a cylindrical body 13 2 and a hollow body 13 3 in the cylindrical body 13 2 so that the cylindrical body 13 2 is roughly divided into two.
  • a central valve is provided as a rotary shaft 13 2 a and a one-way valve 13 3 attached to the rotary shaft 13 2 a.
  • the rotating shaft 132a is rotated at a predetermined rotation speed by a rotation driving means (not shown) such as an electric motor.
  • a conduit Tm and a conduit T1 are connected to the outer peripheral wall of the cylindrical body 132 at a predetermined distance.
  • the blower 1 11 When supplying a pulsating gas vibration wave of a desired positive pressure into the conduit T1 using the pulsating gas vibration wave generator 41A, the blower 1 11 is driven to supply the pulsating gas vibration wave to the conduit Tm. To supply the specified compressed air.
  • the meteor of the compressed air supplied into the conduit Tm is formed by appropriately adjusting the flow control valve Vp4.
  • a rotating drive means such as an electric motor
  • the rotary valve 133 attached to the rotating shaft 132a is rotated. Rotate at a predetermined rotational speed.
  • the conduit T m and the conduit T 1 are shut off by the one-way valve 13 3.
  • compressed air is supplied from a conduit T m to one space Sa in the cylindrical body 13 2 partitioned by the one-way valve 13, and the air is compressed in this space Sa. Done.
  • FIG. 29 is an exploded perspective view schematically illustrating another example of the pulsating gas vibration wave generator.
  • the pulsating gas vibration wave generator 41 B includes a cylindrical tubular body 142, and a rotary valve body 144 provided rotatably in the tubular body 142.
  • the cylindrical body 14 2 has a structure in which one end 14 2 e is open, and the other end is closed by a lid 14 2 d. 2a and a transmission port 1 4 2b.
  • a conduit T m connected to the blower 1 1 1 is connected to the intake port 1 4 2a, and a conduit T 1 connected to the lubricant powder discharge device 5 1 is connected to the transmission port 1 4 2b. Is connected.
  • the portion denoted by 142 c indicates a rotary bearing hole for pivotally connecting the rotary valve element 144.
  • the rotary valve element 144 has a cylindrical shape having a hollow h i 5, and an opening h 16 is provided on a side peripheral surface S 144. Further, the rotary valve body 144 has a structure in which one end 144 e is open and the other end is closed by a cover 144 b.
  • the rotary valve body 144 has a rotary shaft 144 extended on a rotation center axis thereof.
  • a rotary drive means such as an electric motor is connected to the rotary shaft 144.
  • the rotary valve element 1443 It is designed to rotate around a rotation axis 144.
  • the outer diameter of the side peripheral surface S144 of the rotary valve element 144 substantially coincides with the inner diameter of the cylindrical body 142, and the rotary valve element 144 is placed inside the cylindrical body 142.
  • the side peripheral surface S144 of the rotary valve body 144 slides along the inner peripheral surface of the cylindrical body 144. It works.
  • the portion denoted by reference numeral 144 c is a rotatable housing rotatably accommodated in a rotation bearing hole 144 c provided in the lid 144 b of the cylindrical body 142.
  • the axis is shown.
  • the rotary valve body 144 is rotatably provided in the cylindrical body 142 with the rotary shaft 144c attached to the rotary bearing hole 144c.
  • the rotation valve 144 is rotated at a predetermined rotation speed.
  • a rotation driving means such as an electric motor
  • the rotation valve 144 is rotated at a predetermined rotation speed.
  • the opening h 16 of the rotary valve element 144 is located at the position of the transmission port 142 b, the conduit T m and the conduit T 1 are in a conductive state. Compressed air is delivered.
  • Such an operation is repeatedly performed by the rotation of the rotary valve body 144, whereby a pulsating gas vibration wave of positive pressure is sent into the conduit T1.
  • the pulsating gas vibration wave generator 41 of the external lubricating tableting machine S described above includes a pulsating gas vibration wave generator 41 shown in FIG. 27, a pulsating gas vibration wave generator 41 A shown in FIG. Also, any of the pulsating gas vibration wave generators 41 B shown in FIG. 29 can be used.
  • the pulsating gas vibration wave of positive pressure has the property of attenuating, and when this damping property is taken into consideration, the pulsating gas vibration wave generator has a sharp and sharp positive pressure It is preferable to generate a pulsating gas vibration wave.
  • the method of applying a lubricant to the surface of each of the external lubricating tablet press and punches 31, 33 and mortar 32 using this device is described as a tablet manufacturing apparatus according to the present invention.
  • this is merely a preferred example, and other devices and other devices and equipment are required as long as the minimum required amount of lubricant powder can be uniformly applied to the surfaces of the punches 31, 33 and the dies 32. Note that other coating methods can be used.
  • the tablet manufacturing device (external Lubricating tableting machine) Remove oxygen remover 1 1 2 and pulsating gas vibration wave generator 4 1 from S b, and install non-combustible gas generator 1 1 1 a in place of blower 1 1 1 Then, the tablet manufacturing device (external lubricating tableting machine) Sc shown in Fig. 8 can be obtained.
  • FIG. 34 is an overall configuration diagram schematically showing another example of the tablet manufacturing apparatus according to the present invention.
  • This tablet manufacturing apparatus Se is the same as the tablet manufacturing apparatus Sa shown in FIG. 31 except for the following configuration, and therefore, the tablet manufacturing apparatus Se is a component manufacturing apparatus of the tablet manufacturing apparatus Se.
  • Component members corresponding to the component members of the device Sa are denoted by the same reference numerals as those of the components of the tablet manufacturing device Sa, and the description thereof will be omitted.
  • the tablet manufacturing apparatus Se has a suction means (dust collector 102) attached to the suction duct 103, a suction means (dust collector 102), and a lubricant powder.
  • the lubricant application device 8 is connected to the discharge device 5 1 (more specifically, the discharge port 55 b of the dispersion chamber 55). Equipped with a spray quantity measuring device 1 3 1 for measuring the concentration of lubricant powder at any position up to 1 o
  • FIG. 35 is a configuration diagram schematically showing the configuration of the spray amount measuring device 13 1.
  • the spray amount measuring device 1 3 1 is composed of the device main body 1 3 1 a, the lubricant powder supply pipe 1 3 2 connected to the conduit T 2, the laser beam irradiation device 1 3 4 a, and the light receiving device 1 0 5b is provided.
  • the laser beam irradiation system device 105 and the scattered light receiving system device 134b are generally arranged so as to sandwich the lubricant powder supply tube 132.
  • the spray amount measuring device 13 1 is provided with purge gas supply pipes h 13 1 and h 13 1 ⁇
  • Each of the purge gas supply pipes h1 3K h1 3 1 includes a light transmission pipe h1 3 1a, h1 3 1a, and a gas supply pipe h1 3 1b, h1 3 1b.
  • Each of the light transmission tubes h3a and h131a is provided so as to penetrate the apparatus main body 13a, and each of the outer peripheral surfaces of the apparatus main body 13a has a light transmitting window. 1 3 3 and 1 3 3 are provided.
  • Each of the gas supply pipes h131b and h131b is connected at a position in the middle of each of the light transmission pipes h31a and h1331a.
  • a purge gas supply pipe (purge gas supply pipe Tp shown in FIG. 34) branched from the conduit Tm is connected to each of the gas supply pipes h131b and h131b. .
  • the powder flowing through the lubricant powder supply tube 132 in the light transmitting tubes h31a and h131a (in this example, It is designed to be able to measure the amount of
  • the spray amount measuring device 13 1 monitors the concentration of the lubricant powder flowing in the lubricant powder supply pipe 13 2, monitors the amount, and sends it to the control panel 12 1.
  • the lubricant concentration is calculated from the suction air volume and the amount of the lubricant powder, and when the lubricant powder concentration reaches the lower explosive limit concentration, it is mixed with the gas generated from the gas generator 111. Then, adjust the amount of the dispersed lubricant powder so that it is lower than the lower explosive limit concentration to prevent dust explosion.
  • the concentration of the lubricant powder flowing into the suction means (dust collector 102) of the lubricant powder flowing through the lubricant powder supply pipe 13 2 was reduced by the spray amount measuring device 13 1. By controlling the concentration below the limit, dust explosion does not occur in the suction means (dust collector 102).
  • the gas generating means 1 1 1 uses a probe 1 1 1 to remove oxygen in the compressed air generated from the blower 1 1 1 1
  • An example was shown in which removal was carried out by means of 1 1 2 .However, instead of the blower 1 1 1 and the oxygen removal apparatus 1 1 2, a non-combustible gas
  • the generator 1 1 1a may be used.
  • the lubricant powder is discharged into the gas depending on the gas, and the lubricant powder is mixed and dispersed in the gas.
  • the gas for mixing and dispersing the lubricant powder is fixed, a certain amount of the lubricant powder can be mixed and dispersed for a certain amount of gas.
  • a certain amount of the lubricant powder is always supplied to the lubricant application device, so that the material contact surfaces of the mortar, the upper punch and the lower punch are always used. A certain amount of lubricant powder can always be applied to the surface.
  • the amount of the lubricant powder to be applied to the material contact surface of each of the mortar, upper punch, and lower punch once becomes the state of the tableting, And the amount of gas (flow rate, pressure, etc.) that mixes and disperses the lubricant powder so as not to cause tableting troubles such as laminating, tableting, and mortar, upper punch and lower punch.
  • the lubricant can be manufactured simply by maintaining a constant gas (flow rate, pressure, etc.) for mixing and dispersing the lubricant powder.
  • this method for producing tablets is suitable as a method for producing tablets (external lubricating tablets), which was on an industrial production profitable basis.
  • the concentration of oxygen in the device from the gas generating means to the lubricant application device is set to be equal to or lower than the lower explosive limit oxygen concentration. Dust explosion does not occur in the equipment up to.
  • the concentration of oxygen in the device from the gas generating means to the lubricant applying device is set to 14% or less, so that the gas concentration from the gas generating means to the lubricant applying device is reduced. There is no dust explosion in the equipment. And / or In this tablet manufacturing method, the concentration of oxygen contained in the gas in the vicinity of the lubricant application device is set to 14 ° / 0 or less, so that the dust explosion occurs in the vicinity of the lubricant application device. Does not occur.
  • the gas generating means is designed to meet the static electricity safety guideline of the Industrial Safety Research Institute of the Ministry of Labor on the assumption that the lower oxygen limit oxygen concentration is within the range of 14% or less. Since the concentration of oxygen contained in the gas from the device to the lubricant application device and / or in the vicinity of the lubricant application device is 8% or less, no dust explosion will occur.
  • the method for producing a tablet according to claim 4 includes, as each of the gas generating step, the lubricant dispersing step, and the tableting step, a gas generating step and a lubricant dispersing step of the tablet producing method according to claim 1. And each of the tableting steps. Therefore, this method for producing tablets is suitable as a method for producing tablets (external lubricating tablets), which is on an industrially profitable basis, like the method for producing tablets described in claim 1.
  • the concentration of the lubricant powder in the suction means is lower than the lower explosive limit concentration, so that no dust explosion occurs in the suction means.
  • the concentration of the lubricant powder in the intake pull stage lower explosive limit concentration following concentrations, i.e., 7 0 g / m 3 or less Since it is preferably 50 g / m 3 or less, no dust explosion occurs in the suction means.
  • a pulsating vibration gas is used as a gas supplied to the lubricant powder discharging device.
  • a lubricant powder non-discharge device that discharges lubricant powder into gas depending on gas, mixes with gas, and disperses is used as the lubricant powder discharge device. ing. Therefore, when pulsating vibration gas is used as the gas to be supplied to the lubricant powder discharging device, the discharge amount of the lubricant powder discharged from the lubricant powder discharging device is determined by the frequency of the pulsating vibration gas, It depends on the amplitude and waveform.
  • a fixed amount of lubricant powder can always be applied to the material contact surfaces of the mortar, the upper punch, and the lower punch under the same conditions. If the frequency, amplitude, waveform, etc. of the pulsating oscillating gas are determined so that the amount of lubricant powder applied to each material contact surface of the punch is optimized, the frequency, amplitude, and just a waveform like constant always mortar, c the amount of lubricant powder to be applied to each of the wood charge contact surface of the upper punch and lower punch can be maintained to have an optimal result, the Once the tablet manufacturing method is used, the amount of the lubricant powder to be applied to the material contact surface of each of the mortar, upper punch, and lower punch once the sticking, If the frequency, amplitude and waveform of the pulsating oscillating gas are adjusted so as not to cause tableting troubles such as cabbing and laminating, and to prevent the mortar, upper punch and lower punch from being jagged, Only by keeping the frequency, amplitude and
  • the tablet produced does not cause tableting troubles such as stateing, capping, laminating, or squeezing in the mortar, upper punch and lower punch. Tablets can be manufactured. That is, using this tablet manufacturing method, tablets (external lubricating tablets) can be manufactured on an industrial production profitable basis.
  • an antistatic means is provided in an apparatus for performing the tablet manufacturing method according to any one of claims 1 to 7. No sparks due to static electricity. As a result, no dust explosion occurs when using this tablet manufacturing method.
  • the lubricant powder is discharged into the gas depending on the gas generated from the gas generator, and is mixed with and dispersed in the gas generated from the gas generator. Since a gas powder discharge device is used, as long as the amount of gas generated from the gas generator (flow rate, pressure, etc.) is fixed, a certain amount of gas Can be mixed and dispersed.
  • a constant concentration of the lubricant powder is always supplied to the lubricant applying apparatus, so that the material contact surface of each of the mortar, the upper punch and the lower punch is provided.
  • a constant amount of lubricant powder can always be applied.
  • this tablet manufacturing device a fixed amount of lubricant powder can always be applied to the material contact surfaces of the mortar, the upper punch and the lower punch. If the amount of gas (flow rate, pressure, etc.) to be generated from the gas generator is determined so that the amount of lubricant powder applied to each material contact surface is optimal, then the gas generation By keeping the volume (flow rate, pressure, etc.) constant, it is possible to always maintain the optimal amount of lubricant powder applied to the material contact surfaces of the mortar, upper punch and lower punch.
  • the amount of lubricant powder to be applied to the material contact surfaces of the mortar, upper punch and lower punch once becomes The amount of gas generated from the gas generator (flow rate, pressure, etc.) so that the tablet does not cause tableting troubles such as crushing, cabbing or laminating, and the mortar, upper punch, and lower punch do not cause jaggedness.
  • the tablets (such as sticking, cabbing, and laminating) can be added to the manufactured tablets simply by keeping the gas (flow rate, pressure, etc.) generated from the gas generator constant. Tablets can be produced stably for a long period of time without causing any tablet damage or squeezing in the mortar, upper punch and lower punch. That is, this tablet manufacturing apparatus can be suitably used as a tablet (external lubricating tablet) manufacturing apparatus on an industrial production profitable basis.
  • the amount of gas generated from the gas generator is adjusted based on the oxygen concentration measured by the oxygen concentration measuring apparatus. Therefore, when a non-combustible gas is used as the gas generated from the gas generator, the air existing in the space from the gas generating means to the lubricant applying device or the air near the lubricant applying device may be used. Air (normal air containing oxygen) can be replaced by nonflammable gas.
  • the amount of gas generated from the gas generator is adjusted based on the oxygen concentration measured by the oxygen concentration measuring apparatus, so that the inside of the apparatus from the gas generating means to the lubricant applying apparatus is adjusted.
  • Gas generation because it is configured to reduce the amount of oxygen contained in the gas existing in the space and the amount of oxygen contained in the gas existing in the space near the lubricant application device It is necessary to prevent the dust explosion from occurring in the space inside the device from the means to the lubricant application device and around the lubricant application device. it can.
  • the concentration of oxygen contained in the gas from the gas generation means to the lubricant application device and / or the gas in the vicinity of the lubricant application device is determined by gas generation. Since the oxygen concentration is below the explosion limit oxygen concentration depending on the amount of gas generated from the device, no dust explosion occurs in the device from the gas generating means to the lubricant application device and / or in the vicinity of the lubricant application device.
  • the concentration of oxygen contained in the gas from the gas generating means to the lubricant application device and / or in the vicinity of the lubricant application device is determined by the explosion limit. Since the oxygen concentration is lower than the oxygen concentration, that is, the oxygen concentration is 14% or lower, no dust explosion occurs in the device from the gas generating means to the lubricant application device and in the vicinity of Z or the lubricant application device. .
  • the gas generating means is designed to satisfy the electrostatic safety guidelines of the Industrial Safety Research Institute of the Ministry of Labor, assuming that the lower explosive limit oxygen concentration is in the range of 14% or less.
  • the concentration of oxygen contained in the gas from the gas generator to the lubricant application device is set to 8% or less in the gas from the gas generation device to the lubricant application device. There is no dust explosion in the device and / or near the lubricant application device.
  • the lubricant powder sprayed from the lubricant application device is immediately sucked by using the suction means. Since the lubricant powder sprayed from the lubricant spray port for the upper punch onto the material contact surface of the upper punch does not scatter around the lubricant applicator, the lubricant powder should be spread around the lubricant applicator. There is no dust explosion.
  • the inside of the suction means (more specifically, the inside of the suction duct of the suction means)
  • the concentration of the lubricant powder fed into the suction means can be adjusted, so the concentration of the lubricant powder fed into the suction means (more specifically, into the suction duct of the suction means) is adjusted to the lower explosive limit concentration. In the following case, no dust explosion occurs in the suction means (more specifically, in the suction duct of the suction means).
  • a tablet manufacturing apparatus according to claim 1 5, the concentration of the lubricant powder Not fed into the suction unit, the explosion lower limit concentration or less of the concentration of the lubricant powder, namely, 7 0 g / m 3 or less Since it is preferably 50 g / m 3 or less, if a tablet is manufactured using this tablet manufacturing apparatus, it can be used in the tablet manufacturing apparatus (more specifically, in the suction duct of the suction means). No dust explosion occurs.
  • the tablet manufacturing apparatus wherein the pulsating vibration gas is used as the gas for mixing and dispersing the lubricant powder, and the amount of the lubricant powder mixed and dispersed in the gas is determined by the pulsating vibration gas. Frequency, amplitude, waveform, etc.
  • this tablet manufacturing apparatus if the frequency, amplitude, waveform, etc. of the pulsating oscillating gas used for mixing and dispersing the lubricant powder are constant, a fixed amount is always obtained for a fixed amount of gas. Lubricant powder can be mixed and dispersed, so that a certain amount of lubricant powder can always be supplied to the lubricant application device.
  • a certain amount of lubricant powder is always supplied to the lubricant applicator.
  • a constant amount of lubricant powder can always be applied to the surface under the same conditions.
  • a fixed amount of lubricant powder can always be applied to the material contact surface of each of the mortar, the upper punch and the lower punch. If the frequency, amplitude, waveform, etc. of the pulsating vibration gas are determined so that the amount of lubricant powder applied to the material contacting surface is optimal, then the frequency, amplitude, waveform, etc. of the pulsating vibration gas will be constant By doing so, it is always possible to maintain an optimal amount of lubricant powder applied to the material contact surfaces of the mortar, upper punch and lower punch.
  • the amount of the lubricant powder to be applied to the material contact surfaces of the mortar, upper punch and lower punch once is reduced to the tablet to be manufactured. Adjust the frequency, amplitude, waveform, etc. of the pulsating vibration gas so that the amount does not cause tableting troubles such as stateing, cabbing, laminating, or the like. After that, only by keeping the frequency, amplitude and waveform of the pulsating oscillating gas constant, the amount of lubricant powder applied to the material contact surfaces of the mortar, upper punch and lower punch is always optimized. It is stable for a long time without causing tableting troubles such as sticking, cabbing, and laminating, and the mortar, upper punch, and lower punch are not affected. Thus, tablets can be manufactured.
  • tablets external lubricating tablets
  • the amount of the lubricant powder is monitored by the spray amount measuring device, the lubricant concentration is calculated from the amount of the lubricant and the suction amount, and the calculation result indicates that the explosion has occurred.
  • the limit concentration is reached, the amount of lubricant powder mixed and dispersed in the gas generated from the gas generator is adjusted to be below the lower explosion limit concentration, so that a dust explosion occurs. Absent.
  • a tablet manufacturing apparatus 0, the concentration of the lubricant powder powder fed into the suction unit, the explosion lower limit concentration or less of the concentration of the lubricant powder, namely, 7 0 g / m 3 or less Since it is preferably 50 g / m 3 or less, if a tablet is manufactured using this tablet manufacturing apparatus, the inside of the tablet manufacturing apparatus (more specifically, the suction duct of the suction means will be described). There is no dust explosion at
  • the frequency and amplitude of the pulsating vibration gas supplied to the lubricant powder discharging device are provided. And if the waveform is constant, for a certain amount of gas, Since a certain amount of lubricant powder can be mixed and dispersed, the same effect as the tablet manufacturing apparatus according to claim 7 can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Medicinal Preparation (AREA)
  • Formation And Processing Of Food Products (AREA)

Description

明 細 書
錠剤の製造方法及び錠剤の製造装置 技術分野
本発明は、 錠剤の製造方法及び錠剤の製造装置に関し、 より特定的には、 いわ ゆる外部滑沢法を工業的採算ベースで実施できるとともに、 そのような錠剤の製 造方法を実施する上での粉塵爆発対策も十分に施された錠剤の製造方法及びその ような錠剤の製造方法を実施するのに適した錠剤の製造装置に関する。 背景技術
近時、 錠剤内部に含まれる滑沢剤粉末の量を減らしたり、 錠剤内部に滑沢剤粉 末を一切含ませないようにしたりすることで、 錠剤の崩壊時間を速く し、 唾液と 接触することで、 口腔内で崩壊するようにした口腔内速崩壊錠剤が注目されてい このような口腔内速崩壊錠剤の製造方法としては、 口一タリ式打錠機の臼、 上 杵及び下杵の各々の材料接触表面に滑沢剤粉末を塗布し、 滑沢剤粉末が材料接触 表面に塗布された臼、 上杵及び下杵を用いて、 成形材料を圧縮成形することで錠 剤を製造する錠剤の製造方法(いわゆる、外部滑沢法)が既に提案されている(例 えば、 特公昭 4 1 - 1 1 2 7 3号公報や、 特開昭 5 6 - 1 4 0 9 8号公報や、 特 開平 7— 1 2 4 2 3 1号公報を参照) 。
特公昭 4 1 - 1 1 2 7 3号公報に記載の錠剤の製造方法は、 錠剤化すべき材料 の所定量を臼内に充填する工程と、 臼内に充填された材料を上下 1組の杵を用い て圧縮して、 錠剤化する工程と、 錠剤を排出する工程とを備える、 錠剤の製造方 法において、 臼内に成形材料を充填する工程の前段の工程として、 臼の上方所定 位置に、 滑沢剤を噴射する噴射ノズルを設置し、 噴射ノズルが設置された位置に きた臼に対応して設けられた上杵の下端面 (以下、 本明細書では、 「上杵の下端 面」 を 「上杵の材料接触表面」 という。 ) 及び下杵の上端面 (以下、 本明細書で は、 「下杵の下端面」 を 「下杵の材料接触表面」 という。 ) に対して、 噴射用ノ ズルから滑沢剤を噴射させて、 滑沢剤を塗布し、 その後、 臼内に成形材料を充填 し、 臼内に充填された成形材料を、 滑沢剤が材料接触表面に塗布された上杵と、 滑沢剤が材料接触表面に塗布された下杵とを用いて圧縮し、 錠剤を製造するよう にしている。
また、 特開昭 5 6 - 1 4 0 9 8号公報に記載される、 錠剤の製造方法は、 臼内 に成形材料を充填する工程の前段工程において、 臼の上方所定位置に、 滑沢剤を 散布する散布器、 及び、 エアを噴射するノズルを設け、 散布器が設置された位置 にきた臼に、 散布器内に滑沢剤を散布することで、 臼に対応して設けられた下杵 の材料接触表面に滑沢剤を載置した後、 ノズルが設けられた位置で、 ノズルから 下杵に対して圧縮エアを噴射して、 下杵の材料接触表面上に載置されている滑沢 剤を上方へ吹き飛ばして離散させ、 この離散した滑沢剤を臼の内周面 (以下、 本 明細書では、 「臼の内周面」 を 「臼の材料接触表面」 という。 尚、 「臼の材料接 触表面」 は、 厳密には、 臼の内周面であって、 臼内に所定の位置まで挿入されて いる下杵の材料接触表面より上の部分を意味する。 ) や上杵の材料接触表面に付 着させ、 その後、 臼の材料接触表面、 上杵の材料接触表面及び下杵の材料接触表 面に滑沢剤が塗布された、 臼、 上杵及び下杵を用いて、 成形材料を圧縮して錠剤 を製造するようにしている。
また、 特開平 7— 1 2 4 2 3 1号公報に記載の錠剤の製造方法は、 臼内に成形 材料を充填する工程の前段工程において、 臼の上方に、 空気脈動波発生装置が接 続され、 且つ、 滑沢剤を噴射する噴射用ノズルが設置された散布室を設置し、 散 布室が設置された位置にきた臼に、 空気脈動波発生装置を駆動して、 散布室内に 空気脈動波を発生させるとともに、噴射用ノズルから滑沢剤を臼の材料接触表面、 上杵の材料接触表面、 及び、 下杵の材料接触表面に塗布した後、 臼内に成形材料 を充填し、 その後、 材料接触表面に滑沢剤が塗布された上杵と、 材料接触表面に 滑沢剤が塗布された下杵とにより、 成形材料を圧縮して錠剤を製造するようにし ている。
しかしながら、 上述した特公昭 4 1 - 1 1 2 7 3号公報や、 特開昭 5 6 - 1 4 0 9 8号公報や、 特開平 7— 1 2 4 2 3 1号公報に開示されている錠剤の製造方 法は、 いずれも、 実験的又は少量の錠剤を製造する方法としては、 実施可能であ るものの、 工業的生産採算ベースにのるように、 長時間、 安定して錠剤を製造す る方法としては、 尚、 改善の余地がある。
のみならず、 本発明者等は、 工業的生産採算ベースにのるような大型の錠剤の 製造装置を完成した場合、 そのような錠剤の製造装置を用いて錠剤を製造する際 に、 滑沢剤粉末が粉塵爆発を引き起こす虞れがあるのではないかということを危 惧するに至った。 発明の開示
本発明は、 以上の問題を解決するためになされたものであって、 工業的生産べ —スにのるように、 長時間、 安定して錠剤を製造する方法を提供することのみな らず、工業的生産ベースにのるような大型の錠剤の製造装置を作製した場合でも、 粉塵爆発の虞れのない、 錠剤の製造方法、 及びそのような錠剤の製造方法を実施 するのに適した錠剤の製造装置を提供することを目的としている。
本発明者等は、 口腔内で唾液に接触すると口腔内で直ちに錠剤が崩壊する口腔 内速崩壊錠剤を始めとする目的とする部位で直ちに崩壊する速崩壊錠剤や、 その ような速崩壊錠剤を製造するための錠剤の製造装置の開発に長年携わっているが, 今般、 工業的採算ベースで実施できる錠剤の製造装置を完成するに至った。
更に、 本発明者等は、 錠剤の製造装置を用いて、 いわゆる外部滑沢錠剤を量産 した場合には、 そのような錠剤を製造する際に、 粉体材料を使用するため、 錠剤 の製造装置やこの錠剤の製造装置の周辺 (例えば、 この錠剤の製造装置が設置さ れている工場内) において、 粉塵爆発が生じる虞れがあると考えるに至った。 そこで、 本発明者等は、 工業的採算ベースで実施できる錠剤の製造装置に粉塵 爆発対策を検討するために、 粉塵爆発が生じる要因について分析した。
図 3 6は、 粉塵爆発が生じる要因を説明する要因特性図である。
図 3 6より明らかなように、 粉塵爆発は、 酸素の存在、 可燃物の存在及び着火 源の 3条件がそろうと起きる一方、 これらの 3条件の一つでも不足すると起きな い。
そこで、 本発明者等は、 本発明者等が完成した、 臼、 上杵及び下杵の各々の材 料接触表面に滑沢剤粉末を塗布し、 滑沢剤粉末が材料接触表面に塗布された臼、 上杵及び下杵を用いて、 成形材料を圧縮成形するようにした新規な工業的採算べ ースで実施できる錠剤の製造方法、 及びこの新規な錠剤の製造方法を実施する錠 剤の製造装置に、 粉塵爆発が生じる 3条件を除去する対策を施すことで、 本発明 を完成するに至った。
請求項 1に記載の錠剤の製造方法は、 ガス発生手段からガスを発生するガス発 生ステップと、 ガスに依存して滑沢剤粉末をガス中に吐出し、 ガスに混和し分散 する滑沢剤粉未吐出装置に、 ガス発生手段から発生させたガスを供給し、 滑沢剤 粉末吐出装置から、ガス発生手段から発生させたガス中に、滑沢剤粉末を吐出し、 混合し、 分散させる滑沢剤分散ステップと、 滑沢剤分散ステップにおいて、 ガス に混和し分散させた滑沢剤粉末を臼、 上杵及び下杵の各々の材料接触表面に噴霧 する滑沢剤塗布装置に気力輸送する滑沢剤粉末気力輸送ステップと、 滑沢剤塗布 装置から、 臼、 上杵及び下杵の各々の材料接触表面にガスに混和し分散させた滑 沢剤粉末を吹き付けて、 塗布する滑沢剤粉末塗布ステップと、 滑沢剤粉末が材料 接触表面に塗布された臼、 上杵及び下杵を用いて、 成形材料を圧縮成形する打錠 ステップとを備え、 ガス発生手段から滑沢剤塗布装置までの装置内及び/又は滑 沢剤塗布装置の近傍のガス中に含まれる酸素の濃度を爆発下限界濃度以下とした c ここで、 本明細書で用いる用語、 「滑沢剤」 は、 例えば、 ステアリン酸、 ステ アリン酸アルミニウム、 ステアリン酸カルシウム、 ステアリン酸マグネシウム, ショ糖脂肪酸エステル, フタル酸ステアリルナトリウム、 タルク等の、 成形材料 を圧縮成形(打錠)する際、臼と杵との間の摩擦を減少させ、成形される錠剤に、 スティッキングやキヤッピングゃラミネ一ティング等の打錠障害が生じるのを防 ぐために添加されるステアリン酸系の添加物を意味する。
また、 本明細書で用いる用語、 「爆発限界酸素濃度」 は、 爆発に十分な濃度の 可燃物 (本明細書では、 滑沢剤粉末) が存在する環境下において、 着火エネルギ 一を与えたときに粉塵爆発が発生しない上限の酸素の濃度を意味する。
また、 「ガスに依存して滑沢剤粉末をガス中に吐出し、 ガスに混和し分散する 滑沢剤粉末吐出装置」 は、 滑沢剤粉末を吐出する機構をガスに依存しており、 且 つ、 滑沢剤粉末を吐出する際に用いるガス中に、 滑沢剤粉末を、 混和し分散させ るようにした滑沢剤粉末吐出装置を意味する。
より特定的に説明すると、 「ガス発生装置から発生させたガスに依存して滑沢 剤粉末を、 ガス発生装置から発生させたガス中に吐出し、 混和し分散させる滑沢 剤粉末吐出装置」 は、 例えば、 滑沢剤粉末収容部の底に、 貫通孔を有する弾性体 膜を設け、 この貫通孔を有する弾性体膜上に載置した滑沢剤粉末を、 貫通孔を有 する弾性体膜の下方に、 気力輸送用のガス流 (このガス流は、 定常圧流であって も、脈動振動波流であってもよい。)を流すことで、貫通孔を有する弾性体膜を、 その中心を振動の腹とし、 その周辺部を振動の節として、 上下に振動させること で、 弾性体膜に設けられている貫通孔から、 この貫通孔を有する弾性体膜上に載 置した滑沢剤粉末を、 吐出し、 貫通孔を有する弾性体膜の下方に流している、 気 力輸送用のガス流 (このガス流は、 定常圧流であっても、 脈動振動波流であって もよい。 ) 中に、 貫通孔を有する弾性体膜を振動させることで、 弾性体膜に設け られている貫通孔から吐出させた滑沢剤粉末を、 混和し、 分散させるようにした 新規な装置をその具体例として挙げることができる。
この種の装置では、 貫通孔を有する弾性体膜の振動の振幅や周波数は、 貫通孔 を有する弾性体膜の下方に流す、 気力輸送用のガス流 (このガス流は、 定常圧流 であっても、 脈動振動波流であってもよい。 ) の性質 (圧力、 流量等) に依存し て一義的に決まり、 弾性体膜に設けられている貫通孔から排出される滑沢剤粉末 の吐出量は、 貫通孔の大きさ ·形状を一定にした場合は、 弾性体膜の振動の振幅 や周波数によって一義的に決まるため、 貫通孔を有する弾性体膜の下方に流す、 気力輸送用のガス流 (このガス流は、 定常圧流であっても、 脈動振動波流であつ てもよい。 ) の状態を一定にすれば、 貫通孔を有する弾性体膜の下方に流す、 気 力輸送用のガス流 (このガス流は、 定常圧流であっても、 脈動振動波流であって もよい。 ) 中に、 滑沢剤粉末が、 常に、 一定の濃度で、 混和し、 分散して、 気力 輸送されることになる。
また、本明細書で用いる用語、 「ガス発生手段から滑沢剤塗布装置までの装置」 は、 ガス発生手段、 滑沢剤粉末吐出装置、 滑沢剤塗布装置及びこれらの装置をこ の順に気密に連結している導管を意味する。
また、 「滑沢剤塗布装置の近傍のガス中に含まれる酸素の濃度」 は、 滑沢剤粉 未塗布装置から排出されたガスが空気 (酸素を含む通常の空気) と交じり合う環 境にある空間のガス中の酸素の濃度、 より特定的に説明すると、 滑沢剤塗布装置 の上杵塗布用滑沢剤噴霧口と上杵の材料接触面との間の空間や、 滑沢剤塗布装置 の下杵塗布用滑沢剤噴霧口、 臼及び臼内に所定の位置まで挿入されている下杵に より形成される空間のガス中の酸素の濃度を意味する。
この錠剤の製造方法では、 ガスに依存して滑沢剤粉末をガス中に吐出し、 ガス に混和し分散させるようにしているので、 滑沢剤粉未を混和し分散させるガスを 一定にしている限り、 一定量のガスに対して、 一定量の滑沢剤粉末を混和し、 分 散させることができる。
このように、 この錠剤の製造方法では、 常に、 一定量の濃度の滑沢剤粉末を滑 沢剤塗布装置に供給するようにしているので、 臼、 上杵及び下杵の各々の材料接 触表面に常に一定量の滑沢剤粉末を塗布できる。
即ち、 この錠剤の製造方法では、 臼、 上杵及び下杵の各々の材料接触表面に常 に一定量の滑沢剤粉未を塗布できるので、 一旦、 臼、 上杵及び下杵の各々の材料 接触表面に塗布する滑沢剤粉末の量が最適になるように、 滑沢剤粉末を混和し分 散させるガスの発生量 (流量、 圧力等) を決定すれば、 後は、 ガスの発生量 (流 量、 圧力等) を一定にするだけで、 常に、 臼、 上杵及び下杵の各々の材料接触表 面に塗布する滑沢剤粉末の量を最適になるように維持することができる。
この結果、 この錠剤の製造方法を用いれば、 一旦、 臼、 上杵及び下杵の各々の 材料接触表面に塗布する滑沢剤粉末の量が、 製造される錠剤に、 ステイツキング や、 キヤッビングや、 ラミネーティングといったような打錠障害や、 臼、 上杵及 び下杵にギシツキを生じない量となるように、 滑沢剤粉末を混和し分散させるガ スの発生量 (流量、 圧力等) を調整すれば、 後は、 滑沢剤粉末を混和し分散させ るガスの (流量、 圧力等) を一定に維持するだけで、 製造される錠剤に、 スティ ッキングや、キヤッピングゃ、ラミネ一ティングといったような打錠障害や、臼、 上杵及び下杵にギシツキを生じることなく、 長時間、 安定して、 錠剤を製造する ことができる。
即ち、 この錠剤の製造方法は、 工業的生産採算ベースにあった、 錠剤 (外部滑 沢錠剤) の製造方法として適している。
のみならず、 この錠剤の製造方法では、 ガス発生手段から滑沢剤塗布装置まで の装置内の酸素の濃度を、 爆発下限界酸素濃度以下としているので、 ガス発生手 段から滑沢剤塗布装置までの装置内において、 粉塵爆発を生じない。 及び/又は、 この錠剤の製造方法において、 滑沢剤塗布装置の近傍のガス中に 含まれる酸素の濃度を、 爆発下限界酸素濃度以下とした場合には、 滑沢剤塗布装 置の近傍において、 粉塵爆発を生じない。
請求項 2に記載の錠剤の製造方法は、 請求項 1に記載の錠剤の製造方法の、 ガ ス発生手段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装置の近傍の ガス中に含まれる酸素の濃度を 1 4 %以下としたことを特徴とする。
この錠剤の製造方法は、 滑沢剤粉末の爆発下限界酸素濃度を具体的に規定する ものであり、 この錠剤の製造方法では、 ガス発生手段から滑沢剤塗布装置までの 装置内の酸素の濃度を 1 4 %以下としているので、 ガス発生手段から滑沢剤塗布 装置までの装置内において、 粉塵爆発を生じない。
及びノ又は、 この錠剤の製造方法では、 滑沢剤塗布装置の近傍のガス中に含ま れる酸素の濃度を 1 4 %以下としているので、 滑沢剤塗布装置の近傍において、 粉塵爆発を生じない。
尚、 滑沢剤粉末塗布ステップにおいて、 ガス発生手段から滑沢剤塗布装置まで の装置内及び/又は滑沢剤塗布装置の近傍において、 粉塵爆発を生じないように するためには、 ガス発生手段から滑沢剤塗布装置までの装置内及び/又は滑沢剤 塗布装置の近傍の酸素の濃度は、 1 3 %以下であることがより好ましく、 1 2 % 以下であることが更により好ましく、 1 2 %以下であることが尚一層好ましい。 一方、粉塵爆発を生じないようにするための爆発限界酸素濃度は、理想的には、 0 %であるので、 粉塵爆発を生じないようにするための爆発限界酸素濃度の下限 は、 0 %以上であることは、 言うまでもない。
請求項 3に記載の錠剤の製造方法は、 請求項 1に記載の錠剤の製造方法の、 ガ ス発生手段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装置の近傍の ガス中に含まれる酸素の濃度を 8 %以下とした。
労働省産業安全研究所は、 静電気安全指針において、 爆発下限界酸素濃度が 1 3 %以上 1 4 %以下の範囲にある場合、粉塵爆発が生じないようにするためには、 酸素の濃度を 8 °/0以下に維持することを推奨している。
この錠剤の製造方法では、 爆発下限界酸素濃度を 1 4 %以下の範囲にある場合 を想定し、 労働省産業安全研究所の静電気安全指針をクリアするように、 ガス発 生手段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装置の近傍のガス 中に含まれる酸素の濃度を 8 %以下としているので、 粉塵爆発が生じない。 尚、 労働省産業安全研究所は、 静電気安全指針において、 爆発下限界酸素濃度 が 1 1 %以上 1 2 %以下の範囲にある場合、 粉塵爆発が生じないようにするため には、 酸素の濃度を 5 %以下に維持することを推奨している。
従って、 労働省産業安全研究所の静電気安全指針を考慮した場合には、 この錠 剤の製造方法における、 ガス発生手段から滑沢剤塗布装置までの装置内及び/又 は滑沢剤塗布装置の近傍のガス中に含まれる酸素の濃度は、 5 %以下とするのが 更に好ましい。
尚、 ガス中に含まれる酸素の濃度下限は、 0 %以上であることは、 言うまでも ない。
請求項 4に記載の錠剤の製造方法は、 ガス発生手段からガスを発生するガス発 生ステップと、 ガス発生手段から発生させたガスを、 ガスに依存して滑沢剤粉未 をガス中に吐出し、 ガスに混和し分散する滑沢剤粉末吐出装置に供給し、 滑沢剤 粉未吐出装置から、ガス発生手段から発生させたガス中に、滑沢剤粉末を吐出し、 混合し、 分散させる滑沢剤分散ステップと、 滑沢剤分散ステップにおいて、 ガス に混和し分散させた滑沢剤粉末を臼、 上杵及び下杵の各々の材料接触表面に噴霧 する滑沢剤塗布装置に気力輸送する滑沢剤粉末気力輸送ステップと、 滑沢剤塗布 装置から、 臼、 上杵及び下杵の各々の材料接触表面にガスに混和し分散させた滑 沢剤粉末を吹き付けて、 塗布する滑沢剤粉末塗布ステップと、 滑沢剤粉末が材料 接触表面に塗布された臼、 上杵及び下杵を用いて、 成形材料を圧縮成形する打錠 ステップと、 滑沢剤粉末塗布ステップにおいて、 滑沢剤塗布装置から、 ガスに混 和し分散させた状態で、 臼、 上杵及び下杵の各々の材料接触表面に吹き付けられ た滑沢剤粉末中、 臼、 上杵及び下杵の各々の材料接触表面へ塗布されなかった余 剰の滑沢剤粉末を吸引手段を用いて吸引する、 余剰滑沢剤粉末吸引ステップとを 備え、 吸引手段内の滑沢剤粉未の濃度を爆発下限界濃度以下とした。
ここで、 本明細書で用いる用語、 「爆発下限界濃度」 は、 大気中において十分 な着火エネルギーを与えた時に可燃物 (本明細書では、 滑沢剤粉末) が火災伝播 を生じる最低濃度を意味する。
また、 「吸引手段内の滑沢剤粉末の濃度」 は、 より具体的に説明すると、 吸引 手段を構成する部材装置中、 空気とガスとが混合したガス中に滑沢剤粉末が混和 し、 分散した状態になっている部品内の滑沢剤粉末の濃度、 例えば、 吸引ダク 卜 (導管) 内の滑沢剤粉末の濃度を意味する。
この錠剤の製造方法は、 ガス発生ステップ、 滑沢剤分散ステップ及び打錠ステ ップの各々として、 請求項 1に記載の錠剤の製造方法のガス発生ステップ、 滑沢 剤分散ステップ及び打錠ステップの各々と、 同様のステップを備えている。
したがって、この錠剤の製造方法は、請求項 1に記載の錠剤の製造方法と同様、 工業的生産採算ベースにあった、 錠剤 (外部滑沢錠剤) の製造方法として適して いる。
のみならず、この錠剤の製造方法では、余剰滑沢剤粉末吸引ステップにおいて、 吸引手段内の滑沢剤粉末の濃度を爆発下限界濃度以下としているので、 吸引手段 内において、 粉塵爆発を生じない。
請求項 5に記載の錠剤の製造方法は、 請求項 4に記載の錠剤の製造方法の、 滑 沢剤粉末の濃度を 7 0 g /m 3以下としたことを特徴とする。
この錠剤の製造方法は、 吸引手段内の滑沢剤粉末の爆発下限界濃度を具体的に 規定するものであり、 この錠剤の製造方法では、 余剰滑沢剤吸引ステップにおい て、 吸引手段内の滑沢剤粉末の濃度を、 爆発下限界濃度以下の濃度、 即ち、 7 0 g /m 3以下、 好まし〈は、 5 0 g /m 3以下にしているので、 吸引手段内におい て、 粉塵爆発を生じない。
請求項 6に記載の錠剤の製造方法は、 請求項 1〜 5のいずれかに記載の錠剤の 製造方法の、 滑沢剤分散ステップおいて、 滑沢剤粉末吐出装置に供給するガスと して、 不燃性ガスを用いた。
ここで、 本明細書において用いる用語、 「不燃性ガス」 は、 空気から一定量の 酸素 (0 2 ) ガスを除去した窒素 (N 2 ) ガスを主成分とするガスや、窒素 (N 2 ) ガスや、 ヘリウム (H e ) ガス、 アルゴン (A r ) ガス等の不活性ガスを意味す る o
この錠剤の製造方法では、 滑沢剤分散ステップにおいて、 滑沢剤粉末吐出装置 に供給するガスとして、 不燃性ガスを用いているので、 滑沢剤粉末を混和し分散 させているガスが、 空気と交じり合わない場所 (装置内) において、 一切、 粉塵 爆発を生じない。
請求項 7に記載の錠剤の製造方法は、 請求項 1〜 6のいずれかに記載の錠剤の 製造方法の、 滑沢剤分散ステップにおいて、 滑沢剤粉末吐出装置に供給するガス として、 脈動振動ガスを用いた。
この錠剤の製造方法では、 滑沢剤粉末吐出装置として、 ガスに依存して滑沢剤 粉末をガス中に吐出し、ガスに混和し分散する滑沢剤粉末吐出装置を用いている。
したがって、 滑沢剤粉末吐出装置に供給するガスとして、 脈動振動ガスを用い た場合、 滑沢剤粉末吐出装置から吐出される滑沢剤粉末の吐出量は、 脈動振動ガ スの周波数、 振幅及び波形等に依存する。
即ち、 この錠剤の製造方法では、 滑沢剤分散ステップにおいて、 滑沢剤粉末吐 出装置に供給する脈動振動ガスの周波数、 振幅及び波形等を一定にすれば、 一定 のガスの量に対して、 常に、 一定量の滑沢剤粉末を混和し分散できるようにして いるので、 常に、 一定量の濃度の滑沢剤粉末を滑沢剤塗布装置に供給することが できる。
このように、 この錠剤の製造方法では、 常に、 一定量の濃度の滑沢剤粉末を滑 沢剤塗布装置に供給するようにしているので、 臼、 上杵及び下杵の各々の材料接 触表面に常に一定量の滑沢剤粉末を塗布できる。
即ち、 この錠剤の製造方法を用いれば、 臼、 上杵及び下杵の各々の材料接触表 面に常に一定量の滑沢剤粉末を同じ条件で塗布できるので、 一旦、 臼、 上杵及び 下杵の各々の材料接触表面に塗布する滑沢剤粉未の量が最適になるように、 脈動 振動ガスの周波数、振幅及び波形等を決定すれば、後は、脈動振動ガスの周波数、 振幅及び波形等を一定にするだけで、 常に、 臼、 上杵及び下杵の各々の材料接触 表面に塗布する滑沢剤粉末の量を最適になるように維持することができる。
この結果、 この錠剤の製造方法を用いれば、 一旦、 臼、 上杵及び下杵の各々の 材料接触表面に塗布する滑沢剤粉末の量が、 製造される錠剤に、 ステイツキング や、 キヤッビングや、 ラミネーティングといったような打錠障害や、 臼、 上杵及 び下杵にギシツキを生じない量となるように、 脈動振動ガスの周波数、 振幅及び 波形等を調整すれば、後は、脈動振動ガスの周波数、振幅及び波形等を一定にし、 常に、 臼、 上杵及び下杵の各々の材料接触表面に塗布する滑沢剤粉末の量を最適 になるように維持するだけで、 製造される錠剤に、 ステイツキングや、 キヤツビ ングや、 ラミネーティングといったような打錠障害や、 臼、 上杵及び下杵にギシ ツキを生じることなく、 長時間、 安定して、 錠剤を製造することができる。
即ち、 この錠剤の製造方法を用いれば、 工業的生産採算ベースにのって、 錠剤 (外部滑沢錠剤) を製造することができる。
請求項 8に記載の錠剤の製造方法は、 請求項 1〜7のいずれかに記載の錠剤の 製造方法を実施する装置に帯電防止手段を設けた。
配管内や構成装置内をガスに混和し分散した滑沢剤粉末が移動させると、 配管 や構成装置が静電気を帯び、この配管や構成装置に帯電した静電気を放置すれば、 火花が発生し、 この静電気による火花が、 粉塵爆発の引き金になる虞れがある。 この錠剤の製造方法では、 静電気による火花が発生しないようにするために、 請求項 1〜7のいずれかに記載の錠剤の製造方法を実施する装置に帯電防止手段 を設けているので、 静電気による火花が発生しない。
これにより、 この錠剤の製造方法を用いれば、 粉塵爆発が生じない。
尚、 帯電防止手段としては、 手っ取り早くは、 滑沢剤粉末気力輸送ステップを 実施する装置を接地 (アース) すればよい。 また、 帯電防止手段として、 カチ才 ン活性剤等の静電防止剤溶液又は静電防止剤を含んだ塗料を、 少なくとも、 滑沢 剤粉末気力輸送ステップを実施する装置に塗布するようにしてもよい。
請求項 9に記載の錠剤の製造装置は、 ガス発生装置と、 ガス発生装置から発生 させたガスに依存して滑沢剤粉末を前記ガス発生装置から発生させたガス中に吐 出し、 混和し分散させる滑沢剤粉末吐出装置と、 滑沢剤粉末吐出装置から吐出さ れ、 ガス発生装置から発生させたガスに混和し分散した滑沢剤粉末を、 臼、 上杵 及び下杵の各々の材料接触表面に噴霧する滑沢剤塗布装置と、 ガス発生手段から 滑沢剤塗布装置までの装置内及び/又は前記滑沢剤塗布装置の近傍のガス中の酸 素濃度を測定する酸素濃度測定装置とを備え、 酸素濃度測定装置が測定した酸素 濃度に基づいて、 ガス発生手段から滑沢剤塗布装置までの装置内又は前記滑沢剤 塗布装置の近傍のガス中に含まれる酸素濃度を調整するようにした。 ここで、 本明細書で用いる用語、 「ガス発生装置から発生させたガスに依存し て滑沢剤粉末を、 ガス発生装置から発生させたガス中に吐出し、 混和し分散させ る滑沢剤粉末吐出装置」 は、 滑沢剤粉末を吐出する機構をガスに依存しており、 且つ、 滑沢剤粉末を吐出する際に用いるガス中に、 滑沢剤粉末を、 混和し分散さ せるようにした滑沢剤粉末吐出装置を意味する。
より特定的に説明すると、 「ガス発生装置から発生させたガスに依存して滑沢 剤粉未を、 ガス発生装置から発生させたガス中に吐出し、 混和し分散させる滑沢 剤粉末吐出装置」 は、 例えば、 滑沢剤粉末収容部の底に、 貫通孔を有する弾性体 膜を設け、 この貫通孔を有する弾性体膜上に載置した滑沢剤粉末を、 貫通孔を有 する弾性体膜の下方に、 気力輸送用のガス流 (このガス流は、 定常圧流であって も、脈動振動波流であってもよい。)を流すことで、貫通孔を有する弾性体膜を、 その中心を振動の腹とし、 その周辺部を振動の節として、 上下に振動させること で、 弾性体膜に設けられている貫通孔から、 この貫通孔を有する弾性体膜上に載 置した滑沢剤粉末を、 吐出し、 貫通孔を有する弾性体膜の下方に流している、 気 力輸送用のガス流 (このガス流は、 定常圧流であっても、 脈動振動波流であって もよい。 ) 中に、 貫通孔を有する弾性体膜を振動させることで、 弾性体膜に設け られている貫通孔から吐出させた滑沢剤粉末を、 混禾ロし、 分散させるようにした 新規な装置をその具体例として挙げることができる。
この種の装置では、 貫通孔を有する弾性体膜の振動の振幅や周波数は、 貫通孔 を有する弾性体膜の下方に流す、 気力輸送用のガス流 (このガス流は、 定常圧流 であっても、 脈動振動波流であってもよい。 ) の性質 (圧力、 流量等) に依存し て一義的に決まり、 弾性体膜に設けられている貫通孔から排出される滑沢剤粉末 の吐出量は、 貫通孔の大きさ ·形状を一定にした場合は、 弾性体膜の振動の振幅 や周波数によって一義的に決まるため、 貫通孔を有する弾性体膜の下方に流す、 気力輸送用のガス流 (このガス流は、 定常圧流であっても、 脈動振動波流であつ てもよい。 ) の状態を一定にすれば、 貫通孔を有する弾性体膜の下方に流す、 気 力輸送用のガス流 (このガス流は、 定常圧流であっても、 脈動振動波流であって もよい。 ) 中に、 滑沢剤粉末が、 常に、 一定の濃度で、 混和し、 分散して、 気力 輸送されることになる。 また、本明細書で用いる用語、 「ガス発生手段から滑沢剤塗布装置までの装置」 は、 ガス発生手段、 滑沢剤粉末吐出装置、 滑沢剤塗布装置及びこれらの装置をこ の順に気密に連結している導管を意味する。
また、 「滑沢剤塗布装置の近傍のガス中に含まれる酸素の濃度」 は、 滑沢剤塗 布装置から排出されたガスが空気 (酸素を含む通常の空気) と交じり合う環境に ある空間のガス中の酸素の濃度、 より特定的に説明すると、 滑沢剤塗布装置の上 杵塗布用滑沢剤噴霧口と上杵の材料接触面との間の空間や、 滑沢剤塗布装置の下 杵塗布用滑沢剤噴霧口、 臼及び臼内に所定の位置まで挿入されている下杵により 形成される空間のガス中の酸素の濃度を意味する。
また、 ガス発生装置からは、 不燃性ガスを発生させるようにする。
この錠剤の製造装置では、 ガス発生装置から発生させたガスに依存して滑沢剤 粉末をガス中に吐出し、 ガス発生装置から発生させたガスに混和し分散させる滑 沢剤粉末吐出装置を用いているので、 ガス発生装置から発生させるガスの発生量 (流量、 圧力等) を一定にしている限り、 一定量のガスに対して、 一定量の滑沢 剤粉末を混和し、 分散させることができる。
このように、 この錠剤の製造装置では、 常に、 一定の濃度の滑沢剤粉末を滑沢 剤塗布装置に供給するようにしているので、 臼、 上杵及び下杵の各々の材料接触 表面に常に一定量の滑沢剤粉末を塗布できる。
この結果、 この錠剤の製造装置を用いれば、 臼、 上杵及び下杵の各々の材料接 触表面に常に一定量の滑沢剤粉末を塗布できるので、 一旦、 臼、 上杵及び下杵の 各々の材料接触表面に塗布する滑沢剤粉末の量が最適になるように、 ガス発生装 置から発生させるガスの発生量 (流量、 圧力等) を決定すれば、 後は、 ガスの発 生量 (流量、 圧力等) を一定にするだけで、 常に、 臼、 上杵及び下杵の各々の材 料接触表面に塗布する滑沢剤粉末の量を最適になるように維持することができる ( この結果、 この錠剤の製造装置を用いれば、 一旦、 臼、 上杵及び下杵の各々の 材料接触表面に塗布する滑沢剤粉末の量が、 製造される錠剤に、 ステイツキング や、 キヤッビングや、 ラミネ一ティングといったような打錠障害や、 臼、 上杵及 び下杵にギシツキを生じない量となるように、 ガス発生装置から発生させるガス の発生量 (流量、 圧力等) を調整すれば、 後は、 ガス発生装置から発生させるガ スの (流量、 圧力等) を一定に維持するだけで、 製造される錠剤に、 スティツキ ングや、 キヤッビングや、 ラミネ一ティングといったような打錠障害や、 臼、 上 杵及び下杵にギシツキを生じることなく、 長時間、 安定して、 錠剤を製造するこ とができる。
即ち、 この錠剤の製造装置は、 工業的生産採算ベースにあった、 錠剤 (外部滑 沢錠剤) の製造装置として好適に用いることができる。
のみならず、 この錠剤の製造装置では、 酸素濃度測定装置が測定した酸素濃度 に基づいて、 ガス発生装置から発生させるガス量を調整するようにしている。 従って、 ガス発生装置から発生させるガスとして、 不燃性ガスを用いた場合に は、 ガス発生手段から滑沢剤塗布装置までの装置内の空間に存在する空気や、 滑 沢剤塗布装置の近傍の空気 (酸素を含む通常の空気) を不燃性ガスにより置換す ることができる。
ガス発生手段から滑沢剤塗布装置までの装置内の空間に存在する空気の全部又 は一部、 及びノ又は、 滑沢剤塗布装置の近傍の空気 (酸素を含む通常の空気) の 全部又は一部を不燃性ガスにより置換し、 ガス発生手段から滑沢剤塗布装置まで の装置内の空間に存在するガス中に含まれる酸素の量や、 滑沢剤塗布装置の近傍 の空間に存在するガス中に含まれる酸素の量を減らせば、 滑沢剤塗布装置内の空 間や、 滑沢剤塗布装置の上杵塗布用滑沢剤噴霧口と上杵の材料接触面との間の空 間や、 滑沢剤塗布装置の下杵塗布用滑沢剤噴霧口、 臼及び臼内に所定の位置まで 挿入されている下杵により形成される空間において、 粉塵爆発が生じることを防 ぐことができる。
即ち、 この錠剤の製造装置では、 酸素濃度測定装置が測定した酸素濃度に基づ いて、 ガス発生装置から発生させるガス量を調整することで、 ガス発生手段から 滑沢剤塗布装置までの装置内の空間に存在するガス中に含まれる酸素の量や、 滑 沢剤塗布装置の近傍の空間に存在するガス中に含まれる酸素の量を減らすことが できるように構成しているので、 ガス発生手段から滑沢剤塗布装置までの装置内 の空間や、 滑沢剤塗布装置の周辺において、 粉塵爆発が生じることを防ぐことが できる。
請求項 1 0に記載の錠剤の製造装置は、 請求項 9に記載の錠剤の製造装置の、 ガス発生手段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装置の近傍 のガス中に含まれる酸素の濃度を、 爆発限界酸素濃度以下とした。
この錠剤の製造装置では、 ガス発生手段から滑沢剤塗布装置までの装置内及び Z又は滑沢剤塗布装置の近傍のガス中に含まれる酸素の濃度を、 ガス発生装置か ら発生させるガス量により、 爆発限界酸素濃度以下としているので、 ガス発生手 段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装置の近傍において、 粉塵爆発が生じない。
請求項 1 1に記載の錠剤の製造装置は、 請求項 9に記載の錠剤の製造装置の、 ガス発生手段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装置の近傍 のガス中に含まれる酸素濃度を 1 4 %以下とした。
この錠剤の製造装置は、 滑沢剤塗布装置の近傍のガス中に含まれる酸素の濃度 を、 爆発下限界酸素濃度を具体的に規定するものであり、 この錠剤の製造装置で は、 ガス発生手段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装置の 近傍のガス中に含まれる酸素の濃度を、 爆発限界酸素濃度以下、 即ち、 酸素の濃 度を 1 4 %以下としているので、 ガス発生手段から滑沢剤塗布装置までの装置内 及び/又は滑沢剤塗布装置の近傍において、 粉塵爆発を生じない。
尚、 粉塵爆発を生じないようにするためには、 ガス発生手段から滑沢剤塗布装 置までの装置内及び/又は滑沢剤塗布装置の近傍のガス中に含まれる酸素の濃度 は、 1 3 %以下にすることがより好ましく、 1 2 %以下にすることが更により好 ましく、 1 2 %以下にすることが尚一層好ましい。
一方、粉塵爆発を生じないようにするための爆発限界酸素濃度は、理想的には、 0 %であるので、 粉塵爆発を生じないようにするための爆発限界酸素濃度の下限 は、 0 %以上であることは、 言うまでもない。
請求項 1 2に記載の錠剤の製造装置は、 請求項 9に記載の錠剤の製造装置の、 ガス発生手段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装置の近傍 のガス中に含まれる酸素濃度を 8 %以下とした。
労働省産業安全研究所は、静電気安全指針において、爆発限界酸素濃度が 1 3 % 以上 1 4 %以下の範囲にある場合、 粉塵爆発が生じないようにするためには、 酸 素の濃度を 8 %以下に維持することを推奨している。 この錠剤の製造装置では、 爆発下限界酸素濃度を 1 4 °/0以下の範囲にある場合 を想定し、 労働省産業安全研究所の静電気安全指針をクリアするように、 ガス発 生手段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装置の近傍のガス 中に含まれる酸素の濃度を 8 %以下としているので、 ガス発生手段から滑沢剤塗 布装置までの装置内及び/又は滑沢剤塗布装置の近傍において、 粉塵爆発が生じ ない。
尚、 労働省産業安全研究所は、 静電気安全指針において、 爆発限界酸素濃度が 1 1 %以上 1 2 %以下の範囲にある場合、 粉塵爆発が生じないようにするために は、 酸素の濃度を 5 %以下に維持することを推奨している。
従って、 労働省産業安全研究所の静電気安全指針を考慮した場合には、 この錠 剤の製造装置の、 ガス発生手段から滑沢剤塗布装置までの装置内及び/又は滑沢 剤塗布装置の近傍のガス中に含まれる酸素の濃度は、 5 %以下とするのが更に好 ましい。
尚、 粉塵爆発を防ぐためには、 この錠剤の製造装置の、 ガス発生手段から滑沢 剤塗布装置までの装置内及び/又は滑沢剤塗布装置の近傍のガス中に含まれる酸 素の濃度は、 理想的には、 0 %であるので、 粉塵爆発を生じないようにするため の、 この錠剤の製造方法の滑沢剤粉末塗布ステツプにおける滑沢剤塗布装置の近 傍のガス中に含まれる酸素の濃度下限は、 0 %以上であることは、 言うまでもな い o
請求項 1 3に記載の錠剤の製造装置は、 ガス発生装置と、 ガス発生装置から発 生させたガスに依存して滑沢剤粉末を前記ガス発生装置から発生させたガス中に 吐出し、 混和し分散させる滑沢剤粉末吐出装置と、 滑沢剤粉末吐出装置から吐出 され、 ガス発生装置から発生させたガスに混和し分散した滑沢剤粉末を、 臼、 上 杵及び下杵の各々の材料接触表面に噴霧する滑沢剤塗布装置と、 滑沢剤塗布装置 から噴霧された滑沢剤粉末を吸引する吸引手段と、 吸引手段に設けられ、 吸引手 段により吸引された滑沢剤粉末の濃度を測定する滑沢剤粉末濃度測定装置とを備 え、 滑沢剤粉末濃度測定装置が測定した滑沢剤粉末の濃度に基づいて、 吸引手段 内に送り込まれる滑沢剤粉末の濃度を調整するようにした。
この錠剤の製造装置では、 滑沢剤塗布装置から噴霧された滑沢剤粉末を吸引手 段を用いて、 直ちに吸引するようにしているので、 例えば、 滑沢剤塗布装置の上 杵用滑沢剤噴霧口から上杵の材料接触面に噴霧された滑沢剤粉末が、 滑沢剤塗布 装置の周辺に飛散することがないため、 滑沢剤塗布装置の周辺において、 粉塵爆 発が生じることがない。
のみならず、 この錠剤の製造装置では、 滑沢剤粉末濃度測定装置が測定した滑 沢剤粉末の濃度に基づいて、 吸引手段内 (より特定的に説明すると吸引手段の吸 引ダク 卜内)に送り込まれる滑沢剤粉末の濃度を調整できるようにしているので、 吸引手段内 (より特定的に説明すると吸引手段の吸引ダク ト内) に送り込まれる 滑沢剤粉末の濃度を爆発下限界濃度以下とすれば、 吸引手段内 (より特定的に説 明すると吸引手段の吸引ダク 卜内において、 粉塵爆発が生じない。
請求項 1 4に記載の錠剤の製造装置は、請求項 1 3に記載の錠剤の製造装置の、 吸引手段内 (より特定的に説明すると吸引手段の吸引ダク ト内) に送り込まれる 滑沢剤粉末の濃度を爆発下限界濃度以下とした。
この錠剤の製造装置では、 吸引手段内 (より特定的に説明すると吸引手段の吸 引ダク 卜内) に送り込まれる滑沢剤粉末の濃度を爆発下限界濃度以下としている ので、吸引手段内(より特定的に説明すると吸引手段の吸引ダク 卜内)において、 粉塵爆発を生じない。
請求項 1 5に記載の錠剤の製造装置の、請求項 1 3に記載の錠剤の製造装置の、 吸引手段内 (より特定的に説明すると吸引手段の吸引ダク 卜内) に送り込まれる 滑沢剤粉末の爆発下限界濃度が、 7 0 g /m 3以下であることを特徴とする。 この錠剤の製造装置は、 請求項 1 4に記載の錠剤の製造装置の、 吸引手段内に 送り込まれる滑沢剤粉末の爆発下限界濃度を具体的に規定するものであり、 この 錠剤の製造装置では、 吸引手段内に送り込まれる滑沢剤粉末の濃度を、 滑沢剤粉 未の爆発下限界濃度以下の濃度、 即ち、 7 0 g /m 3以下、 好ましくは、 5 0 g / m 3以下にしているので、 この錠剤の製造装置を用いて錠剤を製造すれば、 錠 剤の製造装置内 (より特定的に説明すると吸引手段の吸引ダク ト内) において粉 塵爆発を生じることがない。
請求項 1 6に記載の錠剤の製造装置は、 請求項 9〜1 5のいずれかに記載の錠 剤の製造装置のガス発生装置から、 不燃性ガスを発生させるようにした。 この錠剤の製造装置では、 滑沢剤粉末を混和し分散するガスとして、 不燃性ガ スを用いるようにしているので、 ガス発生手段から前記滑沢剤塗布装置までの装 置内において、 粉塵爆発を生じない。
請求項 1 7に記載の錠剤の製造装置は、 請求項 9〜1 6のいずれかに記載の錠 剤の製造装置の、 ガス発生装置から、 脈動振動ガスを発生させるようにした。 この錠剤の製造装置では、 滑沢剤粉末を混和し分散するガスとして、 脈動振動 ガスを用い、 ガス内に混和し分散する滑沢剤粉末の量を脈動振動ガスの周波数、 振幅及び波形等に依存させている。
即ち、 この錠剤の製造装置では、 滑沢剤粉末を混和し分散する際に用いる脈動 振動ガスの周波数、 振幅及び波形等を一定にすれば、 一定のガスの量に対して、 常に、 一定量の滑沢剤粉末を混和し分散できるようにしているので、 常に、 一定 量の濃度の滑沢剤粉未を滑沢剤塗布装置に供給することができる。
このように、 この錠剤の製造装置では、 常に、 一定量の濃度の滑沢剤粉末を滑 沢剤塗布装置に供給するようにしているので、 臼、 上杵及び下杵の各々の材料接 触表面に常に一定量の滑沢剤粉末を同じ条件で塗布できる。
即ち、 この錠剤の製造方法を用いれば、 臼、 上杵及び下杵の各々の材料接触表 面に常に一定量の滑沢剤粉末を塗布できるので、 一旦、 臼、 上杵及び下杵の各々 の材料接触表面に塗布する滑沢剤粉末の量が最適になるように、 脈動振動ガスの 周波数、 振幅及び波形等を決定すれば、 後は、 脈動振動ガスの周波数、 振幅及び 波形等を一定にするだけで、 常に、 臼、 上杵及び下杵の各々の材料接触表面に塗 布する滑沢剤粉末の量を最適になるように維持することができる。
この結果、 この錠剤の製造装置を用いて錠剤を製造すれば、 一旦、 臼、 上杵及 び下杵の各々の材料接触表面に塗布する滑沢剤粉末の量が、 製造される錠剤に、 ステイツキングや、 キヤッビングや、 ラミネーティングといったような打錠障害 や、 臼、 上杵及び下杵にギシツキを生じない量となるように、 脈動振動ガスの周 波数、 振幅及び波形等を調整すれば、 後は、 脈動振動ガスの周波数、 振幅及び波 形等を一定にするだけで、 常に、 臼、 上杵及び下杵の各々の材料接触表面に塗布 する滑沢剤粉末の量を最適になるように維持するだけで、 製造される錠剤に、 ス ティッキングや、キヤッビングや、ラミネーティングといったような打錠障害や、 臼、 上杵及び下杵にギシツキを生じることなく、 長時間、 安定して、 錠剤を製造 することができる。
即ち、 この錠剤の製造装置を用いれば、 工業的生産採算ベースにのって、 錠剤 (外部滑沢錠剤) を製造することができる。
請求項 1 8に記載の錠剤の製造装置は、 ガス発生装置と、 ガス発生装置から発 生させたガスに依存して滑沢剤粉末をガス発生装置から発生させたガス中に吐出 し、混和し分散させる滑沢剤粉末吐出装置と、滑沢剤粉末吐出装置から吐出させ、 ガス発生装置から発生させたガスに混和し分散した滑沢剤粉未を、 臼、 上杵及び 下杵の各々の材料接触表面に噴霧する滑沢剤塗布装置と、 滑沢剤塗布装置から噴 霧された滑沢剤粉末を吸引する吸引手段からなり、 滑沢剤粉末吐出装置から滑沢 剤塗布装置までの任意の位置で滑沢剤粉末の濃度を測定する噴霧量測定装置とを 備え、 噴霧量測定装置が測定した滑沢剤粉末の量と前記吸引手段で吸引する風量 から、 滑沢剤粉末濃度を算出し吸引する風量を調整をするとともに、 滑沢剤粉末 濃度が爆発下限界濃度に達した場合は、 ガス発生装置から発生させたガスに混和 し分散した滑沢剤粉末の量が爆発下限界濃度以下になるように調整するようにし た。
この錠剤の製造装置では、 噴霧量測定装置により、 滑沢剤粉末濃度を監視し、 滑沢剤粉末濃度が爆発下限界濃度に達した場合には、 ガス発生装置から発生させ たガスに混和し分散した滑沢剤粉末の量を爆発下限界濃度以下になるように調整 するようにしているので、 粉塵爆発を生じない。
請求項 1 9に記載の錠剤の製造装置は、請求項 1 8に記載の錠剤の製造装置の、 吸引手段内に送り込まれる滑沢剤粉末の濃度を爆発下限界濃度以下とした。
この錠剤の製造装置では、 吸引手段内に送り込まれる滑沢剤粉末の濃度を爆発 下限界濃度以下にしているので、 吸引手段内において、 粉塵爆発が生じない。 請求項 2 0に記載の錠剤の製造装置は、請求項 1 8に記載の錠剤の製造装置の、 吸引手段内に送り込まれる滑沢剤粉末の濃度を、 7 0 g / m 3以下としたことを 特徴とする。
この錠剤の製造装置は、 請求項 1 9に記載の錠剤の製造装置の、 吸引手段内に 送り込まれる滑沢剤粉末の爆発下限界濃度を具体的に規定するものであり、 この 錠剤の製造装置では、 吸引手段内に送り込まれる滑沢剤粉末の濃度を、 滑沢剤粉 末の爆発下限界濃度以下の濃度、 即ち、 7 0 g / m 3以下、 好ましくは、 5 0 g / m 3以下にしているので、 この錠剤の製造装置を用いて錠剤を製造すれば、 錠 剤の製造装置内 (より特定的に説明すると吸引手段の吸引ダク 卜内) において粉 塵爆発を生じることがない。
請求項 2 1に記載の錠剤の製造装置は、 請求項 1 8又は請求項 1 9に記載の錠 剤の製造装置の、 ガス発生装置から、 不燃性ガスを発生させるようにした。
この錠剤の製造方法では、 ガス発生装置から、 不燃性ガスを発生させるように ているので、 滑沢剤粉末を混和し分散させているガスが、 空気と交じり合わない 場所 (装置内) において、 一切、 粉塵爆発を生じない。
請求項 2 2に記載の錠剤の製造装置は、 請求項 1 8〜2 1のいずれかに記載の 錠剤の製造装置の、 ガス発生装置から、 脈動振動ガスを発生させるようにした。 この錠剤の製造方法では、 請求項 7に記載の錠剤の製造装置と同様、 滑沢剤分 散ステップにおいて、 滑沢剤粉末吐出装置に供給する脈動振動ガスの周波数、 振 幅及び波形等を一定にすれば、 一定のガスの量に対して、 常に、 一定量の滑沢剤 粉末を混和し分散できるようにしているので、 請求項 7に記載の錠剤の製造装置 と同様の効果を奏する。
請求項 2 3に記載の錠剤の製造装置は、 請求項 9〜2 2のいずれかに記載の錠 剤の製造装置が、 帯電防止手段を更に備える。
この錠剤の製造装置では、 静電気による火花が発生しないようにするために、 帯電防止手段を設けているので、 静電気による火花が発生しない。
これにより、 この錠剤の製造装置を用いれば、 錠剤を製造する工程において、 粉塵爆発が生じない。 図面の簡単な説明
図 1は、 本発明に係る錠剤の製造装置の一例を概略的に示す構成図である。 図 2は、 図 1 に示す錠剤の製造装置の制御装置に格納されている第 1のプログ ラムを概略的に説明するフローチヤ一卜である。
図 3は、 図 1 に示す錠剤の製造装置の制御装置に格納されている第 2のプログ ラムを概略的に説明するフローチヤ一卜である。
図 4は、 滑沢剤粉末の爆発下限界濃度の具体的な値と、 爆発限界酸素濃度の具 体的な値とを求めるために、 (株) 環境衛生研究所で行った試験方法及び、 試験 結果の抜粋である。
図 5は、 滑沢剤粉末の爆発下限界濃度の具体的な値と、 爆発限界酸素濃度の具 体的な値とを求めるために、 (株) 環境衛生研究所で行った試験方法及び、 試験 結果の抜粋である。
図 6は、 図 1に示す錠剤の製造装置に用いる酸素除去装置の好ましい酸素除去 能力を例示的に説明するグラフである。
図 7は、本発明に係る錠剤の製造装置の他の一例を概略的に示す構成図である。 図 8は、本発明に係る錠剤の製造装置の他の一例を概略的に示す構成図である。 図 9は、本発明に係る錠剤の製造装置の他の一例を概略的に示す構成図である。 図 1 0は、 図 2に示す錠剤の製造装置を概略的に示す全体構成図である。
図 1 1は、 正圧の脈動ガス振動波を例示的に説明する説明図である。
図 1 2は、 滑沢剤粉末吐出装置を概略的に示す説明図である。
図 1 3は、 滑沢剤貯蔵用ホッパーを更に詳しく説明する説明図であり、 図 1 3 ( a )は、滑沢剤貯蔵用ホッパーを概略的に示す斜視図であり、また、図 1 3 ( b ) は、 図 1 3 ( a ) に示す滑沢剤貯蔵用ホッパーの要部を概略的に示す平面図であ o
図 1 4は、 弾性体膜を概略的に示す平面図である。
図 1 5は、 滑沢剤粉末吐出装置で用いる弾性体膜取付具に、 弾性体膜を取り付 けた状態を概略的に示す斜視図である。
図 1 6は、 図 1 5に示す弾性体膜取付具の構成を概略的に示す分解斜視図であ る o
図 1 7は、 図 1 5に示す弾性体膜取付具の構成を概略的に示す断面図である。 図 1 8は、 分散室を平面視した場合の、 分散室に設ける脈動ガス振動波供給口 の位置を模式的に示す平面図であり、 図 1 8 ( a ) は、 分散室に対する、 脈動ガ ス振動波供給口の好ましい取付位置を説明する説明図であり、 図 1 8 ( b ) は、 分散室に対する、 脈動ガス振動波供給口の実質的な取付可能位置を説明する説明 図である。
図 1 9は、 分散室を平面視した場合の、 分散室に設ける脈動ガス振動波供給口 と排出口との位置を模式的に説明する図であり、 図 1 9 ( a ) は、 分散室に対す る、 脈動ガス振動波供給口と排出口との好ましい取付位置を説明する説明図であ り、 図 1 9 ( b ) は、 分散室に対する、 脈動ガス振動波供給口と排出口との実質 的な取付可能位置を説明する説明図である。
図 2 0は、 滑沢剤粉末吐出装置の滑沢剤貯蔵用ホッパーに設けられてるガス噴 射手段及び材料切出弁の動作を模式的に示す説明図である。
図 2 1は、 制御装置の記憶部に予め記憶されている、 ガス噴射手段及び材料切 出弁の動作プログラムを概略的に示すフローチヤ一卜である。
図 2 2は、 分散室に、 正圧の脈動ガス振動波を供給した際に、 弾性体膜及びバ ィパス管の動作について模式的に説明する説明図である。
図 2 3は、 本発明で用いる外部滑沢式打錠機で用いられているロータリ型打錠 機を概略的に示す平面図である。
図 2 4は、 図 2 4中に示す滑沢剤塗布装置を更に拡大して概略的に示す平面図 ある。
図 2 5は、 図 2 4中、 X X I V— X X I V線に従う、 滑沢剤塗布装置の構成を 概略的に示す断面図である。
図 2 6は、 図 1 0に示す吸引手段 (滑沢剤吸引装置) の部分を中心にして拡大 して概略的に示す構成図である。
図 2 7は、 脈動ガス振動波発生装置の構成を、 概略的に示す断面図である。 図 2 8は、 脈動ガス振動波発生装置の他例を概略的に示す説明図である。 図 2 9は、 脈動ガス振動波発生装置の他の例を概略的に説明する分解斜視図で る。
図 3 0は、 本発明で用いる外部滑沢式打錠機の滑沢剤粉末吐出装置で用いる弾 性体膜の他の例を概略的に示す平面図である。
図 3 1は、 図 1に示す錠剤の製造装置を概略的に示す全体構成図である。 図 3 2は、 図 8に示す錠剤の製造装置を概略的に示す全体構成図である。 図 3 3は、 図 9に示す錠剤の製造装置を概略的に示す全体構成図である。 図 3 4は、 本発明に係る錠剤の製造装置の他の 1例を概略的に示す全体構成図 0¾ -o) o
図 3 5は、 図 3 4中に示す噴霧量測定装置を概略旳に示す構成図である。 図 3 6は、 粉塵爆発が生じる要因を説明する要因特性図である。 発明を実施するための最良の形態
以下、 本発明について、 図面を参照しながら更に詳し〈説明する。
(発明の実施の形態 1 )
図 1は、 本発明に係る錠剤の製造装置の一例を概略的に示す構成図である。 この錠剤の製造装置 (外部滑沢式打錠機) S aは、 ガス発生装置 Gと、 ガス発 生装置 Gから発生させたガスに依存して滑沢剤粉未をガス発生装置 Gから発生さ せたガス中に吐出し、 混和し分散させる滑沢剤粉末吐出装置 5 1 と、 滑沢剤粉末 吐出装置 5 1から吐出され、 ガス発生装置 Gから発生させたガスに混和し分散し た滑沢剤粉末を、 臼、 上杵及び下杵の各々の材料接触表面に噴霧する滑沢剤塗布 装置 9 1 と、 滑沢剤塗布装置 9 1の近傍のガス中に含まれる酸素濃度を測定する 酸素濃度測定装置 1 3 1 aと、 ガス発生装置 Gから滑沢剤塗布装置 9 1迄の装置 内の酸素の濃度を測定する酸素濃度測定装置 1 3 1 b、 1 3 1 cとを備える。 尚、 酸素濃度測定装置 1 3 1 b、 1 3 1 cは、 ガス発生装置 Gから滑沢剤塗布 装置 9 1迄の装置の気密性が十分に保証されておれば、 敢えて、 設ける必要はな い。
また、 図 1中、 8 1で示される装置は、 口一タリ型打錠機である。
また、 図 1中、 1 2 1で示される装置は、 この錠剤の製造装置 (外部滑沢式打 錠機) S aの全体を制御 ·統括する制御装置を示している。
ガス発生装置 Gは、ブロア _ 1 1 1 と、ブロア一 1 1 1 を駆動することにより、 ブロア一 1 1 1 から導管 T m内へ送り出される空気中の酸素を除去する酸素除去 装置 1 1 2を備える。
ブロア一 1 1 1 と制御装置 1 2 1 との間は、 信号線で接続されており、 制御装 置 1 2 1 からブロア一 1 1 1の駆動量を制御できるようになつている。
酸素除去装置 1 1 2としては、 滑沢剤塗布装置 9 1 から、 口一タリ型打錠機 8 1の臼(図 23に示す曰 3 2 · · ·を参照)の各々の材料接触表面、上杵 3 1 · · · の材料接触表面、 及び、 下杵 33 · · ·の材料接触表面へ滑沢剤粉末を塗布する 際の、 噴霧流量の最大値及び制御流量の最大値を合計した流量の圧縮空気をプロ ァー 1 1 1 から発生させた際に、 ブロア一 1 1 1 から発生させた圧縮空気中に含 まれる酸素濃度を、 爆発限界酸素濃度に比較して、 十分に低くすることができる 装置であれば、 種々の装置を用いることができる。
また、 この錠剤の製造装置 (外部滑沢式打錠機) S aでは、 ブロア一 1 1 1、 導管 T 0、 酸素除去装置 1 1 2、 導管 T m、 滑沢剤粉末吐出装置 5 1、 導管 T 2 及び滑沢剤塗布装置 9 1 までは、 気密系にされている。
より具体的に説明すると、 ブロア— 1 1 1の送風口には、 導管 T Oの一端が気 密に接続され、 導管 T Oの他端には、 酸素除去装置 1 1 2の供気口が気密に接続 され、 酸素除去装置 1 1 2の排気口には、 導管 Tmの一端が気密に接続され、 導 管 Tmの他端には、 滑沢剤粉末吐出装置 5 1のガス供給口 (図 1 2に示すガス供 給口 5 5 a) が気密に接続され、 滑沢剤粉末吐出装置の排出口 (図 1 2に示す排 出口 55 b) には導管 T 2の一端が気密に接続され、 導管 T 2の他端には、 滑沢 剤噴霧装置 9 1の滑沢剤導入口が気密に接続されており、 ブロア一 1 1 1の吸気 口から滑沢剤噴霧装置 9 1の上杵塗布用滑沢剤噴霧口 (図 23、 図 24及び図 2 5に示す上杵塗布用滑沢剤噴霧口 94 ) までのガス経路が気密にされている。 また、 酸素除去装置 1 1 2は、 例えば、 鉄粉等の脱酸素剤が充填されたカラム を備えており、 空気をカラム内に通過させることで、 空気中の酸素を除去できる ようになつている。
酸素濃度測定装置 1 3 1 a、 1 3 1 b、 1 3 1 cの各々としては、 例えば、 酸 素分析計 (製品名 :モデル 1 1 00、 商品名 : c e r am a t e c、 アドバンス ド ィ才ニック テクノ口ジィズ社製、 輸入販売:愛知産業株式会社) 等の公知 の酸素濃度測定装置を用いる。
酸素濃度測定装置 1 3 1 a、 1 3 1 b、 1 3 1 cとしては、 上記に例示したよ うな酸素分析計のように、 装置に警報発令酸素濃度を入力しておけば、 装置が、 警報発令酸素濃度以上の酸素濃度を検出した際に、 装置自らが警報を発令するよ うな装置であってもよい。 また、 酸素濃度測定装置 1 3 1 a、 1 3 1 b、 1 3 1 cの各々が検出した検出 値を、 制御装置 1 2 1 に送り、 制御装置 1 2 1側で、 警報発令酸素濃度を入力し たり、 酸素濃度測定装置 1 3 1 a、 1 3 1 b、 1 3 1 cの各々が、 警報発令酸素 濃度以上の酸素濃度を検出した際に、 警報を発令するようにしてもよい。
ブロア一 1 1 1 を駆動することにより、 ブロア一 1 1 1から導管 T 0内へ送り 出される空気は、 酸素除去装置 1 1 2により酸素が除去された後、 導管 T mを介 して、 滑沢剤粉末吐出装置 5 1へ送られる。
滑沢剤粉末吐出装置 5 1は、 導管 T mを介して供給される、 酸素除去装置 1 1 2により酸素が除去されたガスに依存して滑沢剤粉末を、 ガス中に吐出し、 混和 し分散させるようになつている。
尚、 滑沢剤粉末吐出装置 5 1の構成及び動作については、 後程、 詳しく説明す るので、 ここでは、 詳述するのを省略する。
滑沢剤粉末吐出装置 5 1により、 酸素除去装置 1 1 2により酸素が除去された ガス中に吐出され、 混和し分散した滑沢剤粉未は、 導管 T 2を介して滑沢剤塗布 装置 9 1へ送られる。
滑沢剤塗布装置 9 1は、 ロータリ型打錠機 8 1の回転テーブル 3 4上の所定の 位置 (図 2 3に示す滑沢剤噴霧ボイン卜 R 1 ) に設けられている。
導管 T 2を介して、 酸素が除去されたガス中に混和し分散した状態で滑沢剤塗 布装置 9 1へ送られた滑沢剤粉末は、 滑沢剤塗布装置 9 1に送り込まれてきてい るロータリ型打錠機 8 1の回転テーブル 3 4に設けられている複数の臼 (図 2 3 に示す複数の臼 3 2 · · ■ ) の材料接触表面、 複数の臼 (図 2 3に示す複数の臼 3 2 · · - ) の各々に対応して設けられている上杵 3 1 · · ■の材料接触表面、 及び、 複数の臼 (図 2 3に示す複数の臼 3 2 · · · ) の各々に対応して設けられ ている下杵 3 3 · ■ ·の材料接触表面の各々に順次塗布される。
尚、 滑沢剤塗布装置 9 1の構成及び動作については、 後程、 詳しく説明するの で、 ここでは、 詳述するのを省略する。
更に、 この錠剤の製造装置 (外部滑沢式打錠機) S aは、 吸引手段 1 0 1 と、 滑沢剤粉末濃度測定装置 1 0 3 aとを備えている。
吸引手段 1 0 1は、 集塵機 1 0 2と、 吸引ダク ト (導管) T 3とを備える。 そして、 吸引手段 1 0 1 (より特定的に説明すると、 集塵機 1 0 2 ) を駆動す れば、 吸引ダク ト (導管) T 3内に吸引されてきた滑沢剤粉末が集塵機 1 0 2内 に設けられている集塵フィルター(図示せず。)に集塵されるようになっている。 集塵機 1 0 2と制御装置 1 2 1 との間は、 信号線 (図示せず。 ) を介して、 信 号のやりとりができるようになつており、 制御装置 1 2 1 から集塵機 1 0 2を駆 動したり、 停止したり、 駆動量を所望の駆動量に制御できるようになつている。 この錠剤の製造装置 (外部滑沢式打錠機) S aでは、 吸引手段 1 0 1 を駆動す ると、 滑沢剤塗布装置 9 1 から、 複数の臼の材料接触表面、 複数の臼の各々に対 応して設けられている上杵の材料接触表面、 及び、 複数の臼の各々に対応して設 けられている上杵の材料接触表面の各々に吹き付けられた滑沢剤粉末の中、 余剰 の滑沢剤粉末は、 吸引手段 (滑沢剤吸引装置) 1 0 1により吸引除去されるよう になっている。
滑沢剤粉末濃度測定装置 1 0 3 a (図 2 6に示す散乱式粉体濃度測定手段 1 0 3 a ) は、 吸引手段 (滑沢剤吸引装置) 1 0 1の吸引ダク ト (導管 T 3 (より特 定的に説明すると、 図 2 6に示す分岐管 T 3 a ) ) の途中に設けられており、 滑 沢剤粉末濃度測定装置 1 0 3 aにより、 吸引手段 (滑沢剤吸引装置) 1 0 1 を駆 動した際に、 吸引手段 (滑沢剤吸引装置) 1 0 1の吸引ダク 卜 (導管 T 3 (より 特定的に説明すると、 図 2 6に示す分岐管 T 3 a ) ) 内の粉体 (滑沢剤粉末) の 濃度を測定できるようになつている。
この例では、 滑沢剤粉末濃度測定装置 1 0 3 aが検出した検出値は、 制御装置 1 2 1 に送られる。
また、 この錠剤の製造装置(外部滑沢式打錠機) S aでは、図 1に示すように、 ブロア一 1 1 1 、 酸素除去装置 1 1 2、 制御装置 1 2 1 、 滑沢剤粉末吐出装置 5 1 、 ロータリ型打錠機 8 1及び吸引手段 (滑沢剤吸引装置) 1 0 1の各々を接地 (アース)することで、ブロア一 1 1 1 、酸素除去装置 1 1 2、制御装置 1 2 1 、 滑沢剤粉末吐出装置 5 1 、ロータリ型打錠機 8 1及び吸引手段(滑沢剤吸引装置) 1 0 1の各々に静電気が帯電することを防ぐための帯電防止手段を設けている。 この例では、 ブロア一 1 1 1 、 酸素除去装置 1 1 2、 制御装置 1 2 1、 滑沢剤 粉末吐出装置 5 1、 ロータリ型打錠機 8 1及び吸引手段 (滑沢剤吸引装置) 1 0 1の各々を接地 (アース) した例を示しているが、 錠剤の製造装置 (外部滑沢式 打錠機) S aに静電気が帯電することを防ぐためには、 ブロア一 1 1 1 、 酸素除 去装置 1 1 2、 制御装置 1 2 1 、 滑沢剤粉末吐出装置 5 1、 ロータリ型打錠機 8 1及び吸引手段 (滑沢剤吸引装置) 1 0 1の全てを必ずしも接地 (アース) する 必要はなく、 これらの装置の少なくとも 1以上を接地 (アース) すればよい。 また、 錠剤の製造装置 (外部滑沢式打錠機) S aに静電気が帯電することを防 ぐためには、 必要により、 導管 T m、 T 2又は T 3等を接地 (アース) するよう にしてもよく、 あるいは、 ブロア一 1 1 1 、 酸素除去装置 1 1 2、 制御装置 1 2 1 、 滑沢剤粉末吐出装置 5 1 、 ロータリ型打錠機 8 1及び吸引手段 (滑沢剤吸引 装置) 1 0 1 、 導管 T m、 T 2又は T 3等にカチオン活性剤等の静電防止剤溶液 又は静電防止剤を含んだ塗料を塗布する等の帯電防止処理を施すようにしてもよ い
更に、この錠剤の製造装置(外部滑沢式打錠機) S aでは、制御装置 1 2 1 に、 第 1の安全装置を設けている。
第 1の安全装置は、 制御装置 1 2 1に設けられた第 1の警報装置を備える。 制御装置 1 2 1の演算処理部の記憶部には、 第 1の警報装置を動作させるため の第 1のプログラムが格納されている。
図 2は、 第 1のプログラムを概略旳に説明するフローチヤ一卜である。
この第 1のプログラムは、 酸素の濃度に関するしきい値として、 少なくとも、 大小 2つのしきい値 V t h 3 a、V t h 2 aと、大小 2つのしきい値 V t h 3 a、
V t h 2 aの中、 小さいほうの一方のしきい値 V t h 2以下の値を有する正常運 転可能酸素濃度しきい値 (例えば、 正常運転可能酸素濃度しきい値 = 5 % ) V t h 1 aとを有している。
大小 2つのしきい値 V t h 3 a、 V t h 2 aの中、 小さい方の一方のしきい値
V t h 2 aは、 警報を発報するか否かの判断をする際に用いる酸素濃度のしきい 値 (以下、 「警報発報酸素濃度しきい値」 という。 ) として設けられているしき い値であり、 爆発下限界酸素濃度に比べて十分に低い酸素の濃度の値 (例えば、 —方のしきい値 V t h 2 a = 1 1 % ) になっている。
2つのしきい値 V t h 3 a、 V t h 2 aの中、 一方のしきい値 (警報発報酸素 濃度しきい値) V t h 2 aよりも大きい方の他方のしきい値 V t h 3 aは、 運転 中の錠剤の製造装置 (外部滑沢式打錠機) S aを自動停止するか否かの判断をす る際に用いる酸素濃度のしきい値 (以下、 「自動運転停止酸素濃度しきい値」 と いう。 ) として設けられているしきい値であり、 爆発限界酸素濃度又はこれより やや小さい値 (例えば、 他方のしきい値 V t h 3 a= 1 4%) になっている。 この第 1のプログラムは、 この錠剤の製造装置 (外部滑沢式打錠機) S aの電 源が投入された後、 一旦、 酸素濃度測定装置 1 3 1 aが検出した検出値が、 正常 運転可能酸素濃度しきい値 (例えば、 正常運転可能酸素濃度しきい値 = 5%) V t h 1 a以下となった時点から警戒動作を開始するようになっている (図 2中、 ステップ 3 a、 ステップ 6 a、 ステップ 1 0 a及びステップ 1 2 aを参照) 。 そして、 この錠剤の製造装置 (外部滑沢式打錠機) S aでは、 第 1のプログラ 厶により、 この錠剤の製造装置 (外部滑沢式打錠機) S aを用いて錠剤を製造す る際に、 酸素濃度測定装置 1 31 aが検出した酸素の濃度 (検出値) が、 一旦、 —方のしきい値 (警報発報酸素濃度しきい値) V t h 2 a以下の値として設けら れている正常運転可能酸素濃度しきい値 V t h 1 a以下の値になった後 (ステツ プ 3 aを参照) 、 一方のしきい値 (警報発報酸素濃度しきい値) V t h 2 aにな れば (ステップ 6 aを参照) 、 制御装置 1 21に設けられている警報装置 (図示 せず。 ) から警報を出力して、 操作者等に、 粉塵爆発の可能性があることを警告
(wa r n i n g ) するようにしている (ステップ 9 aを参照) 。
尚、 第 1の警報装置 (図示せず。 ) としては、 制御装置 1 21に警報ブザーを 設け、 酸素濃度測定装置 1 31 aが検出した酸素の濃度 (検出値) が、 一方のし きい値 (警報発報酸素濃度しきい値) V t h 2 aになれば、 警報ブザーが鳴動す るような装置であっても、 制御装置 1 21に警報ランプを設け、 酸素濃度測定装 置 1 3 1 aが検出した酸素の濃度 (検出値) が、 一方のしきい値 (警報発報酸素 濃度しきい値) V t h 2 aになれば、 警報ランプが点灯又は点滅するような装置 であっても、あるいは、制御装置 1 2 1に警報ブザーと警報ランプの双方を設け、 酸素濃度測定装置 1 31 aが検出した酸素の濃度 (検出値) が、 一方のしきい値
(警報発報酸素濃度しきい値) V t h 2 aになれば、 警報ブザーが鳴動するとと もに、 警報ランプが点灯又は点滅するような装置であってもよい。 また、第 1の警報装置(図示せず。) としては、酸素濃度測定装置 1 3 1 aに、 —方のしきい値(警報発報酸素濃度しきい値) V t h 2 aを予め入力しておけば、 酸素濃度測定装置 1 3 1 aが検出した酸素の濃度 (検出値) が、 一方のしきい値 (警報発報酸素濃度しきい値) V t h 2 aになった際に、 酸素濃度測定装置 1 3 1 a自らが、 警報ブザーが鳴動し及び/又は警報ランプが点滅するようなもので あってもよい。
また、 この例では、 この錠剤の製造装置 S aを使用する作業者等の利便性を考 慮して、 第 1の警報装置 (図示せず。 ) に、 更に、 安全確認ランプ (図示せず。 ) を設け、 酸素濃度測定装置 1 3 1 aが検出した酸素の濃度 (検出値) が、 正常運 転可能酸素濃度しきい値 V t h 1 a以下になった時点で、 安全確認ランプ (図示 せず。 ) が点灯し (ステップ 3 a及びステップ 5 aを参照) 、 酸素濃度測定装置 1 3 1 aが検出した酸素の濃度 (検出値) が、 一方のしきい値 (警報発報酸素濃 度しきい値) V t h 2 aになれば、 安全確認ランプ (図示せず。 ) が消灯するよ うにしている (ステップ 6 a及びステップ 8 aを参照) 。
また、 この錠剤の製造装置 (外部滑沢式打錠機) S aでは、 第 1のプログラム により、 この錠剤の製造装置 (外部滑沢式打錠機) S aを用いて錠剤を製造する 際に、 酸素濃度測定装置 1 3 1 aが検出した酸素の濃度 (検出値) が、 一旦、 一 方のしきい値 V t h 2 a以下の値として設けられている正常運転可能酸素濃度し きい値(例えば、正常運転可能しきい値 = 5 % ) V t h 1 a以下の値になつた後、 他方のしきい値 (自動運転停止酸素濃度しきい値) V t h 3 aになれば、 ガス発 生装置 G (より特定的に説明すると、ガス発生装置 Gを構成するブロア一 1 1 1 )、 吸引手段 1 0 1 (より特定的に説明すると、 吸引手段 1 0 1 を構成する集塵機 1 0 2 ) 及び口一タリ型打錠機 8 1 を自動的に停止するようにしている (ステップ 1 2 a、 ステップ 1 3 a及びステップ 1 4 aを参照) 。
更に、この第 1のプログラムでは、ガス発生装置 G (より特定的に説明すると、 ガス発生装置 Gを構成するブロア一 1 1 1 ) の駆動を開始してからタイマー①が 所定時間を経過する迄に、 酸素濃度測定装置 1 3 1 aが検出した酸素の濃度 (検 出値)が、正常運転可能酸素濃度しきい値(例えば、正常運転可能しきい値 = 5 % ) V t h 1 a以下の値にならなければ、 この錠剤の製造装置 (外部滑沢式打錠機) S aの運転を自動停止するようにしている (ステップ 4 aを参照) 。 また、 制御装置 1 21に設ける第 1の警報装置 (図示せず。 ) を運転するため の第 1のプログラムに設ける一方のしきい値 (警報発報酸素濃度しきい値) Vt h 2 aは、 他方のしきい値 (自動運転停止酸素濃度しきい値) V t h 3 aより小 さい値であれば、 特に限定されないが、 用いる滑沢剤粉末の爆発限界酸素濃度に 対応する労働省産業安全研究所の静電気安全指針が推奨する酸素濃度以下から選 択される値であれば、特に限定されることはない。が、通常は、安全を見越して、 用いる滑沢剤粉未の爆発限界酸素濃度の 1 / 2程度の値を選択すればよい。
更に、 この錠剤の製造装置(外部滑沢式打錠機) S aでは、制御装置 1 21に、 第 2の安全装置を設けている。
図 3は、 第 2のプログラムを概略的に説明するフローチヤ一トである。
第 2の安全装置は、 制御装置 1 21に設けられた第 2の警報装置を備える。 制御装置 1 21の演算処理部の記憶部には、 第 2の警報装置を動作させるため の第 2のプログラムが格納されている。
この第 2のプログラムは、 滑沢剤粉末の爆発下限界濃度に関するしきい値とし て、 少なくとも、 大小 2つのしきい値 V th3 b、 Vth 2 bと、 大小 2つのし きい値 V th3 b、 V t h 2 bの中、 小さいほうの一方のしきい値 V t h 2 b以 下の値を有する正常運転可能爆発下限界濃度しきい値 (例えば、 正常運転可能爆 発下限界濃度しきい値 = 25 g/m3) Vt h l bとを有している (Vt h 1 < V t h 2 b) 。
2つのしきい値 Vth 3 b、 Vt h 2 bの中、 小さい方の一方のしきい値 (警 報発報爆発下限界濃度しきい値) V t h 2 bは、 滑沢剤粉末の爆発下限界濃度に 比べて十分に低い滑沢剤粉末の濃度の値 (例えば、 一方のしきい値 (警報発報爆 発下限界濃度しきい値) V t h 2 b=滑沢剤粉末の爆発下限界濃度の 1 / 2の値) になっている ( V t h 1 < V t h 2 b< V t h 3 b) 。
2つのしきい値 V th3 b、 V t h 2 bの中、 一方のしきい値 (警報発報爆発 下限界濃度しきい値) V t h 2 bよりも大きい方の他方のしきい値 (自動運転停 止爆発下限界濃度しきい) V t h 3 bは、 爆発下限界濃度又はこれよりやや小さ い値 (例えば、 他方のしきい値 (自動運転停止爆発下限界濃度しきい値) Vth 3 b = 70 g/m3) になっている。
この第 2のプログラムは、 この錠剤の製造装置 (外部滑沢式打錠機) S aの電 源が投入された後 (ステップ 1 bを参照) 、 一旦、 滑沢剤粉末濃度測定装置 1 0
3 aが検出した検出値が、 正常運転可能爆発下限界濃度しきい値 (例えば、 正常 運転可能爆発下限界濃度しきい値) V t h 1 b以下となった時点から警戒動作を 開始するようになっている (ステップ 3 b、 ステップ 6 b及びステップ 1 2 bを 参照) 。
そして、 この錠剤の製造装置 (外部滑沢式打錠機) S aでは、 第 2のプログラ ムにより、 この錠剤の製造装置 (外部滑沢式打錠機) S aを用いて錠剤を製造す る際に、滑沢剤粉末濃度測定装置 1 03 aが検出した滑沢剤粉末の濃度(検出値) が、 一旦、 一方のしきい値 (警報発報爆発下限界濃度しきい値) V t h 2 b以下 の値として設けられている正常運転可能酸素濃度しきい値 V t h 1 b以下の値に なった後、 一方のしきい値 (警報発報爆発下限界濃度しきい値) V t h 2 bにな れば (ステップ 6 bを参照) 、 制御装置 1 2 1に設けられている警報装置 (図示 せず。 ) から警報を出力して、 操作者等に、 粉塵爆発の可能性があることを警告 (wa r n i n 9 ) するようにしている (ステップ 9 bを参照) 。
尚、 第 2の警報装置 (図示せず。 ) としては、 制御装置 1 21に警報ブザーを 設け、 滑沢剤粉末濃度測定装置 1 03 aが検出した滑沢剤粉未の濃度 (検出値) が、 一方のしきい値 (警報発報爆発下限界濃度しきい値) V t h 2 bになれば、 警報ブザーが鳴動するような装置であっても、 制御装置 1 21に警報ランプを設 け、滑沢剤粉末濃度測定装置 1 03 aが検出した滑沢剤粉末の濃度(検出値)が、 一方のしきい値 (警報発報爆発下限界濃度しきい値) V t h 2 bになれば、 警報 ランプが点灯又は点滅するような装置であっても、 あるいは、 制御装置 1 2 1に 警報ブザーと警報ランプの双方を設け、 滑沢剤粉末濃度測定装置 1 03 aが検出 した滑沢剤粉末の濃度 (検出値) が、 一方のしきい値 (警報発報爆発下限界濃度 しきい値) V t h 2 bになれば、 警報ブザーが鳴動するとともに、 警報ランプが 点灯又は点滅するような装置であってもよい。
また、 この錠剤の製造装置 S aでは、 この錠剤の製造装置 S aを使用する作業 者等の利便性を考慮して、 第 2の警報装置 (図示せず。 ) に、 更に、 安全確認ラ ンプ (図示せず。 ) を設け、 滑沢剤粉末濃度測定装置 1 03 aが検出し滑沢剤粉 末の濃度 (検出値) が、 正常運転可能爆発下限界濃度しきい値 V t h 1 b以下に なった時点 (ステップ 3 bを参照) で、 安全確認ランプ (図示せず。 ) が点灯し (ステップ 4 bを参照) 、 滑沢剤粉末濃度測定装置 1 03 aが検出した滑沢剤粉 末の濃度 (検出値) が、 一方のしきい値 (警報発報爆発下限界濃度しきい値) V t h 2 bになれば (ステップ 6 bを参照) 、 安全確認ランプが消灯するようにし ている (ステップ 8 bを参照) 。
また、 この錠剤の製造装置 (外部滑沢式打錠機) S aでは、 第 2のプログラム により、 この錠剤の製造装置 (外部滑沢式打錠機) S aを用いて錠剤を製造する 際に、 滑沢剤粉末濃度測定装置 1 03 aが検出した酸素の濃度 (検出値) が、 一 旦、 一方のしきい値 (警報発報爆発下限界濃度しきい値) V t h 2 b以下の値と して設けられている正常運転可能爆発下限界濃度しきい値 (例えば、 正常運転可 能爆発下限界濃度しきい値 = 1 2. 5 g/m3) V t h 1 b以下の値になった後、 他方のしきい値 (自動運転停止爆発下限界濃度しきい) V t h 3 bになれば、 ガ ス発生装置 G (より特定的に説明すると、 ガス発生装置 Gを構成するブロア一 1 1 1 ) 、 吸引手段 1 01及びロータリ型打錠機 81を自動的に停止するようにし ている (ステップ 1 2 b及びステップ 1 4 bを参照) 。
更に、この第 2のプログラムでは、吸引手段 1 01 (より特定的に説明すると、 吸引手段 1 01 を構成する集塵機 1 02) の駆動を開始してからタイマ一③が所 定時間を経過する迄に、 滑沢剤粉末濃度測定装置 1 03 aが検出した滑沢剤粉末 の濃度 (検出値) が、 正常運転可能爆発下限界濃度しきい値 (例えば、 正常運転 可能爆発下限界濃度しきい値 = 1 2. 5 g/m3) V t h 1 b以下の値にならな ければ、 この錠剤の製造装置 (外部滑沢式打錠機) S aの運転を自動停止するよ うにしている (ステップ 4 bを参照) 。
この錠剤の製造装置 S aでは、 ガス発生装置 Gから発生させたガスに依存して 滑沢剤粉末をガス中に吐出し、 ガス発生装置 Gから発生させたガスに混和し分散 させる滑沢剤粉未吐出装置を用いているので、 ガス発生装置 Gから発生させるガ スの発生量 (流量、 圧力等) を一定にしている限り、 一定量のガスに対して、 一 定量の滑沢剤粉末を混和し、 分散させることができる。 このように、 この錠剤の製造装置 S aでは、 常に、 一定の濃度の滑沢剤粉末を 滑沢剤塗布装置 9 1 に供給するようにしているので、臼 3 2 · ■ ■、上忤 3 1 · - · 及び下杵 3 3 · · ·の各々の材料接触表面に常に一定量の滑沢剤粉末を塗布でき o
この結果、 この錠剤の製造装置 S aを用いれば、 臼 3 2 · · ■、 上杵 3 1 · · · 及び下杵 3 3 · · ·の各々の材料接触表面に常に一定量の滑沢剤粉末を塗布でき るので、 一旦、 臼 3 2 · ■ · 、 上杵 3 1 ■ ■ ■及び下杵 3 3 ■ · ■の各々の材料 接触表面に塗布する滑沢剤粉末の量が最適になるように、 ガス発生装置から発生 させるガスの発生量(流量、圧力等)を決定すれば、後は、ガスの発生量(流量、 圧力等) を一定にするだけで、 常に、 臼 3 2 · · · 、 上杵 3 1 ■ ■ ■及び下杵 3 3 · · ·の各々の材料接触表面に塗布する滑沢剤粉末の量を最適になるように維 持することができる。
この結果、 この錠剤の製造装置 S aを用いれば、 一旦、 臼 3 2 , · · 、 上杵 3 1 ■ ■ ·及び下杵 3 3 · ·の各々の材料接触表面に塗布する滑沢剤粉未の量が、 製造される錠剤に、 ステイツキングや、 キヤッビングや、 ラミネ一ティングとい つたような打錠障害や、 臼 3 2 · · ■ 、 上杵 3 1 · · ■及び下杵 3 3 · · · にギ シツキを生じない量となるように、 ガス発生装置 Gから発生させるガスの発生量
(流量、 圧力等) を調整すれば、 後は、 ガス発生装置から発生させるガスの (流 量、 圧力等) を一定に維持するだけで、 製造される錠剤に、 ステイツキングや、 キヤッビングや、 ラミネ一ティングといったような打錠障害や、 臼 3 2 ■ · -、 上杵 3 1 · ■ ·及び下杵 3 3 · · · にギシツキを生じることなく、 長時間、 安定 して、 錠剤を製造することができる。
即ち、 この錠剤の製造装置 S aは、 工業的生産採算ベースにあった、 錠剤 (外 部滑沢錠剤) の製造装置として好適に用いることができる。
のみならず、 この錠剤の製造装置 S aでは、 滑沢剤塗布装置 9 1の近傍のガス 中に含まれる酸素濃度を測定する酸素濃度測定装置 1 3 1 aを設け、 酸素濃度測 定装置 1 3 1 aが測定した酸素濃度に基づいて、 ガス発生装置 Gから発生させる ガス量を調整するようにしている。
従って、 ガス発生装置 Gから発生させるガスとして、 不燃性ガスを用いた場合 には、ガス発生装置 Gから滑沢剤塗布装置 9 1 までの装置内、即ち、この例では、 導管 T 0、 酸素除去装置 1 1 2、 導管 T m、 滑沢剤粉末吐出装置 5 1 、 導管 T 2 及び滑沢剤塗布装置 9 1内の空間や、 滑沢剤塗布装置 9 1の近傍の空気 (酸素を 含む通常の空気) を不燃性ガスにより置換することができる。
ガス発生装置 Gから滑沢剤塗布装置 9 1 までの装置内の空間や、 滑沢剤塗布装 置 9 1の近傍の空気 (酸素を含む通常の空気) の全部又は一部を不燃性ガスによ り置換し、 ガス発生装置 Gから滑沢剤塗布装置 9 1 までの装置内の空間や、 滑沢 剤塗布装置 9 1の近傍の空間に存在するガス中に含まれる酸素の量を減らせば、 ガス発生装置 Gから滑沢剤塗布装置 9 1 までの装置内の空間や、 滑沢剤塗布装置 9 1の上杵塗布用滑沢剤噴霧口 (図 2 0に示す上杵塗布用滑沢剤噴霧口 9 4 ) と 上杵 3 1の材料接触面との間の空間や、 滑沢剤塗布装置 9 1の下杵塗布用滑沢剤 噴霧口 (図 2 5に示す下杵塗布用滑沢剤噴霧口 9 1 b ) 、 臼 3 2及び臼 3 2内に 所定の位置まで挿入されている下杵 3 3により形成される空間において、 粉塵爆 発が生じることを防ぐことができる。
即ち、 この錠剤の製造装置 S aでは、 酸素濃度測定装置 1 3 1 aが測定した酸 素濃度に基づいて、 ガス発生装置 Gから発生させるガス量を調整することで、 ガ ス発生装置 Gから滑沢剤塗布装置 9 1 までの装置内の空間や、 滑沢剤塗布装置 9 1の近傍の空間に存在するガス中に含まれる酸素の量を減らすことができるよう に構成しているので、 ガス発生装置 Gから滑沢剤塗布装置 9 1 までの装置内の空 間や、 滑沢剤塗布装置 9 1の周辺において、 粉塵爆発が生じることを防ぐことが できる。
のみならず、 この錠剤の製造装置 S aでは、 滑沢剤粉末濃度測定装置 1 0 3 a が測定した滑沢剤粉末の濃度に基づいて、 吸引手段 1 0 1 (より具体的には、 吸 引ダク ト (導管) ) T 3内に送り込む滑沢剤粉末の濃度を調整できるようにして いるので、 吸引手段 1 0 1 (より具体的には、 吸引ダク ト (導管) ) T 3内に送 り込む滑沢剤粉未の濃度を爆発下限界濃度以下とすれば、 この錠剤の製造装置の 吸引手段 1 0 1 (より具体的には、 吸引ダク ト (導管) ) T 3内において粉塵爆 発が生じない。
また、 この錠剤の製造装置 S aでは、 錠剤の製造装置 S aに、 帯電防止手段を 設けているので、 錠剤の製造装置 S aに静電気が帯電しない。
これにより、 この錠剤の製造装置 S aを用いて錠剤を製造すれば、 錠剤の製造 装置 S aが静電気を帯びることがないので、静電気による火花が発生しないため、 粉塵爆発が生じない。
次に、 錠剤の製造装置 (外部滑沢式打錠機) S aの動作について説明する。 この錠剤の製造装置 (外部滑沢式打錠機) S aを用いて、 錠剤を製造する際に は、 錠剤の原料となる、 粉体材料を準備する。
次に、 錠剤の原料となる、 粉体材料をロータリ型打錠機 8 1の粉体材料貯蔵ホ ッパー (図示せず。 ) 内に収容する。
また、 滑沢剤粉末吐出装置 5 1に滑沢剤粉未を収容する。
次に、 制御装置 1 2 1の電源を投入し、 酸素濃度測定装置 1 3 1 a及び滑沢剤 粉末濃度測定装置 1 0 3 aの各々を動作状態にする。
次に、 口—タリ型打錠機 8 1 を駆動状態にし、 回転テーブル 3 4、 複数の上杵 3 1 ' · · 、 及び、 複数の下杵 3 4 · ■ · を回転駆動する。
次に、 ブロアー 1 1 1 、 酸素除去装置 1 1 2、 及び、 吸引手段 (滑沢剤吸引装 置) 1 0 1 を駆動させる。
この時、 制御装置 1 2 1からブロア一 1 1 1の駆動量を調整することで、 酸素 濃度測定装置 1 3 1 aが検出する検出値 (酸素の濃度) が、 爆発下限界濃度より 十分低い濃度となったことを確認する。
より具体的に説明すると、この錠剤の製造装置(外部滑沢式打錠機) S aには、 制御装置 1 2 1 に設けられている第 1の安全装置の安全確認ランプが点灯したか どうかを確認する。
ブロア一 1 1 1 を駆動し、 滑沢剤粉末吐出装置 5 1 に、 酸素除去装置 1 1 2に より酸素が除去されたガスを供給すると、 滑沢剤粉末吐出装置 5 1へ供給される ガスの供給量、 供給圧力及び/又は流量等に応じて、 当該ガス中に、 滑沢剤粉末 が吐出され、 混和し、 分散した状態になって、 滑沢剤塗布装置 9 1へ送られる。 滑沢剤塗布装置 9 1へ、 酸素が除去されたガスに混和し、 分散した状態になつ て送られた滑沢剤粉末は、 口—タリ型打錠機 8 1の回転テーブル 3 4、 上杵 3 1 - · ■及び下杵 3 3 · · ·の回転により、 滑沢剤塗布装置 9 1に送り込まれて きた臼(図 2 3に示す複数の臼 3 2 · · ·;)の各々の材料接触表面、上杵 3 1 ■ · · の各々の材料接触表面、 及び、 下杵 3 3 · · ■の各々の材料接触表面の各々に対 して、 順次、 噴霧される。
以上の工程により、 ロータリ型打錠機 8 1の回転テーブル 3 4、上杵 3 1 · · · 及び下杵 3 3 ■ · ·の回転により、滑沢剤塗布装置 9 1に送り込まれてきた臼(図 2 3に示す複数の臼 3 2 ■ · · ) の各々の材料接触表面、 上杵 3 1 · · ■の各々 の材料接触表面、 及び、 下杵 3 3 · ■ ·の各々の材料接触表面の各々に、 順次、 滑沢剤粉末が塗布される。
また、 吸引手段 1 0 1 を駆動すると、 滑沢剤塗布装置 9 1 から、 口一タリ型打 錠機 8 1の回転テーブル 3 4、上杵 3 1 ■ ■ ·及び下杵 3 3 · · ■の回転により、 滑沢剤塗布装置 9 1に送り込まれてきた臼 (図 2 3に示す複数の臼 3 2 . . - ) の各々の材料接触表面、上杵 3 1 ■■ 'の各々の材料接触表面、及び、下杵 3 3 · · · の各々の材料接触表面に対して順次、 噴霧された滑沢剤粉末の中、 臼 (図 2 3に 示す複数の臼 3 2 ■ ■ ■ ) の各々の材料接触表面、 上杵 3 1 ■ · ·の各々の材料 接触表面、 及び、 下杵 3 3 · · 'の各々の材料接触表面に付着しなかった余剰の 滑沢剤粉末が、 吸引手段 1 0 1 によって、 空気とともに吸引される。
吸引手段 (滑沢剤吸引装置) 1 0 1の吸引ダク ト (導管 T 3 (より特定的に説 明すると、 図 2 6に示す分岐管 T 3 a ) ) の途中に設けられており、 滑沢剤粉末 濃度測定装置 1 0 3 aにより、 吸引手段 (滑沢剤吸引装置) 1 0 1 を駆動した際 に、 吸引ダク 卜内の粉体 (滑沢剤粉末) の濃度が測定される。
この時、 制御装置 1 2 1からブロア一 1 1 1の駆動量及び吸引手段 (滑沢剤吸 引装置) 1 0 1 を駆動量を調整することで、 滑沢剤粉末濃度測定装置 1 0 3 aが 検出する検出値(滑沢剤粉末の濃度)が、滑沢剤粉末の爆発下限界濃度に比べて、 十分に小さい値である、 一方のしきい値 (警報発報爆発下限界濃度しきい値) V t h 2 bの濃度以下となるように調整する。
次に、 口—タリ型打錠機 8 1の粉体材料貯蔵ホッパー (図示せず。 ) 内に収容 されている粉体材料を、 臼 3 2 · · ·の各々と、 臼 3 2 · ■ .の各々内に所定の 位置まで挿入されている下杵 3 3 · ■ · の各々とにより形成される空間の各々に 供給する。 次に、 滑沢剤粉末が塗布された材料接触表面を有する臼 3 2 ■ ■ ·の各々、 滑 沢剤粉末が塗布された材料接触表面を有する下杵 3 3 · · ■ の各々、 滑沢剤粉末 が塗布された材料接触表面を有する上杵 3 1 ■ · ·の各々を用いて、 順次、 圧縮 成形 (打錠) し、 錠剤を製造する。
この時、 製造される錠剤を観察する。
そして、 必要により、 製造される錠剤の表面に付着する滑沢剤粉末の付着量を 減らすため、 制御装置 1 2 1 から吸引手段 (滑沢剤吸引装置) 1 0 1の駆動量を 大き〈する等の調整し、 臼 3 2 ■ · ■の各々の材料接触表面、 下杵 3 3 · ■ ·の 各々の材料接触表面、 及び、 上杵 3 1 · · 'の各々の材料接触表面へ塗布する滑 沢剤粉末の塗布量を減らす。
この錠剤の製造装置 S aでは、 以上のような調整を終了した後、 上記で決定し た条件で、 工業的生産ベースで、 本格的に、 錠剤を製造する。
尚、 この錠剤の製造装置 S aを用いて、 同じ成形材料から同じ大きさ ·形状の 錠剤を製造する場合であって、 口—タリ型打錠機 8 1の構成や、 駆動量等を変更 しない場合には、 上記で決定した条件を、 制御装置 1 2 1の記憶部に記憶させて おけば、 2回目以降の錠剤の製造を簡単に開始することができる。
この錠剤の製造装置 S aを用いて、 錠剤を製造している途中において、 酸素濃 度測定装置 1 3 1 aが検出した酸素の濃度 (検出値) が、 一方のしきい値 (警報 発報酸素濃度しきい値) V t h 2 a以上になれば、 安全確認ランプが消灯し、 第 1の警報装置 (図示せず。 ) から警報を出力するようにして、 操作者等に、 粉塵 爆発の可能性があることを警告 (w a r n "i n g ) するようにしている。
これにより、 操作者等は、 第 1の警報装置 (図示せず。 ) から警報が出力され た時点で、 錠剤の製造装置 S aの点検■補修をすることで、 錠剤を製造している 途中において、 この錠剤の製造装置 S a内やその周辺において、 粉塵爆発が生じ るのを未然に防ぐことができる。
更に、 この錠剤の製造装置 S aでは、 この錠剤の製造装置 S aを用いて、 錠剤 を製造している途中において、 酸素濃度測定装置 1 3 1 aが検出した酸素の濃度 (検出値) が、 他方のしきい値 (自動運転停止酸素濃度しきい値) V t h 3 aに なれば、 ガス発生装置 G (より特定的に説明すると、 ガス発生装置 Gを構成する ブロア— 1 1 1 ) 、 吸引手段 1 0 1及びロータリ型打錠機 8 1 を自動的に停止す るようにしているので、 この錠剤の製造装置 S a内やその周辺において、 粉塵爆 発が生じない。
また、 この錠剤の製造装置 S aを用いて、 錠剤を製造している途中において、 滑沢剤粉末濃度測定装置 1 0 3 aが検出した滑沢剤粉末の濃度 (検出値) が、 一 方のしきい値 (警報発報爆発下限界濃度しきい値) V t h 2 b以上になれば、 安 全確認ランプが消灯し、 第 2の警報装置 (図示せず。 ) から警報を出力するよう にして、 操作者等に、 粉塵爆発の可能性があることを警告 (w a r n i n g ) す るようにしている。
これにより、 操作者等は、 第 2の警報装置 (図示せず。 ) から警報が出力され た時点で、 錠剤の製造装置 S aの点検■補修をすることで、 錠剤を製造している 途中において、 この錠剤の製造装置 S a内やその周辺において、 粉塵爆発が生じ るのを未然に防ぐことができる。
更に、 この錠剤の製造装置 S aでは、 この錠剤の製造装置 S aを用いて、 錠剤 を製造している途中において、 滑沢剤粉末濃度測定装置 1 0 3 aが検出した滑沢 剤粉末濃度 (検出値) が、 他方のしきい値 (自動運転停止爆発下限界濃度しきい 値) V t h 3 bになれば、 ガス発生装置 G (より特定的に説明すると、 ガス発生 装置 Gを構成するブロア一 1 1 1 ) 、 吸引手段 1 0 1及びロータリ型打錠機 8 1 を自動的に停止するようにしているので、 この錠剤の製造装置 S a内やその周辺 において、 粉塵爆発が生じない。
この錠剤の製造方法では、 ガスに依存して滑沢剤粉末をガス中に吐出し、 ガス に混和し分散させるようにしているので、 滑沢剤粉末を混和し分散させるガスを 一定にしている限り、 一定量のガスに対して、 一定量の滑沢剤粉末を混和し、 分 散させることができる。
このように、 この錠剤の製造方法では、 常に、 一定量の濃度の滑沢剤粉末を滑 沢剤塗布装置に供給するようにしているので、 臼 3 2 ■ · · 、 上杵 3 1 · · ■及 び下杵 3 3 · · ·の各々の材料接触表面に常に一定量の滑沢剤粉末を塗布できる。 即ち、この錠剤の製造方法では、臼 3 2 ■ · ■、上杵 3 1 · ■ ·及び下杵 3 3 · · · の各々の材料接触表面に常に一定量の滑沢剤粉未を塗布できるので、 一旦、 臼 3 2 ■ · ■ 、 上杵 3 1 · · ·及び下杵 3 3 · . ·の各々の材料接触表面に塗布する 滑沢剤粉末の量が最適になるように、 滑沢剤粉末を混和し分散させるガスの発生 量 (流量、 圧力等) を決定すれば、 後は、 ガスの発生量 (流量、 圧力等) を一定 にするだけで、 常に、 臼 3 2 · · · 、 上杵 3 1 · · ■及び下杵 3 3 · · ■ の各々 の材料接触表面に塗布する滑沢剤粉末の量を最適になるように維持することがで 3る。
この結果、 この錠剤の製造方法を用いれば、一旦、臼 3 2 · · ■、上杵 3 1 ■ · · 及び下杵 3 3 ■ · ■の各々の材料接触表面に塗布する滑沢剤粉末の量が、 製造さ れる錠剤に、 ステイツキングや、 キヤッビングや、 ラミネ一ティングといったよ うな打錠障害や、 臼 3 2 · ■ ■ 、 上杵 3 1 · ■ ■及び下杵 3 3 ■ · ■ にギシツキ を生じない量となるように、滑沢剤粉末を混和し分散させるガスの発生量(流量、 圧力等) を調整すれば、 後は、 滑沢剤粉末を混和し分散させるガスの (流量、 圧 力等) を一定に維持するだけで、 製造される錠剤に、 ステイツキングや、 キヤッ ピングゃ、 ラミネ一ティングといったような打錠障害や、 臼 3 2 · ■ · 、 上杵 3 1 - · '及び下杵 3 3 · · ' にギシツキを生じることな〈、 長時間、 安定して、 錠剤を製造することができる。
即ち、 この錠剤の製造方法は、 工業的生産採算ベースにあった、 錠剤 (外部滑 沢錠剤) の製造方法として適している。
のみならず、 この錠剤の製造方法では、 ガス発生手段 Gから滑沢剤塗布装置 9 1 までの装置内のガス中に含まれる酸素の濃度を爆発下限界酸素濃度以下として いるので、 ガス発生手段 Gから滑沢剤塗布装置 9 1 までの装置内において、 粉塵 爆発を生じない。
また、 滑沢剤塗布装置 9 1の近傍のガス中に含まれる酸素の濃度を、 爆発下限 界酸素濃度以下としているので、 滑沢剤塗布装置 9 1の近傍においても、 粉塵爆 発を生じない。
のみならず、この錠剤の製造方法では、余剰滑沢剤粉末吸引ステップにおいて、 吸引手段 1 0 1 (より特定的に説明すると、 吸引手段 1 0 1 を構成する吸引ダク 卜 (導管) T 3 ) 内の滑沢剤粉末の濃度を爆発下限界濃度以下としているので、 吸引手段 1 0 1 (より特定的に説明すると、 吸引手段 1 0 1 を構成する吸引ダク 卜 (導管) T 3 ) 内において、 粉塵爆発を生じない。
のみならず、 この錠剤の製造装置 S aでは、 帯電防止手段を設けているので、 静電気による火花が発生しない。 これにより、 この錠剤の製造装置を用いれば、 錠剤を製造する工程において、 粉塵爆発が生じない。
また、 この錠剤の製造装置 S aでは、 第 1の警報装置 (図示せず。 ) を設け、 この錠剤の製造装置 S aを用いて、 錠剤を製造している際に、 酸素濃度測定装置 1 3 1 aが検出した検出値が、他方のしきい値(自動運転停止酸素濃度しきい値) V t h 3 a以上になれば、 錠剤の製造装置 S aを、 直ちに、 自動停止するように しているので、 この錠剤の製造装置を用いれば、 錠剤を製造する工程において、 粉塵爆発が生じない。
また、 この錠剤の製造装置 S aでは、 第 2の警報装置 (図示せず。 ) を設け、 この錠剤の製造装置 S aを用いて、 錠剤を製造している際に、 滑沢剤粉末濃度測 定装置 1 0 3 aが検出した検出値が、 他方のしきい値 (自動運転停止爆発下限界 濃度しきい値) V t h 3 b以上になれば、 錠剤の製造装置 S aを、 直ちに、 自動 停止するようにしているので、 この錠剤の製造装置を用いれば、 錠剤を製造する 工程において、 粉塵爆発が生じない。
次に、 滑沢剤粉末の爆発下限界濃度の具体的な値と、 爆発限界酸素濃度の具体 的な値とについて説明する。
図 4及び図 5は、 滑沢剤粉末の爆発下限界濃度の具体的な値と、 爆発限界酸素 濃度の具体的な値とを求めるために、 (株) 環境衛生研究所 (所在地:静岡県浜 松巿新都田 1 — 6— 2 ) で行った試験方法及び試験結果の抜粋である。
試料としては、 医薬品の錠剤を製造する際に通常用いられている滑沢剤粉末、 即ち、 ステアリン酸マグネシウム (日本薬局方品:純正化学社製、 粒子径: 1 0 μ Γθ ) が用いられた。
この試験は、 爆発試験、 着火エネルギー試験及び爆発限界酸素濃度試験の 3種 類の試験により構成されている。
爆発試験は、 3 0リツ トルの容量を有する球形の爆発試験装置を使用し、 着火 源として火薬 ( 1 0 k J ) を使用して行われた。
この爆発試験は、 3 0リツ トルの容量を有する球形の爆発試験装置内の粉塵の 濃度を、 1 25 g/m3、 250 g/m\ 500 g/m3及び 750 g/m3の 4 種類の濃度にして、 4種類の濃度の各々について行われた。
爆発試験の環境は、 温度が 21 °Cであり、 湿度が 2 1 %であった。
粉塵の濃度が 1 25 g/m3、 250 g/m\ 500 g/m3及び 750 g/ m3の各々における最大圧力上昇速度 (b a「/s e c) は、 967. 3、 1 0 99. 5、 1 028. 0及び 822. 5であった。
また、 粉塵の濃度が 1 25 g/m3、 250 g/m3、 500 g/m 3及び 75 0 g/m 3の各々における K s t (b a r - m/s e c ) It 300. 6、 34 1 - 6、 31 9. 4及び 255. 6であった。
また、 粉塵の濃度が 1 25 g/m3 s 250 g/m3、 500 g/m3及び 75 O g/m3の各々における K s t (b a r . m/ s e c) 値に基づいて、 爆発ク ラスは、 「3」 であると評価された。
また、 粉塵の濃度が 1 25 g/m3、 250
Figure imgf000043_0001
500 g/m 3及び 75 0 g/m3の各々における最大爆発圧力 (ba r ) は、 7. 7 1、 8. 68、 8. 1 2及び 7. 41であった。
また、 着火エネルギー試験は、 吹き上げ式着火エネルギ測定装置を使用して行 われた。
この着火エネルギー試験は、 吹き上げ式着火エネルギ測定装置内の粉塵の濃度 を、 250 g/m3、 5009 /m 3及び 750 g 3の 3種類の濃度にして、 3種類の濃度の各々について行われた。
試料は、 デシケ一タ中に 24時間放置し、 十分に乾燥させたものを使用した。 吹き上げ式着火エネルギ測定装置内の粉塵の濃度が 250 g/m3の条件下に おける着火エネルギは、 0. 3 m Jく着火エネルギ < 1 m Jであった。
以上の爆発試験及び着火エネルギ試験の結果から、 試料は、 爆発の激しさが特 に大きい粉じんであり、 着火エネルギも 1 m J (以下) と低いため、 静電気によ る着火■爆発の危険性がある、 という評価がなされた。
また、 試料は、 ガスバーナーの火炎上で燃えるため、 試料を取り扱う設備付近 の火気に注意が必要である、 という評価がなされた。
従来は、 ステアリン酸マグネシウム及びこれに類する滑沢剤粉末を使用する小 型装置 (例えば、 小規模実験装置) には暴爆対策を施す必要があるという認識は されていなかつたが、 今回の試験結果から、 ステアリン酸マグネシウム及びこれ に類する滑沢剤粉末を使用する装置、 特に、 ステアリン酸マグネシウム及びこれ に類する滑沢剤粉末の使用量が多くなる工業的生産ラインで用いられる大型装置 等には、 暴爆対策を十分に施す必要がある、 ということが明らかになった。 爆発限界酸素濃度試験の試験条件、 試験方法及び試験装置の概略は、 図 4に示 されている。
まず、 爆発限界酸素濃度試験で用いる試験装置の概要について説明する。 試験装置は、 図 4中、 3. 装置概略の欄に図示されている。
即ち、 爆発限界酸素濃度試験で用いる試験装置は、 コンプレッサーと、 40リ ッ 卜ル (L i t e r ) タンクと、 窒素ボンベと、 1 . 3リッ トル ( L i t e r ) タンクと、 ハル卜マン式爆発試験装置とを備える。 40リッ トル (L i t e r ) 夕ンクとコンプレッサーとは導管で接続されており、 コンプレッサーを駆動する ことで発生させた空気が 40リッ トル ( L i t e r ) タンクへ供給されるように なっている。 また、 40リッ トル (L i t e r) タンクと窒素ボンベとは導管で 接続されており、 窒素ボンベから発生させた窒素ガスが 40リッ トル (L i t e r ) タンクへ供給されるようになっている。
以上の構成により、 コンプレッサーの駆動量と、 窒素ボンベから放出する窒素 ガスの放出量を適宜調整することで、 40リッ トル (L "i t e r ) タンク内のガ ス中に含まれる酸素濃度を種々変えることができるようになつている。
また、 40リッ トル (L i t e r ) タンクには導管が接続されている。 この導 管は、 途中で、 2つの導管に分岐し、 一方の分岐管は、 1 . 3リッ トル (L i t e r ) タンクに接続され、 他方の分岐管は、 ハルトマン式爆発試験装置に上方に 設けられたパージ用ノズルに接続されている。
また、他方の分岐管の途中には、バルブ(パージ用バルブ)が設けられている。 また、 1 . 3リッ トル(L i t e r )タンクには導管の一端が接続されている。
1 . 3リッ トル (L i t e r ) タンクにその一端が接続された導管の他端は、 ハ ル卜マン式爆発試験装置の試料皿の下方位置に設けられている。
1 . 3リッ トル ( L i t e r ) タンクと、 ノ、ル卜マン式爆発試験装置とをつな ぐ導管の途中には、 ソレノィ ドバルブが設けられている。
ハルトマン式爆発試験装置は、 ガラス製の筒状形状のケース (以下、 「爆発円 筒」 という。 ) を備え、 爆発円筒内に、 下方から上方に、 順に、 試料を收容する 試料皿、 放電電極及び着火目印線が設けられた構成になっている。
着火目印線は、 放電電極の上方に、 放電電極から 1 0 0 m m離れた位置に設け られている。
また、 放電電極には、 高圧電流が供給されるようになっており、 放電電極に、 高圧電流を流せば、 放電電極から放電が生じるようになつている。
爆発円筒の上部には、 フィルタ一が挟み込めるようになつている。
また、 パージ用ノズルは、 爆発円筒の上部から下部まで入れることができるよ うになっている。
次に、 爆発限界酸素濃度試験の試験条件の概要について説明する。
爆発限界酸素濃度試験の試験条件は、 図 4中、 1 . 試験条件の欄に示されてい o
即ち、 爆発限界酸素濃度試験は、 以下の条件で行われた。
①爆発限界酸素濃度試験は、 常温、 常圧で行われた。
②希釈気体として、 窒素 (N 2 ) が用いられた。
③酸素濃度は、 最高 2 1 %とし、 1 8 %、 1 5 %、 1 2 %で行い、 1 2 %で試 料が爆発する場合には、 更に、 1 %ずつ酸素濃度を下げて実験を行い、 試料が爆 発しない酸素濃度になれば、 その濃度より 1 %酸素の濃度が高い酸素濃度で、 試 料が爆発するかしないかを観察した。
④試料は、 ふるい分けせずに試験に使用した。
⑤上記③の酸素濃度で、 試料が爆発するかしないかを観察することで、 試料の 爆発限界酸素濃度を求めた。
次に、 爆発限界酸素濃度試験の試験方法の概要について説明する。
爆発限界酸素濃度試験の試験方法は、 図 4中、 2 . 試験方法の欄に示されてい る o
即ち、 爆発限界酸素濃度試験は、 以下の方法で行われた。
① まず、 試験機内の粉塵が所定濃度となるように試料 (ステアリン酸マグネ シゥム (日本薬局方品:純正化学社製、 粒子径: 1 O m) ) をはかり取り、 こ の試料 (ステアリン酸マグネシウム (日本薬局方品:純正化学社製、 粒子径: 1 Ο μ.π ) ) を試料皿に均等に置いた。
この爆発限界酸素濃度試験は、 試験機内の粉塵の濃度を、 適宜、 変更して行わ れた。
②次に、爆発円筒をセッ 卜し、爆発円筒の上部に、フィルターを挟み込んだ後、 フィル夕一を突き破るようにして、 パージ用ノズルは、 爆発円筒の上部から下部 まで入れた。
③次に、 40リッ トル ( L i t e r ) タンクとパージ用ノズルとの間をつない でいる分岐管の途中に設けられているバルブ (パージ用バルブ) を開き、 所定の 酸素濃度のガスを爆発円筒内に送り込み、 爆発円筒内の空気を、 所定の酸素濃度 のガスに置換した。
④次に、 パージ用ノズルを爆発円筒から引き抜き、 爆発円筒の上部をフィルタ 一によりシールする。
⑤次に、 ソレノィ ドバルブを開き、 1 . 3リッ トル (L i t e r ) タンクにそ の一端が接続され、 ハルトマン式爆発試験装置の試料皿の下方位置に設けられて いる導管の他端から、 所定の酸素濃度のガスを 0. 7 0 K g f /c m2の圧力で 供給し、 試料 (ステアリン酸マグネシウム (日本薬局方品:純正化学社製、 粒子 径: 1 Q jLL m ) ) を爆発円筒内に分散させた後、 放電電極に高圧電流を流して、 放電電極から放電を行い、 この時に、 爆発円筒内に分散させた試料 (ステアリン 酸マグネシウム (日本薬局方品:純正化学社製、 粒子佳: 1 Ο ΓΏ) ) が着火し たか否かを目視で観察した。
⑥爆発円筒内に分散させた試料 (ステアリン酸マグネシウム (日本薬局方品: 純正化学社製、 粒子径: 1 Ο μηη) ) が着火したか否かの判断は、 放電電極の上 方に、 放電電極から 1 0 O mm離れた位置に設けられている着火目印線を、 放電 電極からの放電により、 爆発円筒内に分散させた試料 (ステアリン酸マグネシゥ ム (日本薬局方品:純正化学社製、 粒子径: 1 0 Atm) ) が着火した炎の上端が 超えた場合を着火と判断した。
爆発限界酸素濃度試験の試験結果は、 図 5中、 4. 試験結果の欄に示されてい る o
図 5中、 4. 試験結果の欄に示されているテーブル及びグラフから、 試料 (ス テアリン酸マグネシウム (日本薬局方品:純正化学社製、 粒子佳: 1 O im) ) の爆発限界酸素濃度は、 温度が 2 0°C以上 2 1 °C以下の範囲で、 湿度が、 2 1 % 以上 3 5%以下の場合には、 1 1 %以上 1 2%以下であることが明らかになった。 次に、 上記と同様の爆発限界酸素濃度試験を、 試料として、 ステアリン酸カル シゥム(日本薬局方品:日本油脂社製、粒子径: 1 Oyum) ) を用いて行った所、 試料 (ステアリン酸カルシウム (日本薬局方品: 日本油脂社製、 粒子佳: 1 m) ) の爆発限界酸素濃度は、 溫度が 2 0°C以上 2 1 C以下の範囲で、 湿度が、 2 1 %以上 3 5%以下の場合には、 1 3%以上 1 4%以下であることが明らかに なった。
次に、 労働省産業安全研究所の静電気安全指針を見た所、 爆発限界酸素濃度が 1 3%以上 1 4%以下の場合には、 粉塵爆発を防ぐためには、 酸素濃度を 8%以 下で管理することが望ましく、 また、 爆発限界酸素濃度が 1 1 %以上 1 2%以下 の場合には、 粉塵爆発を防ぐためには、 酸素濃度を 5%以下で管理することが望 ましい、 とされていることが判った。
また、 ステアリン酸マグネシウム (日本薬局方品:純正化学社製、 粒子径: 1 Ο μπΊ) の爆発下限界濃度 ( g/m3) を調べた所、 ステアリン酸マグネシウム (日本薬局方品:純正化学社製、 粒子径: 1 0 m) の酸素濃度 2 1 %気体中で は、 爆発下限界濃度 (g/m3) は、 3 0 g/m3以上 5 0 g/m 3以下であるこ とが判った。
また、同様にステアリン酸カルシウム(日本薬局方品:日本油脂社製、粒子径: 1 0 /xm) の爆発下限界濃度 ( g/m3) を調べた所、 ステアリン酸マグネシゥ ム (日本薬局方品:純正化学社製、 粒子 ί圣: 1 Ο η) の爆発下限界濃度 (g/ m3) は、 6 0 g/m 3以上 7 0 g/m 3以下であることが判った。
その後、 各種の滑沢剤粉末 (粒子径: 1 O xm) についても爆発限界酸素濃度 試験と爆発下限界濃度について調査した所、他の滑沢剤粉末(粒子径: 1 Ο ΓΤΙ ) の爆発限界酸素濃度及び爆発下限界濃度の各々は、ステアリン酸マグネシウム(日 本薬局方品:純正化学社製、 粒子怪: 1 0 m) ゃステアリン酸カルシウム (日 本薬局方品: 日本油脂社製、 粒子径: 1 0 m ) の爆発限界酸素濃度及び爆発下 限界濃度の各々と近似していることが判つた。
次に、 この錠剤の製造装置 S aを構成する酸素除去装置 1 1 2に求められる酸 素除去能力について例示的に説明する。
酸素除去装置 1 1 2としては、 その酸素除去能力が、 通常、 工業的生産採算べ ースで錠剤を製造する際に、 滑沢剤塗布装置 9 1 から、 口一タリ型打錠機 8 1の 臼 (図 2 3に示す臼 3 2 · · · を参照) の各々の材料接触表面、 上杵 3 1 ■ ■ · の材料接触表面、 及び、 下杵 3 3 · · ·の材料接触表面へ滑沢剤粉末を塗布する 際に用いるガス中の酸素濃度を、 爆発限界酸素濃度より十分に低い濃度にするこ とができる酸素除去能力が必要とされる。
通常、 工業的生産採算ベースで錠剤を製造する際には、 滑沢剤塗布装置 9 1 か ら、 ロータリ型打錠機 8 1の臼 (図 2 3に示す臼 3 2 · · · を参照) の各々の材 料接触表面、 上杵 3 1 · · ·の材料接触表面、 及び、 下杵 3 3 ■ · ·の材料接触 表面へ滑沢剤粉末を塗布するには、噴霧流量として、最大で、約 5 0 N L /分( m n . ) が必要とされ、 制御流量として、 最大で、 約 7 0 N L /分 (m i n . ) が必要とされる。
尚、 滑沢剤塗布装置 9 1 から、 ロータリ型打錠機 8 1の臼 (図 2 3に示す臼 3 2 ■ ■を参照) の各々の材料接触表面、上杵 3 1 ■ · ■の材料接触表面、及び、 下杵 3 3 ■ · ■の材料接触表面へ滑沢剤粉末を塗布する際の、 噴霧流量の最大値 及び制御流量の最大値は、 本発明者等が、 通常、 工業的生産採算ベースで錠剤を 製造することができる市販のロータリ型打錠機を用い、 本発明に係る錠剤の製造 装置 S aを組み立てて、 実際に、 種々の錠剤を製造してみて、 錠剤を製造する際 に、 製造される錠剤に、 ステイツキングや、 ラミネ一ティングや、 キヤヅッピン グ等の打錠障害が生じないようにするために必要な、 滑沢剤塗布装置 9 1 から、 口一タリ型打錠機 8 1の臼 (図 2 3に示す臼 3 2 · ■ ' を参照) の各々の材料接 触表面、 上杵 3 1 · · . の材料接触表面、 及び、 下杵 3 3 ■ · ·の材料接触表面 への噴霧流量及び制御流量に安全係数として、 1 . 2を乗じた値である。
このような噴霧流量と制御流量とを合計した圧縮空気 (流量 = 1 2 0 N L /分 ( m i n . ) ) をブロア一 1 1 1 から発生させ、 市販の種々の酸素除去装置を通 過させた結果、 この例で用いている酸素除去装置 1 1 2は、 流量 = 1 2 0 N L / 分(m i n . )中に含まれる酸素の濃度を、 0 . 5 %以下とできることが判った。 尚、 錠剤の製造装置 S aを構成する酸素除去装置 1 1 2としては、 図 6のグラ フに示すような酸素除去能力以上の能力を持った酸素除去装置を用いるのが好ま しいことを付記しておく。
次に、 錠剤の製造装置 S aを実際に組み立て、 錠剤の製造装置 S aを用いて実 際に錠剤を製造し、 この時の錠剤の製造装置 S a内及びその周辺の酸素濃度、 滑 沢剤粉末濃度を測定した。
尚、 図 1中、 酸素濃度測定装置 1 3 1 dは、 錠剤の製造装置 S aの吸引手段 1 0 1 を構成する吸引ダク ト (導管) T 3内の酸素濃度を測定するために設けたも のである。
錠剤の製造装置 S aの酸素除去装置 1 1 2付近の装置内の酸素濃度は、 酸素濃 度測定装置 1 3 1 cによって測定できる。
また、 錠剤の製造装置 S aの滑沢剤粉末吐出装置 5 1付近の装置内の酸素濃度 は、 酸素濃度測定装置 1 3 1 bによって測定できる。
また、 錠剤の製造装置 S aの滑沢剤塗布装置 9 1付近の酸素濃度は、 酸素濃度 測定装置 1 3 1 aによって測定できる。
また、 錠剤の製造装置 S aの集塵経路付近の装置内の酸素濃度は、 酸素濃度測 定装置 1 3 1 dによって測定できる。
また、 図 1中、 滑沢剤粉末濃度測定装置 1 0 3 b、 1 0 3 c , 1 0 3 dは、 錠 剤の製造装置 S a内の滑沢剤粉末の濃度を測定するために設けたものである。 錠剤の製造装置 S aの酸素除去装置 1 1 2付近の装置内の滑沢剤粉末の濃度は, 滑沢剤粉末濃度測定装置 1 0 3 dによつて測定できる。
また、 錠剤の製造装置 S aの滑沢剤粉末吐出 ¾置 5 1付近の装置内の滑沢剤粉 末の濃度は、 滑沢剤粉末濃度測定装置 1 0 3 cによって測定できる。
また、 錠剤の製造装置 S aの滑沢剤塗布装置 9 1付近の滑沢剤粉末の濃度は、 滑沢剤粉末濃度測定装置 1 0 3 bによつて測定できる。
また、 錠剤の製造装置 S aの集塵経路付近の装置内の酸素濃度は、 滑沢剤粉末 濃度測定装置 1 0 3 aによって測定できる。 . 以上の錠剤の製造装置 S aを用いて、 上述した製造方法に従って、 製造される 錠剤に打錠障害が生じていない錠剤を工業的生産採算ベースで製造した。
ブロア一 1 1 1 を駆動して、 ブロア一 1 1 1 から圧縮空気 (流量 = 1 00 N L /分 (m i n . ) ) を発生させた。
酸素除去装置 1 1 2付近の装置内の酸素濃度は、 0. 5%以下であった。 また、酸素除去装置 1 1 2付近の装置内の粉末の濃度は、 0 g/m3であった。 また、 酸素除去装置 1 1 2付近の装置への静電気の帯電は観察されなかった。 以上の結果から、 酸素除去装置 1 1 2付近では、 酸素濃度が爆発限界酸素濃度 に比べて著しく低く、 粉末 (可燃物) は、 存在しておらず、 しかも、 酸素除去装 置 1 1 2付近の装置への静電気の帯電は観察されなかったため、 粉体爆発が生じ ることがない、 ことが明らかになった。
また、 滑沢剤粉末吐出装置 5 1付近の装置内の酸素濃度は、 0. 5%以下であ つ o
また、 滑沢剤粉末吐出装置 5 1付近の粉未の濃度は、 33. 5 g/m3であつ た。
また、 滑沢剤粉末吐出装置 5 1付近の装置への静電気の帯電は観察されなかつ た。
以上の結果から、 滑沢剤粉末吐出装置 5 1付近では、 粉末の濃度は、 爆発下限 界濃度よりも高くなつているが、 酸素濃度が爆発限界酸素濃度に比べて著しく低 く、 しかも、 滑沢剤粉末吐出装置 5 1付近の装置への静電気の帯電は観察されな かったため、 粉体爆発が生じることがない、 ことが明らかになった。
また、 滑沢剤塗布装置 9 1付近の酸素濃度は、 0. 5%以下であった。
また、 滑沢剤塗布装置 9 1付近の粉末の濃度は、 33. 3 g/m3であった。 また、 滑沢剤粉末吐出装置 5 1付近の装置への静電気の帯電は観察されなかつ た。
以上の結果から、 滑沢剤塗布装置 9 1付近では、 粉末の濃度は、 爆発下限界濃 度よりも高〈なっているが、 酸素濃度が爆発限界酸素濃度に比べて著しく低く、 しかも、 滑沢剤塗布装置 9 1付近の装置への静電気の帯電は観察されなかったた め、 粉体爆発が生じることがない、 ことが明らかになった。 集塵経路付近の装置内の酸素濃度は、 2 1 %であった。
また、 集塵経路付近の装置内の粉末の濃度は、 0 . 9 1 g /m 3であった。 また、 集塵経路付近の装置への静電気の帯電は観察されなかった。
以上の結果から、 集塵経路付近では、 酸素濃度は、 爆発限界酸素濃度に比べて 高くなつているが、 粉末 (可燃物) は、 爆発下限界濃度よりも十分に低〈維持さ れ、 しかも、 集塵経路付近の装置への静電気の帯電は観察されなかったため、 粉 体爆発が生じることがない、 ことが明らかになった。
(発明の実施の形態 2 )
図 7は、本発明に係る錠剤の製造装置の他の一例を概略的に示す構成図である。 この錠剤の製造装置 (外部滑沢式打錠機) S bは、 ガス発生装置 G aとして、 図 1に示すガス発生装置 Gに、 更に、 脈動ガス振動波発生装置 4 1 を接続した装 置を用いている。
より詳しく説明すると、 ガス発生装置 G aは、 ブロア一 1 1 1 と、 ブロア一 1 1 1 を駆動することにより、 ブロア一 1 1 1 から導管 T m内へ送り出される圧縮 空気中の酸素を除去する酸素除去装置 1 1 2と、 脈動ガス振動波発生装置 4 1 と
¾: 1/M る。
脈動ガス振動波発生装置 4 1は、 ブロア一 1 1 1 を駆動することにより発生さ せ、 酸素除去装置 1 1 2により、 酸素が除去されたガスを脈動ガス振動波 (図 1 1 ( a ) 及び図 1 1 ( b ) の各々に例示するような一定の周期で脈動するガス) に変換する装置である。
脈動ガス振動波発生装置 4 1 と制御装置 1 2 1 とは、 信号線 (図示せず。 ) を 介して信号のやりとりができるようになつており、 制御装置 1 2 1から、 脈動ガ ス振動波発生装置 4 1 を駆動したり、 停止したり、 駆動量を制御することで、 所 望の周波数、所望の波形を有する脈動ガス振動波を発生できるようになつている。 尚、 脈動ガス振動波発生装置 4 1の構成及び脈動ガス振動波については、 後ほ ど、 詳し〈説明するので、 ここでの詳しい説明は省略する。
また、 この錠剤の製造装置 (外部滑沢式打錠機) S bでは、 ブロア一 1 1 1、 導管 T 0、 酸素除去装置 1 1 2、 導管 T m、 脈動ガス振動波発生装置 4 1 、 導管 T 1 、 滑沢剤粉末吐出装置 5 1 、 導管 T 2及び滑沢剤塗布装置 9 1 までは、 気密 系にされている。
より具体的に説明すると、 ブロア— 1 1 1の送風口には、 導管 T Oの一端が気 密に接続され、 導管 T Oの他端には、 酸素除去装置 1 1 2の供気口が気密に接続 され、 酸素除去装置 1 1 2の排気口には、 導管 T mの一端が気密に接続され、 導 管 T mの他端には、 脈動ガス振動波発生装置 4 1のガス供給ポート (図 3 2に示 すガス供給ポー卜 4 2 aを参照) が気密に接続され、 脈動ガス振動波発生装置 4 1のガス排出ポー卜 (図 3 2に示すガス排出ポ一卜 4 2 b ) には、 導管 T 1の一 端が密に接続され、 導管 T 1の他端には、 滑沢剤粉末吐出装置 5 1の空気供給口 (図 1 2に示すガス供給口 5 5 a ) が気密に接続され、 滑沢剤粉末吐出装置の排 出口 (図 1 2に示す排出口 5 5 b ) には導管 T 2の一端が気密に接続され、 導管 T 2の他端には、 滑沢剤噴霧装置 9 1の滑沢剤導入口が気密に接続されており、 ブロア一 1 1 1の吸気口から滑沢剤噴霧装置 9 1の上杵塗布用滑沢剤噴霧口 (図 2 6に示す上杵塗布用滑沢剤噴霧口 9 4 ) までのガス流通経路が気密にされてい る。
滑沢剤粉末吐出装置 5 1へ脈動振動ガスを供給する際には、 脈動ガス振動波発 生装置 (図 3 2に示す脈動ガス振動波発生装置 4 1 を参照) を駆動することで、 ブロア一 1 1 1 を駆動することにより、 ブロア一 1 1 1 から導管 T m内へ送り出 され、 酸素除去装置 1 1 2により酸素が除去されたガスを、 脈動振動ガスに変換 し、 このようにして変換された脈動振動ガスを滑沢剤粉末吐出装置 5 1 に供給す ο
このように、 脈動ガス振動波発生装置 4 1 を設けた場合にあっては、 脈動ガス 振動波発生装置 (図 7に示す脈動ガス振動波発生装置 4 1を参照) から発生させ る脈動振動ガスの周期、 振幅は、 制御装置 1 2 1により制御できるようになる。 即ち、 滑沢剤粉末吐出装置 5 1から吐出される滑沢剤粉末の量は、 滑沢剤粉末 吐出装置 5 1に脈動振動ガスを供給する場合にあって、 ブロア一 1 1 1の駆動量 を一定にした場合には、 滑沢剤粉末吐出装置 5 1に供給する脈動振動ガスの周波 数に依存するようになっている。
従って、 滑沢剤粉末吐出装置 5 1 に供給する脈動振動ガスの周波数を高くする と滑沢剤粉末吐出装置 5 1から吐出される滑沢剤粉末の吐出量を多くすることが できるので、滑沢剤噴霧装置 9 1へ高濃度の滑沢剤粉末を供給することができる。 また、 滑沢剤粉末吐出装置 5 1 に供給する脈動振動ガスの周波数を低くすると 滑沢剤粉末吐出装置 5 1 から吐出される滑沢剤粉末の吐出量を少なくすることが できるので、滑沢剤噴霧装置 9 1へ低濃度の滑沢剤粉末を供給することができる。 尚、 この錠剤の製造装置 (外部滑沢式打錠機) S bの他の構成は、 図 1 に示し た錠剤の製造装置(外部滑沢式打錠機) S aと同様であるので、ここでの説明は、 省略する。
次に、この錠剤の製造装置(外部滑沢式打錠機) S bの動作について説明する。 この錠剤の製造装置 (外部滑沢式打錠機) S bを用いて、 錠剤を製造する際に は、 錠剤の原料となる、 粉体材料を準備する。
次に、 錠剤の原料となる、 粉体材料をロータリ型打錠機 8 1の粉体材料貯蔵ホ ッパー (図示せず。 ) 内に収容する。
また、 滑沢剤粉末吐出装置 5 1に滑沢剤粉末を収容する。
次に、 制御装置 1 2 1の電源を投入し、 酸素濃度測定装置 1 3 1 a及び滑沢剤 粉未濃度測定装置 1 0 3 aの各々を動作状態にする。
次に、 ロータリ型打錠機 8 1 を駆動状態にし、 回転テーブル 3 4、 複数の上杵 3 1 · · · 、 及び、 複数の下杵 3 4 ■ · · を回転駆動する。
次に、 ブロア一 1 1 1 、 脈動ガス振動波発生装置 4 1及び吸引手段 (滑沢剤吸 引装置) 1 0 1の各々を所望の駆動量で駆動させる。
尚、 この錠剤の製造装置 S bの動作は、 錠剤の製造装置 (外部滑沢式打錠機) S bを動かす際に、ブロア— 1 1 1及び吸引手段(滑沢剤吸引装置) 1 0 1の各々 を所望の駆動量で駆動する以外に、 脈動ガス振動波発生装置 4 1 を所望の駆動量 で駆動し、 滑沢剤塗布装置 9 1への滑沢剤粉末の供給量が少ない場合には、 プロ ァー 1 1 1の駆動量を変化させない場合であっても、 脈動ガス振動波発生装置 4 1の駆動量を上げれば、 滑沢剤塗布装置 9 1への滑沢剤粉末の供給量を増加させ ることができるようになつており、 また、 錠剤の製造装置 (外部滑沢式打錠機) S bを停止させる際 (自動運転停止させる場合を含む。 ) に、 ブロア一 1 1 1及 び吸引手段 (滑沢剤吸引装置) 1 0 1の各々を停止させる以外に、 脈動ガス振動 波発生装置 4 1 を停止させるようにしている以外は、 錠剤の製造装置 S aの動作 と同様であるので、 ここでの説明は、 省略する。
(発明の実施の形態 3 )
図 8は、本発明に係る錠剤の製造装置の他の一例を概略的に示す構成図である。 この錠剤の製造装置 (外部滑沢式打錠機) S cは、 ガス発生装置 G aとして、 不燃性ガス発生装置 1 1 1 aを用い、 錠剤の製造装置 (外部滑沢式打錠機) S a では必須の構成装置であった酸素除去装置 1 1 2を設けていない以外は、 錠剤の 製造装置 (外部滑沢式打錠機) S aと、 同様の構成になっているので、 相当する 部材装置については、 相当する参照符号を付して、 その説明を省略する。
不燃性ガス発生装置 1 1 1 aとしては、 例えば、 窒素 (N 2 ) ガス、 ヘリウム ( H e ) ガス、 アルゴン (A r ) ガス等の不活性ガス等の不燃性ガスが詰められ たガスボンベを用いる。
また、 図 8中、 V 1 1 1 aで示す部材は、 不燃性ガス発生装置 1 1 1 aから滑 沢剤粉末吐出装置 5 1へ供給する不燃性ガスの流量、 圧力を調整するためのパル ブである。
尚、 この例では、 バルブ V 1 1 1 aとして、 ソレノィ ド等を用いた電磁バルブ を使用している。 このバルブ V 1 1 1 aと制御装置 1 2 1 とは、 信号線 (図示せ ず。 ) を介して信号のやりとりができるようになつており、 制御装置 1 2 1から 信号を送出することで、 バルブ V 1 1 1 aの開閉量を制御することで、 不燃性ガ ス発生装置 1 1 1 aから発生させる不燃性ガスの流量、 圧力を調整できるように している。
次に、この錠剤の製造装置(外部滑沢式打錠機) S cの動作について説明する。 この錠剤の製造装置 (外部滑沢式打錠機) S cを用いて、 錠剤を製造する際に は、 錠剤の原料となる、 粉体材料を準備する。
次に、 錠剤の原料となる、 粉体材料をロータリ型打錠機 8 1の粉体材料貯蔵ホ ツバ— (図示せず。 ) 内に収容する。
また、 滑沢剤粉末吐出装置 5 1に滑沢剤粉末を収容する。
次に、 制御装置 1 2 1の電源を投入し、 酸素濃度測定装置 1 3 1 a及び滑沢剤 粉末濃度測定装置 1 0 3 aの各々を動作状態にする。
次に、 ロータリ型打錠機 8 1 を駆動状態にし、 回転テーブル 3 4、 複数の上忤 3 1 · · · 、 及び、 複数の下杵 3 4 · ■ ■ を回転駆動する。
次に、 不燃性ガス発生装置 1 1 1 aに設けられているバルブ V 1 1 1 aを所望 の開口量にし、 吸引手段 (滑沢剤吸引装置) 1 0 1の各々を所望の駆動量で駆動 させる。
尚、 この錠剤の製造装置 S cの動作は、 .錠剤の製造装置 (外部滑沢式打錠機) S cを動かす際に、 不燃性ガス発生装置 1 1 1 aに設けられているバルブ V 1 1 1 aを所望の開口量にし、 また、 錠剤の製造装置 (外部滑沢式打錠機) S cを停 止させる際 (自動運転停止させる場合を含む。 ) に、 バルブ V 1 1 1 aを閉じる 以外は、 錠剤の製造装置 S aの動作と同様であるので、 ここでの説明は、 省略す o
(発明の実施の形態 4 )
図 9は、本発明に係る錠剤の製造装置の他の一例を概略的に示す構成図である。 この錠剤の製造装置 (外部滑沢式打錠機) S dは、 ガス発生装置 G bとして、 不燃性ガス発生装置 1 1 1 aを用いた錠剤の製造装置 (外部滑沢式打錠機) S b のガス発生装置 G aに、 更に、 脈動ガス振動波発生装置 4 1 を接続した装置を用 いている以外は、 図 8に示す錠剤の製造装置 (外部滑沢式打錠機) S cと同様で あるので、 相当する部材装置については、 相当する参照符号を付して、 その説明 を省略する。
次に、この錠剤の製造装置(外部滑沢式打錠機) S dの動作について説明する。 この錠剤の製造装置 (外部滑沢式打錠機) S dを用いて、 錠剤を製造する際に は、 錠剤の原料となる、 粉体材料を準備する。
次に、 錠剤の原料となる、 粉体材料をロータリ型打錠機 8 1の粉体材料貯蔵ホ ツバ— (図示せず。 ) 内に収容する。
また、 滑沢剤粉末吐出装置 5 1 に滑沢剤粉末を収容する。
次に、 制御装置 1 2 1の電源を投入し、 酸素濃度測定装置 1 3 1 a及び滑沢剤 粉末濃度測定装置 1 0 3 aの各々を動作状態にする。
次に、 ロータリ型打錠機 8 1 を駆動状態にし、 回転テーブル 3 4、 複数の上杵 3 1 · · · 、 及び、 複数の下杵 3 4 · · · を回転駆動する。
次に、 不燃性ガス発生装置 1 1 1 aに設けられているバルブ V 1 1 1 aを所望 の開口量にし、 脈動ガス振動波発生装置 4 1及び吸引手段 (滑沢剤吸引装置) 1 0 1の各々を所望の駆動量で駆動させる。
尚、 この錠剤の製造装置 S cの動作は、 錠剤の製造装置 (外部滑沢式打錠機) S cを動かす際に、 不燃性ガス発生装置 1 1 1 aに設けられているバルブ V 1 1 1 aを所望の開口量にし、 吸引手段 (滑沢剤吸引装置) 1 0 1の各々を所望の駆 動量で駆動する以外に、 脈動ガス振動波発生装置 4 1 を所望の駆動量で駆動し、 滑沢剤塗布装置 9 1への滑沢剤粉末の供給量が少ない場合には、 バルブ V 1 1 1 aの開口量を変化させない場合であっても、 脈動ガス振動波発生装置 4 1の駆動 量を上げれば、 滑沢剤塗布装置 9 1への滑沢剤粉末の供給量を増加させることが できるようになつており、 また、 錠剤の製造装置 (外部滑沢式打錠機) S bを停 止させる際 (自動運転停止させる場合を含む。 ) に、 バルブ V 1 1 1 aを閉じた 状態にし、 吸引手段 (滑沢剤吸引装置) 1 0 1の各々を停止させる以外に、 脈動 ガス振動波発生装置 4 1 を停止させるようにしている以外は、 錠剤の製造装置 S cの動作と同様であるので、 ここでの説明は、 省略する。
次に、 本発明に係る錠剤の製造装置 S a、 S b、 S c、 S dを構成している部 材装置の構成について、 詳し〈説明する。
尚、 以下の説明では、 本発明に係る錠剤の製造装置 S a、 S b、 S c、 S dの 中、 錠剤の製造装置 S bの構成を中心に説明する。
(錠剤の製造装置 S bを構成する部材装置の説明)
図 1 0は、 錠剤の製造装置 (以下、 単に、 「外部滑沢式打錠機」 という。 ) S を概略的に示す全体構成図である。
この外部滑沢式打錠機 S bは、 脈動ガス振動波発生装置 4 1 と、 滑沢剤粉末吐 出装置 5 1 と、 ロータリ型打錠機 8 1 と、 口—タリ型打錠機 8 1の所定の位置に 設けられた、 滑沢剤塗布装置 9 1 と、 滑沢剤塗布装置 9 1から噴霧された滑沢剤 の中、 余分な滑沢剤を除去する滑沢剤吸引装置 1 0 1 と、 ブロアー 1 1 1 と、 酸 素除去装置 1 1 2と、 この外部滑沢式打錠機 Sの全体を制御 '統括する制御装置 1 2 1 とを備える。
この外部滑沢式打錠機 Sでは、 ブロア一 1 1 1 と脈動ガス振動波発生装置 4 1 との間は、 導管 T mにより接続されており、 ブロア一 1 1 1 を駆動することによ り発生させた圧縮空気が、 酸素除去装置 1 1 2により、 圧縮空気中に含まれる酸 素が除去された後、脈動ガス振動波発生装置 4 1に供給されるようになっている。 脈動ガス振動波発生装置 4 1 と、 滑沢剤粉末吐出装置 5 1 との間は、 導管 T 1 により接続されている。 そして、 脈動ガス振動波発生装置 4 1は、 導管 T mを介 して送られてきた酸素が除去された圧縮ガスを、 正圧の脈動ガス振動波に変換し て、 導管 T 1に供給するようになっている。
図 1 1は、 正圧の脈動ガス振動波を例示的に説明する説明図である。
ここに、 「脈動ガス振動波」 は、 圧力 変動する空気の波を意味する。
また、 「正圧」 は、 外部滑沢式打錠機 Sの外の圧力 (大気圧) に比べ、 圧力が 高いことを意味する。
また、 導管 T 1に供給される、 正圧の脈動ガス振動波は、 図 1 1 ( a ) に示す ように、 脈動ガス振動波の振幅の山が、 正圧で、 谷が、 大気圧の脈動ガス振動波 であってもよく、 また、 図 1 1 ( b ) に示すように、 脈動ガス振動波の振幅の山 と谷とがともに正圧の脈動ガス振動波であってもよい。
滑沢剤粉末吐出装置 5 1 と、 滑沢剤塗布装置 9 1 との間は、 導管 T 2により接 続されている。
滑沢剤粉末吐出装置 5 1は、 導管 T 1 を介して、 正圧の脈動ガス振動波が供給 されると、 正圧の脈動ガス振動波に、 滑沢剤粉末を、 定量的に混和し、 分散し、 滑沢剤粉末が定量的に混和し、 分散された、 正圧の脈動ガス振動波を、 導管 T 2 に供給するようになっている。
導管 T 2に、 正圧の脈動ガス振動波とともに供給された、 滑沢剤粉末は、 導管 T 2内を、 正圧の脈動ガス振動波により気力輸送されて、 滑沢剤塗布装置 9 1内 へと供給され、滑沢剤塗布装置 9 1内に収容されている、上杵 3 1の表面(下面) S 3 1 、 臼 3 2の表面 (内周面) S 3 2及び下杵 3 3の表面 (上面) S 3 3に、 順次、 吹き付けられるようになつている。
滑沢剤塗布装置 9 1 と、 吸引手段 (滑沢剤吸引装置) 1 0 1 との間は、 導管 T 3により接続されている。
そして、吸引手段(滑沢剤吸引装置) 1 0 1 を駆動すれば、導管 T 3を介して、 滑沢剤塗布装置 9 1内において、 上杵 3 1の表面 (下面) S 3 1 、 臼 3 2の表面 (内周面) S 3 2及び下杵 3 3の表面 (上面) S 3 3に吹き付けられた、 滑沢剤 粉末の中、 余分な滑沢剤粉末が、 導管 T 3を介して、 吸引除去されるようにされ ている。
次に、 外部滑沢式打錠機 Sを構成する、 各部材装置について、 更に詳し〈説明 する。
図 1 2は、 滑沢剤粉末吐出装置を概略的に示す説明図である。
この滑沢剤粉末吐出装置 5 1は、 滑沢剤貯蔵用ホッパー 5 2と、 滑沢剤貯蔵用 ホッパー 5 2の材料排出口 5 2 aに気密に接続された筒状体 5 3と、 滑沢剤貯蔵 用ホッパー 5 2の材料排出口 5 2 aに開閉可能に設けられた材料切出弁 5 4と、 筒状体 5 3の底面をなすように設けられた弾性体膜 E tと、筒状体 5 3の下方に、 弾性体膜 E tを介在させて気密に接続された分散室 5 5とを備える。
また、滑沢剤貯蔵用ホッパー 5 2内には、その材料排出口 5 2 aの近傍位置に、 ガス噴射手段 5 6、 5 6が設けられている。
図 1 3は、 滑沢剤貯蔵用ホッパー 5 2を更に詳しく説明する説明図であり、 図 1 3 ( a ) は、 滑沢剤貯蔵用ホッパー 5 2を概略旳に示す斜視図であり、 また、 図 1 3 ( b ) は、 図 1 3 ( a ) に示す滑沢剤貯蔵用ホッパー 5 2の要部を概略的 に示す平面図である。
ガス噴射手段 5 6、 5 6の各々は、 滑沢剤貯蔵用ホッパー 5 2の内周面に概ね 接線方向に、 設けられている。
より具体的に説明すると、 ガス噴射手段 5 6、 5 6の各々は、 滑沢剤貯蔵用ホ ツバ— 5 2のコーン部 5 2 dの領域の、 材料排出口 5 2 aの上方の外周側の位置 に、 材料排出口 5 2 aに対し、 概ね、 接線方向に設けられている。
尚、 図 1 2及び図 1 3では、 ガス噴射手段 5 6が、 2個設けられた例を示した が、 ガス噴射手段 5 6の数は、 2個に限られず、 1個であってもよく、 又、 3個 以上設けられていてもよい。 また、 ガス噴射手段 5 6を 2個以上設ける場合にあ つては、 ガス噴射手段 5 6 · · ■の各々のガス吹出口 5 6 a · · ' は、 ガス吹出 口 5 6 a · · 'の各々からを噴射されるガスが同一回転方向を向くように設ける。 また、 図 1 2中、 5 2 cで示す部材は、 滑沢剤貯蔵用ホッパー 5 2の材料投入 口 5 2 bに、 着脱自在に設けられる、 蓋体を示している。 この例では、蓋体 5 2 cは、滑沢剤貯蔵用ホッパー 5 2の材料投入口 5 2 bに、 気密に取り付けられるようになつている。
滑沢剤貯蔵用ホッパー 5 2には、 大気と連通するように設けられた導管 T 4が 接続されている。
更に、 滑沢剤貯蔵用ホッパー 5 2と導管 T mとは、 導管 T 5により接続されて いる。 導管 T 5の途中には、 開閉バルブ V 2と、 圧力調節弁 V p 2とが設けられ ている。
尚、 導管 T 5の途中に設けられている、 F 1で示す部材装置は、 導管 T 5内に 供給される空気中のダストを除去するフィルターを示している。 尚、 フィルター F 1は、 必要により設けられる部材である。
ガス噴射手段 5 6、 5 6の各々と、 導管 T mとは、 導管 T 6により接続されて いる。 尚、 図 1 2では、 ガス噴射手段 5 6、 5 6の一方のガス噴射手段 5 6への 導管 T 6の接続状態のみを示し、 他方のガス噴射手段 5 6への導管 T 6の接続状 態についての図示は、 省略している。
導管 T 6の途中には、 圧力調節弁 V p 3が設けられている。
尚、 導管 T 6の途中に設けられている、 F 2で示す部材装置は、 導管 T 6内に 供給される空気中のダス卜を除去するフィル夕一を示している。 尚、 フィルター F 2は、 必要により設けられる部材である。
この例では、 材料切出弁 5 4は、 弁体 5 4 bと、 弁体 5 4 bを上下に移動させ る開閉駆動手段 (ァクチユエ一夕) 5 4 aとを備える。
材料切出弁 5 4の開閉駆動は、 空気によって行われるようになつている。 即ち、 材料切出弁 5 4と、 導管 T mとは、 導管 T 7により接続されている。 この導管 T 7は途中で分岐して 2本の分岐管 T 7 a、 T 7 bにされ、 材料切出 弁 5 4の開閉駆動手段 (ァクチユエ—夕) 5 4 aに接続されている。
導管 T 7の途中には、 切換バルブ V 3が設けられ、 この例では、 切換バルブ V 3を、分岐管 T 7 a側が開いた状態にし、分岐管 T 7 b側が閉じた状態にすれば、 材料切出弁 5 4の弁体 5 4 bが下方に移動して、 滑沢剤貯蔵用ホッパー 5 2の材 料排出口 5 2 aを開いた状態にし、 切換バルブ V 3を、 分岐管 T 7 b側が開いた 状態にし、 分岐管 T 7 aを閉じた状態にすれば、 材料切出弁 5 4の弁体 5 4 が 上方に移動して、 滑沢剤貯葳用ホッパー 5 2の材料排出口 5 2 aを閉じた状態に するようにされている。
尚、分岐管 T 7 a、 T 7 bの各々の途中に設けられている、 F 3で示す部材は、 導管 T 7内に供給される空気中のダス卜を除去するフィルタ一を示している。尚、 フィルタ一 F 3、 F 3は、 必要により設けられる部材である。
次に、 弾性体膜 E tの構成について説明する。
図 1 4は、 弾性体膜 E tを概略的に示す平面図である。
弾性体膜 E tは、 シリコーンゴム等の合成ゴム等の弾性材料で製されており、 その中央に貫通孔 E t aを有する。この例では、弾性体膜 E tの貫通孔 E t aは、 スリッ 卜形状にされている。
弾性体膜 E tは、 筒状体 5 3と分散室 5 5との間に、 弾性体膜取付具 5 1 を用 いて取り付けられている。
図 1 5は、 滑沢剤粉末吐出装置 5 1で用いる弾性体膜取付具に、 弾性体膜を取 り付けた状態を概略的に示す斜視図であり、 図 1 6は、 図 1 5に示す弾性体膜取 付具の構成を概略的に示す分解斜視図であり、 また、 図 1 7は、 図 1 5に示す弾 性体膜取付具の構成を概略的に示す断面図である。
この弾性体膜取付具 6 1は、 台座 6 2と、 突き上げ部材 6 3と、 押さえ部材 6 4とを 1厢える。
台座 6 2には、 中空 h 1 が設けられており、 中空 h 1の外周には、 突き上げ部 材 6 3を載置するための、 リング状の載置面 S 1が設けられている。 更に、 台座 6 2には、 中空 h 1 をリング状に取り囲むように V溝 D vが設けられている。 突き上げ部材 6 3は、 中空 h 2を有する。 この例では、 突き上げ部材 6 3は、 図 1 7に示すように、その下面に、段差部 Q 1が設けられており、台座 6 2上に、 突き上げ部材 3を載置すると、 段差部 Q 1 が、 台座 6 2の載置面 S 1上に位置す るようにされている。
また、 この例では、 突き上げ部材 6 3を台座 6 2上に載置した際に、 突き上げ 部材 6 3の段差部 Q 1 より下方に延設するように設けられている下方延設部 Q 2 が、 台座 6 2の中空 h 1内に収まるようにされている。 即ち、 突き上げ部材 6 3 の下方延設部 Q 2は、 その外径 D 2が、 台座 6 2の中空 h 1の内 g D 1 に等しい か、 やや小さい寸法に精密加工されている。
更に、 この例では、 突き上げ部材 6 3は、 その上方部 Q 3の外周に、 断面視し た場合、 上側から下側が広がる傾斜面が設けられている。
押さえ部材 6 4は、 中空 h 3を有する。 また、 押さえ部材 6 4の、 台座 6 2に 向き合う表面 S 4には、 台座 6 2の表面に設けられた V溝 D Vに嵌まり合うよう に、 リング形状の、 V字形状の突起 C Vが設けられている。
尚、 図 1 5及び図 1 6中、 6 5で示す部材は、 ボル卜等の締付手段を示してい ο
また、 図 1 6中、 h 4で示す孔は、 台座 6 2に形成された、 締付手段 6 5の固 定孔を、 また、 h 6で示す孔は、 押さえ部材 6 4に形成された、 締付手段 6 5の 固定孔を、 各々、 示している。 また、 図 1 6中、 h 5で示す孔は、 台座 6 2に形 成され、 目的とする装置へ、 弾性体膜取付具 6 1 を、 ボルト等の固定手段 (図示 せず。 ) により取り付けるための固定孔を、 また、 h 7で示す孔は、 押さえ部材 6 4に形成され、 目的とする装置へ、 弾性体膜取付具 6 1 を、 ボルト等の固定手 段 (図示せず。 ) により取り付けるための固定孔を、 各々、 示している。
この例では、 押さえ部材 6 4の中空 h 3の内径 D 4は、 突き上げ部材 6 3の外 径 D 3に等しいか、 やや大きい寸法に精密加工されている。
次に、 この弾性体膜取付具 6 1に弾性体膜 E tを取り付ける手順について説明 する。
弾性体膜取付具 6 1 に弾性体膜 E tを取り付ける際には、 まず、 台座 6 2の表 面に、 突き上げ部材 6 3を載置する。
次いで、 突き上げ部材 6 3上に、 弾性体膜 E tを載置する。
次に、 突き上げ部材 6 3及び弾性体膜 E tをともに覆うように、 突き上げ部材 6 3上に押さえ部材 6 4を載置する。 この時、 台座 6 2に形成された固定孔 h 4 - ■ ·の各々と、 押さえ部材 6 4に形成された固定孔 h 6 · ' 'の各々とを整 列させるようにする。
次に、 ボル卜等の締付手段 6 5 ■ · ·の各々を、 固定孔 h 4 · ■ ■ 、 及び、 固 定孔 Ιπ 6 · · ·の各々に螺合等することで、 台座 6 2に対して、 押さえ部材 4を 締め付けていく。 この弾性体膜取付具 6 1では、 台座 6 2上に載置した突き上げ部材 6 3上に、 弾性体膜 E tを載置し、 押さえ部材 6 4を台座 6 2に対して締め付けていくと、 弾性体膜 E tは、 突き上げ部材 6 3により、 押さえ部材 6 4方向に突き上げられ る。 この結果、 弾性体膜 E tは、 押さえ部材 6 4方向により突き上げられること で、 弾性体膜 E tの内側から外周側に引き伸ばされる。
最初のうちは、 突き上げ部材 6 3により、 引き伸ばされた弾性体膜 E tは、 突 き上げ部材 6 3の外周面 Q 3と、 押さえ部材 6 4の中空 h 3を形成する面 (内周 面) との間の隙間を介して、 台座 6 2の表面に設けられている V溝 D vと、 押さ ぇ部材 6 4の、 台座 6 2に向き合う表面に設けられている V字形状の突起 C vと の間に嵌挿されていく。
更に、 ボルト等の締付手段 6 5 · · ·の各々により、 押さえ部材 6 4を台座 6 2に対して締め付けていくと、 弾性体膜 E tは、 突き上げ部材 6 3により、 押さ ぇ部材 6 4方向に突き上げられた状態のまま、突き上げ部材 6 3の外周面 Q 3と、 押さえ部材 6 4の中空 h 3の内周面との間に、 挟持される。 且つ、 突き上げ部材 6 3により、 押さえ部材 6 4方向により突き上げられることで、 弾性体膜 E tの 内側から外周側に引き伸ばされた部分が、 台座 6 2の表面に設けられている V溝 D vと、 押さえ部材 6 4の、 台座 6 2に向き合う表面に設けられている V字形状 の突起 C vとの間に、 挟持される。
即ち、 この弾性体膜取付具 6 1では、 台座 6 2上に載置した突き上げ部材 6 3 上に、 弾性体膜 E tを載置し、 押さえ部材 6 4を台座 6 2に対して締め付けてい 〈と、 弾性体膜 E tが、 突き上げ部材 6 3により、 押さえ部材 6 4方向に突き上 げられ、 これにより、 弾性体膜 E tが、 その内方側から外周側に引き伸ばされた 状態にされ、 更に、 このようにして、 突き上げ部材 6 3により引き伸ばされた弾 性体膜 E tの外周部分が、 台座 6 2の表面に設けられた V溝 D Vと、 押さえ部材 6 4の、 台座 6 2に向き合う表面に設けられた V字形状の突起 C Vに挟持される 結果、 この弾性体膜取付具 6 1では、 台座 6 2上に載置した突き上げ部材 6 3上 に、 弾性体膜 E tを載置し、 押さえ部材 6 4を台座 6 2に対して締め付けていく という簡単な操作で、 弾性体膜 E tを、 均等に張った状態にすることができる。 更に、 この弾性体膜取付具 6 1では、 突き上げ部材 6 3の外周に、 断面視した 場合、 上側から下側が広がる傾斜面 Q 3を設けている。
この傾斜面 Q 3は、 この弾性体膜取付具 6 1では、 重要な要素になっているの で、 この作用について、 以下に詳し〈説明する。
即ち、 この弾性体膜取付具 6 1では、 突き上げ部材 6 3の外周に、 断面視した 場合、 上側から下側が広がる傾斜面 Q 3を設けているので、 弾性体膜 E tは、 押 さえ部材 6 4方向により突き上げられることで、 弾性体膜 E tの内側から外周側 に引き伸ばされた部分が、 台座 6 2の表面に、 リング状に設けられている V溝 D Vと、 押さえ部材 6 4の、 台座 6 2に向き合う表面に、 リング状に設けられてい る V字形状の突起 C vとの間に、 移行し易い。
より具体的に説明すると、 突き上げ部材 6 3の傾斜面 Q 3の外径が、 押さえ部 材 6 4の中空 h 3の内径 D 4より十分に小さい関係にある時は、弾性体膜 E tは、 突き上げ部材 6 3の傾斜面 Q 3と、 押さえ部材 6 4の中空 h 3を形成している表 面との間の隙間 (間隔) が十分にあるため、 突き上げ部材 6 3により、 弾性体膜 E tの内側から外側に引き伸ばされた部分は、 この隙間 (間隔) を通って、 台座 6 2の表面に、 リング状に設けられている V溝 D V方向へ、 たやすく、 誘導され o
また、 突き上げ部材 6 3の外周に設けられている傾斜面 Q 3は、 断面視した場 合、 上側から下側が広がるようにされているので、 突き上げ部材 6 3により、 弾 性体膜 E tの内側から外側に引き伸ばされた部分は、 この傾斜面 Q 3の表面に沿 つて、台座 6 2の表面に、リング状に設けられている V溝 D V方向へ誘導される。 そして、 ボル卜等の締付手段 6 5 ■ · ·の各々を、 固定孔 h 4 ■ ■ ■ 、 及び、 固定孔 ΙΊ 6 · · 'の各々に螺合等して、 台座 6 2に対して、 押さえ部材 6 4を締 め付けていくことで、 突き上げ部材 6 3の傾斜面 Q 3の外 ί圣が、 押さえ部材 6 4 の中空 h 3の内径 D 4に次第に接近し、 突き上げ部材 6 3の傾斜面 Q 3の傾斜面 Q 3と、押さえ部材 6 4の中空 h 3を形成している表面との間の隙間(間隔)が、 概ね、 弾性体膜 E tの厚み (肉厚) 程度になると、 弾性体膜 E tは、 突き上げ部 材 6 3の傾斜面 Q 3と、 押さえ部材 6 4の中空 h 3を形成している表面との間に 挟持されることになる。
以上の作用によっても、 この弾性体膜取付具 6 1では、 台座 6 2上に載置した 突き上げ部材 6 3上に、 弾性体膜 E tを載置し、 その後、 ボル卜等の締付手段 6 5 · · ■の各々を用いて、 押さえ部材 6 4を台座 6 2に対して締め付けていくと いう簡単な操作で、 弾性体膜 E tを、 均等に張った状態にすることができる。 また、 ボルト等の締付手段 6 5 ■ · ■の各々を用いて、 押さえ部材 6 4を台座 6 2に対して締め付けていくと、 突き上げ部材 6 3の外周の傾斜面 Q 3と、 押さ ぇ部材 6 4の中空の内周面との間隔が次第に狭〈なり、 突き上げ部材 6 3の外周 面 Q 3と、 押さえ部材 6 4の中空 h 3の内周面との間に、 しっかりと挟持される ため、 押さえ部材 6 4を台座 6 2に締め付けた後において、 弾性体膜 E tが弛む ことがない。
また、 この弾性体膜取付具 6 1では、 弾性体膜 E tを取り付ければ、 弾性体膜 E tが、 突き上げ部材 6 3の傾斜面 Q 3と、 押さえ部材 6 4の中空 h 3を形成し ている表面との間と、 押さえ部材 6 4の、 台座 6 2に向き合う表面に、 リング状 に設けられている V字形状の突起 C vと、 台座 6 2に、 リング状に設けられてい る V字形状の溝 D vとの間とに、 2重にロックされた状態になるため、 押さえ部 材 6 4を台座 6 2に締め付けた後において、 弾性体膜 E tが弛むことがない。
この滑沢剤粉末吐出装置 5 1では、 弾性体膜 E tを取り付けた弾性体膜取付具 6 1の押さえ部材 6 4を筒状体 5 3の下部に気密に取り付け、 台座 6 2を分散室 5 5の上部に気密に取り付けている。
また、 この滑沢剤粉末吐出装置 5 1は、 図 1 0に示すように、 分散室 5 5と筒 状体 5 3との間にバイパス管 T Vを備えている。 このバイパス管 T Vは、 分散室 5 5内の圧力と筒状体 5 3の圧力との平衡を速く達成するために設けられている ものである。
また、 下部筒体部 5 3 bには、 図 1 2に示すように、 下部筒体部 5 3 bの弾性 体膜 E t上に堆積貯留する滑沢剤粉末の量を検出するレベルセンサ— 7 1 が付設 されている。 レベルセンサ一 7 1は、 赤外線や可視光線等の光を発光する発光素 子 7 1 aと、 発光素子 7 1 aより照射された光を受光する受光素子 7 1 bとを備 える。 発光素子 7 1 aと、 受光素子 7 1 bとは、 下部筒体部 5 3 bを挟むように して、 対向配置されている。
そして、 レベルセンサ一 7 1 を設ける位置 (弾性体膜 E からレベルセンサー 7 1の設けられる位置の高さ) H t hで、 下部筒体部 5 3 b内の弾性体膜 E t上 に堆積貯留される滑沢剤粉末の量を検出できるようになっている。
即ち、 下部筒体部 5 3 b内の弾性体膜 E t上に堆積貯留される滑沢剤粉末の量 が、 レベルセンサー 7 1 を設ける位置 (弾性体膜 E tからレベルセンサ一 7 1の 設けられる位置の高さ) H t hを超えると、発光素子 7 1 aから照射された光が、 滑沢剤粉末により遮られ、 受光素子 7 1 bで受光できなくなる (オフになる。 ) ので、 この時、 下部筒体部 5 3 b内の弾性体膜 E t上に堆積貯留される滑沢剤粉 末の弾性体膜 E t上からの高さ Hが、 高さ H t hを超えていることが検出できる
( H > H t h ) 。
また、 下部筒体部 5 3 b内の弾性体膜 E t上に堆積貯留される滑沢剤粉末の量 が、 レベルセンサー 7 1 を設ける位置 (弾性体膜 E からレベルセンサー 7 1の 設けられる位置の高さ) H t h未満になると、 発光素子 7 1 aから照射された光 が、 受光素子 7 1 bで受光できる (オンになる。 ) ので、 この時、 下部筒体部 5 3 b内の弾性体膜 E t上に堆積貯留される滑沢剤粉末の弾性体膜 E t上からの高 さ Hが、 高さ H t h未満になっていることが検出できる ( H < H t h ) 。
この例では、 材料切出弁 5 4は、 レベルセンサー 7 1の検出値に応じて、 上下 に移動して、 滑沢剤貯蔵用ホッパー 5 2の排出口 5 2 aを閉じたり、 開いたりで きるようになつている。 より詳しく説明すると、 滑沢剤粉末吐出装置 5 1では、 滑沢剤粉末吐出装置 5 1 を駆動している間、 レベルセンサー 7 1の発光素子 7 1 aを点灯した状態にしておき、 発光素子 7 1 aから照射された光を、 受光素子 7 1 bで受光できなくなる (オフになる。 ) と、 材料切出弁 5 4を上方に移動させ て、 滑沢剤貯蔵用ホッパー 5 2の排出口 5 2 aを閉じ、 発光素子 7 1 aから照射 された光を、 受光素子 7 1 bで受光すると (オンになる。 ) と、 材料切出弁 5 4 を下方に移動させて、 滑沢剤貯蔵用ホッパー 5 2の排出口 5 2 aを、 受光素子 7 1 bで受光できな〈なる (オフになる。 ) まで、 開いた状態にすることで、 滑沢 剤粉末吐出装置 5 1 を駆動している間、下部筒体部 5 3 b内の弾性体膜 E t上に、 常に、 概ね一定量の滑沢剤粉末が貯留堆積するようにしてある。
分散室 5 5は、 その内部において、 正圧の脈動ガス振動波が旋回流になり易い ように、 その内部の形状が、 概ね円筒形状にされている。 尚、 ここでは、 分散室 5 5の内部の形状が、 概ね円筒形状にされている例を示しているが、 分散室 5 5 の内部の形状は、 その内部において、 正圧の脈動ガス振動波が旋回流になり易い 形状にされていればよく、 その内部の形状は、 必ずしも、 概ね円筒形状にされて いる場合に限定されることはない。
また、 筒状体 5 3の下部筒体部 5 3 bは、 透明な樹脂で製されている。 より特 定的に説明すると、 下部筒体部 5 3 bは、 例えば、 ガラス、 アクリル樹脂、 ポリ カーボネー卜樹脂等の光透過性を有する材料で製されている。
尚、 下部筒体部 5 3 bは、 ポリカーボネート樹脂で製されていることが好まし く、 更には、 その内周面が、 鏡面加工されていることが好ましい。
これは、 下部筒体部 5 3 bを、 ポリカーボネート樹脂で製し、 その内周面が、 鏡面加工した場合には、 他の材料を用いた場合に比べ、 下部筒体部 5 3 bの内周 面に粉体材料が付着し難く、 レベルセンサ一 7 1の検出精度が高くなるからであ ο
また、 分散室 5 5には、 その下方の位置に、 分散室 5 5の内周面の概ね接線方 向に、 脈動ガス振動波供給口 5 5 aが設けられ、 その上方の位置に、 分散室 5 5 の内周面の概ね接線方向に、 排出口 5 5 bが設けられている。 脈動ガス振動波供 給口 5 5 aには、導管 T 5が接続されており、 また、排出口 5 5 bには、導管(例 えば、 図 1 2に示す導管 T 6を参照。 ) が接続されるようになっている。
また、 再び、 図 1 2を参照しながら説明すると、 分散室 5 5には、 その下方の 位置に、 分散室 5 5の内周面の概ね接線方向に、 脈動ガス振動波供給口 5 5 aが 設けられ、 その上方の位置に、 分散室 5 5の内周面の概ね接線方向に、 排出口 5 5 bが設けられている。
分散室 5 5の脈動ガス振動波供給口 5 5 aと脈動ガス振動波発生装置 4 1 との 間は、 導管 T 1 により接続されており、 脈動ガス振動波発生装置 4 1 を駆動すれ ば、 脈動ガス振動波発生装置 4 1 から発生した、 正圧の脈動ガス振動波が、 導管 T 1 を介して、 分散室 5 5内に供給されるようになっている。
また、 排出口 5 5 と、 滑沢剤塗布装置 (図 1 0に示す滑沢剤塗布装置 9 1 ) との間は、 導管 (図 1 0に示す導管 T 2 ) により接続されている。
次に、 分散室 5 5に設ける脈動ガス振動波供給口 5 5 aの位置について、 図 1 8を用いて、 更に、 詳し〈説明する。
図 1 8は、 分散室 55を平面視した場合の、 分散室 55に設ける脈動ガス振動 波供給口 55 aの位置を模式的に示す平面図であり、 図 1 8 (a) は、 分散室 5 5に対する、 脈動ガス振動波供給口 55 aの好ましい取付位置を説明する説明図 であり、 図 1 8 (b) は、 分散室 55に対する、 脈動ガス振動波供給口 55 aの 実質的な取付可能位置を説明する説明図である。
尚、 図 1 8 (a) 及び図 1 8 (b) の各々に、 曲線で示す矢印は、 分散室 55 内に発生する、 正圧の脈動ガス振動波の旋回流の向きを模式的に示している。 分散室 55内に、 正圧の脈動ガス振動波の旋回流を発生させるためには、 分散 室 55に対して、脈動ガス振動波供給口 55 aは、分散室 55の内周面に対して、 概ね、 接線方向 (図 1 8 (a) 中、 破線 L tで示される方向) に設けられている ことが好ましい。
しかしながら、 脈動ガス振動波供給口 55 aは、 図 1 8 (a) に示すように、 分散室 55の内周面に対して、 概ね、 接線方向に設けられている必要はなく、 脈 動ガス振動波供給口 55 aは、 分散室 55内に、 支配的な 1個の旋回流を形成で きる限り、 図 1 8 (b) に示すように、 分散室 55の内周面に対して、 概ね、 接 線方向 (例えば、 図 1 8 (b) 中、 破線 L tで示される方向) と等価な方向 (即 ち、 分散室 55の内周面の接線方向 (例えば、 図 1 8 (b) 中、 破線し t ) に平 行な方向) に設けられていてもよい。
尚、 脈動ガス振動波供給口 55 aを、 図 1 8 (b) 中に、 想像線 L cで示すよ うに、 分散室 55の中心線方向に設けた場合には、 分散室 55内の形状が、 概ね 円筒形状の場合には、いずれが支配的とも言えない 2個の旋回流が発生するので、 このような方向に設けるのは、 分散室 55内に、 正圧の脈動ガス振動波の旋回流 を発生させることを考慮した場合には、 あまり好ましいとは、 言えない。
次いで、 分散室 55に設ける脈動ガス振動波供給口 55 aと排出口 55 との 位置関係について、 図 1 9を用いて、 詳し〈説明する。
図 1 9は、 分散室 55を平面視した場合の、 分散室 55に設ける脈動ガス振動 波供給口 55 aと排出口 55 bとの位置を模式的に説明する図であり、 図 1 9 (a) は、 分散室 55に対する、 脈動ガス振動波供給口 55 aと排出口 55 と の好ましい取付位置を説明する説明図であり、 図 1 9 (b) は、 分散室 55に対 する、 脈動ガス振動波供給口 55 aと排出口 55 bとの実質的な取付可能位置を 説明する説明図である。
尚、 図 1 9 (a) 及び図 1 9 (b) の各々に、 曲線で示す矢印は、 分散室 55 内に発生する、 正圧の脈動ガス振動波の旋回流の向きを模式的に示している。 分散室 55に、 排出口 55 bを、 図 1 9 (a) に示すような位置に設けた場合 には、 分散室 55内に発生する、 脈動ガス振動波の旋回流の向き (空気の進行方 向) と逆方向に排出口 55 bが設けられる関係になり、 この場合には、 排出口 5 5 bにおける、 空気に分散させて流動化させた滑沢剤粉末の排出効率を低く設定 できる。
これとは逆に、 排出口 55 bにおける、 空気に分散させて流動化させた滑沢剤 粉末の排出効率を高く したい場合には、 図 1 9 (b) に例示的に示す、 排出口 5 5 b 1又は排出口 55 b 2のように、 分散室 55内に発生する、 正圧の脈動ガス 振動波の旋回流の向きと順方向に排出口 55 bを設けるのが好ましい。
尚、 分散室 55は、 その内部において、 正圧の脈動ガス振動波が旋回流になり 易いように、 その内部の形状が、 概ね円筒形状にされている。 尚、 ここでは、 分 散室 55の内部の形状が、 概ね円筒形状にされている例を示しているが、 分散室 55の内部の形状は、 その内部において、 正圧の脈動ガス振動波が旋回流になり 易い形状にされていればよく、 その内部の形状は、 必ずしも、 概ね円筒形状にさ れている場合に限定されることはない。
尚、 図 1 2中、 72で示す部材装置は、 滑沢剤貯蔵用ホッパー 52内の圧力を 測定する圧力センサーを、 また、 73で示す部材装置は、 筒状体 53内の圧力を 測定する圧力センサ一を示している。
また、 外部滑沢式打錠機 Sでは、 図 1 0に示すように、 制御装置 1 21 と、 各 部材装置 v 1、 v 2、 v 3、 v 5、 v 6、 v 7、 v p 1、 v p 2、 v p 3、 41、 71、 72、 73、 1 02、 1 1 1の各々との間が、 信号線により接続されてお り、 制御装置 1 21からの指令信号によって、 各部材装置 V 1、 v 2、 v 3、 v 5、 v 6、 v 7、 v p 1、 v p 2、 v p 3、 41、 71、 72、 73、 7 1、 1 02、 1 1 1の各々を駆動したり、.停止したり、 所定量に調節したりすることが できるようにされている。
次に、 この滑沢剤粉末吐出装置 5 1の動作について説明する。
図 2 0は、 滑沢剤粉末吐出装置 5 1の滑沢剤貯蔵用ホッパー 5 2に設けられて るガス噴射手段 5 6、 5 6及び材料切出弁 5 4の動作を模式的に示す説明図であ り、 図 2 1は、 制御装置 1 2 1の記憶部に予め記憶されている、 ガス噴射手段 5 6、 5 6及び材料切出弁 5 4の動作プログラムを概略的に示すフローチヤ一卜で
¾) o
この滑沢剤粉末吐出装置 5 1では、 材料切出弁 5 4の開閉は、 以下の動作手順 によって ί亍われる。
まず、 初期状態では、 滑沢剤粉末吐出装置 5 1の材料切出弁 5 4は、 滑沢剤貯 蔵用ホッパー 5 2の材料排出口 5 2 aを閉じた状態にされている。
作業者は、 まず、 滑沢剤貯蔵用ホッパー 5 2内に、 滑沢剤粉末を貯蔵し、 材料 投入口 5 2 bに、 蓋体 5 2 cを取り付ける (図 2 0 ( a ) を参照) 。
次に、 ブロア一 1 1 1 を駆動する。 とともに、 脈動ガス振動波発生装置 4 1の 回転カム 4 5を指定の回転速度で回転させることにより、 導管 T 1内に、 所定の 流量、 圧力、 周波数、 所望の波形の正圧の脈動ガス振動波を供給する。
また、圧力調節弁 V p 1、 v p 2、 v p 3、 v p 4の各々を、適宜、調節する。 開閉バルブ v 1、 v 2、 v 3の各々は、 初期状態においては、 閉じられた状態 にされている。
次に、 レベルサンサ一 7 1 をオンにし (ステップ 1 を参照。 ) 、 圧力センサー 7 2 , 7 3を各々オンにする (ステップ 2、 3を参照) 。
すると、 上述したように、 レベルサンサ一 7 1の発光素子 7 1 aから照射され た光が、 受光素子 7 1 bで受光される。 受光素子 7 1 が、 発光素子 7 1 aから 照射されだ光を受光したという信号は、 制御装置 1 2 1へ送られる。
制御装置 1 2 1は、 受光素子 7 1 から、 発光素子 7 1 aから照射された光を 受光したという信号を受信すると、 筒状体 5 4内の弾性体膜 E t上の滑沢剤粉末 の高さ Hは、 しきい値 H t h未満であると判断する (ステップ 4を参照。 ) 。 この場合、 制御装置 1 2 1は、 ステップ 6において、 開閉バルブ V 1 を開き、 圧力調節バルブ V p 3が所定時間開いた状態にする。 これにより、 ガス噴射手段 56 , 56から、 所定時間、 ガスが噴射され、 滑沢剤貯蔵用ホッパー 52内に貯 留した滑沢剤粉末中に固結部が生じていたとしても、 この固結部が崩される (図 20 (b) を参照) 。
圧力センサー 72が測定した、滑沢剤貯蔵用ホッパー 52内の圧力(P r 52) と、 圧力センサー 73が測定した、 筒状体 53内の圧力 (P r 53) とは、 制御 装置 1 21へと送られる。
制御装置 1 21は、 ガス噴射手段 56、 56から、 所定時間、 ガスが噴射され た信号 (圧力調節バルブ V p 3が所定時間開いた後、 再び、 閉じられた信号) を 受信すると、 ガス噴射手段 56、 56から、 所定時間、 ガスが噴射された後の、 滑沢剤貯蔵用ホッパー 52内の圧力 (P r 52) と、 筒状体 53内の圧力 (P r 53) とを比較する (ステップ 7を参照。 ) 。
制御装置 1 21は、 ステップ 7において、 滑沢剤貯蔵用ホッパー 52内の圧力 ( P r 52 ) と、 筒状体 53内の圧力 (P r 53) とが等しい (P r 52 = P r 53) と判断した場合には、 材料切出弁 54を開いた状態にする。 即ち、 この例 では、 制御装置 (図示せず。 ) は、 切換バルブ V 3を、 分岐管 T 7 a側が開いた 状態にし、 分岐管 T 7 b側が閉じた状態にする。
これにより、 材料切出弁 54が開いた状態になり、 滑沢剤貯蔵用ホッパー 52 内に貯留されている滑沢剤粉末が、 筒状体 53へと排出される (図 20 (c) を 参照) 。
制御装置 1 2 1は、 その後、 レベルサンサー 71の発光素子 71 aから照射さ れた光を、 受光素子 71 bが、 受光しなくなつたという信号を受信すると、 材料 切出弁 54を閉じた状態にする。 即ち、 この例では、 制御装置 1 21は、 切換バ ルブ V 3を、 分岐管 T 7 a側が閉じた状態にし、 分岐管 T 7 b側が開いた状態に する (ステップ 1 0を参照。 ) 。
これにより、 材料切出弁 54が閉じた状態になる (図 20 (a) を参照) 。 また、 制御装置 1 2 1は、 ステップ 7において、 滑沢剤貯蔵用ホッパー 52内 の圧力 (P r 52) が、 筒状体 53内の圧力 (P r 53 ) に比べて高いと判断し た場合 (P r 52>P r 53) には、 滑沢剤貯蔵用ホッパー 52内の圧力 (P r 52 ) が、 筒状体 53内の圧力 (P r 53) に等しくなるまで、 開閉バルブ v 1 を開いた状態にし、 滑沢剤貯蔵用ホッパー 52内の圧力 (P r 52) が、 筒状体 53内の圧力 (P r 53 ) に概ね等しくなると、 開閉バルブ v 1を再び閉じた状 態にする (以上については、 ステップ 7及びステップ 8を参照。 ) 。 その後、 制 御装置 1 21は、 ステップ 7において、 滑沢剤貯蔵用ホッパー 52内の圧力 (P 「 52 ) と、筒状体 53内の圧力 (P r 53) とが等しい (P r 52 = P r 53 ) と判断した場合には、 材料切出弁 54を開いた状態にする。 即ち、 この例では、 制御装置 1 2 1は、 切換バルブ V 3を、 分岐管 T 7 a側が開いた状態にし、 分岐 管 T 7 b側が閉じた状態にする (ステップ 1 0を参照) 。
その後、 制御装置 1 21は、 その後、 レベルサンサ— 71の発光素子 7 1 aか ら照射された光を、 受光素子 7 1 bが、 受光しなくなつたという信号を受信する と、材料切出弁 54を閉じた状態にする。即ち、 この例では、制御装置 1 21は、 切換パルプ V 3を、 分岐管 T 7 a側が閉じた状態にし、 分岐管 T 7 b側が開いた 状態にする (ステップ 5を参照。 ) 。
また、 制御装置 1 21は、 ステップ 7において、 滑沢剤貯蔵用ホッパー 52内 の圧力 (P r 52) が、 筒状体 53内の圧力 (P r 53 ) に比べて低いと判断し た場合 (P r 52く P r 53) には、 滑沢剤貯蔵用ホッパー 52内の圧力 (P r 52 ) が、 筒状体 53内の圧力 (P r 53) に等しくなるまで、 開閉バルブ v 2 を開いた状態にし、 滑沢剤貯蔵用ホッパー 52内の圧力 (P r 52) が、 筒状体 53内の圧力 (P r 53) に等し〈なると、 開閉バルブ v 2を再び閉じた状態に する (以上については、 ステップ 7及びステップ 8を参照。 ) 。 その後、 制御装 置 1 21は、ステップ 7において、滑沢剤貯蔵用ホッパー 52内の圧力 (P r 2 ) と、 筒状体 53内の圧力 (P r 53 ) とが等しい (P r 52 = P r 53) と判断 した場合には、 材料切出弁 54を開いた状態にする。 即ち、 この例では、 制御装 置 (図示せず。 ) は、 切換バルブ V 3を、 分岐管 T 7 a側が開いた状態にし、 分 岐管 T 7 b側が閉じた状態にする。
制御装置 1 2 1は、 その後、 レベルサンサ— 7 1の発光素子 7 1 aから照射さ れた光を、 受光素子 7 1 bが、 受光しなくなつたという信号を受信すると、 材料 切出弁 54を閉じた状態にする。 即ち、 この例では、 制御装置 1 2 1は、 切換バ ルブ V 3を、 分岐管 T 7 a側が閉じた状態にし、 分岐管 T 7 b側が開いた状態に する (ステップ 5を参照。 ) 。
図 2 2は、 分散室 5 5に、 正圧の脈動ガス振動波を供給した際に、 弾性体膜 E t及びバイパス管 T Vの動作について模式的に説明する説明図である。
脈動ガス振動波発生装置 4 1 を駆動すると、導管 T 1内へ、所望の流量、圧力、 波長、 波形の、 正圧の脈動ガス振動波を供給される。
導管 T 1内へ供給された、 正圧の脈動ガス振動波は、 脈動ガス振動波供給口 5 5 aから分散室 5 5内に供給される。
分散室 5 5内に供給された、 正圧の脈動ガス振動波は、 分散室 5 5内で、 下方 から上方に向かって、 竜巻のような渦巻き流のように旋回する、 正圧の脈動ガス 振動波となり、 排出口 5 5 bから排出される。
この分散室 5 5内において発生した、 旋回する、 正圧の脈動ガス振動波は、 脈 動ガス振動波としての性質は失われていないため、 弾性体膜 E tは、 正圧の脈動 ガス振動波の周波数、 振幅、 波形に従って振動する。
例えば、 分散室 5 5内に送り込まれる、 正圧の脈動ガス振動波が山の状態にな り、 分散室 5 5内の圧力 P r 5 5が、 筒状体 5 3内の圧力 P r 5 3に比べて高く なった場合(圧力 P「 5 5 >圧力 P r 5 3 ) には、 弾性体膜 E tは、 図 2 2 ( a ) に示すように、 その中央部が上方に湾曲した形状に弾性変形する。
この時、 貫通孔 E t aは、 断面視した場合、 貫通孔 E t aの上側が開いた、 概 ね V字形状になり、 この V字形状になった貫通孔 E t a内に、 筒状体 5 3内の弾 性体膜 E t上に貯留した滑沢剤粉末の一部が落下する。
また、 この滑沢剤粉末吐出装置 5 1では、 筒状体 5 3と分散室 5 5との間の空 気流通路を、 弾性体膜 E tに設けた貫通孔 E t aと、 バイパス管 T vとの 2系統 にしているので、 空気は、 流通し易い方を通じて、 筒状体 5 3と分散室 5 5との 間を流れる。
即ち、 図 2 2 ( a ) に示したように、 弾性体膜 E tの貫通孔 E t aを通じて、 分散室 5 5から筒状体 5 3へ空気が流入する際には、 バイパス管 T v内に、 筒状 体 5 3から分散室 5 5へと流れる気流が発生するため、 弾性体膜 E tの貫通孔 E t aを通じて、分散室 5 5から筒状体 5 3へ空気が流入が、スムーズに行われる。 次いで、 分散室 5 5内に送り込まれる、 正圧の脈動ガス振動波が、 その振幅の 谷側に移行するにつれ、 弾性体膜 E tは、 その復元力により、 その中央が上方向 に湾曲した形状から、 元の状態に戻ってくる。 この時、 貫通孔 E t aの形状も、 上側が開いた、 概ね V字形状から元の形状に戻るが、 貫通孔 E t aが、 上側が開 いた、 概ね V字形状になった際に、 貫通孔 E t a内に落下した、 滑沢剤粉末が、 貫通孔 E t aに挾み込まれた状態になる (図 2 2 ( b ) を参照) 。
この装置 5 1では、 筒状体 5 3と分散室 5 5との間の空気流通路を、 弾性体膜 E tに設けた貫通孔 E t aと、パイパス管 T Vの 2系統にしているので、空気は、 流通し易い方を通じて、 筒状体 5 3と分散室 5 5との間を流れる。
即ち、 図 2 2 ( b ) に示したような状態にあって、 貫通孔 E t aが閉塞してい る場合にあっても、 パイパス管 T Vを通じて、 筒状体 5 3から分散室 5 5へと空 気が流れるため、 分散室 5 5の圧力と筒状体 5 3の圧力とが、 速やかに平衡状態 になる。
次いで、 分散室 5 5内に供給されている、 正圧の脈動ガス振動波が、 その振幅 の谷になり、 分散室 5 5の圧力が、 低くなると、 弾性体膜 E tは、 その中央が下 方向に湾曲した形状に、 弾性変形する。 この時、 貫通孔 E t aは、 断面視した場 合、 下側が開いた、 概ね逆 V字形状になる。 そして、 貫通孔 E t aが、 概ね逆 V 字形状になった際に、 貫通孔 E t a内に挟み込まれていた、 粉体材料が、 分散室 5 5内に落下する (図 2 2 ( c ) を参照) 。
この装置 5 1では、 筒状体 5 3と分散室 5 5との間の空気流通路を、 弾性体膜 E tに設けた貫通孔 E t aと 、'ィパス管 T Vの 2系統にしているので、空気は、 流通し易い方を通じて、 筒状体 5 3と分散室 5 5との間を流れる。
即ち、 図 2 2 ( c ) に示したような状態にあって、 弾性体膜 E tが、 その中央 が下方に湾曲した形状となり、 筒状体 5 3の体積が大き〈なった際には、 バイパ ス管 T vを通じて、 分散室 5 5から筒状体 5 3へ、 空気が流れ込むため、 貫通孔 E t aを通じての、分散室 5 5から筒状体 5 3への空気の流れ込みは、生じない。 これにより、 貫通孔 E t aを通じて、 分散室 5 5への滑沢剤粉末の排出が、 安定 して、 定量的に、 行われる。
このように、 この装置 5 1では、 バイパス管 T Vを、 分散室 5 5と筒状体 5 3 との間に設けるという構成を採用した結果、 分散室 5 5内に、 正圧の脈動ガス振 動波を供給した際に、 筒状体 5 3内の圧力と分散室 5 5内の圧力とが平衡になる のに要する時間が速〈なり、 正圧の脈動ガス振動波の振動に対して、 弾性体膜 E 1:の上下の振動の応答性が、 優れている。 この結果、 貫通孔 E t aを通じて行わ れる粉体の排出が、 上手〈行われる。
また、 この滑沢剤粉末吐出装置 5 1では、 弾性体膜 E tの、 その中央部を振動 の腹として、 外周部を振動の節とする、 上下方向の振動は、 分散室 5 5内へ供給 される、 正圧の脈動ガス振動波の周波数、 振幅、 波形に従って、 一義的に振動す 従って、 分散室 5 5内へ供給される、 正圧の脈動ガス振動波を一定にしている 限り、 常に、 一定量の滑沢剤粉末が、 弾性体膜 E tの貫通孔 E t aを通じて、 分 散室 5 5内へ精度良く排出されるので、この滑沢剤粉末吐出装置 5 1 を用いれば、 滑沢剤粉末を、 一定濃度で安定して、 滑沢剤塗布装置 9 1 に供給できる。
また、 この滑沢剤粉末吐出装置 5 1には、 分散室 5 5内へ供給する正圧の脈動 ガス振動波の周波数、 振幅、 波形を制御すれば、 目的とする場所 (装置等) に供 給する粉体材料の量を容易に変更することができるという利点をも合わせ持って いる。
更に、 この滑沢剤粉末吐出装置 5 1では、 分散室 5 5内において、 正圧の脈動 ガス振動波を、 下方から上方に向かう旋回流にしているので、 分散室 5 5内に排 出された滑沢剤粉末中に、 たとえ、 凝集により粒径の大きい粒子が含まれていた としても、 その多くは、 分散室 5 5内を旋回している、 正圧の脈動ガス振動波に 巻き込まれることにより、 小さな粒径になるまで砕かれ、 分散される。
また、 この滑沢剤粉末吐出装置 5 1では、 分散室 5 5内において、 正圧の脈動 ガス振動波を、 下方から上方に向かう旋回流にしているため、 分散室 5 5は、 サ イクロンと同様の、 分粒機能を有している。
これにより、 概ね所定の粒径の滑沢剤粉末が、 排出口 5 5 bから、 導管 T 2内 へと排出される。
即ち、凝集した粒 ί圣の大きい粒子は、分散室 5 5内の下方の位置を旋回し続け、 分散室 5 5内を旋回している、正圧の脈動ガス振動波に巻き込まれることにより、 凝集塊が分散されつつ所定の粒佳まで調整されてから、 排出口 5 5 bから導管 Τ 2内へと排出されるため、 大粒の滑沢剤粉末が、 滑沢剤塗布装置 9 1内へと噴霧 されることがない。
また、 排出口 5 5 bに接続された導管 T 2内へ供給された滑沢剤粉末は、 この 導管 T 2の他端 e 2まで、 正圧の脈動ガス振動波により気力輸送されることにな o
これにより、 この滑沢剤粉末吐出装置 5 1では、 導管内の粉体材料を、 一定流 量の定常圧空気により気力輸送するような装置に見られるような、 導管内におけ る、 粉体材料の堆積現象や、 導管内における、 粉体材料の吹き抜け現象が発生し 難い。
したがって、 この滑沢剤粉末吐出装置 5 1では、 分散室 5 5の排出口 5 5 か ら、 導管 T 2内へ排出された当初の滑沢剤粉末の濃度が維持された状態で、 滑沢 剤粉末が、 導管 T 2の他端 e 2から排出されるので、 導管 T 2の他端 e 2から噴 霧される滑沢剤粉末の定量性を精密にコントロールすることができる。
更に、 この滑沢剤粉未吐出装置 5 1では、 滑沢剤粉末吐出装置 5 1を動かして いる間、 弾性体膜 E t上に、 常に、 概ね、 一定量 (レベルセンサー 7 1 を設ける 位置 (弾性体膜 E tからレベルセンサー 6 2の設けられる位置の高さ H t h ) ) の滑沢剤粉末が存在するようにしているので、 弾性体膜 E tの貫通孔 E t aから 排出される滑沢剤の排出量が、 弾性体膜 E t上に存在する、 滑沢剤粉末の量が変 動することで、 変動するという現象が生じない。 これによつても、 この滑沢剤粉 未吐出装置 5 1は、 滑沢剤塗布装置 9 1へ、 一定量の滑沢剤粉末を、 安定して供 給することができる。
また、 この滑沢剤粉末吐出装置 5 1 を用いれば、 分散室 5 5内に、 たとえ、 凝 集した大粒の粉体材料が排出されたとしても、 その大部分が、 分散室 5 5内を旋 回している、 正圧の脈動ガス振動波に巻き込まれることにより、 凝集塊が分散さ れつつ所定の粒径まで調整されて排出口 5 5 bから、 導管 T 2内へと排出される ため、 分散室 5 5内に、 凝集した大粒の粉体材料が堆積し難い。
これにより、 この滑沢剤粉末吐出装置 5 1では、 滑沢剤粉末吐出装置 5 1 を、 長時間、 駆動しても、 分散室 5 5内に、 滑沢剤粉末が堆積することが殆ど無いた め、 分散室 5 5内を清掃する作業回数を減らすことができる。 したがって、 この滑沢剤粉末吐出装置 5 1 を備える外部滑沢式打錠機 Sは、 外 部滑沢式打錠機 Sを用いて、 連続打錠を行っている最中に、 分散室 5 5内を清掃 する作業が、 殆ど不要となるために、 外部滑沢式打錠機 Sを用いれば、 外部滑沢 錠剤 (錠剤の内部に、 滑沢剤を含まない錠剤) を、 効率良く、 製造することがで さる。
のみならず、 この滑沢剤粉末吐出装置 5 1では、 弾性体膜 E tを、 図 1 5、 図 1 6及び図 1 7に示した弾性体膜取付具 6 1 を用いることにより、 張った状態に しているので、 弾性体膜 E tの弛みが原因となって、 この滑沢剤粉末吐出装置 5 1の定量性が損なわれることもない。
尚、 以上のような弾性体膜 E tの貫通孔 E t aを通じて行われる、 分散室 5 5 内への滑沢剤粉末の排出は、 この滑沢剤粉末吐出装置 5 1の分散室 5 5内へ、 正 圧の脈動ガス振動波を供給している間、 繰り返し行われる。
次に、 ロータリ型打錠機 8 1の構成について説明する。
図 2 3は、 ロー夕リ型打錠機 8 1 を概略的に示す平面図である。
尚、 ロータリ型打錠機 8 1 としては、 通常の口一タリ型打錠機を用いている。 即ち、 このロータリ型打錠機 8 1は、 回転軸に対して回転可能に設けられた回転 テーブル 3 4と、 複数の上杵 (図 1 0に示す上杵 3 1 · ■ ' を参照。 ) と、 複数 の下杵 (図 1 0に示す下杵 3 3 ■ ■ ' を参照。 ) とを備える。
回転テーブル 3 4には、複数の臼 3 2 · · ·が形成されており、複数の臼 3 2■ ·■ の各々に対応するように、 組となる上杵 3 1 ■ ' と、 下杵 3 3 · · . とが設け られており、複数の上杵 3 1 · ■ ■と、複数の下杵 3 3 · ■ ·と、複数の臼 3 2■ ■ · とは、 同期して回転するようになっている。
また、 複数の上忤 3 1 · · · は、 カム機構 (図示せず。 ) によって、 所定の位 置で、回転軸の軸方向に上下に移動可能にされており、 また、複数の下杵 3 3 - - も、 カム機構 (図 1 0に示すカム機構 3 5を参照。 ) によって、 所定の位置で、 回転軸の軸方向に上下に移動可能にされている。
尚、 図 1 0及び図 2 3中、 3 6で示す部材装置は、 成形材料を臼 3 2 · ■ ·の 各々内に充填するフィードシュ一を、 3 7で示す部材装置は、 臼 3 2 ■ . ·の各々 内に充填された成形材料を一定量にするための摺り切り板を、 又、 3 8で示す部 材装置は、 製造された錠剤 tを排出シュ—卜 3 9へ排出するために設けられてい る錠剤排出用スクレーバを、 各々、 示している。
また、 図 2 3中、 R 1で示す位置は、 滑沢剤噴霧ポイントであり、 この外部滑 沢式打綻機 Sでは、 滑沢剤噴霧ボイント R 1に、 滑沢剤塗布装置 9 1 が設けられ ている。 より詳しく説明すると、 滑沢剤塗布装置 9 1は、 回転テーブル 3 4上に 固定的に設けられており、 回転テーブル 3 4、 複数の上杵 3 1 ■ · · 、 及び、 複 数の下杵 3 3 · · · が回転することで、 滑沢剤塗布装置 9 1に順次収容される、 臼 3 2 ■ - ■ 、 上杵 3 1 · ■ ·及び下杵 3 3 · ■ ■の各々の表面に、 滑沢剤が塗 布されるようになっている。 尚、 滑沢剤塗布装置 9 1における、 臼 3 2 · · -、 上杵 3 1 ■ - ·及び下杵 3 3 · ■ 'の各々の表面への滑沢剤の塗布については、 後ほど、 詳しく説明する。
また、 図 2 3中、 R 2で示す位置は、 成形材料充填ボイン卜であり、 成形材料 充填ボイント R 2において、 フィードシュ一 3 6により、 臼 3 2及び臼 3 2内に 所定の位置まで挿入されている下杵 3 3により形成されている空間内に、 成形材 料 mが充填されるようになっている。
また、 図 2 3中、 R 3で示す位置は、 予備打錠ポイントであり、 予備打錠ボイ ン卜 R 3において、臼 3 2及び下杵 3 3により形成されている空間内に充填され、 摺り切り板 3 7によりこすり削られることで、 所定の量にされた成形材料が、 組 となる上杵 3 1 と下杵 3 3により、 予備打錠されるようになっている。
また、 図 2 3中、 R 4で示す位置は、 本打錠ボイントであり、 本打錠ボイン卜 R 4において、予備打錠された成形材料が、組となる上杵 3 1 と下杵 3 3により、 本格的に圧縮され、 錠剤 tに圧縮成形されるようになつている。
また、 図 2 3中、 R 5で示す位置は、 錠剤排出ボイン卜であり、 錠剤排出ボイ ン卜 R 5において、 下杵 3 3の上面が臼 3 2の上端まで挿入されることで、 臼 3 2外に排出された錠剤 tが、 錠剤排出用スクレーバ 3 8により、 排出シュート 3 9へ排出されるようになっている。
次に、 滑沢剤塗布装置 9 1の構成について詳し〈説明する。
図 2 4は、 図 2 3中に示す滑沢剤塗布装置 9 1 を更に拡大して概略的に示す平 面図であり、 また、 図 2 5は、 図 2 4中、 X X I V—X X I V 線に従う、 滑沢剤 塗布装置 9 1の構成を概略的に示す断面図である。
この滑沢剤塗布装置 9 1は、 ロータリ型打錠機 8 1の回転テーブル 3 4上の所 定の位置に、 固定的に設けられるものである。
滑沢剤塗布装置 9 1の回転テーブル 3 4に対向する側の表面 (底面) S 9 1 a は、 回転テ一ブル 3 4の表面 S 3 4に接しているか微小な距離を離すようにされ ており、 回転テーブル 3 4は、 底面 S 9 1 aに摺動するか、 殆ど隙間の無い状態 で回転するようにされている。
また、 滑沢剤塗布装置 9 1は、 その外表面 S 9 1 bに、 導管 T 2を接続する、 滑沢剤導入口 9 1 aを有する。
滑沢剤導入口 9 1 aより供給された、 正圧の空気脈動波気流中に分散された滑 沢剤粉末は、 滑沢剤塗布装置 9 1 を貫通する貫通孔 9 1 hを通って、 滑沢剤塗布 装置 9 1の、 回転テーブル 3 4に対向する側の表面 (底面) に送られ、 貫通孔 9 1 hの排出口 9 1 bから、 回転テーブル 3 4の臼 3 4内に所定の位置まで挿入さ れた下杵 3 3の表面 (上面) S 3 3に吹き付けられるようになつている。
また、 この例では、 貫通孔 9 1 hの排出口 9 1 bから、 空気に分散された滑沢 剤粉末を下杵 3 3の表面 (上面) S 3 3に、 概ね、 垂直方向に吹き付けるように しし る。
滑沢剤塗布装置 9 1の、 回転テーブル 3 4に対向する側の表面 (底面) S 9 1 aには、 貫通孔 9 1 hの排出口 9 1 bより、 回転テーブル 3 4の回転方向と逆方 向に、 溝 9 2が形成されている。
下杵 3 3の表面 (上面) S 3 3へ堆積した余分な滑沢剤粉未は、 滑沢剤粉未と ともに送られて〈る空気により吹き飛ばされ、その一部が臼 3 2の表面(内周面) S 3 2に付着するようになっている。
更に、 滑沢剤粉末は、 滑沢剤粉末とともに送られてくる空気とともに、 滑沢剤 塗布装置 9 1の回転テーブル 3 4に対向する側の表面 (底面) に形成された溝 9 2と、 回転テーブル 3 4の表面とにより形成される管部を通って、 回転テーブル 3 4の回転方向と逆方向に送られるようになつている。
滑沢剤塗布装置 9 1の、 回転テーブル 3 4に対向する側の表面 (底面) に設け られた溝 9 2の端部は、 この滑沢剤塗布装置 9 1の回転テーブル 3 4に対向する 側の表面 (底面) 側に設けられた中空室 9 3につながっている。 : 中空室 9 3の上方には、 滑沢剤塗布装置 9 1 を貫通するようにスリッ ト部 9 4 が形成されている。
滑沢剤塗布装置 9 1の外表面側には、 スリッ 卜部 9 4に沿って、 回転テーブル 3 4の回転に同期して回転している上杵 3 1 · · ■ を順次収容する上杵収容部 9 5が、 上杵 3 1 · ■ ·の回転軌道に沿って形成されている。
上杵収容部 9 5の幅 W 9 5は、 上杵 3 1の直怪に等しいか、 これよりやや大き い大きさにされている。
また、 スリッ 卜部 9 4の上方には、 吸引へッ ド 9 6が設けられている。
尚、 図 2 5中、 9 1 aは、 導管 T 2が接続される接続口を示している。
吸引へッ ド 9 6の吸引口 Hの大きさは、 スリッ 卜部 9 4の全体を覆う大きさに されており、 且つ、 スリッ ト部 9 4の形状と概ね相似の形状を有している。 この結果、 吸引手段 (図 1 0に示す集塵機 1 0 2 ) を駆動させると、 スリッ ト 部 9 4の一端 e sから他端 e eまでの間に、 下方から上方に向かう気流が、 一律 に且つ均一に発生するようになっている。
これにより、 錠剤を製造する際に、 重力の関係により、 滑沢剤粉末が付着し難 ぃ上杵 3 1の表面 (下面) S 3 1に、 上杵 3 1が、 上杵収容部 9 5内を、 スリッ 卜部 9 4の一端 e sから他端 e eまで移動する間に、 時間をかけて滑沢剤粉末が 付着されるようになっている。
更に、 この例では、 滑沢剤塗布装置 9 1の、 滑沢剤噴霧ボイン卜の下流 (成形 材料充填ポイントの上流位置) に、 回転テーブル 3 4上にあふれている滑沢剤粉 末しや、 下杵 3 3の表面 (上面) S 3 3及び臼 3 2の周側面 S 4 3に余分に付着 している滑沢剤粉末 Lを除去するための滑沢剤吸引部 9 7を備えている。
滑沢剤吸引部 9 7には、ブロア等の吸引手段(図示せず。)が接続されており、 吸引手段 (図示せず。 ) を駆動すれば、 その吸引口 9 7 aから、 回転テーブル 3 4の臼 3 2の周辺に付着している余分な滑沢剤粉末、 及び、 臼 3 2のの表面 (内 周面) S 3 2や、 下杵 3 3の表面 (上面) S 3 3に余分に付着 .堆積している滑 沢剤粉末を吸引除去できるようになつている。
吸引口 9 7 aは、 回転テーブル 3 4に対向する側の表面 (底面) に、 スリッ ト 形状 (長尺形状) に設けられており、 その長さ方向が、 回転テーブル 3 4の外周 から概ね中心方向に向いており、 吸引口 9 7 aが、 臼 3 2の部分を跨ぐように設 けられている。
且つ、 吸引口 9 7 aと排出口 9 1 bとの距離は、 臼 3 2の直径 D 3 2より、 や や大きい間隔を隔てるように設けられている。
これにより、 滑沢剤吸引部 9 7に接続されているブロア等の吸引手段 (図示せ ず。 ) を駆動すれば、 常に、 回転テーブル 3 4の臼 3 2の周辺が常にクリーンな 状態に保たれるようになつている。 その結果、 回転テーブル 3 4の臼 3 2の周辺 に付着している滑沢剤粉末が、 臼 3 2内に落下することがないので、 錠剤内部に 滑沢剤粉末しを一切含まない外部滑沢錠剤を連続的に打錠することができるよう になっている。
次に、 吸引手段 (滑沢剤吸引装置) 1 0 1の構成について詳しく説明する。 図 2 6は、 図 1 0に示す吸引手段 (滑沢剤吸引装置) 1 0 1の部分を中心にし て拡大して概略的に示す構成図である。
吸引手段 (滑沢剤吸引装置) 1 0 1は、 集塵機 1 0 2と、 集塵機 1 0 2に接続 された、 導管 T 3とを備える。
導管 T 3は、 滑沢剤塗布装置 9 1の吸引へッ ド 9 6に接続されている。
また、 導管 T 3は、 途中で、 2つの分岐管 T 3 a、 T 3 bにされ、 更に、 途中 で、 1本の導管 T 3 cにまとめられてから、 集塵機 1 0 2に接続されている。 分岐管 T 3 aには、 滑沢剤塗布装置 9 1に近い方から集塵機 1 0 2方向に、 開 閉バルブ V 5と、 光散乱式粉体濃度測定手段 1 0 3 aが設けられている。
光散乱式粉体濃度測定手段 1 0 3 a替わりに、 光透過式測定装置 1 0 5を用い てもよい。
測定セル 1 0 4は、 石英等で製されており、 分岐管 T 7 aの途中に接続されて いる。
光散乱式測定装置 1 0 5は、 レーザー光線を照射するレーザ光線照射系装置 1 0 5 aと、 レーザ光線照射系装置 1 0 5 aから照射され、 被検出体により散乱し た光を受光する散乱光受光系装置 1 0 5 bとを備え、 M i e理論に基づいて、 被 検出体の流量、 粒径、 粒度分布及び濃度等を測定できるようになつている。 この 例では、 レーザ光線照射系装置 1 0 5 aと、 散乱光受光系装置 1 0 5 bとは、 測 定セル 1 0 4を挟むようにして、 概ね対向配置されており、 測定セル 1 0 4の部 分で、 分岐管 T 3 a内を流れる粉体 (この例では、 滑沢剤粉末) の流量、 粒怪、 粒度分布及び濃度等を測定できるようにされている。
また、 分岐管 T 3 bには、 開閉パルプ V 6が設けられている。
また、 導管 T 7 cには、 開閉バルブ V 7が設けられている。
吸引手段 (滑沢剤吸引装置) 1 0 2を用いて、 滑沢剤塗布装置 9 1内の、 滑沢 剤粉末の濃度を調節する際には、 開閉バルブ V 5と開閉バルブ V 7とを開いた状 態にし、 導開閉バルブ V 6を閉じた状態にし、 集塵機 1 0 2を駆動する。
また、 脈動ガス振動波発生装置 4 1及び滑沢剤粉末吐出装置 5 1 を各々駆動す ることで、導管 T 2の先端 e 2から、正圧の脈動ガス振動波に混和し、分散した、 滑沢剤粉末を、 正圧の脈動ガス振動波とともに、 滑沢剤塗布装置 9 1内に供給す る。
すると、 滑沢剤塗布装置 9 1内に供給された滑沢剤粉末の一部は、 滑沢剤塗布 装置 9 1内に送り込まれてきている、 上杵 3 1 · · ■の各々の表面 (下面) S 3 1 、 下杵 3 3 ■ · ·の各々の表面 (上面) S 3 3、 及び、 臼 3 2 . · ·の各々の 内周面 S 3 2への塗布に用いられるが、 余分な滑沢剤粉末は、 吸引へッ ドから、 導管 T 3、分岐管 T 3 a及び導管 T 3 cを通って、集塵機 1 0 2へと吸引される。 このとき、 光散乱式粉体濃度測定手段 1 0 3 aを構成する光透過式測定装置 1 0 5を駆動させることで、 測定セル 1 0 4内、 即ち、 分岐管 T 3 a内を流れる滑 沢剤粉末の流量、 粒径、 粒度分布及び濃度等を測定する。
尚、 以上のような操作を行っていると、 測定セル 1 0 4の内周面に、 滑沢剤粉 未が付着し、 光透過式測定装置 1 0 5が、 測定セル 1 0 4の内周面に付着した滑 沢剤粉末の影響を受けて、 分岐管 T 3 a内を流れる、 滑沢剤粉末の流量等を正確 に測定できなくなるという問題が生じる。 かかる場合には、 光透過式測定装置 1 0 5の測定値から、 測定セル 1 0 4の内周面に付着した滑沢剤粉末の影響分 (ノ ィズ) を除去する補正が必要になるが、 この装置 1 0 2では、 測定セル 1 0 4の 内周面に付着した滑沢剤粉末の影響分 (ノイズ) を測定する際には、 集塵機 1 0 2を駆動した状態に維持して、 開閉バルブ V 5を閉じ、 開閉バルブ V 6を開いた 状態にする。 すると、 吸引へッ ド Hから、 導管 T 3内に吸引された、 滑沢剤粉末 は、 分岐管 T 3 b及び導管 T 3 cを通って、 集塵機 1 0 2へと吸引され、 分岐管 T 3 a内へは、 滑沢剤粉末が通らなくなる。
この時、 光散乱式測定装置 1 0 5を駆動させれば、 測定セル 1 0 4へ付着して いる滑沢剤粉末の影響分 (ノイズ) を測定できる。
この測定セル 1 0 4へ付着している滑沢剤粉末の影響分(ノイズ)の測定値は、 例えば、 制御装置 1 2 1の記憶手段に一時記憶させる。
その後、 集塵機 1 0 2を駆動した状態に維持して、 開閉バルブ V 5を開き、 開 閉バルブ V 6を閉じた状態にし、分岐管 T 3 a内へ、滑沢剤粉末を通すようにし、 粉体濃度測定装置 1 0 3 aを駆動し、 分岐管 T 3 a内を通る、 滑沢剤粉末の流量 等を測定し、 予め、 制御装置 1 2 1の記憶手段に記憶させている、 補正プログラ 厶と、 粉体濃度測定装置 1 0 3 aへ付着している滑沢剤粉末の影響分 (ノイズ) の測定値とに基づいて、 光透過式測定装置 1 0 5の測定値から、 測定セル 1 0 4 へ付着している滑沢剤粉末の影響分 (ノイズ) を除去した補正値を算出し、 この 補正値に基づいて、 集塵機 1 0 2の駆動量や、 脈動ガス振動波発生装置 2 1の回 転速度または/及び供給空気量駆動量を、 適宜、 調節することで、 滑沢剤塗布装 置 9 1内の滑沢剤粉末の濃度等を調節する。 またその替わりに光透過式測定装置 1 3 1 を用いて、 その測定値に基づいて、 集塵機 1 0 2の駆動量や、 脈動ガス振 動波発生装置 7 1の駆動量を、 適宜、 調節することで、 滑沢剤塗布装置 9 1内の 滑沢剤粉末の濃度等を調節してもよい。 次に、 この外部滑沢式打錠機 S bを用いて、 錠剤を製造する工程を概略的に説 明する。
尚、 ここでは、 外部滑沢式打錠機 S bが正常運転している場合を中心に説明す る o
まず、 制御装置 1 2 1 に所定の動作条件を入力する。
また、 滑沢剤貯留ホッパー 5 2内に、 滑沢剤粉末を収容する。
また、 口—タリ型打錠機 8 1のフィ一ドシユー 3 6に、 成形材料を貯留する。 次に、ロータリ型打錠機 8 1 を駆動させるとともに、集塵機 1 0 2を駆動する。 また、 必要により、 滑沢剤吸引部 9 7に接続されている吸引手段(図示せず。 ) を駆動する。
次に、 制御装置 1 2 1 に入力された動作条件で、 ブロア一 1 1 1 を駆動する。 とともに、 脈動ガス振動波発生装置 4 1の回転カム 4 5を所定の回転速度で駆 動させることにより、 導管 T 1内へ、 所定の流量、 圧力、 周波数、 波形の正圧の 脈動ガス振動波を供給する。
ここで、 制御装置 1 2 1 に設けられている第 1の警報装置 (図示せず。 ) の安 全確認ランプの点灯を確認する。
次に、 レベルセンサー 7 1 を動作状態にする。
レベルセンサ一 7 1 を動作状態にすると、 図 2 2及び図 2 3に示した動作で、 ガス噴射手段 5 6、 5 6及び材料切出弁 5 4が動作して、 弾性体膜 E t上に、 所 定量の滑沢剤粉末が貯留される。
また、 脈動空気発生装置 4 1より発生させた、 正圧の脈動ガス振動波が、 分散 室 5 5に供給されることで、 弾性体膜 E tが上下に振動し、 弾性体膜 E tに設け られた貫通孔 E t aを通じて、 分散室 5 5内に、 滑沢剤粉末は排出される。
分散室 5 5内に排出された滑沢剤粉末は、 分散室 5 5内を旋回している、 正圧 の脈動ガス振動波に混和し、 分散され、 排出口 5 5 bから導管 T 2内へと排出さ れる。
導管 T 2内へ排出された、 正圧の脈動ガス振動波に混和し、 分散された、 滑沢 剤粉末は、 導管 T 2内を、 正圧の脈動ガス振動波により気力輸送され、 滑剤噴霧 室 9 1へと送られる。
滑沢剤塗布装置 9 1へ送られた滑沢剤粉末は、 正圧の脈動ガス振動波とともに、 滑沢剤導入口 9 1 aから、 貫通孔 9 1 hを通って、 排出口 9 1 から、 回転テ一 ブル 3 4の回転によって、滑沢剤噴霧ボイン卜 R 1の位置にきている臼 3 2内に、 所定の位置まで挿入された下杵 3 3の表面 (上面) S 3 3に吹き付けられる。 下杵 3 3の表面 (上面) S 3 3へ堆積した余分な滑沢剤粉未は、 滑沢剤粉末 L とともに送られてくる空気により吹き飛ばされ、 その一部が臼 3 2の表面 (内周 面) S 3 2に付着する。
更に、 滑沢剤粉末は、 滑沢剤粉末とともに送られてくる空気とともに、 滑沢剤 塗布装置 9 1の回転テーブル 3 4に対向する側の表面 (底面) に形成された溝 9 2と、 回転テーブル 3 4の表面とにより形成される管部を通って、 回転テーブル 3 4の回転方向と逆方向に送られ、 中空室 9 3内へと供給される。
中空室 9 3内へと供給された滑沢剤粉末は、 集塵機 1 0 2を駆動させることに より、 スリツ 卜部 9 4の上方に万遍な〈発生させている、 下方から上方に向かう 気流に乗って、 吸引へッ ド 9 6の吸引口 H内へと移動する。
この時、 上杵収容部 9 5を通過する、 上杵 3 1の下面 S 3 1 に、 上杵 3 1 が、 スリッ ト部 9 4の一端 e sから他端 e eまで移動する間に滑沢剤粉末が付着する ( 尚、 余分な滑沢剤粉末は、 吸引へッ ド 9 6を通じて除去される。
次に、 回転テーブル 3 4の回転により、 滑沢剤噴霧ボイント R 1の下流に送ら れた臼 3 2、 及び、 回転テーブル 3 4の回転と同期するようにして、 滑沢剤噴霧 ポイン卜の下流に送られた下杵 3 3は、 滑沢剤吸引部 9 7の吸引口 9 7 aの下を 通る際に、 回転テーブル 3 4の臼 3 2の周辺に付着している滑沢剤粉末と、 臼 3 2の表面 (内周面) S 3 2及び下杵 3 3の表面 (上面) S 3 3に付着している余 分な滑沢剤粉未が除去される。
次に、 成形材料充填ボイン卜 R 2において、 表面 S 3 3に滑沢剤粉末が均一に 塗布された下杵 3 3が所定の位置まで挿入され、 表面 (内周面) S 3 2に均一に 滑沢剤粉末が塗布された臼 3 2内に、 混合物 (成形材料) が充填される。
その後、 摺り切り板 3 7により、 余分な混合物が除かれた後、 予備打錠ポイン 卜 R 3で、 表面 (下面) S 3 1 に滑沢剤粉末が均一に塗布された上杵 3 1 、 表面 (上面) S 3 3に滑沢剤粉末が均一に塗布された下杵 3 3、 及び、 表面 (内周周 面) S 3 2に滑沢剤粉末が均一に塗布された臼 3 2により、 混合物 (成形材料) が、 予備圧縮された後、 更に、 本打錠ポイント R 4で圧縮成形されて発泡剤 tと なり、 錠剤排出ポイント R 5で、 以上のようにして製造された錠剤 tが、 順次、 排出シユー卜 3 9へ排出される。
そして、 混合物 (成形材料) を圧縮成形する際に、 杵 3 1 、 3 3の表面に均一 に形成した滑沢剤粉末や、 臼 3 2の表面に均一に形成した滑沢剤粉末の一部、 又 は、 場合によっては、 全部が、 製造される錠剤 tの表面に転写された発泡剤が製 れる。 作業者は、 排出シュート 3 9に排出された錠剤 t · · , を観察する。
そして、 錠剤 t · ■ · に、 ステイツキングやキヤッピングゃラミネ一ティング 等の打錠障害が発生したものが含まれている場合には、 例えば、 ブロア一 1 1 1 の駆動量や、 集塵機 1 0 2の駆動量等を、 適宜、 調節したり、 脈動ガス振動波発 生装置 4 1の駆動量を、 適宜、 調整 (通常は、 駆動量を上げて、 脈動ガス振動波 周波数を高〈する。 ) したりすることによって、 滑沢剤塗布装置 9 1内の滑沢剤 粉末の濃度を高〈なるように調節して、 製造される錠剤 t · · ' に、 スティツキ ングゃキヤッピングゃラミネ一ティング等の打錠障害が発生する頻度を低下させ るようにする。 更には、 弾性体膜 E tを、 貫通孔 E t aのサイズの大きいものに 取り替えても良い。
この外部滑沢式打錠機 S bは、 以上のような優れた効果を有するため、 この外 部滑沢式打錠機 S bを用いれば、 従来、 工業的な生産ベースでは製造するのが困 難であった、 錠剤 (より特定的に規定すると、 外部滑沢錠) を、 工業的な生産採 算ベースで、 安定して、 大量生産することができる。
—方、 製造される錠剤 t · · ■ に、 ステイツキングやキヤッピングゃラミネ一 ティング等の打錠障害は、 発生していない場合であっても、 錠剤 t ■ · ·の組成 を分析し、錠剤の組成中、滑沢剤の量が、予定量に比べ多くなつている場合には、 例えば、 ブロア— 1 1 1の駆動量や、 集塵機 1 0 2の駆動量等を、 適宜、 調節し たり、 脈動ガス振動波発生装置 4 1の駆動量を適宜、 調節 (通常は、 脈動ガス振 動波発生装置 4 1の駆動量を低く し、 脈動ガス振動波の周波数を低くする。 ) し たりするとによって、 滑沢剤塗布装置 9 1内の滑沢剤粉末の濃度が一定になるよ うに調節し、上杵 3 1 · · ■の各々の表面、 下杵 3 3 ■ · ■の各々の表面、及び、 臼 3 2 · · ·の各々の表面に、 塗布される滑沢剤粉末の量を一定になるように調 節することで、 上杵 3 1 · ■ ■の各々の表面、 下杵 3 3 ■ ■ ·の各々の表面、 及 び、 臼 3 2 · ■ ■の各々の表面から、 錠剤 t · ■ ·の各々の表面に転写される滑 沢剤粉末の量を減らすようにする。 更には、 弾性体膜 E tを、 貫通孔 E t aのサ ィズの小さいものに取り替えても良い。
次に、 脈動ガス振動波発生装置 4 1の構成について更に詳しく説明する。 図 2 7は、脈動ガス振動波発生装置 4 1の構成を、概略的に示す断面図である。 脈動ガス振動波発生装置 4 1は、 空気供給ポー卜 4 2 aと、 空気排出ポート 4 2 bとを備える中空室 4 2と、 中空室 4 2内に設けられた弁座 4 3と、 弁座 4 3 を開閉するための弁体 4 4と、 弁座 4 3に対して弁体 4 4を開閉させるための回 転カム 4 5とを備える。
空気供給ポート 4 2 aには、 導管 T mが接続されており、 また、 空気排出ポー 卜 4 2 bには、 導管 T 1 が接続される。
また、図 2 7中、 4 2 cで示す部分は、中空室 4 2に、必要により設けられる、 圧力調整ポートを示しており、 圧力調整ポー卜 4 2 cには、 圧力調整バルブ V 8 が、 大気との導通 ·遮断をするように設けられている。
弁体 4 4は、 軸体 4 4 aを備え、 軸体 4 4 aの下端には、 回転ローラ 4 6が回 転可能に設けられている。
また、 脈動ガス振動波発生装置 4 1の装置本体 4 aには、 弁体 4 4の軸体 4 4 aを、 気密に且つ上下方向に移動可能に収容するための、 軸体収容孔 h 4 1 が 形成されている。
回転カム 4 5は、 内側回転カム 4 5 aと、 外側回転カム 4 5 bとを備える。 内側回転カム 4 5 a及び外側回転カム 4 5 bの各々には、 回転ローラ 4 6の概 ね直径分の距離を隔てるようにして、 所定の凹凸パターンが形成されている。 回転カム 4 5は、 滑沢剤粉末の物性に応じて、 滑沢剤粉末が混和し、 分散し易 い凹凸パターンを有するものが用いられる。
回転カム 4 5の内側回転カム 4 5 aとの外側回転カム 4 5 bとの間には、 回転 ローラ 4 6が、 回転可能に、 嵌挿されている。
尚、 図 2 7中、 a xで示す部材は、 モ一夕等の回転駆動手段 (図 1 0に示す回 転駆動手段 4 1 M ) の回転軸を示しており、 回転軸 a xには、 回転カム 4 5が、 交換可能に取り付けられるようになつている。
次に、 脈動ガス振動波発生装置 4 1により、 導管 T 1内へ、 正圧の脈動ガス振 動波を供給する方法について説明する。
導管 T 1内へ、 正圧の脈動ガス振動波を供給する際には、 まず、 回転駆動手段 4 7の回転軸 a xに、 滑沢剤粉末の物性に応じて、 滑沢剤粉末が混和し、 分散し 易い凹凸パターンを有する回転カム 4 5を取り付ける。 次に、 ブロア一 1 1 1 を駆動することにより、 導管 T 0内へ、 圧縮空気を供給 する。
導管 T 0内へ供給された圧縮空気は、 酸素除去装置 1 1 2を通過する際に、 圧 縮空気中に含まれる酸素 (0 2 ) が除去され、 不燃性ガスとなり、 導管 T m内へ 供給される。
導管 T m内へ供給された定常圧流の不燃性ガスは、 流量調節弁 V p 4が設けら れている場合にあっては、流量調節弁 V p 4により、所定の流量に調整された後、 空気供給ポー卜 4 2 aから中空室 4 2内へと供給される。
また、 ブロアー 1 1 1 を駆動するとともに、 回転駆動手段 4 7を駆動すること で、 回転駆動手段 4 7の回転軸 a xに取り付けた回転カム 4 5を所定の回転速度 で回転させる。
これにより、 回転ローラ 4 6が、 所定の回転速度で回転駆動している回転カム 4 5の内側回転カム 4 5 aとの外側回転カム 4 5 bとの間で、 回転し、 回転カム 4 5に設けられている凹凸パターンに従って、 再現性良く、 上下運動する結果、 弁体 4 4が、 回転カム 4 5に設けられている凹凸パターンに従って、 弁座 4 3を 開閉する。
また、 中空室 4 2に、 圧力調整ポー卜 4 2 cや圧力調整バルブ V 8が設けられ ている場合にあっては、 圧力調整ポー卜 4 2 cに設けられている圧力調整バルブ v 8を適宜調整することにより、 導管 T 1 に供給する、 正圧の脈動ガス振動波の 圧力を調節する。
以上の操作により、 導管 T 1に、 正圧の脈動ガス振動波が供給される。
尚、 導管 T 1内に供給される正圧の脈動ガス振動波の波長は、 回転カム 4 5に 設けられている凹凸パターン及び/又は回転カム 4 5の回転速度により、 適宜調 節される。 また、 正圧の脈動ガス振動波の波形は、 回転カム 4 5に設けられてい る凹凸パターンにより、 調節することができ、 正圧の脈動ガス振動波の振幅は、 ブロア一 1 1 1の駆動量を調節したり、 圧力調節弁 V p 4が設けられている場合 にあっては、 圧力調節弁 V p 4を調節したり、 更に、 圧力調整ポ—卜 4 2 cや圧 力調整弁バルブ V 8が設けられている場合にあっては、 圧力調整ポー卜 4 2 cに 設けられている圧力調整バルブ V 8を適宜調整したり、 又は、 これらを組み合わ せて調節すること等により調節できる。
尚、 外部滑沢式打錠機 Sで用いる脈動ガス振動波発生装置は、 脈動ガス振動波 発生装置 4 1に限られることはなく、 他の脈動ガス振動波発生装置を用いること もできる。
図 2 8は、 そのような脈動ガス振動波発生装置の他例を概略的に示す説明図で ある。
この脈動ガス振動波発生装置 4 1 Aは、 脈動ガス振動波発生装置 4 1 とは、 以 下の構成以外は、 同様の構成であるので、 相当する部材装置については、 相当す る参照符号を付して、 その説明を省略する。
脈動ガス振動波発生装置 4 1 Aは、 円筒形の筒状体 1 3 2と、 筒状体 1 3 2内 の中空室 1 3 3を概ね 2分割するように、 筒状体 1 3 2の中心軸を回転軸 1 3 2 aとして、 回転軸 1 3 2 aに取り付けられた口一タリ弁 1 3 3とを備える。 回転 軸 1 3 2 aは、 電動モ一夕等の回転駆動手段 (図示せず。 ) により、 所定の回転 速度で回転するようになっている。
筒状体 1 3 2の外周壁には、 導管 T mと、 導管 T 1 とが、 所定の隔たりを設け て、 接続されている。
脈動ガス振動波発生装置 4 1 Aを用いて、 導管 T 1内に、 所望の正圧の脈動ガ ス振動波を供給する際には、 ブロア一 1 1 1を駆動して、 導管 T m内に、 所定の 圧縮空気を供給する。 流量制御バルブ V p 4が設けられている場合にあっては、 流量制御バルブ V p 4を適宜調節することで、 導管 T m内へ供給する圧縮空気の 流星 ¾r s)IlSp " 。
また、 電動モータ等の回転駆動手段 (図示せず。 ) により、 回転軸 1 3 2 aを 所定の回転速度で回転させることで、 回転軸 1 3 2 aに取り付けられたロータリ 弁 1 3 3を所定の回転速度で回転させる。
すると、 例えば、 ロータリ弁 1 3 3が実線で示すような位置にあるときは、 導 管 T mと、 導管 T 1 とが導通状態になっているので、 ブロア一 1 1 1 より発生さ せた圧縮空気は、 導管 T mから導管 T 1へと供給される。
また、 例えば、 口一タリ弁 1 3 3が想像線で示すような位置にあるときは、 導 管 T mと、 導管 T 1 とが、 口一タリ弁 1 3 3により、 遮断された状態になる。 この時、 筒状体 1 3 2内の、 口一タリ弁 1 3 3により仕切られた一方の空間 S aには、 導管 T mから圧縮空気が供給され、 この空間 S aでは空気の圧縮が行わ れる。
一方、 筒状体 1 3 2内の、 口—タリ弁 1 3 3により仕切られた一方の空間 S b では、 空間 S b内に蓄えられていた圧縮空気が、 導管 T 1内へと供給される。 このような動作が、 口一タリ弁 1 3 3の回転により繰り返し行われることによ り、 導管 T 5 b内へ、 正圧の脈動ガス振動波が送られる。
また、 図 2 9は、 脈動ガス振動波発生装置の他の例を概略的に説明する分解斜 視図である。
脈動ガス振動波発生装置 4 1 Bは、 円筒形の筒状体 1 4 2と、 筒状体 1 4 2内 に、 回転可能に設けられた回転弁体 1 4 3とを備える。
筒状体 1 4 2は、 一方端 1 4 2 eが開口し、 他方端が、 蓋体 1 4 2 dにより閉 じられた構造になっており、 その側周面には、 吸気口 1 4 2 aと、 送波口 1 4 2 bとを備える。
吸気口 1 4 2 aには、 ブロア一 1 1 1 に接続される導管 T mが接続され、 送波 口 1 4 2 bには、 滑沢剤粉末吐出装置 5 1 に接続される導管 T 1 が接続される。 尚、 図 2 9中、 1 4 2 cで示す部分は、 回転弁体 1 4 3を枢着する回転軸受け 孔を示している。
回転弁体 1 4 3は、 中空 h i 5を有する円筒形状をしており、 その側周面 S 1 4 3には、 開口部 h 1 6が設けられている。 また、 回転弁体 1 4 3は、 一方端 1 4 3 eが、 開口しており、 他方端が、 蓋体 1 4 3 bにより閉じられた構造になつ ている。
また、回転弁体 1 4 3は、その回転中心軸に、回転軸 1 4 4が延設されている。 回転軸 1 4 4には、 電動モー夕等の回転駆動手段 (図示せず。 ) が接続されてお り、 回転駆動手段 (図示せず。 ) を駆動すると、 回転弁体 1 4 3が、 回転軸 1 4 4を中心にして回転するようになっている。
回転弁体 1 4 3の側周面 S 1 4 3の外径は、 筒状体 1 4 2の内径に概ね一致し ており、 回転弁体 1 4 3を、 筒状体 1 4 2内に収容し、 回転弁体 1 4 3を回転さ せると、 回転弁体 1 4 3の側周面 S 1 4 3が、 筒状体 1 4 2の内周面に沿って摺 動するようになっている。
尚、 図 2 9中、 1 4 3 cで示す部分は、 筒状体 1 4 2の蓋体 1 4 2 bに設けら れている回転軸受け孔 1 4 2 cに回転可能に収容される回転軸を示している。 回転弁体 1 4 3は、 筒状体 1 4 2内に、 回転軸 1 4 3 cを回転軸受け孔 1 4 2 cに取り付けた状態で、 回転可能に設けられている。
この脈動ガス振動波発生装置 4 1 Bを用いて、 導管 T 1内に、 所望の正圧の脈 動ガス振動波を供給する際には、 ブロア一 1 1 1 を駆動して、 導管 T m内へ圧縮 空気を供給する。
また、 電動モータ等の回転駆動手段 (図示せず。 ) により、 回転軸 1 4 4を所 定の回転速度で回転させることで、 回転弁体 1 4 3を所定の回転速度で回転させ すると、 例えば、 回転弁体 1 4 3の開口部 h 1 6が、 送波口 1 4 2 bの位置に ある時には、 導管 T mと導管 T 1 とが導通状態になり、 この時、 導管 T 1 に圧縮 空気が送り出される。
また、 例えば、 回転弁体 1 4 3の側周面 S 1 4 3が、 送波口 1 4 2 bの位置に ある時は、導管 T mと導管 T 1 との間が、側周面 S 1 4 3により遮断されるので、 この時、 導管 T 1に圧縮空気が送り出されない。
このような動作が、回転弁体 1 4 3の回転により繰り返し行われることにより、 導管 T 1内へ、 正圧の脈動ガス振動波が送られる。
上述した外部滑沢式打錠機 Sの脈動ガス振動波発生装置としては、 図 2 7に示 す脈動ガス振動波発生装置 4 1 、 図 2 8に示す脈動ガス振動波発生装置 4 1 A、 及び、 図 2 9に示す脈動ガス振動波発生装置 4 1 Bのいずれをも用いることがで きる。 しかしながら、 正圧の脈動ガス振動波には、 減衰する性質があるため、 こ の減衰する性質を考慮した場合には、 脈動ガス振動波発生装置から、 オンオフが はっきりした切れの良い、 正圧の脈動ガス振動波を発生する方が好ましい。 この ようなオンオフがはっきりした切れの良い、 正圧の脈動ガス振動波を発生するに は、 どちらかというと、 図 2 8や図 2 9に例示するような口一タリ型の脈動ガス 振動波変換装置 4 1 A、 4 1 Bよりも、 図 2 7に示すような回転カム型の脈動ガ ス振動波変換装置 4 1 を用いる方が好ましい。 尚、 上記した発明の実施の形態では、 弾性体膜として、 1個の貫通孔 E t aを 有する弾性体膜 E tを用いたものについて説明したが、 弾性体膜は、 1個の貫通 孔 E t aを有する弾性体膜 E tに限られず、 図 3 0に示すような、 複数の貫通孔 E t a ' · , を有する弾性体膜 E t ' を用いてもよい。
尚、 上記した外部滑沢式打錠機及びこの装置を用いた杵 3 1、 3 3及び臼 3 2 の各々の表面への滑沢剤の塗布方法は、 本発明に係る錠剤の製造装置として、 単 に、 好ましい例を示したに過ぎず、 杵 3 1、 3 3及び臼 3 2の各々の表面に必要 最小限の滑沢剤粉末を均一に塗布することができる限り、 他の装置や他の塗布方 法を用いることができることを付記しておく。
また、 ここでは、 錠剤の製造装置 (外部滑沢式打錠機) S bを中心にして説明 したが、 図 3 に示すように、 錠剤の製造装置 (外部滑沢式打錠機) S bから脈 動ガス振動波発生装置 4 1 を取り去れば、 図 1に示す錠剤の製造装置 (外部滑沢 式打錠機) S aとなり、 図 3 2に示すように、 錠剤の製造装置 (外部滑沢式打錠 機) S bから、酸素除去装置 1 1 2と脈動ガス振動波発生装置 4 1 とを取り去り、 ブロア一 1 1 1の代わりに、 不燃性ガス発生装置 1 1 1 aを設ければ、 図 8に示 す錠剤の製造装置 (外部滑沢式打錠機) S cとなる。
また、 図 3 3に示すように、 錠剤の製造装置 (外部滑沢式打錠機) S bのプロ ァー 1 1 1の代わりに、 不燃性ガス発生装置 1 1 1 aを設け、 酸素除去装置 1 1 2を取り去れば、 図 9に示す錠剤の製造装置 (外部滑沢式打錠機) S dとなる。 また、 図 3 4は、 本発明に係る錠剤の製造装置の他の一例を概略的に示す全体 構成図である。
この錠剤の製造装置 S eは、 以下の構成を除けば、 図 3 1に示す錠剤の製造装 置 S aと同様であるので、 錠剤の製造装置 S eの構成部材装置中、 錠剤の製造装 置 S aの構成部材装置に相当する構成部材装置については、 錠剤の製造装置 S a の構成部材装置に付した参照符号と同様の参照符号を付して、 その説明を省略す o
この錠剤の製造装置 S eは、 図 3 4に示すように、 吸引ダク 卜 1 0 3に吸引手 段 (集塵機 1 0 2 ) を取り付け、 吸引手段 (集塵機 1 0 2 ) と、 滑沢剤粉末吐出 装置 5 1 (より具体的には、 分散室 5 5の排出口 5 5 b ) から滑沢剤塗布装置 8 1 までの任意の位置で滑沢剤粉末の濃度を測定する噴霧量測定装置 1 3 1 とを備 又る o
図 3 5は、 噴霧量測定装置 1 3 1の構成を概略的に示す構成図である。
噴霧量測定装置 1 3 1は、 装置本体部 1 3 1 aと、 導管 T 2に接続される滑沢 剤粉末供給管 1 3 2と、 レーザ光線照射系装置 1 3 4 aと受光系装置 1 0 5 bを 備 る。
この例では、レーザ光線照射系装置 1 0 5と、散乱光受光系装置 1 3 4 bとは、 滑沢剤粉末供給管 1 3 2を挾むようにして、 概ね対向配置されている。
また、 噴霧量測定装置 1 3 1は、 パージガス供給管 h 1 3 1、 h 1 3 1 を備え ο
パージガス供給管 h 1 3 K h 1 3 1の各々は、 光透過管 h 1 3 1 a、 h 1 3 1 aと、 ガス供給管 h 1 3 1 b , h 1 3 1 bとを備える。
光透過管 h 3 1 a、 h 1 3 1 aの各々は、 装置本体部 1 3 1 aを貫通するよう に設けられ、 装置本体部 1 3 1 aの外周面の各々には、 光透過窓 1 3 3、 1 3 3 が設けられている。
ガス供給管 h 1 3 1 b、 h 1 3 1 bの各々は、 光透過管 h 3 1 a、 h 1 3 1 a の各々の途中の位置で接続されている。
また、 ガス供給管 h 1 3 1 b、 h 1 3 1 bの各々には、 導管 T mから分岐した パージガス供給管 (図 3 4に示すパージガス供給管 T p ) が分岐して接続されて いる。
そして、 この噴霧量測定装置 1 3 1では、 光透過管 h 3 1 a、 h 1 3 1 aの部 分で、 滑沢剤粉末供給管 1 3 2内を流れる粉体 (この例では、 滑沢剤粉末) の量 を測定できるようにされている。
この錠剤の製造装置 S eでは、 噴霧量測定装置 1 3 1 により、 滑沢剤粉末供給 管 1 3 2内を流れる滑沢剤粉末濃度を監視し、 量を監視し、 制御盤 1 2 1にて吸 引風量と滑沢剤粉末の量から滑沢剤濃度を演算して滑沢剤粉末濃度が爆発下限界 濃度に達した場合には、 ガス発生装置 1 1 1から発生させたガスに混和し分散し た滑沢剤粉末の量を爆発下限界濃度以下になるように調整するようにし、 粉塵爆 発が生じないようにする。 また、 噴霧量測定装置 1 3 1 により、 滑沢剤粉末供給管 1 3 2内を流れる滑沢 剤粉末の、 吸引手段 (集塵機 1 0 2 ) 内に送り込まれる滑沢剤粉末の濃度を爆発 下限界濃度以下にすることで、 吸引手段 (集塵機 1 0 2 ) 内において、 粉塵爆発 が生じないようにする。
尚、 図 3 4に示す錠剤の製造装置 S eでは、 ガス発生手段 1 1 1 として、 プロ ァー 1 1 1 を用い、 ブロア一 1 1 1 から発生させた圧縮空気中の酸素を酸素除去 装置 1 1 2により除去するようにした例を示したが、 ブロア一 1 1 1及び酸素除 去装置 1 1 2の代わりに、 図 3 3に示す錠剤の製造装置 S dのように、 不燃性ガ ス発生装置 1 1 1 aを用いても良い。 産業上の利用分野
以上、 詳細に説明したように、 請求項 1に記載の錠剤の製造方法では、 ガスに 依存して滑沢剤粉未をガス中に吐出し、 ガスに混和し分散させるようにしている ので、 滑沢剤粉末を混和し分散させるガスを一定にしている限り、 一定量のガス に対して、一定量の滑沢剤粉末を混和し、分散させることができる。このように、 この錠剤の製造方法では、 常に、 一定量の濃度の滑沢剤粉末を滑沢剤塗布装置に 供給するようにしているので、 臼、 上杵及び下杵の各々の材料接触表面に常に一 定量の滑沢剤粉末を塗布できる。 即ち、 この錠剤の製造方法では、 臼、 上杵及び 下杵の各々の材料接触表面に常に一定量の滑沢剤粉末を塗布できるので、 一旦、 臼、 上杵及び下杵の各々の材料接触表面に塗布する滑沢剤粉末の量が最適になる ように、 滑沢剤粉末を混和し分散させるガスの発生量 (流量、 圧力等) を決定す れば、 後は、 ガスの発生量 (流量、 圧力等) を一定にするだけで、 常に、 臼、 上 杵及び下杵の各々の材料接触表面に塗布する滑沢剤粉末の量を最適になるように 維持することができる。 この結果、 この錠剤の製造方法を用いれば、 一旦、 臼、 上杵及び下杵の各々の材料接触表面に塗布する滑沢剤粉末の量が、 製造される錠 剤に、 ステイツキングや、 キヤッビングや、 ラミネーティングといったような打 錠障害や、 臼、 上杵及び下杵にギシツキを生じない量となるように、 滑沢剤粉末 を混和し分散させるガスの発生量 (流量、 圧力等) を調整すれば、 後は、 滑沢剤 粉末を混和し分散させるガスの (流量、 圧力等) を一定に維持するだけで、 製造 される錠剤に、 ステイツキングや、 キヤッビングや、 ラミネーティングといった ような打錠障害や、 臼、 上杵及び下杵にギシツキを生じることなく、 長時間、 安 定して、 錠剤を製造することができる。 即ち、 この錠剤の製造方法は、 工業的生 産採算ベースにあった、 錠剤 (外部滑沢錠剤) の製造方法として適している。 のみならず、 この錠剤の製造方法では、 ガス発生手段から滑沢剤塗布装置まで の装置内の酸素の濃度を、 爆発下限界酸素濃度以下としているので、 ガス発生手 段から滑沢剤塗布装置までの装置内において、 粉塵爆発を生じない。
及び/又は、 この錠剤の製造方法において、 滑沢剤塗布装置の近傍のガス中に 含まれる酸素の濃度を、 爆発下限界酸素濃度以下とした場合には、 滑沢剤塗布装 置の近傍において、 粉塵爆発を生じない。
請求項 2に記載の錠剤の製造方法では、 ガス発生手段から滑沢剤塗布装置まで の装置内の酸素の濃度を 1 4 %以下としているので、 ガス発生手段から滑沢剤塗 布装置までの装置内において、 粉塵爆発を生じない。 及び/又は、 この錠剤の製 造方法では、 滑沢剤塗布装置の近傍のガス中に含まれる酸素の濃度を 1 4 °/0以下 としているので、 滑沢剤塗布装置の近傍において、 粉塵爆発を生じない。
請求項 3に記載の錠剤の製造方法では、 爆発下限界酸素濃度を 1 4 %以下の範 囲にある場合を想定し、 労働省産業安全研究所の静電気安全指針をクリアするよ うに、 ガス発生手段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装置 の近傍のガス中に含まれる酸素の濃度を 8 %以下としているので、 粉塵爆発が生 じない。
請求項 4に記載の錠剤の製造方法は、 ガス発生ステップ、 滑沢剤分散ステップ 及び打錠ステップの各々として、 請求項 1 に記載の錠剤の製造方法のガス発生ス テツプ、 滑沢剤分散ステップ及び打錠ステップの各々と、 同様のステップを備え ている。 したがって、 この錠剤の製造方法は、 請求項 1に記載の錠剤の製造方法 と同様、 工業的生産採算ベースにあった、 錠剤 (外部滑沢錠剤) の製造方法とし て適している。
のみならず、この錠剤の製造方法では、余剰滑沢剤粉末吸引ステップにおいて、 吸引手段内の滑沢剤粉末の濃度を爆発下限界濃度以下としているので、 吸引手段 内において、 粉塵爆発を生じない。 請求項 5に記載の錠剤の製造方法では、 余剰滑沢剤吸引ステップにおいて、 吸 引手段内の滑沢剤粉末の濃度を、 爆発下限界濃度以下の濃度、 即ち、 7 0 g /m 3以下、 好まし〈は 5 0 g /m 3以下にしているので、 吸引手段内において、 粉塵 爆発を生じない。
請求項 6に記載の錠剤の製造方法では、 滑沢剤分散ステップにおいて、 滑沢剤 粉末吐出装置に供給するガスとして、 不燃性ガスを用いているので、 滑沢剤粉末 を混和し分散させているガスが、空気と交じり合わない場所(装置内)において、 一切、 粉塵爆発を生じない。
請求項 7に記載の錠剤の製造方法では、 滑沢剤分散ステップにおいて、 滑沢剤 粉末吐出装置に供給するガスとして、 脈動振動ガスを用いている。 また、 この錠 剤の製造方法では、 滑沢剤粉末吐出装置として、 ガスに依存して滑沢剤粉末をガ ス中に吐出し、 ガスに混和し分散する滑沢剤粉未吐出装置を用いている。 したが つて、 滑沢剤粉末吐出装置に供給するガスとして、 脈動振動ガスを用いた場合、 滑沢剤粉末吐出装置から吐出される滑沢剤粉末の吐出量は、 脈動振動ガスの周波 数、 振幅及び波形等に依存する。 即ち、 この錠剤の製造方法では、 滑沢剤分散ス テツプにおいて、 滑沢剤粉末吐出装置に供給する脈動振動ガスの周波数、 振幅及 び波形等を一定にすれば、 一定のガスの量に対して、 常に、 一定量の滑沢剤粉未 を混和し分散できるようにしているので、 常に、 一定量の濃度の滑沢剤粉末を滑 沢剤塗布装置に供給することができる。 このように、 この錠剤の製造方法では、 常に、 一定量の濃度の滑沢剤粉末を滑沢剤塗布装置に供給するようにしているの で、 臼、 上杵及び下杵の各々の材料接触表面に常に一定量の滑沢剤粉末を塗布で きる。 即ち、 この錠剤の製造方法を用いれば、 臼、 上杵及び下杵の各々の材料接 触表面に常に一定量の滑沢剤粉末を同じ条件で塗布できるので、 一旦、 臼、 上杵 及び下杵の各々の材料接触表面に塗布する滑沢剤粉末の量が最適になるように、 脈動振動ガスの周波数、 振幅及び波形等を決定すれば、 後は、 脈動振動ガスの周 波数、 振幅及び波形等を一定にするだけで、 常に、 臼、 上杵及び下杵の各々の材 料接触表面に塗布する滑沢剤粉末の量を最適になるように維持することができる c この結果、 この錠剤の製造方法を用いれば、 一旦、 臼、 上杵及び下杵の各々の材 料接触表面に塗布する滑沢剤粉末の量が、製造される錠剤に、スティッキングや、 キヤッビングや、 ラミネ一ティングといったような打錠障害や、 臼、 上杵及び下 杵にギシツキを生じない量となるように、 脈動振動ガスの周波数、 振幅及び波形 等を調整すれば、 後は、 脈動振動ガスの周波数、 振幅及び波形等を一定にするだ けで、 常に、 臼、 上杵及び下杵の各々の材料接触表面に塗布する滑沢剤粉末の量 を最適になるように維持するだけで、 製造される錠剤に、 ステイツキングや、 キ ャッピングゃ、 ラミネ一ティングといったような打錠障害や、 臼、 上杵及び下杵 にギシツキを生じることな〈、長時間、安定して、錠剤を製造することができる。 即ち、 この錠剤の製造方法を用いれば、工業的生産採算ベースにのって、錠剤(外 部滑沢錠剤) を製造することができる。
請求項 8に記載の錠剤の製造方法では、 静電気による火花が発生しないように するために、 請求項 1〜 7のいずれかに記載の錠剤の製造方法を実施する装置に 帯電防止手段を設けているので、 静電気による火花が発生しない。 これにより、 この錠剤の製造方法を用いれば、 粉塵爆発が生じない。
請求項 9に記載の錠剤の製造装置では、 ガス発生装置から発生させたガスに依 存して滑沢剤粉末をガス中に吐出し、 ガス発生装置から発生させたガスに混和し 分散させる滑沢剤粉末吐出装置を用いているので、 ガス発生装置から発生させる ガスの発生量 (流量、 圧力等) を一定にしている限り、 一定量のガスに対して、 —定量の滑沢剤粉末を混和し、 分散させることができる。
このように、 この錠剤の製造装置では、 常に、 一定の濃度の滑沢剤粉末を滑沢 剤塗布装置に供給するようにしているので、 臼、 上杵及び下杵の各々の材料接触 表面に常に一定量の滑沢剤粉末を塗布できる。
この結果、 この錠剤の製造装置を用いれば、 臼、 上杵及び下杵の各々の材料接 触表面に常に一定量の滑沢剤粉末を塗布できるので、 一旦、 臼、 上杵及び下杵の 各々の材料接触表面に塗布する滑沢剤粉末の量が最適になるように、 ガス発生装 置から発生させるガスの発生量 (流量、 圧力等) を決定すれば、 後は、 ガスの発 生量 (流量、 圧力等) を一定にするだけで、 常に、 臼、 上杵及び下杵の各々の材 料接触表面に塗布する滑沢剤粉末の量を最適になるように維持することができる c この結果、 この錠剤の製造装置を用いれば、 一旦、 臼、 上杵及び下杵の各々の 材料接触表面に塗布する滑沢剤粉末の量が、 製造される錠剤に、 ステイツキング や、 キヤッビングや、 ラミネーティングといったような打錠障害や、 臼、 上杵及 び下杵にギシツキを生じない量となるように、 ガス発生装置から発生させるガス の発生量 (流量、 圧力等) を調整すれば、 後は、 ガス発生装置から発生させるガ スの (流量、 圧力等) を一定に維持するだけで、 製造される錠剤に、 スティツキ ングや、 キヤッビングや、 ラミネーティングといったような打錠障害や、 臼、 上 杵及び下杵にギシツキを生じることなく、 長時間、 安定して、 錠剤を製造するこ とができる。 即ち、 この錠剤の製造装置は、 工業的生産採算ベースにあった、 錠 剤 (外部滑沢錠剤) の製造装置として好適に用いることができる。
のみならず、 この錠剤の製造装置では、 酸素濃度測定装置が測定した酸素濃度 に基づいて、 ガス発生装置から発生させるガス量を調整するようにしている。 従って、 ガス発生装置から発生させるガスとして、 不燃性ガスを用いた場合に は、 ガス発生手段から滑沢剤塗布装置までの装置内の空間に存在する空気や、 滑 沢剤塗布装置の近傍の空気 (酸素を含む通常の空気) を不燃性ガスにより置換す ることができる。
ガス発生手段から滑沢剤塗布装置までの装置内の空間に存在する空気の全部又 は一部、 及び/又は、 滑沢剤塗布装置の近傍の空気 (酸素を含む通常の空気) の 全部又は一部を不燃性ガスにより置換し、 ガス発生手段から滑沢剤塗布装置まで の装置内の空間に存在するガス中に含まれる酸素の量や、 滑沢剤塗布装置の近傍 の空間に存在するガス中に含まれる酸素の量を減らせば、 滑沢剤塗布装置内の空 間や、 滑沢剤塗布装置の上杵塗布用滑沢剤噴霧口と上杵の材料接触面との間の空 間や、 滑沢剤塗布装置の下杵塗布用滑沢剤噴霧口、 臼及び臼内に所定の位置まで 挿入されている下杵により形成される空間において、 粉塵爆発が生じることを防 ぐことができる。 :
即ち、 この錠剤の製造装置では、 酸素濃度測定装置が測定した酸素濃度に基づ いて、 ガス発生装置から発生させるガス量を調整することで、 ガス発生手段から 滑沢剤塗布装置までの装置内の空間に存在するガス中に含まれる酸素の量や、 滑 沢剤塗布装置の近傍の空間に存在するガス中に含まれる酸素の量を減らすことが できるように構成しているので、 ガス発生手段から滑沢剤塗布装置までの装置内 の空間や、 滑沢剤塗布装置の周辺において、 粉塵爆発が生じることを防ぐことが できる。
請求項 1 0に記載の錠剤の製造装置では、 ガス発生手段から滑沢剤塗布装置ま での装置内及び/又は滑沢剤塗布装置の近傍のガス中に含まれる酸素の濃度を、 ガス発生装置から発生させるガス量により、 爆発限界酸素濃度以下としているの で、 ガス発生手段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装置の 近傍において、 粉塵爆発が生じない。
請求項 1 1 に記載の錠剤の製造装置では、 ガス発生手段から滑沢剤塗布装置ま での装置内及び/又は滑沢剤塗布装置の近傍のガス中に含まれる酸素の濃度を、 爆発限界酸素濃度以下、 即ち、 酸素の濃度を 1 4 %以下としているので、 ガス発 生手段から滑沢剤塗布装置までの装置内及び Z又は滑沢剤塗布装置の近傍におい て、 粉塵爆発を生じない。
請求項 1 2に記載の錠剤の製造装置では、 爆発下限界酸素濃度を 1 4 %以下の 範囲にある場合を想定し、 労働省産業安全研究所の静電気安全指針をクリアする ように、 ガス発生手段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装 置の近傍のガス中に含まれる酸素の濃度を 8 %以下としているので、 ガス発生手 段から滑沢剤塗布装置までの装置内及び/又は滑沢剤塗布装置の近傍において、 粉塵爆発が生じない。
請求項 1 3に記載の錠剤の製造装置では、 滑沢剤塗布装置から噴霧された滑沢 剤粉末を吸引手段を用いて、 直ちに吸引するようにしているので、 例えば、 滑沢 剤塗布装置の上杵用滑沢剤噴霧口から上杵の材料接触面に噴霧された滑沢剤粉末 が、 滑沢剤塗布装置の周辺に飛散することがないため、 滑沢剤塗布装置の周辺に おいて、 粉塵爆発が生じることがない。
のみならず、 この錠剤の製造装置では、 滑沢剤粉末濃度測定装置が測定した滑 沢剤粉末の濃度に基づいて、 吸引手段内 (より特定的に説明すると吸引手段の吸 引ダク 卜内)に送り込まれる滑沢剤粉末の濃度を調整できるようにしているので、 吸引手段内 (より特定的に説明すると吸引手段の吸引ダク ト内) に送り込まれる 滑沢剤粉末の濃度を爆発下限界濃度以下とすれば、 吸引手段内 (より特定的に説 明すると吸引手段の吸引ダク 卜内において、 粉塵爆発が生じない。
請求項 1 4に記載の錠剤の製造装置では、 吸引手段内 (より特定的に説明する と吸引手段の吸引ダク 卜内) に送り込まれる滑沢剤粉末の濃度を爆発下限界濃度 以下としているので、 吸引手段内 (より特定的に説明すると吸引手段の吸引ダク 卜内) において、 粉塵爆発を生じない。
請求項 1 5に記載の錠剤の製造装置では、 吸引手段内に送り込まれる滑沢剤粉 未の濃度を、滑沢剤粉末の爆発下限界濃度以下の濃度、即ち、 7 0 g / m 3以下、 好ましくは 5 0 g / m 3以下にしているので、 この錠剤の製造装置を用いて錠剤 を製造すれば、 錠剤の製造装置内 (より特定的に説明すると吸引手段の吸引ダク 卜内) において粉塵爆発を生じることがない。
請求項 1 6に記載の錠剤の製造装置では、 滑沢剤粉末を混和し分散するガスと して、 不燃性ガスを用いるようにしているので、 ガス発生手段から前記滑沢剤塗 布装置までの装置内において、 粉塵爆発を生じない。
請求項 1 7に記載の錠剤の製造装置では、 滑沢剤粉末を混和し分散するガスと して、 脈動振動ガスを用い、 ガス内に混和し分散する滑沢剤粉末の量を脈動振動 ガスの周波数、 振幅及び波形等に依存させている。
即ち、 この錠剤の製造装置では、 滑沢剤粉末を混和し分散する際に用いる脈動 振動ガスの周波数、 振幅及び波形等を一定にすれば、 一定のガスの量に対して、 常に、 一定量の滑沢剤粉末を混和し分散できるようにしているので、 常に、 一定 量の濃度の滑沢剤粉未を滑沢剤塗布装置に供給することができる。
このように、 この錠剤の製造装置では、 常に、 一定量の濃度の滑沢剤粉末を滑 沢剤塗布装置に供給するようにしているので、 臼、 上杵及び下杵の各々の材料接 触表面に常に一定量の滑沢剤粉末を同じ条件で塗布できる。
即ち、 この錠剤の製造方法を用いれば、 臼、 上杵及び下杵の各々の材料接触表 面に常に一定量の滑沢剤粉末を塗布できるので、 一旦、 臼、 上杵及び下杵の各々 の材料接触表面に塗布する滑沢剤粉末の量が最適になるように、 脈動振動ガスの 周波数、 振幅及び波形等を決定すれば、 後は、 脈動振動ガスの周波数、 振幅及び 波形等を一定にするだけで、 常に、 臼、 上杵及び下杵の各々の材料接触表面に塗 布する滑沢剤粉末の量を最適になるように維持することができる。
この結果、 この錠剤の製造装置を用いて錠剤を製造すれば、 一旦、 臼、 上杵及 び下杵の各々の材料接触表面に塗布する滑沢剤粉末の量が、 製造される錠剤に、 ステイツキングや、 キヤッビングや、 ラミネ一ティングといったような打錠障害 や、 臼、 上杵及び下忤にギシツキを生じない量となるように、 脈動振動ガスの周 波数、 振幅及び波形等を調整すれば、 後は、 脈動振動ガスの周波数、 振幅及び波 形等を一定にするだけで、 常に、 臼、 上杵及び下杵の各々の材料接触表面に塗布 する滑沢剤粉末の量を最適になるように維持するだけで、 製造される錠剤に、 ス ティッキングや、キヤッビングや、ラミネ一ティングといったような打錠障害や、 臼、 上杵及び下杵にギシツキを生じることなく、 長時間、 安定して、 錠剤を製造 することができる。
即ち、 この錠剤の製造装置を用いれば、 工業的生産採算ベースにのって、 錠剤 (外部滑沢錠剤) を製造することができる。
請求項 1 8に記載の錠剤の製造装置では、 噴霧量測定装置により、 滑沢剤粉末 量を監視し、 滑沢剤量と吸引量から滑沢剤濃度を演算し、 その演算結果が爆発下 限界濃度に達した場合には、 ガス発生装置から発生させたガスに混和し分散した 滑沢剤粉末の量を爆発下限界濃度以下になるように調整するようにしているので、 粉塵爆発を生じない。
請求項 1 9に記載の錠剤の製造装置では、 吸引手段内に送り込まれる滑沢剤粉 末の濃度を爆発下限界濃度以下にしているので、 吸引手段内において、 粉塵爆発 が生じない。
請求項 2 0に記載の錠剤の製造装置では、 吸引手段内に送り込まれる滑沢剤粉 末の濃度を、滑沢剤粉末の爆発下限界濃度以下の濃度、即ち、 7 0 g /m 3以下、 好ましくは、 5 0 g /m 3以下にしているので、 この錠剤の製造装置を用いて錠 剤を製造すれば、 錠剤の製造装置内 (より特定的に説明すると吸引手段の吸引ダ ク 卜内) において粉塵爆発を生じることがない。
請求項 2 1 に記載の錠剤の製造方法では、 ガス発生装置から、 不燃性ガスを発 生させるようにているので、 滑沢剤粉末を混和し分散させているガスが、 空気と 交じり合わない場所 (装置内) において、 一切、 粉塵爆発を生じない。
請求項 2 2に記載の錠剤の製造方法では、 請求項 7に記載の錠剤の製造装置と 同様、 滑沢剤分散ステップにおいて、 滑沢剤粉末吐出装置に供給する脈動振動ガ スの周波数、 振幅及び波形等を一定にすれば、 一定のガスの量に対して、 常に、 一定量の滑沢剤粉末を混和し分散できるようにしているので、 請求項 7に記載の 錠剤の製造装置と同様の効果を奏する。
請求項 2 3に記載の錠剤の製造装置では、 静電気による火花が発生しないよう にするために、帯電防止手段を設けているので、静電気による火花が発生しない。 これにより、 この錠剤の製造装置を用いれば、 錠剤を製造する工程において、 粉塵爆発が生じない。

Claims

請求の範囲
1 . ガス発生手段からガスを発生するガス発生ステップと、
ガスに依存して滑沢剤粉末をガス中に吐出し、 ガスに混和し分散する滑沢剤粉 末吐出装置に、 前記ガス発生手段から発生させたガスを供給し、 前記滑沢剤粉末 吐出装置から、前記ガス発生手段から発生させたガス中に、滑沢剤粉末を吐出し、 混合し、 分散させる滑沢剤分散ステップと、
前記滑沢剤分散ステップにおいて、 ガスに混和し分散させた滑沢剤粉末を臼、 上杵及び下杵の各々の材料接触表面に噴霧する滑沢剤塗布装置に気力輸送する滑 沢剤粉末気力輸送ステップと、
前記滑沢剤塗布装置から、 臼、 上杵及び下杵の各々の材料接触表面にガスに混 和し分散させた滑沢剤粉末を吹き付けて、 塗布する滑沢剤粉末塗布ステップと、 前記滑沢剤粉末が材料接触表面に塗布された臼、 上杵及び下杵を用いて、 成形 材料を圧縮成形する打錠ステップとを備え、
前記ガス発生手段から前記滑沢剤塗布装置までの装置内及び/又は前記滑沢剤 塗布装置の近傍のガス中に含まれる酸素の濃度を爆発下限界濃度以下とした、 錠 剤の製造方法。
2 . 前記ガス発生手段から前記滑沢剤塗布装置までの装置内及び/又は前記滑沢 剤塗布装置の近傍のガス中に含まれる酸素の濃度を 1 4 %以下としたことを特徴 とする、 請求項 1に記載の錠剤の製造方法。
3 . 前記ガス発生手段から前記滑沢剤塗布装置までの装置内及び/又は前記滑沢 剤塗布装置の近傍のガス中に含まれる酸素の濃度を 8 %以下とした、 請求項 1 に 記載の錠剤の製造方法。
4 . ガス発生手段からガスを発生するガス発生ステップと、
前記ガス発生手段から発生させたガスを、 ガスに依存して滑沢剤粉末をガス中 に吐出し、 ガスに混和し分散する滑沢剤粉末吐出装置に供給し、 前記滑沢剤粉末 吐出装置から、前記ガス発生手段から発生させたガス中に、滑沢剤粉末を吐出し、 混合し、 分散させる滑沢剤分散ステップと、
前記滑沢剤分散ステップにおいて、 ガスに混和し分散させた滑沢剤粉末を臼、 上杵及び下杵の各々の材料接触表面に噴霧する滑沢剤塗布装置に気力輸送する滑 沢剤粉末気力輸送ステップと、
前記滑沢剤塗布装置から、 臼、 上杵及び下忤の各々の材料接触表面にガスに混 和し分散させた滑沢剤粉末を吹き付けて、 塗布する滑沢剤粉末塗布ステップと、 前記滑沢剤粉末が材料接触表面に塗布された臼、 上忤及び下杵を用いて、 成形 材料を圧縮成形する打錠ステツプと、
前記滑沢剤粉末塗布ステップにおいて、 前記滑沢剤塗布装置から、 ガスに混和 し分散させた状態で、 臼、 上杵及び下杵の各々の材料接触表面に吹き付けられた 滑沢剤粉末中、 臼、 上杵及び下杵の各々の材料接触表面へ塗布されなかった余剰 の滑沢剤粉末を吸引手段を用いて吸引する、 余剰滑沢剤粉末吸引ステップとを備 え、
前記吸引手段内の滑沢剤粉末の濃度を爆発下限界濃度以下とした、 錠剤の製造 方法。
5 . 前記吸引手段内の滑沢剤粉末の濃度を 7 0 g / m 3以下としたことを特徴と する、 請求項 4に記載の錠剤の製造方法。
6 . 前記滑沢剤分散ステップにおいて、 前記滑沢剤粉末吐出装置に供給するガス として、不燃性ガスを用いた、請求項 1 ~ 5のいずれかに記載の錠剤の製造方法。
7 . 前記滑沢剤分散ステップにおいて、 前記滑沢剤粉末吐出装置に供給するガス として、 脈動ガス振動波を用いた、 請求項 1〜6のいずれかに記載の錠剤の製造 方法。
8 . 請求項 1〜7のいずれかに記載の錠剤の製造方法を実施する装置に帯電防止 手段を設けた、 請求項 1〜 7のいずれかに記載の錠剤の製造方法。
9 . ガス発生装置と、
前記ガス発生装置から発生させたガスに依存して滑沢剤粉末を前記ガス発生装 置から発生させたガス中に吐出し、 混和し分散させる滑沢剤粉末吐出装置と、 前記滑沢剤粉末吐出装置から吐出され、 前記ガス発生装置から発生させたガス に混和し分散した滑沢剤粉末を、 臼、 上杵及び下杵の各々の材料接触表面に噴霧 する滑沢剤塗布装置と、
前記ガス発生手段から前記滑沢剤塗布装置までの装置内及び/又は前記滑沢剤 塗布装置の近傍のガス中の酸素濃度を測定する酸素濃度測定装置とを備え、 前記酸素濃度測定装置が測定した酸素濃度に基づいて、 前記ガス発生手段から 前記滑沢剤塗布装置までの装置内及び/又は前記滑沢剤塗布装置の近傍のガス中 に含まれる酸素濃度を調整するようにした、 錠剤の製造装置。
1 0 . 前記ガス発生手段から前記滑沢剤塗布装置までの装置内又は前記滑沢剤塗 布装置の近傍のガス中に含まれる酸素濃度を爆発限界酸素濃度以下とした、 請求 項 9に記載の錠剤の製造装置。
1 1 . 前記ガス発生手段から前記滑沢剤塗布装置までの装置内及び/又は前記滑 沢剤塗布装置の近傍のガス中に含まれる酸素濃度を 1 4 %以下とした、 請求項 9 に記載の錠剤の製造装置。
1 2 . 前記ガス発生手段から前記滑沢剤塗布装置までの装置内及び/又は前記滑 沢剤塗布装置の近傍のガス中に含まれる酸素濃度を 8 %以下とした、 請求項 9に 記載の錠剤の製造装置。
1 3 . ガス発生装置と、
前記ガス発生装置から発生させたガスに依存して滑沢剤粉末を前記ガス発生装 置から発生させたガス中に吐出し、 混和し分散させる滑沢剤粉末吐出装置と、 前記滑沢剤粉末吐出装置から吐出され、 前記ガス発生装置から発生させたガス に混和し分散した滑沢剤粉末を、 臼、 上杵及び下杵の各々の材料接触表面に噴霧 する滑沢剤塗布装置と、
前記滑沢剤塗布装置から噴霧された滑沢剤粉未を吸引する吸引手段と、 前記吸引手段に設けられ、 前記吸引手段により吸引された滑沢剤粉末の濃度を 測定する滑沢剤粉末濃度測定装置とを備え、
前記滑沢剤粉末濃度測定装置が測定した滑沢剤粉末の濃度に基づいて、 前記吸 引手段内に送り込まれる滑沢剤粉末の濃度を調整するようにした、 錠剤の製造装
1 4 . 前記吸引手段内に送り込まれる滑沢剤粉末の濃度を爆発下限界濃度以下と した、 請求項 1 3に記載の錠剤の製造装置。
1 5 . 前記吸引手段内に送り込まれる滑沢剤粉末の濃度を、 7 0 g / m 3以下と したことを特徴とする、 請求項 1 3に記載の錠剤の製造装置。 錠剤の製造装置
1 6 . 前記ガス発生装置から、 不燃性ガスを発生させるようにした、 請求項 9〜 1 5のいずれかに記載の錠剤の製造装置。
1 7 . 前記ガス発生装置から、 脈動振動ガスを発生させるようにした、 請求項 9 〜1 6のいずれかに記載の錠剤の製造装置。
1 8 . ガス発生装置と、
前記ガス発生装置から発生させたガスに依存して滑沢剤粉末を前記ガス発生装 置から発生させたガス中に吐出し、 混和し分散させる滑沢剤粉末吐出装置と、 前記滑沢剤粉末吐出装置から吐出させ、 前記ガス発生装置から発生させたガス に混和し分散した滑沢剤粉末を、 臼、 上杵及び下杵の各々の材料接触表面に噴霧 する滑沢剤塗布装置と、
前記滑沢剤塗布装置から噴霧された滑沢剤粉末を吸引する吸引手段と、 前記滑沢剤粉末吐出装置から前記滑沢剤塗布装置までの任意の位置で滑沢剤粉 末の濃度を測定する噴霧量測定装置とを備え、
前記噴霧量測定装置が測定した滑沢剤粉末の量と前記吸引手段で吸引する風量 から、 滑沢剤粉末濃度を算出し吸引する風量を調整をするとともに、 滑沢剤粉末 濃度が爆発下限界濃度に達した場合は、 前記ガス発生装置から発生させたガスに 混和し分散した滑沢剤粉末の量を滑沢剤粉末濃度が爆発下限界濃度以下になるよ うに調整するようにした錠剤の製造装置。
1 9 .前記吸引手段内に送り込まれる滑沢剤粉未の濃度を爆発下限界以下とした、 請求項 1 8に記載の錠剤の製造装置。
2 0 . 前記吸引手段内に送り込まれる滑沢剤粉末の濃度を、 7 0 g /m 3以下と したことを特徴とする、 請求項 1 8に記載の錠剤の製造装置。
2 1 . 前記ガス発生装置から、 不燃性ガスを発生させるようにした、 請求項 1 8 又は請求項 1 9に記載の錠剤の製造装置。
2 2 . 前記ガス発生装置から、 脈動振動ガスを発生させるようにした、 請求項 1 8 - 2 1のいずれかに記載の錠剤の製造装置。
2 3 . 帯電防止手段を更に備える、 請求項 9〜2 2のいずれかに記載の錠剤の製
PCT/JP2001/010663 2000-12-08 2001-12-06 Procede et dispositif pour produire des pastilles WO2002045650A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002547436A JP3983669B2 (ja) 2000-12-08 2001-12-06 錠剤の製造装置
EP01999252A EP1350504B1 (en) 2000-12-08 2001-12-06 Method and apparatus for producing tablets
DE60142853T DE60142853D1 (ja) 2000-12-08 2001-12-06
AT01999252T ATE477784T1 (de) 2000-12-08 2001-12-06 Verfahren und gerät zur tablettenherstellung
US10/432,612 US20040096495A1 (en) 2000-12-08 2001-12-06 Method and apparatus for producing tablets
KR10-2003-7007658A KR20030068170A (ko) 2000-12-08 2001-12-06 정제의 제조방법 및 정제의 제조장치
AU2002221065A AU2002221065A1 (en) 2000-12-08 2001-12-06 Method and apparatus for producing tablets
US11/808,619 US7766638B2 (en) 2000-12-08 2007-06-12 Tablet production method and tablet production apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000374331 2000-12-08
JP2000-374331 2000-12-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10432612 A-371-Of-International 2001-12-06
US11/808,619 Division US7766638B2 (en) 2000-12-08 2007-06-12 Tablet production method and tablet production apparatus

Publications (2)

Publication Number Publication Date
WO2002045650A1 true WO2002045650A1 (fr) 2002-06-13
WO2002045650A9 WO2002045650A9 (fr) 2003-11-13

Family

ID=18843540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010663 WO2002045650A1 (fr) 2000-12-08 2001-12-06 Procede et dispositif pour produire des pastilles

Country Status (9)

Country Link
US (2) US20040096495A1 (ja)
EP (1) EP1350504B1 (ja)
JP (1) JP3983669B2 (ja)
KR (1) KR20030068170A (ja)
AT (1) ATE477784T1 (ja)
AU (1) AU2002221065A1 (ja)
DE (1) DE60142853D1 (ja)
ES (1) ES2351113T3 (ja)
WO (1) WO2002045650A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020506791A (ja) * 2016-11-28 2020-03-05 エス.ア.ロイスト ルシェルシュ エ デヴロップマン 粉末状材料を空気圧式に搬送するための方法
CN111282329A (zh) * 2020-03-05 2020-06-16 北京享云智汇科技有限公司 一种收料方便的固体化工原料制备用压滤机
JP2022538269A (ja) * 2019-06-26 2022-09-01 フェッテ コンパクティング ゲーエムベーハー 粉体生成物を連続処理するシステムおよび方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959506A (zh) * 2008-02-28 2011-01-26 雅培制药有限公司 片剂和其制备方法
MY162478A (en) * 2009-08-31 2017-06-15 Sumitomo Bakelite Co Molded body production device, molded body production method, and molded body
DE102013105924A1 (de) * 2013-06-07 2014-12-11 Dieffenbacher GmbH Maschinen- und Anlagenbau Presse zur Herstellung von Werkstoffplatten und Verfahren zum Betreiben einer derartigen Presse
JP2015164740A (ja) * 2014-02-04 2015-09-17 株式会社菊水製作所 粉体圧縮成形機及び圧縮成形品の製造方法
US20160370253A1 (en) * 2015-06-19 2016-12-22 Sanyasi R. Kalidindi Powder segregation testing apparatus and method of using
DE102016123279B4 (de) * 2016-12-01 2019-02-21 Fette Compacting Gmbh Verfahren und System zum Zuführen eines Schmier- oder Trennmittels zu Presswerkzeugen einer Tablettenpresse
CN110840747B (zh) * 2019-11-28 2021-10-01 安徽全康药业有限公司 一种用于制作杜仲雄花药丸的压丸设备及其制备方法
CN112454971A (zh) * 2020-04-20 2021-03-09 优品优家(深圳)科技有限公司 一种消毒杀菌泡腾片的加工设备
CN112545894B (zh) * 2020-12-05 2022-12-13 江中药业股份有限公司 一种全自动的药片智能化加工工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614098A (en) 1979-07-13 1981-02-10 Takeda Chem Ind Ltd Externally lubricating tablet making machine
JPH06336490A (ja) * 1993-05-28 1994-12-06 Mitsubishi Kasei Corp ショ糖脂肪酸エステル粉末の製造法
JPH07124231A (ja) 1993-11-01 1995-05-16 Kyowa Hakko Kogyo Co Ltd 外部滑沢式打錠機
JPH1160507A (ja) * 1997-08-22 1999-03-02 Bio Polymer Res:Kk 錠剤成形用新規結合剤
JP2000280174A (ja) * 1999-03-29 2000-10-10 Ichiro Nakano ブラスト法及びブラスト装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545063A (en) * 1977-06-13 1979-01-16 Kanebo Ltd Powdery mold releasing agent for confectionery
JPS5661228A (en) * 1979-10-22 1981-05-26 Hitachi Plant Eng & Constr Co Ltd Pneumatic conveying method and device for explosive powder and granule
JPS5822217A (ja) * 1981-07-31 1983-02-09 Kayaba Ind Co Ltd 微粉炭の輸送装置における混合ガスの供給装置
US5609883A (en) * 1994-09-16 1997-03-11 Advanced Technology Pharmaceuticals Corporation Compressed tablet transitory lubricant system
CA2269626C (en) * 1996-10-22 2007-01-30 Frederic Dietrich Pneumatically conveying powdery substances
DE19647089A1 (de) * 1996-11-14 1998-05-28 Bayer Ag Vorrichtung zum kontrollierten Aufsprühen von pulverförmigen Schmiermitteln auf Stempel und Matrizen von Tablettenpressen
JP3445112B2 (ja) 1997-09-25 2003-09-08 日立粉末冶金株式会社 粉末冶金における粉末成形方法,成形用金型および押型の潤滑方法
US6482349B1 (en) * 1998-11-02 2002-11-19 Sumitomo Special Metals Co., Ltd. Powder pressing apparatus and powder pressing method
US6776361B1 (en) * 1999-07-08 2004-08-17 Kyowa Hakko Kogyo Co., Ltd. Powder material spraying device
JP3415558B2 (ja) * 2000-04-11 2003-06-09 株式会社菊水製作所 回転式粉末圧縮成形機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614098A (en) 1979-07-13 1981-02-10 Takeda Chem Ind Ltd Externally lubricating tablet making machine
JPH06336490A (ja) * 1993-05-28 1994-12-06 Mitsubishi Kasei Corp ショ糖脂肪酸エステル粉末の製造法
JPH07124231A (ja) 1993-11-01 1995-05-16 Kyowa Hakko Kogyo Co Ltd 外部滑沢式打錠機
JPH1160507A (ja) * 1997-08-22 1999-03-02 Bio Polymer Res:Kk 錠剤成形用新規結合剤
JP2000280174A (ja) * 1999-03-29 2000-10-10 Ichiro Nakano ブラスト法及びブラスト装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1350504A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020506791A (ja) * 2016-11-28 2020-03-05 エス.ア.ロイスト ルシェルシュ エ デヴロップマン 粉末状材料を空気圧式に搬送するための方法
JP2022538269A (ja) * 2019-06-26 2022-09-01 フェッテ コンパクティング ゲーエムベーハー 粉体生成物を連続処理するシステムおよび方法
CN111282329A (zh) * 2020-03-05 2020-06-16 北京享云智汇科技有限公司 一种收料方便的固体化工原料制备用压滤机
CN111282329B (zh) * 2020-03-05 2021-11-02 山东新昊化工有限公司 一种收料方便的固体化工原料制备用压滤机

Also Published As

Publication number Publication date
ES2351113T3 (es) 2011-01-31
WO2002045650A9 (fr) 2003-11-13
JP3983669B2 (ja) 2007-09-26
AU2002221065A1 (en) 2002-06-18
ATE477784T1 (de) 2010-09-15
US7766638B2 (en) 2010-08-03
JPWO2002045650A1 (ja) 2004-04-08
US20080031989A1 (en) 2008-02-07
KR20030068170A (ko) 2003-08-19
EP1350504A1 (en) 2003-10-08
EP1350504A4 (en) 2005-12-07
US20040096495A1 (en) 2004-05-20
DE60142853D1 (ja) 2010-09-30
EP1350504B1 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US7766638B2 (en) Tablet production method and tablet production apparatus
WO2001003849A1 (fr) Dispositif de pulvérisation d&#39;une substance en poudre
GB2352658B (en) Air cleaning device
WO2000055600A3 (en) Sampling and analysis of airborne particulate matter by glow discharge atomic emission and mass spectrometries
CA2257141A1 (en) Sample delivery module for particle acceleration apparatus
EP2020266A3 (en) Powder classifying device
TW200741792A (en) Charged particle beam device
JP2006519690A (ja) 微噴霧化法および装置
WO2001055016A1 (fr) Dispositif de distribution de volume constant et procede de distribution de matiere pulverulente
DE60333075D1 (de) Vorrichtung und verfahren zur abgabe von kleinen partikelmengen
EP1047527A4 (en) DEVICE FOR PROJECTING PARTICULATE MATERIAL
EP1930087A4 (en) SPRAYING PROCESS AND SPRAYING DEVICE FOR BENTONITE MATERIAL
JP2009160491A (ja) 造粒装置
RU2328677C1 (ru) Аппарат для безуносной сушки
RU2324875C1 (ru) Аппарат для безуносной сушки
JP3862141B2 (ja) 粉体材料の吐出装置及び粉体材料の吐出方法
JP2010094675A (ja) 造粒装置
JP4390909B2 (ja) 弾性体膜取付具及びこれを用いた粉体材料噴霧装置
CN218013073U (zh) 一种具有减少扬尘的废料处理装置
JP2009007965A (ja) 扇風機
RU2093196C1 (ru) Самоочищающийся генератор аэрозоля
RU189267U1 (ru) Узел формирования воздействующего вещества в ингаляционной установке
MXPA02000703A (es) Metodos y aparatos para distribuicion de aire configurante.
JP2009126684A (ja) 粉粒体の搬送装置
JP2006205084A (ja) 粒子粉砕装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002547436

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037007658

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002221065

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001999252

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037007658

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10432612

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001999252

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

COP Corrected version of pamphlet

Free format text: PAGE 9/36, DRAWINGS, REPLACED BY CORRECT PAGE 7/36